JP4219424B2 - Sensing element - Google Patents

Sensing element Download PDF

Info

Publication number
JP4219424B2
JP4219424B2 JP31738396A JP31738396A JP4219424B2 JP 4219424 B2 JP4219424 B2 JP 4219424B2 JP 31738396 A JP31738396 A JP 31738396A JP 31738396 A JP31738396 A JP 31738396A JP 4219424 B2 JP4219424 B2 JP 4219424B2
Authority
JP
Japan
Prior art keywords
humidity
moisture
atmosphere
moisture absorption
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31738396A
Other languages
Japanese (ja)
Other versions
JPH10160697A (en
Inventor
昌志 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
Original Assignee
Panasonic Ecology Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Ecology Systems Co Ltd filed Critical Panasonic Ecology Systems Co Ltd
Priority to JP31738396A priority Critical patent/JP4219424B2/en
Publication of JPH10160697A publication Critical patent/JPH10160697A/en
Application granted granted Critical
Publication of JP4219424B2 publication Critical patent/JP4219424B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、施設園芸、環境衛生、防災用、工業用、ビル用、住宅用などのガス濃度を計測し制御する場所に使用される加熱駆動型の検知素子に関するものである。
【0002】
【従来の技術】
以下、その検知素子について、加熱駆動型のガスセンサを例にとって、図9を参照しながら説明する。
【0003】
図に示すようにガス感応部101は片面下部に加熱部102を備えた基板103の片面上部に位置し、電極104a、104bからの出力取り出し用リード線105a、105bおよび、前記加熱部102から取り出したリード線106a、106bにそれぞれ接続したリードピン107a、107b、107c、107dを介して下部の台座108に固定されている。そして、きょう体109は、内包するガス感応部101、加熱部102、電極104a、104b、リード線105a、105b、106a、106bを機械的損傷から保護するとともに測定雰囲気と接触を良くするため開口部110が設けられており、台座108に固定されている。
【0004】
上記構成においてガス感応部101を加熱部102により測定温度に加熱するとともに、電極104a、104b間に一定電圧を印加し、きょう体109の開口部110を通じてガス感応部101が測定雰囲気と接触すると、その際の検知対象ガスの濃度に応じてガス感応部の抵抗値が変化し測定雰囲気中の検知対象ガスの濃度を測定することができるものであった。
【0005】
【発明が解決しようとする課題】
このような従来の検知素子は、ガス感応部が湿度に対して感度を持つため、測定雰囲気の湿度によって誤動作するという課題があり、この誤動作を防止することが要求されている。
【0006】
本発明は、このような従来の課題を解決するものであり、測定雰囲気の湿度が変化した場合においてもきょう体内部の湿度変化を防止し湿度による誤動作を防止することができ、また、雰囲気の湿度に応じて可逆的に吸放湿する材料を使用することにより、急激な湿度変化の影響を防止することができ、また吸湿手段を吸湿材加熱手段により、測定雰囲気の湿度変化範囲全域で吸湿能力が得られる温度に加熱することにより、測定雰囲気の湿度が如何なる場合においても湿度による誤動作を防止でき、またガス感応部を加熱する加熱部の熱を利用し、測定雰囲気の湿度変化範囲全域で吸湿能力が得られる温度に加熱することにより、低消費電力で湿度による誤動作を防止でき、吸湿手段を再生することにより、長期的な湿度変化による誤動作を防止することのできる検知素子を提供することを目的としている。
【0007】
【課題を解決するための手段】
本発明の検知素子は上記目的を達成するために、感応部と、感応部を内包し、開口部を有するきょう体とを有する検知素子において、開口部の一部または全部を覆う形に吸湿材を設け、相対湿度変化に対する吸湿特性を優れさせきょう体内の湿度変化を防止し前記感応部の誤動作を防止するように前記吸湿材を測定雰囲気よりも高い温度に加熱する吸湿材加熱手段を前記吸湿材に設置し、前記吸湿材を加熱することにより、相対湿度変化に対する吸湿特性が優れている雰囲気の相対湿度範囲で前記吸湿材を使用する構成としたものである。
【0008】
本発明によれば、吸湿材の吸湿能力が測定雰囲気の湿度変化範囲で最適となる温度に吸湿材を加熱するため、雰囲気の湿度によらずにきょう体内の湿度変化を防止することができるため、湿度変化による誤動作を防止することができる検知素子が得られる。
【0009】
【発明の実施の形態】
本発明は、感応部と、感応部を内包し、開口部を有するきょう体とを有する検知素子において、開口部の一部または全部を覆う形に吸湿材を設け、相対湿度変化に対する吸湿特性を優れさせきょう体内の湿度変化を防止し前記感応部の誤動作を防止するように前記吸湿材を測定雰囲気よりも高い温度に加熱する吸湿材加熱手段を前記吸湿材に設置し、前記吸湿材を加熱することにより、相対湿度変化に対する吸湿特性が優れている雰囲気の相対湿度範囲で前記吸湿材を使用したものであり、吸湿手段の動作温度を測定雰囲気の湿度変化範囲で吸湿能力が得られる温度に加熱するという作用を有する。
【0010】
以下、本発明の実施例について図面を参照しながら説明する。
【0011】
【実施例】
(参考例1)
従来例と同一の部分は同一番号を付し説明を省略する。
【0012】
図1に示すようにきょう体109の内部に吸湿手段1が固定手段2によって固定されている。吸湿手段1は、ゼオライトやシリカゲルなどの吸湿材料からなり粉体や粒を固定し、開口部110からきょう体109内部に雰囲気の空気が充分通じる構成となっている。
【0013】
上記構成において、開口部110から流入した空気は、吸湿手段1を通りきょう体109内部に流入しその流入した空気のガス濃度をガス感応部101は検知する。その際、測定雰囲気の湿分は吸湿手段1により吸湿されきょう体109内部には侵入しない。そのため、きょう体109内部の湿度は常に低湿に保たれ、雰囲気の湿度が変化した場合でもきょう体109内部の湿度変化は起こらないのでガス感応部101の水分による誤動作を防止することができる。
【0014】
なお、吸湿手段1は、ゼオライト、シリカゲルなどとしたが、雰囲気中の湿度を吸湿する材料であれば同じ効果を得ることができる。また、形態は、粉体、粒としたが、きょう体内部に固定でき、空気の流通がある形態であればどのような形態でもよく、成形体や紙や布に封じたものであってもよい。
【0015】
(参考例2)
従来例と同一の部分には同一番号を付し説明を省略する。
【0016】
図2において吸湿手段としてシリカゲル粒3は100メッシュの金属メッシュ板4と固定手段2によってきょう体109内部の開口部110との間に固定されている。
【0017】
上記構成において、除湿手段であるシリカゲル粒3は図3に示す吸湿特性を持つ。すなわち、雰囲気の相対湿度が低湿から高湿に変化した場合、湿分を吸湿する。また、高湿から低湿に変化した場合は、吸湿していた湿分を放湿する。そのため、きょう体109内部の湿度は雰囲気の湿度変化によらず一定に保たれガス感応部101の誤動作を防止することができる。
【0018】
なお、吸湿手段としてシリカゲル粒としたが、雰囲気の相対湿度変化に対し可逆的に吸放湿を行う材料であれば何でもよい。また、形態を粒としたがきょう体内部に固定でき、空気の流通がある形態であればどのような形態でもよく、成形体や紙や布に封じたものであってもよい。
【0019】
(実施例1)
従来例と同一の部分には同一番号を付し説明を省略する。
【0020】
図4において、吸湿手段1の吸湿材であるシリカゲルを加熱する加熱手段としてヒータ5が吸湿手段1に設置されている。ヒータ5は電源4から電力の供給を受けている。
【0021】
上記構成において、除湿手段であるシリカゲル粒3は加熱手段であるヒータ5によって加熱され、測定雰囲気よりも高い温度となっている。シリカゲル粒3の吸湿特性を図5に示している。シリカゲル粒3の吸湿特性は高湿になるほど相対湿度変化に対する吸湿特性が悪くなる。そのため、雰囲気の湿度が20%〜80%の範囲で変化する場合、高湿側で吸湿能力が不足する。そこで、ヒータ5によってシリカゲル粒3を加熱することにより、例えば図5のように30℃にすると20℃で20%〜80%の湿度範囲が30℃では約10%〜45%の範囲となり、シリカゲル粒3の相対湿度変化に対する吸湿特性が優れている範囲で使用することができる。そのため、きょう体109内部の湿度を雰囲気の湿度変化によらず一定に保つことができガス感応部101の誤動作を防止することができる。
【0022】
なお、ヒータは、吸湿手段である吸湿材を加熱できるものであればニクロム線、シート状のヒータなど何でもよい。また、ヒータの設置場所は吸湿材内部でも周囲でもよくその効果に差異はない。また、加熱温度については雰囲気の温度より高温になりかつ吸湿材の吸湿能力を維持できる温度、一般的には100℃以下であればその効果に差異はない。
【0023】
参考
従来例と同一の部分には同一番号を付し説明を省略する。
【0024】
図6においてガス感応部101は加熱部102により約300℃に加熱されている。加熱部の容量は約250mWである。また、ガス感応部101とシリカゲル粒3の下面の距離は約3mm程度であり、シリカゲル粒3の量は約1gである。
【0025】
上記構成において、シリカゲル粒3は、ガス感応部101の加熱部102の輻射熱により加熱される。図7に雰囲気温度に対するシリカゲル粒の温度を示している。図7に示すようにシリカゲル粒3は雰囲気温度が約25℃の場合、約30℃〜70℃に加熱される。そのため、雰囲気の相対湿度が20%〜100%まで変化した場合においても、シリカゲル粒3の吸湿特性の優れた領域で使用することができ、きょう体109内部の湿度を一定に保つことができる、ガス感応部101の誤動作を防止することができる。
【0026】
(参考例
従来例と同一の部分には同一番号を付し説明を省略する。
【0027】
図8において、再生手段として、ヒータ5は電源6から電力の供給を受け吸湿手段1を吸湿能力を再生する温度に加熱する。電源6はタイマー7の信号を受け一定時間間隔で定期的にヒータ5に電力を供給する。
【0028】
上記構成において、吸湿手段1は雰囲気の湿分を吸湿しきょう体109内部を低湿に保持するが、吸湿量が飽和すると湿分の吸湿能力が無くなり、きょう体109内部の湿度を低湿に保たなくなる。しかし、吸湿手段1を加熱することにより吸湿した湿分を放出し再び吸湿能力を再生する。吸湿手段1が再生する温度は材料によって異なるが、シリカゲルの場合100℃〜150℃の範囲が適切である。また、タイマー7の時間間隔は、使用するシリカゲル量によって異なるが、約1gのシリカゲルを吸湿手段1とする場合、6時間〜12時間が望ましい。以上のように、吸湿手段1を再生することにより長期にわたりきょう体109内部の湿度を低湿に保つことができ、ガス感応部101の誤動作を防止することができる。
【0029】
【発明の効果】
以上のように本発明によれば、吸湿材を吸湿材加熱手段により相対湿度変化に対する吸湿特性を優れさせきょう体内の湿度変化を防止し前記感応部の誤動作を防止するように測定雰囲気よりも高い温度に加熱することにより、相対湿度変化に対する吸湿特性が優れている雰囲気の相対湿度範囲で前記吸湿材を使用することにより、使用する雰囲気の湿度範囲で最適な吸湿能力を得ることができるため雰囲気の湿度変化に対し、より少量の吸湿材できょう体内部の湿度を一定に保つことができ、感応部の湿度による誤動作を防止することができるという有利な効果が得られる。
【図面の簡単な説明】
【図1】 本発明の参考例1による検知素子の構成を示す断面図
【図2】 同参考例2による検知素子の構成を示す断面図
【図3】 同吸湿手段の吸湿特性を示すグラフ
【図4】 本発明の実施例1による検知素子の構成を示す断面図
【図5】 同吸湿材の吸湿特性を示すグラフ
【図6】 同参考による検知素子の構成を示す断面図
【図7】 同吸湿材の温度を示すグラフ
【図8】 同参考例による検知素子の構成を示す断面図
【図9】 従来の検知素子の構成を示す断面図
【符号の説明】
1 吸湿手段
3 シリカゲル粒
5 ヒータ
6 電源
7 タイマー
101 ガス感応部
102 加熱部
109 きょう体
110 開口部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat-driven sensing element used in a place where gas concentration is measured and controlled, such as facility horticulture, environmental sanitation, disaster prevention, industrial use, building use, and house use.
[0002]
[Prior art]
Hereinafter, the detection element will be described with reference to FIG. 9, taking a heat-driven gas sensor as an example.
[0003]
As shown in the figure, the gas sensitive part 101 is located on one side upper part of the substrate 103 provided with the heating part 102 on one side lower part, and is taken out from the lead wires 105a, 105b for taking out the outputs from the electrodes 104a, 104b and the heating part 102. It is fixed to the lower pedestal 108 via lead pins 107a, 107b, 107c, 107d connected to the lead wires 106a, 106b, respectively. The casing 109 has an opening for protecting the gas sensing unit 101, the heating unit 102, the electrodes 104a and 104b, and the lead wires 105a, 105b, 106a, and 106b contained therein from mechanical damage and improving contact with the measurement atmosphere. 110 is provided and fixed to the pedestal 108.
[0004]
In the above configuration, the gas sensitive unit 101 is heated to the measurement temperature by the heating unit 102, a constant voltage is applied between the electrodes 104a and 104b, and the gas sensitive unit 101 comes into contact with the measurement atmosphere through the opening 110 of the casing 109. In this case, the resistance value of the gas sensitive portion changes according to the concentration of the detection target gas, and the concentration of the detection target gas in the measurement atmosphere can be measured.
[0005]
[Problems to be solved by the invention]
Such a conventional sensing element has a problem that it malfunctions depending on the humidity of the measurement atmosphere because the gas sensitive part is sensitive to humidity, and it is required to prevent this malfunction.
[0006]
The present invention solves such a conventional problem, and even when the humidity of the measurement atmosphere changes, the humidity inside the casing can be prevented and malfunction due to humidity can be prevented. By using a material that absorbs and releases moisture reversibly according to the humidity, it is possible to prevent the influence of a sudden change in humidity, and the moisture absorption means absorbs moisture over the entire humidity change range of the measurement atmosphere by means of a moisture absorbent heating means. By heating to a temperature where the capacity can be obtained, malfunction due to humidity can be prevented at any humidity of the measurement atmosphere, and the heat of the heating section that heats the gas sensitive part can be used to cover the entire humidity change range of the measurement atmosphere. Heating to a temperature that provides moisture absorption capability prevents malfunctions due to humidity with low power consumption, and regenerating moisture absorption means prevents malfunctions due to long-term humidity changes. And its object is to provide a sensing device that can be prevented.
[0007]
[Means for Solving the Problems]
For sensing element of the present invention to achieve the above object, a sensitive part, the sensitive part and enclosing, in a sensing device and a today body having an opening, moisture absorption into a form covering a part or all of the openings A moisture absorbent heating means for heating the moisture absorbent to a temperature higher than the measurement atmosphere so as to prevent moisture change in the casing and prevent malfunction of the sensitive part by providing a material and improving moisture absorption characteristics with respect to relative humidity changes; By installing the hygroscopic material on the hygroscopic material and heating the hygroscopic material, the hygroscopic material is used in a relative humidity range of an atmosphere having excellent hygroscopic properties with respect to changes in relative humidity .
[0008]
According to the present invention, the hygroscopic material is heated to a temperature at which the hygroscopic capacity of the hygroscopic material is optimal within the humidity change range of the measurement atmosphere, so that it is possible to prevent humidity changes in the casing regardless of the humidity of the atmosphere. Thus, a sensing element that can prevent malfunction due to humidity change is obtained.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides a sensing element that includes a sensitive part and a housing that includes the sensitive part and has an opening. A hygroscopic material heating means for heating the hygroscopic material to a temperature higher than the measurement atmosphere is installed in the hygroscopic material so as to prevent the humidity change in the housing and prevent malfunction of the sensitive part, and the hygroscopic material is heated. Thus, the hygroscopic material is used in the relative humidity range of the atmosphere having excellent moisture absorption characteristics with respect to the relative humidity change , and the operating temperature of the moisture absorption means is set to a temperature at which the hygroscopic ability can be obtained in the humidity change range of the measurement atmosphere. Has the effect of heating.
[0010]
Embodiments of the present invention will be described below with reference to the drawings.
[0011]
【Example】
(Reference Example 1)
The same parts as those in the conventional example are denoted by the same reference numerals and the description thereof is omitted.
[0012]
As shown in FIG. 1, the moisture absorbing means 1 is fixed inside the casing 109 by fixing means 2. The hygroscopic means 1 is made of a hygroscopic material such as zeolite or silica gel, and has a configuration in which powder and particles are fixed, and air in the atmosphere is sufficiently communicated from the opening 110 to the inside of the casing 109.
[0013]
In the above configuration, the air flowing from the opening 110 passes through the moisture absorbing means 1 and flows into the housing 109, and the gas sensitive unit 101 detects the gas concentration of the flowing air. At that time, moisture in the measurement atmosphere is absorbed by the moisture absorption means 1 and does not enter the housing 109. Therefore, the humidity inside the casing 109 is always kept low, and even if the humidity of the atmosphere changes, the humidity inside the casing 109 does not change, so that malfunction of the gas sensitive unit 101 due to moisture can be prevented.
[0014]
The hygroscopic means 1 is zeolite, silica gel or the like, but the same effect can be obtained as long as the material absorbs humidity in the atmosphere. In addition, although the form is powder or grain, any form may be used as long as it can be fixed inside the casing and there is a flow of air, and it may be sealed in a molded body, paper or cloth. Good.
[0015]
(Reference Example 2)
The same parts as those in the conventional example are denoted by the same reference numerals, and description thereof is omitted.
[0016]
In FIG. 2, the silica gel particles 3 as moisture absorbing means are fixed between the metal mesh plate 4 of 100 mesh and the opening 110 inside the casing 109 by the fixing means 2.
[0017]
In the above configuration, the silica gel particles 3 as the dehumidifying means have the moisture absorption characteristics shown in FIG. That is, when the relative humidity of the atmosphere changes from low humidity to high humidity, moisture is absorbed. Further, when the humidity is changed from high humidity to low humidity, the moisture that has been absorbed is released. Therefore, the humidity inside the casing 109 is kept constant regardless of the humidity change of the atmosphere, and malfunction of the gas sensitive unit 101 can be prevented.
[0018]
Although the silica gel particles are used as the moisture absorbing means, any material may be used as long as it absorbs and releases moisture reversibly with respect to changes in the relative humidity of the atmosphere. Moreover, although it was made into a grain, it may be fixed inside the casing and may be in any form as long as it has air circulation, and may be sealed in a molded body, paper, or cloth.
[0019]
Example 1
The same parts as those in the conventional example are denoted by the same reference numerals, and description thereof is omitted.
[0020]
In FIG. 4, a heater 5 is installed in the moisture absorbing means 1 as a heating means for heating silica gel that is a moisture absorbent material of the moisture absorbing means 1. The heater 5 is supplied with power from the power source 4.
[0021]
In the above configuration, the silica gel particles 3 as the dehumidifying means are heated by the heater 5 as the heating means, and the temperature is higher than the measurement atmosphere. The moisture absorption characteristics of the silica gel particles 3 are shown in FIG. As the moisture absorption characteristics of the silica gel particles 3 become higher, the moisture absorption characteristics with respect to the relative humidity change become worse. Therefore, when the humidity of the atmosphere changes in the range of 20% to 80%, the moisture absorption capacity is insufficient on the high humidity side. Therefore, by heating the silica gel particles 3 with the heater 5, for example, when the temperature is 30 ° C. as shown in FIG. 5, the humidity range of 20% to 80% at 20 ° C. is about 10% to 45% at 30 ° C. It can be used in a range where the moisture absorption characteristics with respect to the relative humidity change of the grains 3 are excellent. Therefore, the humidity inside the casing 109 can be kept constant regardless of the humidity change of the atmosphere, and malfunction of the gas sensitive unit 101 can be prevented.
[0022]
Note that the heater may be anything such as a nichrome wire or a sheet-like heater as long as it can heat the moisture-absorbing material as a moisture-absorbing means. Further, the heater may be installed inside or around the hygroscopic material, and there is no difference in the effect. The heating temperature is higher than the temperature of the atmosphere and can maintain the hygroscopic ability of the hygroscopic material, generally 100 ° C. or less, and there is no difference in the effect.
[0023]
( Reference Example 3 )
The same parts as those in the conventional example are denoted by the same reference numerals, and description thereof is omitted.
[0024]
In FIG. 6, the gas sensitive part 101 is heated to about 300 ° C. by the heating part 102. The capacity of the heating unit is about 250 mW. The distance between the gas sensitive part 101 and the lower surface of the silica gel particles 3 is about 3 mm, and the amount of the silica gel particles 3 is about 1 g.
[0025]
In the above configuration, the silica gel particles 3 are heated by the radiant heat of the heating unit 102 of the gas sensitive unit 101. FIG. 7 shows the temperature of the silica gel particles with respect to the ambient temperature. As shown in FIG. 7, when the ambient temperature is about 25 ° C., the silica gel particles 3 are heated to about 30 ° C. to 70 ° C. Therefore, even when the relative humidity of the atmosphere changes from 20% to 100%, it can be used in a region having excellent moisture absorption characteristics of the silica gel particles 3, and the humidity inside the casing 109 can be kept constant. The malfunction of the gas sensitive part 101 can be prevented.
[0026]
(Reference Example 4 )
The same parts as those in the conventional example are denoted by the same reference numerals, and description thereof is omitted.
[0027]
In FIG. 8, as a regeneration means, a heater 5 is supplied with electric power from a power source 6 and heats the moisture absorption means 1 to a temperature at which the moisture absorption capacity is regenerated. The power supply 6 receives a signal from the timer 7 and periodically supplies power to the heater 5 at regular time intervals.
[0028]
In the above configuration, the moisture absorbing means 1 absorbs moisture of the atmosphere and keeps the inside of the casing 109 at a low humidity. However, if the moisture absorption amount is saturated, the moisture absorbing ability is lost, and the humidity inside the casing 109 is kept at a low humidity. Disappear. However, the moisture absorption means 1 is heated to release the moisture absorbed, thereby regenerating the moisture absorption capacity. Although the temperature which the moisture absorption means 1 reproduces changes with materials, the range of 100 to 150 degreeC is suitable in the case of a silica gel. The time interval of the timer 7 varies depending on the amount of silica gel to be used, but when about 1 g of silica gel is used as the moisture absorption means 1, 6 hours to 12 hours are desirable. As described above, by regenerating the moisture absorbing means 1, the humidity inside the casing 109 can be kept low for a long period of time, and malfunction of the gas sensitive unit 101 can be prevented.
[0029]
【The invention's effect】
As described above, according to the present invention, the hygroscopic material is higher than the measurement atmosphere so as to improve the hygroscopic property with respect to the relative humidity change by the hygroscopic material heating means and prevent the humidity change in the casing and the malfunction of the sensitive part. By using the hygroscopic material in the relative humidity range of the atmosphere that has excellent moisture absorption characteristics against changes in relative humidity by heating to a temperature, it is possible to obtain the optimum moisture absorption capacity in the humidity range of the atmosphere used. The humidity inside the casing can be kept constant with a smaller amount of hygroscopic material, and an advantageous effect that malfunction due to the humidity of the sensitive part can be prevented can be obtained.
[Brief description of the drawings]
1 is a cross-sectional view showing the structure of a sensing element according to Reference Example 1 of the present invention. FIG. 2 is a cross-sectional view showing the structure of a sensing element according to Reference Example 2. FIG. 3 is a graph showing the moisture absorption characteristics of the moisture absorbing means. 4 is a cross-sectional view showing the structure of the sensing element according to Example 1 of the present invention. FIG. 5 is a graph showing the moisture absorption characteristics of the moisture absorbent material. FIG. 6 is a cross-sectional view showing the structure of the sensing element according to Reference Example 3 . 7] Graph showing the temperature of the hygroscopic material [FIG. 8] Cross-sectional view showing the structure of the sensing element according to Reference Example 4 [FIG. 9] Cross-sectional view showing the structure of the conventional sensing element
DESCRIPTION OF SYMBOLS 1 Moisture absorption means 3 Silica gel particle 5 Heater 6 Power supply 7 Timer 101 Gas sensitive part 102 Heating part 109 Housing 110 Opening part

Claims (1)

感応部と、感応部を内包し、開口部を有するきょう体とを有する検知素子において、開口部の一部または全部を覆う形に吸湿材を設け、相対湿度変化に対する吸湿特性を優れさせきょう体内の湿度変化を防止し前記感応部の誤動作を防止するように前記吸湿材を測定雰囲気よりも高い温度に加熱する吸湿材加熱手段を前記吸湿材に設置し、前記吸湿材を加熱することにより、相対湿度変化に対する吸湿特性が優れている雰囲気の相対湿度範囲で前記吸湿材を使用することを特徴とする検知素子。In a sensing element having a sensitive part and a casing having a sensitive part and having an opening, a moisture absorbing material is provided so as to cover a part or all of the opening, so that the moisture absorption characteristics with respect to changes in relative humidity are excellent. By installing a hygroscopic material heating means in the hygroscopic material to heat the hygroscopic material to a temperature higher than the measurement atmosphere so as to prevent the humidity change of the sensitive part and preventing malfunction of the sensitive part, and heating the hygroscopic material , A sensing element using the moisture absorbing material in a relative humidity range of an atmosphere having excellent moisture absorption characteristics with respect to a change in relative humidity .
JP31738396A 1996-11-28 1996-11-28 Sensing element Expired - Fee Related JP4219424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31738396A JP4219424B2 (en) 1996-11-28 1996-11-28 Sensing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31738396A JP4219424B2 (en) 1996-11-28 1996-11-28 Sensing element

Publications (2)

Publication Number Publication Date
JPH10160697A JPH10160697A (en) 1998-06-19
JP4219424B2 true JP4219424B2 (en) 2009-02-04

Family

ID=18087644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31738396A Expired - Fee Related JP4219424B2 (en) 1996-11-28 1996-11-28 Sensing element

Country Status (1)

Country Link
JP (1) JP4219424B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7360395B2 (en) 2005-04-04 2008-04-22 Honda Motor Co., Ltd. Gas sensor
JP4571002B2 (en) * 2005-04-04 2010-10-27 本田技研工業株式会社 Gas sensor
JP5726454B2 (en) * 2010-07-30 2015-06-03 株式会社ウイジン Gas sensor unit and gas concentration measuring device for measuring gas concentration in soil
JP6108516B2 (en) * 2012-03-23 2017-04-05 エフアイエス株式会社 Gas detector
JP6327635B2 (en) * 2013-12-27 2018-05-23 フィガロ技研株式会社 MEMS gas sensor

Also Published As

Publication number Publication date
JPH10160697A (en) 1998-06-19

Similar Documents

Publication Publication Date Title
US4755917A (en) Headlight for vehicles, in particular motor vehicles
JP4401445B2 (en) Sensing element
JP4219424B2 (en) Sensing element
JP6279818B2 (en) GAS SENSOR, GAS DETECTION DEVICE, GAS DETECTION METHOD, AND DEVICE WITH GAS DETECTION DEVICE
JP6218270B2 (en) Gas sensor
JP4533557B2 (en) Gas detector and air conditioner using the same
US4175422A (en) Gas monitors
US2823758A (en) Breather dehumidifier
JPH01210861A (en) Gaseous carbon dioxide sensor
JP4596664B2 (en) Gas sensor
JPH10165746A (en) Condensation preventive device
JPH07174391A (en) Dehumidifier
JPS57205875A (en) Magnetic disk device
JPS606863A (en) Measuring device of temperature, humidity, heat flow rate or the like
JP2001108282A (en) Humidifier
JPH08226909A (en) Contact-combustion-type carbon monoxide gas sensor
JPH05336622A (en) Switchboard
JPS6120527Y2 (en)
CN207688617U (en) A kind of moisture-proof component of water conservancy and hydropower equipment
JPH03146114A (en) Deodorizing device
JP3933216B2 (en) Gas detector
JPS5965320A (en) Dew condensation preventing device
JPH078742A (en) Dehumidifier
JP2667300B2 (en) Carbon dioxide sensor
JP4741113B2 (en) Odor preparation device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050615

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061116

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061211

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees