JP4221649B2 - Wavelength conversion element and manufacturing method thereof - Google Patents
Wavelength conversion element and manufacturing method thereof Download PDFInfo
- Publication number
- JP4221649B2 JP4221649B2 JP2002257193A JP2002257193A JP4221649B2 JP 4221649 B2 JP4221649 B2 JP 4221649B2 JP 2002257193 A JP2002257193 A JP 2002257193A JP 2002257193 A JP2002257193 A JP 2002257193A JP 4221649 B2 JP4221649 B2 JP 4221649B2
- Authority
- JP
- Japan
- Prior art keywords
- wavelength conversion
- led chip
- conversion layer
- layer
- conversion element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48257—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
Landscapes
- Led Device Packages (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、波長変換素子に関し、特に家庭用照明や灯体等の光源に使用される例えば白色LED等の波長変換素子に関するものである。
【0002】
【従来の技術】
従来、このような波長変換素子は、例えば図7に示すように構成されている。図7において、波長変換素子1は、二つのリードフレーム2,3と、一方のリードフレーム2の上端に形成された凹陥部2a内に取り付けられたLEDチップ4と、上記凹陥部2a内にLEDチップ4を包囲するように充填された透明スペーサ層5と、透明スペーサ層5の上面に形成された波長変換層6と、上記二つのリードフレーム2,3の上端及びLEDチップ4を覆うように樹脂モールドにより形成されたレンズ7と、から構成されている。
【0003】
上記リードフレーム2,3は、例えば鉄に銀メッキをほどこしたものから形成されており、一方のリードフレーム2の上端に形成された凹陥部2aは、図8に詳細に示すように、底面から上方に向かって拡大するように、一定の傾斜角を備えており、さらに内面が反射面として構成されている。
【0004】
上記LEDチップ4は、例えば窒化ガリウム系のLEDチップとして構成されており、その発光部から後述する波長変換層に対する励起光、例えば300乃至500nmの波長の光を出射するようになっている。
尚、LEDチップ4は、そのpn構造を構成するp層及びn層が、それぞれボンディングワイヤ4a,4bにより、リードフレーム2,3の上端にそれぞれ電気的に接続されている。
【0005】
上記透明スペーサ層5は、例えばLEDチップ4からの励起光に対して透明な材料、例えばシリコーン樹脂から構成されており、リードフレーム2の凹陥部2a内に充填された後、硬化されることにより、図8に示すように、その上面が、LEDチップ4の上面から所定距離に位置するようになっている。
【0006】
上記波長変換層6は、蛍光体から構成されており、上記透明スペーサ層5の上面に形成されている。
そして、上記波長変換層6は、上記LEDチップ4からの光が励起光として入射したとき、この励起光とは異なる波長の蛍光を発生させ、外部に向かって出射するようになっている。
【0007】
上記レンズ7は、例えば透明エポキシ樹脂から構成されており、その形状に基づいて、波長変換層6からの蛍光を外部に適宜の配光特性で導くようになっている。
【0008】
このような構成の波長変換素子1によれば、二つのリードフレーム2,3からLEDチップ4のp層及びn層間に駆動電圧を印加することにより、LEDチップ4のp層及びn層の接合部にて、励起光が発生して、この励起光が、凹陥部2aの内面即ち反射面により反射され、透明スペーサ層5を通って、波長変換層6に入射する。これにより、波長変換層6は、入射する励起光によって、異なる波長の光を発生させ、上方に向かって出射させる。
かくして、波長変換素子1は、例えば白色光を出射するようになっている。
【0009】
【発明が解決しようとする課題】
ところで、このような構成の波長変換素子1においては、LEDチップ4の高さが100μm程度であると想定されており、これにより、凹陥部2aの形状と相まって、波長変換層6からの蛍光の色むらが発生しないように設計されている。
しかしながら、近年、LEDチップにおける光取出し効率を向上させるために、チップの一部を傾斜させるようにしたLEDチップが開発されており、このようなLEDチップは、その高さが150μm以上のものもある。
【0010】
このため、前述した構成の波長変換素子1にて、LEDチップの高さが150μm以上になると、以下のような問題が生ずる。
即ち、励起光源であるLEDチップ4の上端と下端から波長変換層6までの光路差が大きくなってしまうので、波長変換層6に入射する励起光の光量にむらが発生することになる。
これにより、波長変換層6から出射する蛍光の光量にもむらが発生することから、励起光と蛍光の混合による外部への出射光は、LEDチップ4の中心と周辺部とで、色が異なってしまい、色むらが発生することになる。
従って、このような波長変換素子は、例えば家庭用照明や灯体等の色むらや色のばらつきが問題視されるような光源として使用するには、不適であった。
【0011】
本発明は、以上の点から、色むらや色のばらつきが低減され得るようにした、波長変換素子を提供することを目的としている。
【0012】
上記目的は、本発明の構成によれば、少なくとも1つ以上のLEDチップと、このLEDチップの周囲にて上方に向かって拡大するように形成された反射面と、この反射面内にてLEDチップを包囲するように充填された透明スペーサ層と、透明スペーサ層の表面に形成された、波長変換層と、を含む波長変換素子であって、上記反射面が、下方からLEDチップの上面より高い位置まで延びる第一の部分と、第一の部分から上方に延びる第二の部分とから構成されており、上記第二の部分が、上記第一の部分より小さい傾斜角を有し、上記透明スペーサ層は、上記第一の部分と上記第二の部分との境界まで充填され、上記透明スペーサ層の上面が、上方に向かって凸状に形成されていることを特徴とする、波長変換素子により、達成される。
【0013】
本発明による波長変換素子は、好ましくは、上記波長変換層の上面が、上方に向かって凸状に形成されている。
【0014】
本発明による波長変換素子は、好ましくは、上記波長変換層は、上記第二の部分の上端まで充填されている。
【0015】
上記目的は、本発明の構成によれば、LEDチップを、該LEDチップの上面より高い位置まで延びる第一の部分と該第一の部分から該第一の部分より小さい傾斜角で上方に延びる第二の部分とからなる反射面を有する凹陥部内の底面に配置する工程と、透明樹脂を上記第一の部分と上記第二の部分の境界まで充填して硬化させ、上面が凸状の透明スペーサ層を形成する工程と、上記凹陥部内の上記透明スペーサ層上に、蛍光体を含有した樹脂により波長変換層を形成する工程と、を含む波長変換素子の製造方法により、達成される。
【0016】
本発明による波長変換素子の製造方法は、好ましくは、上記波長変換層を形成する工程は、蛍光体を含有した樹脂を上記第二の部分の上端まで充填して、上面が凸状の上記波長変換層を形成する。
【0018】
上記第一の構成によれば、LEDチップに駆動電圧を印加することにより、LEDチップから励起光が発生し、この励起光の一部が、波長変換層に入射する。
そして、励起光が波長変換層に入射することになり、波長変換層は、入射する励起光によって、異なる波長の光を発生させ、上方に向かって出射させる。
【0019】
この場合、波長変換層が上方に向かって凸状に形成されているので、LEDチップの上面から上方に出射する光は、凸状の波長変換層の中央付近に入射すると共に、LEDチップの周縁の側面から出射する光は、凸状の波長変換層の周縁付近に入射する。これにより、LEDチップの上端及び下端から出射する光の波長変換層までの光路差が低減されることになる。
従って、LEDチップの高さが高くても、波長変換層に入射するLEDチップからの励起光の光量のむらが低減されるので、波長変換層から出射する蛍光の光量のむらも低減され、より均一で色のばらつきの少ない蛍光光源が得られることになる。
【0020】
また、上記第二の構成によれば、LEDチップに駆動電圧を印加することにより、LEDチップから励起光が発生し、この励起光の一部が、透明スペーサ層を通って、反射面の第一の部分及び第二の部分で反射され、他の一部が透明スペーサ層を通って直接に波長変換層に入射する。
そして、励起光が波長変換層に入射することになり、波長変換層は、入射する励起光によって、異なる波長の光を発生させ、上方に向かって出射させる。
【0021】
この場合、波長変換層が上方に向かって凸状に形成されていると共に、反射面が第一の部分と第二の部分とから構成されているので、LEDチップの上面から上方に出射する光は、直接に凸状の波長変換層の中央付近に入射すると共に、LEDチップの周縁の上端付近から出射する光は、反射面の第二の部分で反射され、より拡散されて、凸状の波長変換層の周縁付近に入射し、またLEDチップの周縁の下端付近から出射する光は、反射面の第一の部分で反射され、より狭い範囲で、凸状の波長変換層の周縁付近に入射する。
【0022】
これにより、LEDチップの上端及び下端から出射する光の波長変換層までの光路差が低減されることになる。
従って、LEDチップの高さが高くても、波長変換層に入射するLEDチップからの励起光の光量のむらが低減されるので、波長変換層から出射する蛍光の光量のむらも低減され、より均一で色のばらつきの少ない蛍光光源が得られることになる。
【0023】
上記LEDチップの上面が、150μm以上の高さ位置に在る場合には、波長変換層が上方に向かって凸状に形成され、さらに好ましくは反射面が第一の部分と第二の部分とから構成されていることにより、波長変換層に入射するLEDチップからの励起光の光量のむらが低減されるので、波長変換層から出射する蛍光の光量のむらも低減され、より均一で色のばらつきの少ない蛍光光源が得られる。
【0024】
上記LEDチップが、サブマウントを介して実装されている場合には、サブマウントによりLEDチップの高さが実質的に150μm以上になったとしても、波長変換層が上方に向かって凸状に形成され、さらに好ましくは反射面が第一の部分と第二の部分とから構成されていることにより、波長変換層に入射するLEDチップからの励起光の光量のむらが低減されるので、波長変換層から出射する蛍光の光量のむらも低減され、より均一で色のばらつきの少ない蛍光光源が得られる。
【0025】
上記LEDチップが、波長300乃至500nmの波長の光を出射する場合には、LEDチップからの光が励起光として波長変換層に入射し、波長変換層から蛍光が発生することにより、励起光と蛍光の混合により、例えば白色光が外部出射することになる。
【0026】
上記反射面が、放熱材上に形成されており、この放熱材が、150W/mk以上の熱伝導率を有する材料から構成されている場合には、このような放熱材により波長変換層の放熱が確実に行なわれることになるので、波長変換層が熱膨張により変形してしまうようなことがない。
【0027】
【発明の実施の形態】
以下、この発明の好適な実施形態を図1乃至図6を参照しながら、詳細に説明する。
尚、以下に述べる実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。
【0028】
図1は、本発明による波長変換素子の第一の実施形態の構成を示している。
図1において、波長変換素子10は、放熱材11と、放熱材11の上面中央付近に設けられた凹陥部12内に取り付けられたLEDチップ13と、この凹陥部12内にてLEDチップ13を包囲するように充填された透明スペーサ層14と、透明スペーサ層14の表面に形成された上方に向かって凸状の波長変換層15と、凹陥部12付近の上方全体を覆うように形成されたレンズ16と、から構成されている。
【0029】
上記放熱材11は、凸状の波長変換層15の熱膨張による変形を生じさせないように、熱伝導率が150W/mK以上の材料から構成されている。尚、この材料は、絶縁性材料でも金属製材料でもよく、例えばベリリア(熱伝導率272W/mK)や窒化アルミニウムAlN(熱伝導率170W/mK)等のセラミックス材料や、銅(熱伝導率398W/mK)やアルミニウム(熱伝導率237W/mK)等が使用され得る。
【0030】
さらに、上記放熱材11の上面に形成された凹陥部12は、上方に向かって拡大するように形成されており、その内面が反射面として使用され得る。
尚、放熱材11は、凹陥部12の内面の光学的特性を改善するために、少なくとも凹陥部12の内面に高反射率の薄膜を形成してもよい。
【0031】
ここで、凹陥部12は、図2に詳細に示すように、二段構成になっており、下部(第一の部分)12aと上部(第二の部分)12bから構成されている。
下部12aは、その高さh1が後述するLEDチップ13の高さより高く、好ましくはLEDチップ13の高さに二倍以下に選定されており、傾斜角θ1を備えている。
また、上部12bは、波長変換層15の最適化の観点から、その高さh2が下部12aの高さh1より低く選定されており、さらに波長変換層15を凸状にするために、下部12aの傾斜角θ1より小さい傾斜角θ2を備えている。
ここで、下部12aの傾斜角θ1は、透明スペーサ層14が凸状であることから、任意に設定され得、例えば90乃至30度、好ましくは60乃至45度に選定されている。
【0032】
上記LEDチップ13は、上記凹陥部12の底面12c上にダイボンディング等により取り付けられており、その上面にn層及びp層の電極部(図示せず)が形成されている。そして、これらの電極部が例えば金線から成るボンディングワイヤ13a,13bにより、前記放熱材11の上面にて凹陥部12に隣接して形成された引出し電極11a,11bと電気的に接続されている。
尚、上記LEDチップ13は、基板側(下面)から光を取り出す所謂フリップチップ型素子として構成され、サブマウントを介して凹陥部12の底面12c上に取り付けられていてもよい。
また、上記LEDチップ13は、その基板側に形成された電極部がワイヤボンディングによらずに直接に凹陥部12の底面12cに露出した引出し電極に接続されるようにしてもよい。
【0033】
ここで、上記LEDチップ13は、その発光波長が後述する波長変換層15に対して励起光となるような波長であればよく、具体的には例えば300乃至500nm程度の波長である。
さらに、上記LEDチップ13は、その上面の高さが、サブマウントの有無にかかわらず、例えば100μm以上、好ましくは150μm以上に選定されている。
【0034】
上記透明スペーサ層14は、凹陥部12の内面及びLEDチップ13と波長変換層15とを分離するためのものであり、LEDチップ13から出射する励起光に対して透明であればよく、好ましくは、短波長光源による樹脂の黄色化を考察して、例えばシリコーン樹脂等から構成されている。
この場合、透明スペーサ層14は、その上面が上方に向かって凸状に形成されている。
【0035】
上記波長変換層15は、例えばYAG系蛍光体やZnS系蛍光体とを組み合わせることにより構成されており、LEDチップ13からの励起光が入射したとき、この励起光とは異なる波長の蛍光を発生させ、外部に向かって出射するようになっており、透明スペーサ層14の上面に凸状に成形されている。
このような凸状の波長変換層15は、例えば成形樹脂の表面張力を利用したり、あるいは金型による樹脂成形により、容易に成形され得る。
【0036】
上記レンズ16は、例えば透明エポキシ樹脂から構成されており、その形状に基づいて、波長変換層15からの蛍光を外部に適宜の配光特性で導くようになっている。
ここで、レンズ16は、放熱材11と一体に形成されてもよく、また放熱材11と別体に構成され、嵌合,接着等の適宜の方法により放熱材11に固定されてもよい。
【0037】
本発明実施形態による波長変換素子10は、以上のように構成されており、引出し電極11a,11b間に駆動電圧を印加することにより、ボンディングワイヤ13a,13bを介して、LEDチップ13のpn接合にて、励起光が発生して、この励起光が、凹陥部12の内面により反射され、透明スペーサ層14を介して、その上方の波長変換層15に入射する。
これにより、波長変換層15は、入射する励起光によって、異なる波長の光を発生させ、上方に向かって出射させる。このようにして、波長変換素子10は、例えば白色光を出射するようになっている。
【0038】
この場合、放熱材11の凹陥部12が二段構成になっていると共に、透明スペーサ層14及び波長変換層15の上面が凸状に形成されていることから、LEDチップ13の上面から上方に出射する光は、直接に凸状の波長変換層15の中央付近に入射すると共に、LEDチップ13の周縁の上端付近から出射する光は、凹陥部12の上部12bで反射されるので、傾斜角θ2で比較的広い範囲に拡散されて、凸状の波長変換層15の周縁付近に入射し、またLEDチップ13の周縁の下端付近から出射する光は、凹陥部12の下部12aで反射されるので傾斜角θ1で比較的狭い範囲で、凸状の波長変換層15の周縁付近に入射する。
【0039】
従って、LEDチップ13の上端及び下端から出射する光の波長変換層15までの光路差が小さくなるので、LEDチップの高さが例えば150μm以上と比較的高くても、波長変換層15に入射するLEDチップ13からの励起光の光量のむらが低減される。これにより、波長変換層15から出射する蛍光の光量のむらも低減される。
【0040】
図3は、本発明による波長変換素子の第二の実施形態の構成を示している。
図3において、波長変換素子20は、基本的に図1に示した波長変換素子10とほぼ同じ構成であるので、同じ構成要素には同じ符号を付して、その説明を省略する。
波長変換素子20は、放熱材11の凹陥部12が二段構成ではなく、全体として同じ傾斜角θを備えていると共に、透明スペーサ層14の上面が平坦に形成されており、透明スペーサ層14の上面に形成される波長変換層15のみが凸状に形成されている点で、図1に示した波長変換素子10とは異なる構成になっている。
ここで、波長変換層15は、凸状に形成されていればよく、具体的には中央部と端部との厚さの差が、LEDチップ13の高さに対して、0.5乃至2.0倍の範囲が最適である。
【0041】
このような構成の波長変換素子20によれば、引出し電極11a,11b間に駆動電圧を印加することにより、ボンディングワイヤ13a,13bを介して、LEDチップ13のpn接合にて、励起光が発生して、この励起光が、凹陥部12の内面により反射され、透明スペーサ層14を介して、その上方の波長変換層15に入射する。
これにより、波長変換層15は、入射する励起光によって、異なる波長の光を発生させ、上方に向かって出射させる。このようにして、波長変換素子10は、例えば白色光を出射するようになっている。
【0042】
この場合、波長変換層15が上方に向かって凸状に形成されていることから、LEDチップ13の上面から上方に出射する光は、直接に凸状の波長変換層15の中央付近に入射すると共に、LEDチップ13の周縁の側面から出射する光は、波長変換層15の周縁付近に入射する。
従って、LEDチップ13の上端及び下端から出射する光の波長変換層15までの光路差が小さくなるので、LEDチップの高さが例えば150μm以上と比較的高くても、波長変換層15に入射するLEDチップ13からの励起光の光量のむらが低減される。これにより、波長変換層15から出射する蛍光の光量のむらも低減される。
【0043】
次に、上記波長変換素子10,20の具体的な実験例について説明する。
先づ、上記波長変換素子20及び従来の波長変換素子として、図4(A)及び(B)に示す白色LED31,32を作製して、その色むらの発生を比較した。
各白色LED31,32としては、それぞれ銅製放熱材内に形成された底面12cの直径1.5mm,深さ0.5mm,端面傾斜角60度の凹陥部12内に、厚さ100μmのサブマウント43を介して、チップ高さ75μmの窒化ガリウム系青色LEDチップ13(発光波長450nm)を搭載した。ここで、このLEDチップ13は、サファイア基板上にn型GaN系層,p型GaN系層を順次に成長させることにより形成されている。
ここで、上記サブマウント33には、p層/n層の各電極用の配線が備えられており、ボンディングワイヤにより引出し電極11a,11bと電気的に接続され得るようになっている。
また、各GaN系層に形成された電極とサブマウントとは、Au/Sn系共晶材料により電気的接続が行なわれると共に、固定され得るようになっている。
その後、LEDチップ13の高さ付近まで、凹陥部12内に透明シリコーン樹脂を充填して硬化させ、透明スペーサ層14を形成した。
【0044】
続いて、この透明スペーサ層14の上に、LEDチップ13からの青色励起光が入射したとき、補色である黄色光の蛍光を発生させるCeを添加したYAG系蛍光体を含有したシリコーン樹脂を用意する。
そして、白色LED31については、上記シリコーン樹脂を凹陥部12内に、塗布量を制御しながら、凹陥部12の端面と中央部分との高さが0.2mmになるように調整して充填し、硬化させることにより、凸状の波長変換層15を形成した。
また、白色LED32については、上記シリコーン樹脂を凹陥部12内にて平坦になるように充填し、硬化させて、平坦な波長変換層15’を形成した。
何れの白色LED31,32も、LEDチップ13からの青色励起光と波長変換層15,15’からの黄色蛍光とが適宜の割合で混合されて、レンズ16から白色光が照射されるようになっている。
最後に、銅製放熱材11に対して、嵌め込み式レンズ16を圧入して、白色LED31,32を作製した。
【0045】
このようにして作製された本発明実施形態による波長変換素子としての白色LED31と、従来の白色LED32について、駆動して得られた白色光を比較したところ、どちらも色座標X=0.3,Y=0.3であった。そして、各白色LED31,32から1m離れた位置に置かれた白色板に対して、各白色LED31,32からの光を照射して、励起光源である青色LEDチップ13からの青色と、YAG系波長変換層15からの蛍光の黄色が分離して見えるか否かを目視により観測したところ、本発明実施形態による白色LED31の色むら発生は50個中0個であったのに対して、従来の白色LED32の色むら発生は50個中35個であった。
これにより、本発明による白色LED31では、凸状の波長変換層15の作用により、色むらの発生が効果的に抑制されていることが確認された。
【0046】
次に、上記波長変換素子10及び従来の波長変換素子として、図5(A)及び(B)に示す白色LED41,42を作製して、その色むらの発生を比較した。
各白色LED41,42としては、それぞれ銅製放熱材内に形成された底面12cの直径1.5mm,深さ0.5mm,端面傾斜角45度の凹陥部12内に、チップ高さ250μmの端面傾斜型窒化ガリウム系青色LEDチップ13(発光波長460nm)をAu/Sn共晶材料により固定した。ここで、このLEDチップ13は、SiC基板上にn型GaN系層,p型GaN系層を順次に成長させることにより形成されている。
ここで、LEDチップ13は、pn接合部が凹陥部12の底面12cに接近するように配置され、p型電極は凹陥部12の底面12cに対して共晶材料により電気的に接続され、またn型電極は、ボンディングワイヤにより引出し電極11aと電気的に接続され得るようになっている。
その後、LEDチップ13の高さ付近まで、凹陥部12内に透明シリコーン樹脂を充填して硬化させ、透明スペーサ層14を形成した。
【0047】
続いて、この透明スペーサ層14の上に、LEDチップ13からの青色励起光が入射したとき、補色である黄色光の蛍光を発生させるCeを添加したYAG系蛍光体を含有したシリコーン樹脂を用意する。
そして、白色LED41については、上記シリコーン樹脂を凹陥部12内に、塗布量を制御しながら、凹陥部12の端面と中央部分との高さが0.2mmになるように調整して充填し、硬化させることにより、凸状の波長変換層15を形成した。
また、白色LED42については、上記シリコーン樹脂を凹陥部12内にて平坦になるように充填し、硬化させて、平坦な波長変換層15’を形成した。
何れの白色LED41,42も、LEDチップ13からの青色励起光と波長変換層15,15’からの黄色蛍光とが適宜の割合で混合されて、レンズ16から白色光が照射されるようになっている。
最後に、銅製放熱材11に対して、嵌め込み式レンズ16を圧入して、白色LED41,42を作製した。
【0048】
このようにして作製された本発明実施形態による波長変換素子としての白色LED41と、従来の白色LED42について、駆動して得られた白色光を比較したところ、どちらも色座標X=0.3,Y=0.3であった。そして、各白色LED41,42から1m離れた位置に置かれた白色板に対して、各白色LED41,42からの光を照射して、励起光源である青色LEDチップ13からの青色と、YAG系波長変換層15からの蛍光の黄色が分離して見えるか否かを目視により観測したところ、本発明実施形態による白色LED41の色むら発生は50個中5個であったのに対して、従来の白色LED42の色むら発生は50個中40個であった。
これにより、本発明による白色LED41では、凸状の波長変換層15の作用により、色むらの発生が効果的に抑制されていることが確認された。
【0049】
次に、上記波長変換素子10として、図6に示す白色LED51を作製して、その色むらの発生を比較した。
白色LED51としては、銅製放熱材内に形成された底面12cの直径1.1mm,深さ0.5mm,端面傾斜角90度の下部12aと、深さ0.3mm,端面傾斜角45度の上部12bから成る凹陥部12内に、チップ高さ250μmの窒化ガリウム系青色LEDチップ13(発光波長460nm)をAu/Sn共晶材料により固定した。ここで、このLEDチップ13は、SiC基板上にn型GaN系層,p型GaN系層を順次に成長させることにより形成されている。
ここで、LEDチップ13は、pn接合部が凹陥部12の底面12cに接近するように配置され、p型電極は凹陥部12の底面12cに対して共晶材料により電気的に接続され、またn型電極は、ボンディングワイヤにより引出し電極11aと電気的に接続され得るようになっている。
その後、凹陥部12の下部12a及び上部12bの界面まで、凹陥部12内に透明シリコーン樹脂を凸状になるように充填して硬化させ、透明スペーサ層14を形成した。
【0050】
続いて、この透明スペーサ層14の上に、LEDチップ13からの青色励起光が入射したとき、補色である黄色光の蛍光を発生させるCeを添加したYAG系蛍光体を含有したシリコーン樹脂を凹陥部12内に、塗布量を制御しながら、凹陥部12の上端面と中央部分との高さが0.2mmになるように調整して充填し、硬化させることにより、凸状の波長変換層15を形成した。
その際、LEDチップ13からの青色励起光と波長変換層15からの黄色蛍光とが適宜の割合で混合されて、レンズ16から白色光が照射されるようになっている。
最後に、銅製放熱材11に対して、嵌め込み式レンズ16を圧入して、白色LED51を作製した。
【0051】
このようにして作製された本発明実施形態による波長変換素子としての白色LED51と、前記白色LED41について、駆動して得られた白色光を比較したところ、どちらも色座標X=0.3,Y=0.3であった。そして、各白色LED51,42から1m離れた位置に置かれた白色板に対して、各白色LED51,42からの光を照射して、励起光源である青色LEDチップ13からの青色と、YAG系波長変換層15からの蛍光の黄色が分離して見えるか否かを目視により観測したところ、本発明実施形態による白色LED51の色むら発生は50個中0個であったのに対して、前記白色LED41の色むら発生は50個中5個であった。
これにより、本発明による白色LED51では、凸状の波長変換層15の作用により、色むらの発生がより一層効果的に抑制されていることが確認された。
【0052】
【発明の効果】
以上述べたように、本発明によれば、波長変換層が上方に向かって凸状に形成され、さらに好ましくは反射面が第一の部分と第二の部分とから構成されているので、LEDチップの上面から上方に出射する光は、凸状の波長変換層の中央付近に入射すると共に、LEDチップの周縁の側面から出射する光は、反射面の第一の部分及び第二の部分で反射されて、凸状の波長変換層の周縁付近に入射する。これにより、LEDチップの上端及び下端から出射する光の波長変換層までの光路差が低減されることになる。
従って、LEDチップの高さが高くても、波長変換層に入射するLEDチップからの励起光の光量のむらが低減されるので、波長変換層から出射する蛍光の光量のむらも低減され、より均一で色のばらつきの少ない蛍光光源が得られることになる。
このようにして、本発明によれば、色むらや色のばらつきが低減され得るようにした、極めて優れた波長変換素子が提供され得る。
【図面の簡単な説明】
【図1】本発明による波長変換素子の第一の実施形態の構成を示す概略断面図である。
【図2】図1の波長変換素子における要部の詳細な構成を示す部分拡大断面図である。
【図3】本発明による波長変換素子の第二の実施形態の構成を示す概略断面図である。
【図4】図3の波長変換素子の第一の具体的構成例と従来の構成例を示す概略断面図である。
【図5】図3の波長変換素子の第二の具体的構成例と従来の構成例を示す概略断面図である。
【図6】図1の波長変換素子の具体的構成例を示す概略断面図である。
【図7】従来の波長変換素子の一例の構成を示す概略断面図である。
【図8】図7の波長変換素子の要部を示す部分拡大断面図である。
【符号の説明】
10,20 波長変換素子
11 放熱材
12 凹陥部
12a 下部(第一の部分)
12b 上部(第二の部分)
13 LEDチップ
14 透明スペーサ層
15 波長変換層
16 レンズ
31,32,41,42,51 白色LED[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wavelength conversion element, and more particularly to a wavelength conversion element such as a white LED used for a light source such as a home illumination or a lamp.
[0002]
[Prior art]
Conventionally, such a wavelength conversion element is configured as shown in FIG. 7, for example. In FIG. 7, the
[0003]
The
[0004]
The
In the
[0005]
The
[0006]
The
When the light from the
[0007]
The lens 7 is made of, for example, a transparent epoxy resin, and guides fluorescence from the
[0008]
According to the
Thus, the
[0009]
[Problems to be solved by the invention]
By the way, in the
However, in recent years, in order to improve the light extraction efficiency of the LED chip, an LED chip in which a part of the chip is inclined has been developed, and such an LED chip has a height of 150 μm or more. is there.
[0010]
For this reason, when the height of the LED chip is 150 μm or more in the
That is, since the optical path difference from the upper end and the lower end of the
As a result, the amount of fluorescent light emitted from the
Therefore, such a wavelength conversion element is unsuitable for use as a light source in which color unevenness or color variation is considered a problem, for example, for home lighting or lamps.
[0011]
In view of the above, an object of the present invention is to provide a wavelength conversion element that can reduce color unevenness and color variation.
[0012]
The above object is achieved according to the configuration of the present invention.At least one LED chip, a reflective surface formed to expand upward around the LED chip, and a transparent spacer layer filled to surround the LED chip in the reflective surface And a wavelength conversion element including a wavelength conversion layer formed on the surface of the transparent spacer layer, wherein the reflection surface extends from below to a position higher than the upper surface of the LED chip, A second portion extending upward from the first portion, wherein the second portion has an inclination angle smaller than that of the first portion, and the transparent spacer layer includes the first portion and the second portion. Filled up to the boundary with the second part, the upper surface of the transparent spacer layer is formed in a convex shape upwardThis is achieved by a wavelength conversion element.
[0013]
In the wavelength conversion element according to the present invention, the upper surface of the wavelength conversion layer is preferably formed in a convex shape upward.
[0014]
In the wavelength conversion element according to the present invention, preferably, the wavelength conversion layer is filled up to an upper end of the second portion.
[0015]
According to the configuration of the present invention, the object is to extend the LED chip upward with a first portion extending to a position higher than the upper surface of the LED chip and an inclination angle smaller than the first portion from the first portion. A step of arranging on the bottom surface in the recessed portion having a reflecting surface composed of the second portion, filling the transparent resin up to the boundary between the first portion and the second portion, and curing the transparent resin with a convex upper surface; This is achieved by a method of manufacturing a wavelength conversion element including a step of forming a spacer layer and a step of forming a wavelength conversion layer with a resin containing a phosphor on the transparent spacer layer in the recess.
[0016]
In the method of manufacturing a wavelength conversion element according to the present invention, preferably, in the step of forming the wavelength conversion layer, a resin containing a phosphor is filled up to an upper end of the second part, and the upper surface has the convex wavelength. A conversion layer is formed.
[0018]
According to the first configuration, excitation light is generated from the LED chip by applying a driving voltage to the LED chip, and a part of the excitation light enters the wavelength conversion layer.
Then, the excitation light enters the wavelength conversion layer, and the wavelength conversion layer generates light having different wavelengths by the incident excitation light and emits the light upward.
[0019]
In this case, since the wavelength conversion layer is formed in a convex shape upward, the light emitted upward from the upper surface of the LED chip is incident near the center of the convex wavelength conversion layer and the periphery of the LED chip. The light emitted from the side faces enters the vicinity of the periphery of the convex wavelength conversion layer. Thereby, the optical path difference to the wavelength conversion layer of the light radiate | emitted from the upper end and lower end of an LED chip will be reduced.
Therefore, even if the LED chip is high, unevenness in the amount of excitation light from the LED chip incident on the wavelength conversion layer is reduced, so that unevenness in the amount of fluorescence emitted from the wavelength conversion layer is also reduced and more uniform. A fluorescent light source with little color variation can be obtained.
[0020]
Further, according to the second configuration, excitation light is generated from the LED chip by applying a driving voltage to the LED chip, and a part of the excitation light passes through the transparent spacer layer and is reflected on the reflection surface. The light is reflected by one part and the second part, and the other part is directly incident on the wavelength conversion layer through the transparent spacer layer.
Then, the excitation light enters the wavelength conversion layer, and the wavelength conversion layer generates light having different wavelengths by the incident excitation light and emits the light upward.
[0021]
In this case, the wavelength conversion layer is formed in a convex shape upward, and the reflection surface is composed of the first portion and the second portion, so that the light emitted upward from the upper surface of the LED chip. Is directly incident near the center of the convex wavelength conversion layer, and light emitted from the vicinity of the upper end of the peripheral edge of the LED chip is reflected by the second portion of the reflection surface, is more diffused, and is convex. Light that enters the vicinity of the periphery of the wavelength conversion layer and exits from the vicinity of the lower end of the periphery of the LED chip is reflected by the first portion of the reflecting surface, and in a narrower range, near the periphery of the convex wavelength conversion layer. Incident.
[0022]
Thereby, the optical path difference to the wavelength conversion layer of the light radiate | emitted from the upper end and lower end of an LED chip will be reduced.
Therefore, even if the LED chip is high, unevenness in the amount of excitation light from the LED chip incident on the wavelength conversion layer is reduced, so that unevenness in the amount of fluorescence emitted from the wavelength conversion layer is also reduced and more uniform. A fluorescent light source with little color variation can be obtained.
[0023]
When the upper surface of the LED chip is at a height of 150 μm or more, the wavelength conversion layer is formed in a convex shape upward, and more preferably, the reflection surface is formed of the first portion and the second portion. Since the non-uniformity in the amount of excitation light from the LED chip incident on the wavelength conversion layer is reduced, the non-uniformity in the amount of fluorescence emitted from the wavelength conversion layer is also reduced, resulting in a more uniform and uneven color variation. Fewer fluorescent light sources can be obtained.
[0024]
When the LED chip is mounted via a submount, the wavelength conversion layer is formed in a convex shape upward even if the LED chip height is substantially 150 μm or more due to the submount. More preferably, the unevenness of the amount of excitation light from the LED chip incident on the wavelength conversion layer is reduced because the reflecting surface is composed of the first portion and the second portion. Unevenness of the amount of fluorescent light emitted from the light source is reduced, and a fluorescent light source with more uniform and less color variation can be obtained.
[0025]
When the LED chip emits light having a wavelength of 300 to 500 nm, the light from the LED chip is incident on the wavelength conversion layer as excitation light, and fluorescence is generated from the wavelength conversion layer. By mixing the fluorescence, for example, white light is emitted to the outside.
[0026]
When the reflection surface is formed on a heat radiating material and the heat radiating material is made of a material having a thermal conductivity of 150 W / mk or more, the heat radiating of the wavelength conversion layer is performed by such a heat radiating material. Therefore, the wavelength conversion layer is not deformed by thermal expansion.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to FIGS. 1 to 6.
The embodiments described below are preferable specific examples of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention particularly limits the present invention in the following description. As long as there is no description of the effect, it is not restricted to these aspects.
[0028]
FIG. 1 shows a configuration of a first embodiment of a wavelength conversion element according to the present invention.
In FIG. 1, the
[0029]
The
[0030]
Furthermore, the recessed
In addition, in order to improve the optical characteristics of the inner surface of the recessed
[0031]
Here, as shown in detail in FIG. 2, the recessed
The
Further, from the viewpoint of optimizing the
Here, the inclination angle θ1 of the
[0032]
The
The
Further, the
[0033]
Here, the
Furthermore, the
[0034]
The
In this case, the
[0035]
The
Such a convex
[0036]
The
Here, the
[0037]
The
Thereby, the
[0038]
In this case, the recessed
[0039]
Accordingly, since the optical path difference of the light emitted from the upper end and the lower end of the
[0040]
FIG. 3 shows a configuration of a second embodiment of the wavelength conversion element according to the present invention.
In FIG. 3, the
In the
Here, the
[0041]
According to the
Thereby, the
[0042]
In this case, since the
Accordingly, since the optical path difference of the light emitted from the upper end and the lower end of the
[0043]
Next, specific experimental examples of the
First, as the
Each of the
Here, the
The electrodes and submounts formed on each GaN-based layer are electrically connected by an Au / Sn-based eutectic material and can be fixed.
Thereafter, the recessed
[0044]
Subsequently, on this
For the
For the
In any of the
Finally, the
[0045]
When
Thereby, in white LED31 by this invention, it was confirmed by the effect | action of the convex
[0046]
Next, as the
Each of the
Here, the
Thereafter, the recessed
[0047]
Subsequently, on this
And about white LED41, adjusting the amount of application | coating to the said recessed
For the
In any of the
Finally, the
[0048]
When white light obtained by driving the white LED 41 as the wavelength conversion element according to the embodiment of the present invention thus manufactured and the conventional
Thereby, in the white LED 41 by this invention, it was confirmed by the effect | action of the convex
[0049]
Next, as the
As the
Here, the
Thereafter, up to the interface between the
[0050]
Subsequently, when the blue excitation light from the
At that time, blue excitation light from the
Finally, a
[0051]
When white light obtained by driving the
Thereby, in the
[0052]
【The invention's effect】
As described above, according to the present invention, the wavelength conversion layer is formed in a convex shape upward, and more preferably, the reflection surface is composed of the first portion and the second portion. The light emitted upward from the upper surface of the chip is incident near the center of the convex wavelength conversion layer, and the light emitted from the side surface of the peripheral edge of the LED chip is emitted from the first portion and the second portion of the reflecting surface. Reflected and incident near the periphery of the convex wavelength conversion layer. Thereby, the optical path difference to the wavelength conversion layer of the light radiate | emitted from the upper end and lower end of an LED chip will be reduced.
Therefore, even if the LED chip is high, unevenness in the amount of excitation light from the LED chip incident on the wavelength conversion layer is reduced, so that unevenness in the amount of fluorescence emitted from the wavelength conversion layer is also reduced and more uniform. A fluorescent light source with little color variation can be obtained.
Thus, according to the present invention, it is possible to provide an extremely excellent wavelength conversion element that can reduce color unevenness and color variation.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing the configuration of a first embodiment of a wavelength conversion element according to the present invention.
2 is a partial enlarged cross-sectional view showing a detailed configuration of a main part of the wavelength conversion element in FIG. 1. FIG.
FIG. 3 is a schematic cross-sectional view showing a configuration of a second embodiment of a wavelength conversion element according to the present invention.
4 is a schematic cross-sectional view showing a first specific configuration example and a conventional configuration example of the wavelength conversion element of FIG. 3; FIG.
5 is a schematic cross-sectional view showing a second specific configuration example and a conventional configuration example of the wavelength conversion element in FIG. 3; FIG.
6 is a schematic cross-sectional view showing a specific configuration example of the wavelength conversion element in FIG. 1. FIG.
FIG. 7 is a schematic cross-sectional view showing a configuration of an example of a conventional wavelength conversion element.
8 is a partial enlarged cross-sectional view showing a main part of the wavelength conversion element in FIG. 7;
[Explanation of symbols]
10, 20 Wavelength conversion element
11 Heat dissipation material
12 Recess
12a Lower part (first part)
12b Upper part (second part)
13 LED chip
14 Transparent spacer layer
15 Wavelength conversion layer
16 lenses
31, 32, 41, 42, 51 White LED
Claims (5)
上記反射面が、下方からLEDチップの上面より高い位置まで延びる第一の部分と、第一の部分から上方に延びる第二の部分とから構成されており、The reflective surface is composed of a first part extending from below to a position higher than the upper surface of the LED chip, and a second part extending upward from the first part,
上記第二の部分が、上記第一の部分より小さい傾斜角を有し、上記透明スペーサ層は、上記第一の部分と上記第二の部分との境界まで充填され、The second part has a smaller inclination angle than the first part, and the transparent spacer layer is filled to the boundary between the first part and the second part;
上記透明スペーサ層の上面が、上方に向かって凸状に形成されていることを特徴とする、波長変換素子。The wavelength conversion element, wherein an upper surface of the transparent spacer layer is convex upward.
透明樹脂を上記第一の部分と上記第二の部分の境界まで充填して硬化させ、上面が凸状の透明スペーサ層を形成する工程と、Filling and curing the transparent resin up to the boundary between the first part and the second part, and forming a transparent spacer layer having a convex upper surface;
上記凹陥部内の上記透明スペーサ層上に、蛍光体を含有した樹脂により波長変換層を形成する工程と、Forming a wavelength conversion layer with a resin containing a phosphor on the transparent spacer layer in the recessed portion;
を含む波長変換素子の製造方法。The manufacturing method of the wavelength conversion element containing this.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002257193A JP4221649B2 (en) | 2002-09-02 | 2002-09-02 | Wavelength conversion element and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002257193A JP4221649B2 (en) | 2002-09-02 | 2002-09-02 | Wavelength conversion element and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004095969A JP2004095969A (en) | 2004-03-25 |
JP4221649B2 true JP4221649B2 (en) | 2009-02-12 |
Family
ID=32062150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002257193A Expired - Fee Related JP4221649B2 (en) | 2002-09-02 | 2002-09-02 | Wavelength conversion element and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4221649B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7517728B2 (en) * | 2004-03-31 | 2009-04-14 | Cree, Inc. | Semiconductor light emitting devices including a luminescent conversion element |
US7279346B2 (en) | 2004-03-31 | 2007-10-09 | Cree, Inc. | Method for packaging a light emitting device by one dispense then cure step followed by another |
KR100696063B1 (en) | 2005-01-05 | 2007-03-15 | 엘지이노텍 주식회사 | Array emitting device |
JP2008541477A (en) * | 2005-05-20 | 2008-11-20 | クリー, インコーポレイティッド | High efficiency white light emitting diode |
US7329907B2 (en) | 2005-08-12 | 2008-02-12 | Avago Technologies, Ecbu Ip Pte Ltd | Phosphor-converted LED devices having improved light distribution uniformity |
JP2007110060A (en) * | 2005-09-15 | 2007-04-26 | Nichia Chem Ind Ltd | Light emitting device |
JP2010171465A (en) * | 2005-09-22 | 2010-08-05 | Toshiba Lighting & Technology Corp | Light emitting device |
KR100780176B1 (en) | 2005-11-25 | 2007-11-27 | 삼성전기주식회사 | Side-view light emitting diode package |
JP2011040494A (en) * | 2009-08-07 | 2011-02-24 | Koito Mfg Co Ltd | Light emitting module |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63178569A (en) * | 1987-01-20 | 1988-07-22 | Toshiba Corp | Semiconductor light-emitting device |
JP3065258B2 (en) * | 1996-09-30 | 2000-07-17 | 日亜化学工業株式会社 | Light emitting device and display device using the same |
JPH1187778A (en) * | 1997-09-02 | 1999-03-30 | Toshiba Corp | Semiconductor light emitting element, semiconductor light emitting device and manufacture thereof |
JP4141549B2 (en) * | 1997-11-07 | 2008-08-27 | シャープ株式会社 | Manufacturing method of semiconductor light emitting device |
JPH11251644A (en) * | 1998-02-27 | 1999-09-17 | Matsushita Electron Corp | Semiconductor light emitting device |
JP2000156528A (en) * | 1998-11-19 | 2000-06-06 | Sharp Corp | Luminous element |
JP2001203393A (en) * | 2000-01-19 | 2001-07-27 | Matsushita Electric Works Ltd | Light-emitting diode |
-
2002
- 2002-09-02 JP JP2002257193A patent/JP4221649B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004095969A (en) | 2004-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180261572A1 (en) | Manufacturing method of semiconductor light-emitting device | |
KR100723247B1 (en) | Chip coating type light emitting diode package and fabrication method thereof | |
US8866166B2 (en) | Solid state lighting device | |
US8581287B2 (en) | Semiconductor light emitting device having a reflective material, wavelength converting layer and optical plate with rough and plane surface regions, and method of manufacturing | |
JP5209881B2 (en) | Lead frame and light emitting device package using the same | |
US20120299463A1 (en) | Light emitting device and illumination apparatus using same | |
CN103104832B (en) | There is the light output uniformity of improvement and the light-emitting device of thermal diffusivity | |
JP2018120959A (en) | Light emitting device and lighting system | |
JP2004281606A (en) | Light emitting device and its manufacturing method | |
JP4938255B2 (en) | Light emitting element storage package, light source, and light emitting device | |
JP4221649B2 (en) | Wavelength conversion element and manufacturing method thereof | |
US11894499B2 (en) | Lens arrangements for light-emitting diode packages | |
KR100665181B1 (en) | Light emitting diode package and method for manufacturing the same | |
JP5484544B2 (en) | Light emitting device | |
KR101655464B1 (en) | Light emitting device package, method for fabricating the same and lighting system including the same | |
KR102211319B1 (en) | Led module | |
US20230387356A1 (en) | Light-emitting diode packages with lead frame structures for flip-chip mounting of light-emitting diode chips | |
US20230246144A1 (en) | Arrangements of light-altering coatings in light-emitting diode packages | |
KR102113374B1 (en) | Led module having light diffusion layer for lighting | |
TW202347829A (en) | Emission height arrangements in light-emitting diode packages and related devices and methods | |
KR20130050804A (en) | Light emitting device | |
KR20030082282A (en) | White light emitting diode | |
KR20060015036A (en) | White light emitting and its method of making |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050624 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050901 |
|
A072 | Dismissal of procedure |
Free format text: JAPANESE INTERMEDIATE CODE: A073 Effective date: 20051122 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080722 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080912 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081104 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081105 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111128 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111128 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121128 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121128 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131128 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |