JP4218210B2 - Jack oil feeder for large rotating machinery - Google Patents

Jack oil feeder for large rotating machinery Download PDF

Info

Publication number
JP4218210B2
JP4218210B2 JP2001002805A JP2001002805A JP4218210B2 JP 4218210 B2 JP4218210 B2 JP 4218210B2 JP 2001002805 A JP2001002805 A JP 2001002805A JP 2001002805 A JP2001002805 A JP 2001002805A JP 4218210 B2 JP4218210 B2 JP 4218210B2
Authority
JP
Japan
Prior art keywords
oil
supply device
lubricating oil
jack
screw pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001002805A
Other languages
Japanese (ja)
Other versions
JP2002206488A (en
Inventor
信次 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2001002805A priority Critical patent/JP4218210B2/en
Publication of JP2002206488A publication Critical patent/JP2002206488A/en
Application granted granted Critical
Publication of JP4218210B2 publication Critical patent/JP4218210B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/1045Details of supply of the liquid to the bearing
    • F16C33/105Conditioning, e.g. metering, cooling, filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、蒸気タービンや発電機等の大形回転機械用の,ねじポンプを用いるジャッキ油供給装置に係わり、大形回転機械の運転開始前に潤滑油を利用してのねじポンプの加熱を可能にする構成に関する。
【0002】
【従来の技術】
電力用・産業用のタービンやタービンで駆動される発電機などの大形回転機械では、その軸受は常時潤滑油が供給されることを前提にして構成されており、このために軸受などに潤滑油の供給を行うための潤滑油供給装置が設置されている。またこのような大形回転機械では、その起動・停止の際の低速時に軸受に加わる回転部の大きな自重を支持するための高圧(潤滑油圧値の10倍を越えることが一般である)のジャッキ油を軸受に供給するジャッキ油供給装置も備えられている。そうして、このジャッキ油は潤滑油供給装置から供給される潤滑油を分岐し,ジャッキ油供給装置が持つねじポンプ(スクリューポンプとも呼ばれる)によって所定の高圧値まで加圧してジャッキ油として供給することが一般である。以下に、大形回転機械がタービン装置の場合に代表させて、従来例の大形回転機械用のジャッキ油供給装置を図3,図4を用いて説明する。
【0003】
ここで図3は従来例の大形回転機械用のジャッキ油供給装置を潤滑油供給装置と共に示す要部の配管系統図であり、図4は潤滑油供給装置が持つ可変絞り装置を示す断面図である。図3において、9は図示しないタービン装置に潤滑油99を供給する一事例の潤滑油供給装置であり、7は大形回転機械が持つ軸受にジャッキ油79を供給する従来例のジャッキ油供給装置である。潤滑油供給装置9は、潤滑油99の貯溜用の潤滑油タンク91、潤滑油99の加圧に用いられる主油ポンプ92,92、潤滑油99を冷却する冷却器93,93、可変絞り装置8、潤滑油99を清浄に保つための油清浄化装置94,94、潤滑油99用の配管95、供給配管96を備える。
【0004】
潤滑油供給装置9ではタービン装置で一般に行われていることと同様に、冷却器93に損傷が発生した場合であっても冷却器93の図示しない冷媒(水など)が潤滑油99に混入しないようにするなどのために、主油ポンプ92の吐出圧力値をタービン装置が必要とする潤滑油圧値よりも高く設定している。可変絞り装置8は主油ポンプ92で得られる潤滑油99の高い圧力値を、タービン装置の軸受部などにおいて所要の潤滑油圧値が得られるように降圧するために設置されている。この事例の場合の可変絞り装置8は図4に示すように、ケーシング81,絞り体84,押え体87,固定用ナット88,蓋体89を有し、要所には潤滑油99をシールするシール体(Oリング)が配設されている。
【0005】
ケーシング81は潤滑油99を通流させる貫通孔82(図4の紙面に直交する状態で形成されている)、ケーシング81の外側面から貫通孔82に至ると共に,貫通孔82に直交されて形成された有底ねじ穴83を有する。絞り体84は有底ねじ穴83と嵌り合う雄ねじ851が外周部に形成された円柱体である絞り部85と、絞り部85の一方の端部に絞り部85と同心に形成された操作ロッド部86とを有する。操作ロッド部86は絞り部85よりも小径の円柱体であり、その外周部には雄ねじ861が形成され、その反絞り部85側の端部には操作部862(この事例の場合には、マイナスねじ回し用の溝)が形成されている。蓋体89には雄ねじ861と嵌り合う有底ねじ穴891が形成されている。
【0006】
可変絞り装置8における絞りの調整は、操作部862を操作して絞り部85の貫通孔82への挿入量を加減し、挿入量の設定が終了すると固定用ナット88で絞り部85をケーシング81に固定し、さらに潤滑油99への塵埃などの侵入を絶無にするために蓋体89を装着して完了する。図3において、所望の潤滑油圧値に設定された潤滑油99は、配管95を経てそれぞれの供給配管96からタービン装置の軸受などに供給される。ジャッキ油供給装置7は、潤滑油供給装置9の配管95から分岐された潤滑油99を加圧して前記した高圧のジャッキ油79を得るためのねじポンプ6、ねじポンプ6から吐出されたジャッキ油79を清浄化するための油清浄化装置71、供給配管72を備える。
【0007】
ジャッキ油供給装置7では潤滑油99から高圧のジャッキ油79を得るのに際し、圧力脈動の無い高圧油を圧力脈動を抑制する装置を設置すること無しにポンプ装置のみで得られることで、ねじポンプ6が採用されている。このジャッキ油79はねじポンプ6の運転時にそれぞれの供給配管72からタービン装置の軸受に供給される。なおタービン装置が定常運転状態(タービン装置は高速回転状態に在る)になると、潤滑油99の供給は継続されるが、ねじポンプ6の運転は停止されてジャッキ油79の供給が停止される。そうしてタービン装置の起動時において、潤滑油供給装置9,ジャッキ油供給装置7によるタービン装置への潤滑油99,ジャッキ油79の供給は概略次記する手順で行われる。
【0008】
▲1▼潤滑油供給装置9の運転開始が可能であること(例えば、潤滑油99を含め各部温度が常温以上であること)を条件に、まず、潤滑油供給装置9の運転を開始し、運転開始前のタービン装置に潤滑油99を循環通流する。ただし潤滑油供給装置9は、冷却器93に冷媒を供給しない状態で運転を開始する。▲2▼この状態で、潤滑油99を主油ポンプ92の損失熱などで加熱し、タービン装置に供給する潤滑油99の温度をタービン装置の運転開始が可能である条件(例えば、潤滑油温度が45℃以上)に向けて上昇させる。▲3▼潤滑油99の温度がタービン装置の運転開始が可能である条件に到達すると、運転開始直前のタービン装置への作業としてジャッキ油供給装置7のねじポンプ6を運転して、タービン装置の軸受にジャッキ油79の供給を行う。▲4▼そうして、各部温度が運転開始可能な条件になり、かつ、軸受などに所定の温度・圧力の潤滑油99,ジャッキ油79が供給されていることを条件に、タービン装置の運転が開始される。
【0009】
【発明が解決しようとする課題】
前述した従来技術によるジャッキ油供給装置7はタービン装置が必要とするジャッキ油79の供給を行うことができているが、次記する問題がありその解決を望まれている。ジャッキ油供給装置7に用いられているねじポンプ6は、例えば2軸式ねじポンプの場合には、互いに逆方向のねじを外周面部に形成した同等外径の1対(2個)の円柱状のロータが、互いにねじを噛み合わせれた状態とされ、その両端部をケーシングに支持されてケーシング内に配設される構造を持つ。このねじポンプ6は、1対のロータが互いに逆回転するように運転されることで、圧力脈動の無い高圧油を吐出する。そうして高い油圧値を得るために、両ロータのねじの相互間隙は極めて狭い値に設定されている。
【0010】
このねじポンプ6はタービン装置の起動時に運転を開始するが(前記「従来の技術」の項の▲3▼項を参照)、その際にまだ室温状態にあったねじポンプ6は供給される潤滑油99(前記「従来の技術」の項の▲2▼項によれば、45℃以上の温度を持つ)により加熱され、その各部は熱膨張を起こす。ところが、相対的に熱容量が小さく,かつ,ねじを持つことで潤滑油99からの受熱面積の広いローターは、ケーシングよりも早く熱膨張をする。
【0011】
この時、ケーシングの熱膨張が遅いために1対のローターの中心間隔はまだ運転開始前の状態とほとんど変わらないので、ローターのねじ相互間に干渉が発生する。このローターのねじ相互間の干渉によって、ねじポンプ6に損傷が生じるばかりではなく、この損傷で発生した粉状の金属異物がジャッキ油79に混入してねじポンプ6から流れ出し、タービン装置の軸受などに損傷を与える恐れがある。これに対処するために、従来例のジャッキ油供給装置7ではねじポンプ6のジャッキ油79の吐出側に油清浄化装置71の設置が必須になっている。
【0012】
この発明は、前述の従来技術の問題点に鑑みなされ、その目的は、大形回転機械の運転開始前に潤滑油を利用してのねじポンプの加熱を可能にする大形回転機械用のジャッキ油供給装置を提供することにある。
【0013】
【課題を解決するための手段】
この発明では前述の目的は、
1)潤滑油供給装置から供給される潤滑油を分岐して,大形回転機械の軸受にねじポンプを介して高圧のジャッキ油として供給する大形回転機械用のジャッキ油供給装置において、
前記潤滑油供給装置の稼働時の前記ねじポンプの運転停止時に前記潤滑油をねじポンプに循環油として強制的に通流させる油循環系統を備え、ねじポンプを循環油により加熱するようにしたこと、または、
2)前記1項に記載の手段において、前記油循環系統は前記潤滑油供給装置の主油ポンプの吐出圧を利用して前記循環油をねじポンプに通流させるようにしたこと、さらにまたは、
3)前記1項に記載の手段において、前記油循環系統は前記潤滑油供給装置に発生する潤滑油の油圧差を利用して前記循環油をねじポンプに通流させるようにしたことにより達成される。
【0014】
【発明の実施の形態】
以下この発明の実施の形態を図面を参照して詳細に説明する。なお以下の説明においては、図3,図4に示した従来例の大形回転機械用のジャッキ油供給装置および一事例の潤滑油供給装置と同一部分には同じ符号を付しその説明を省略する。また以後の説明に用いる図中には、図3,図4で付した符号については代表的な符号のみを記すようにしている。図1は、この発明の実施の形態の一例による大形回転機械用のジャッキ油供給装置を潤滑油供給装置と共に示す要部の配管系統図である。図1において、1は、図3に示した従来例によるジャッキ油供給装置7に対し、油循環系統2を追加すると共に、ジャッキ油79用の油清浄化装置71を除去するようにしたジャッキ油供給装置である。
【0015】
油循環系統2は潤滑油供給装置9の稼働時のねじポンプ6に対し、その運転停止時に潤滑油99の一部を循環油19として主油ポンプ92の吐出圧を利用して強制的に通流させる油系統である。この油循環系統2は電磁弁21と固定絞り体22とを、循環油19の通流経路に沿って互いに直列の関係となるように配設して備えると共に、ねじポンプ6の吐出側のジャッキ油79の配管と潤滑油タンク91との間を、循環油19用の配管によって接続する。これによってジャッキ油供給装置1では電磁弁21の開弁時に、主油ポンプ92→冷却器93→可変絞り装置8→油清浄化装置94→ねじポンプ6→電磁弁21→固定絞り体22→潤滑油タンク91の経路で循環油19を通流させる油系統が形成される。
【0016】
固定絞り体22は、潤滑油供給装置9が稼働中でねじポンプ6が運転停止時における、ねじポンプ6に通流する循環油19の通流量の設定に用いられる。この循環油19の通流量は、例えば、タービン装置の運転開始時のねじポンプ6の温度を、その時点の潤滑油99の温度に近い温度にすることができるに足る流量とされる。また電磁弁21は、潤滑油供給装置9が稼働中でねじポンプ6が運転停止時において、循環油19をねじポンプ6に通流させるように図示しない指令装置などによって開弁操作され、ねじポンプ6が運転開始されるタイミングで閉弁される。
【0017】
図1に示すこの発明の実施の形態の一例によるジャッキ油供給装置1では前述の構成としたので、潤滑油供給装置9が稼働中でねじポンプ6が運転を停止している状態においては、前記通流量の循環油19がねじポンプ6に通流する。この時点の潤滑油99は、前記「従来の技術」の項の▲2▼項によれば、45℃以上に向けて上昇中である。したがって、ねじポンプ6はこの時点の潤滑油99と同等の温度を持つ循環油19によって加熱され、その全体の温度を循環油19の温度とほぼ同等にされる。すなわち、潤滑油99の温度がタービン装置の運転開始が可能である条件に到達してタービン装置の軸受にジャッキ油79の供給を行う時点(前記「従来の技術」の項の▲3▼項を参照)では、ねじポンプ6の温度はジャッキ油79の温度とほぼ同等値になっている。このことは、循環油19およびジャッキ油79が共に潤滑油99を元にしていることから当然のことである。
【0018】
そうしてこのことによって、この発明によるジャッキ油供給装置1では、タービン装置の軸受へのジャッキ油79の供給開始時にねじポンプ6のローターのねじ相互間には干渉問題が発生しないし、ジャッキ油79に粉状の金属異物が混入することも発生しない。ジャッキ油供給装置1が油清浄化装置71を備えない理由はここに在る。ねじポンプ6にローターのねじ相互間の干渉が発生しないことと、油清浄化装置71が設置されていないことで、この発明のジャッキ油供給装置1は、従来例のジャッキ油供給装置7よりもその保守作業が格段に容易になる。しかもこれ等の利点を、加熱専用の装置などを設けること無しに得ることができる。
【0019】
前述の説明では、ジャッキ油供給装置1は潤滑油供給装置9が稼働中でねじポンプ6が運転を停止している状態の全ての場合に、電磁弁21を開弁させるとしてきた。しかしながら、タービン装置の運転によってねじポンプ6が、例えば、45℃以上の温度に維持されている場合のタービン装置の停止時で、ねじポンプ6にジャッキ油79を通流してもローターのねじ相互間の干渉が発生しない場合には、潤滑油供給装置9が稼働中でねじポンプ6が運転を停止している状態であっても、電磁弁21を開弁しないようにしてもよい。なおまた、潤滑油タンク91に接続される循環油19用の配管の少なくとも一部として、潤滑油供給装置9が備える図示しない戻り配管(タービン装置に供給された潤滑油99を潤滑油タンク91に戻すための配管)を利用してもよい。
【0020】
次に、図2を用いてこの発明の実施の形態の異なる例による大形回転機械用のジャッキ油供給装置を説明する。なお以下の説明においては、図1に示したこの発明の大形回転機械用のジャッキ油供給装置と同一部分には同じ符号を付しその説明を省略する。ここで図2は、この発明の実施の形態の異なる例による大形回転機械用のジャッキ油供給装置を潤滑油供給装置と共に示す要部の配管系統図である。図2において、3は、図1に示したこの発明によるジャッキ油供給装置1に対し、循環油19を通流させる配管の接続位置を変更すると共に、電磁弁21に代えて逆止弁41を用いるようにした油循環系統4を備えるジャッキ油供給装置である。
【0021】
なおこの場合の潤滑油供給装置9は、可変絞り装置8の接続位置が図1,図3による場合と異なっているがその機能は全く同一であり、可変絞り装置8が図4を用いて説明したように異物発生が起こらない構造を持つので、可変絞り装置8を潤滑油99の通流に関する末端部に設置することが許される。ジャッキ油供給装置3の油循環系統4は潤滑油供給装置9の稼働時のねじポンプ6に対し、その運転停止時に潤滑油99の一部を循環油19として、可変絞り装置8に発生する潤滑油99の油圧差を利用して強制的に通流させる油系統である。この油循環系統4は固定絞り体22と逆止弁41とを、循環油19の通流経路に沿って互いに直列の関係となるように配設して備えると共に、可変絞り装置8の潤滑油99の流入側の配管と,ねじポンプ6の吐出側のジャッキ油79の配管との間を接続する。
【0022】
これによってジャッキ油供給装置3ではねじポンプ6の停止時に、可変絞り装置8の潤滑油99の流入側→固定絞り体22→逆止弁41→ねじポンプ6→可変絞り装置8の潤滑油99の流出側の経路で、循環油19を通流させる油系統が形成される。この油系統では循環油19を通流させる圧力源は、可変絞り装置8に潤滑油99によって発生する油圧差である。なお、可変絞り装置8は図4を用いて説明したように安定した流体抵抗値を持つので、異物などの付着量によって流体抵抗値が変動する油清浄化装置94とは異なり、循環油19をねじポンプ6に通流させるための圧力源として好適である。逆止弁41は、ねじポンプ6が停止中などでその吐出圧値が可変絞り装置8の潤滑油99の流入側の圧力力値よりも低い場合に循環油19を通流させ、ねじポンプ6が運転中でその吐出圧値が可変絞り装置8の潤滑油99の流入側の圧力値よりも高い場合には、逆止弁41が持つ機能によって循環油19の通流を阻止する。
【0023】
図2に示すこの発明の実施の形態の異なる例によるジャッキ油供給装置3では前述の構成としたので、潤滑油供給装置9が稼働中でねじポンプ6が運転を停止している状態においては、前記ジャッキ油供給装置1の場合と同様に、ねじポンプ6に循環油19が通流される。これにより、加熱専用の装置などを設けること無しに、タービン装置の軸受へのジャッキ油79の供給開始時などにねじポンプ6のローターのねじ相互間の干渉の発生を防止でき、ジャッキ油79への粉状の金属異物の混入も防止できる。ジャッキ油供給装置3のジャッキ油供給装置1に対する利点は、循環油19を潤滑油タンク91に戻すことが不要になること、および、循環油19のねじポンプ6への供給/停止の切り替え用に電磁弁21に代えて相対的に安価な逆止弁41を用いることができることである。
【0024】
これ等のことによって、ジャッキ油供給装置の製造原価が低減されると共に、電磁弁21の動作を指令する装置なども不要になることでその分の製造原価が低減される。図2を用いての前述の説明では、この発明のジャッキ油供給装置3では循環油19のねじポンプ6への供給/停止の切り替えに逆止弁41を用いるとしたが、これに限定されるものではなく、例えば、タービン装置の運転によってねじポンプ6が適温(例えば、45℃以上)に維持される場合には、逆止弁41に代えて電磁弁21を配設してもよい。そうしてこの場合には、潤滑油供給装置9が稼働中でねじポンプ6が運転を停止していてタービン装置を停止させようとする状態の時には、この発明の前述ジャッキ油供給装置1の場合と同様に、電磁弁21を開弁しないように操作することができる。
【0025】
【発明の効果】
この発明による大形回転機械用のジャッキ油供給装置では、前記課題を解決するための手段の項で述べた構成とすることで、次記する効果を得られる。
▲1▼前記課題を解決するための手段の項の第(1)項,第(2)項による構成とすることで、潤滑油供給装置9が稼働中でねじポンプ6の運転停止時に、潤滑油99の一部を分岐した循環油19が主油ポンプ6の吐出圧を利用してねじポンプ6に通流され、ねじポンプ6を潤滑油99(ジャッキ油79に対しても同様)の温度とほぼ同等値に加熱することが可能になる。これによってジャッキ油79の供給開始時におけるねじポンプ6のローターの干渉問題の解消が可能になると共に、ねじポンプ6から吐出されるジャッキ油79を清浄化するための油清浄化装置の設置を不要にすることが可能になる。また、
▲2▼前記課題を解決するための手段の項の第(3)項による構成とすることで、潤滑油供給装置9が稼働中でねじポンプ6の運転停止時における循環油19のねじポンプ6への通流を、潤滑油供給装置9に発生する潤滑油99の油圧差を利用して行うことが可能になる。これによって、前記▲1▼項による効果をそのまま保持体しながら、循環油19のねじポンプ6への通流経路の構成の簡略化が可能になる。
【図面の簡単な説明】
【図1】この発明の実施の形態の一例による大形回転機械用のジャッキ油供給装置を潤滑油供給装置と共に示す要部の配管系統図
【図2】この発明の実施の形態の異なる例による大形回転機械用のジャッキ油供給装置を潤滑油供給装置と共に示す要部の配管系統図
【図3】従来例の大形回転機械用のジャッキ油供給装置を潤滑油供給装置と共に示す要部の配管系統図
【図4】潤滑油供給装置が持つ可変絞り装置を示す断面図
【符号の説明】
1 ジャッキ油供給装置
19 循環油
2 油循環系統
21 電磁弁
22 固定絞り体
6 ねじポンプ
79 ジャッキ油
9 潤滑油供給装置
91 潤滑油タンク
92 主油ポンプ
99 潤滑油
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a jack oil supply device using a screw pump for a large rotating machine such as a steam turbine or a generator, and heats the screw pump using lubricating oil before starting the operation of the large rotating machine. Concerning configuration to be enabled
[0002]
[Prior art]
Large-sized rotating machines such as power and industrial turbines and generators driven by turbines are configured on the assumption that lubricating oil is constantly supplied. A lubricating oil supply device for supplying oil is installed. In such a large rotating machine, a high-pressure jack (generally exceeding 10 times the lubricating oil pressure value) is used to support the large weight of the rotating part applied to the bearing at low speeds when starting and stopping. A jack oil supply device for supplying oil to the bearing is also provided. Then, this jack oil branches the lubricating oil supplied from the lubricating oil supply device, pressurizes it to a predetermined high pressure value with a screw pump (also called a screw pump) of the jack oil supplying device, and supplies it as jack oil. It is common. Below, the jack oil supply device for a large rotating machine of a conventional example will be described with reference to FIGS. 3 and 4 as a representative example when the large rotating machine is a turbine apparatus.
[0003]
Here, FIG. 3 is a piping system diagram of a main part showing a jack oil supply device for a large rotating machine of a conventional example together with a lubricating oil supply device, and FIG. 4 is a sectional view showing a variable throttle device of the lubricating oil supply device. It is. In FIG. 3, 9 is a lubricating oil supply device in one example for supplying lubricating oil 99 to a turbine device (not shown), and 7 is a conventional jack oil supplying device for supplying jack oil 79 to a bearing of a large rotating machine. It is. The lubricating oil supply device 9 includes a lubricating oil tank 91 for storing the lubricating oil 99, main oil pumps 92 and 92 used for pressurizing the lubricating oil 99, coolers 93 and 93 for cooling the lubricating oil 99, and a variable throttle device. 8. Oil purifiers 94, 94 for keeping the lubricating oil 99 clean, piping 95 for the lubricating oil 99, and supply piping 96 are provided.
[0004]
In the lubricating oil supply device 9, a refrigerant (such as water) (not shown) of the cooler 93 is not mixed into the lubricating oil 99 even when the cooler 93 is damaged, as is generally done in a turbine device. For this purpose, the discharge pressure value of the main oil pump 92 is set higher than the lubricating oil pressure value required by the turbine device. The variable throttle device 8 is installed to step down the high pressure value of the lubricating oil 99 obtained by the main oil pump 92 so that a required lubricating oil pressure value is obtained at the bearing portion of the turbine device. As shown in FIG. 4, the variable throttle device 8 in this case has a casing 81, a throttle body 84, a presser body 87, a fixing nut 88, and a lid body 89, and the lubricating oil 99 is sealed at important points. A seal body (O-ring) is provided.
[0005]
The casing 81 is formed with a through hole 82 through which the lubricating oil 99 flows (formed in a state orthogonal to the paper surface of FIG. 4), from the outer surface of the casing 81 to the through hole 82, and orthogonal to the through hole 82. The bottomed screw hole 83 is provided. The throttle body 84 is a throttle section 85 that is a cylindrical body having a male thread 851 that fits into the bottomed screw hole 83 formed on the outer peripheral portion, and an operating rod that is formed concentrically with the throttle section 85 at one end of the throttle section 85. Part 86. The operating rod portion 86 is a cylindrical body having a diameter smaller than that of the throttle portion 85, a male screw 861 is formed on the outer peripheral portion thereof, and an operating portion 862 (in this case, A slot for turning a minus screw) is formed. The lid 89 has a bottomed screw hole 891 that fits into the male screw 861.
[0006]
The adjustment of the diaphragm in the variable throttle device 8 is performed by operating the operating portion 862 to adjust the amount of insertion of the throttle portion 85 into the through-hole 82, and when the setting of the insertion amount is completed, the throttle portion 85 is fixed to the casing 81 with the fixing nut 88. In addition, the lid 89 is attached to complete the intrusion of dust and the like into the lubricating oil 99, and the process is completed. In FIG. 3, the lubricating oil 99 set to a desired lubricating oil pressure value is supplied from the respective supply pipes 96 to the bearings of the turbine apparatus through the pipes 95. The jack oil supply device 7 pressurizes the lubricating oil 99 branched from the pipe 95 of the lubricating oil supply device 9 to obtain the above-described high-pressure jack oil 79, and the jack oil discharged from the screw pump 6. An oil cleaning device 71 for cleaning 79 and a supply pipe 72 are provided.
[0007]
In the jack oil supply device 7, when the high pressure jack oil 79 is obtained from the lubricating oil 99, the high pressure oil without pressure pulsation can be obtained only by the pump device without installing a device for suppressing the pressure pulsation. 6 is adopted. The jack oil 79 is supplied from the supply pipes 72 to the bearings of the turbine device when the screw pump 6 is operated. When the turbine device is in a steady operation state (the turbine device is in a high speed rotation state), the supply of the lubricating oil 99 is continued, but the operation of the screw pump 6 is stopped and the supply of the jack oil 79 is stopped. . Thus, when the turbine device is started, the lubricant oil 99 and the jack oil 79 are supplied to the turbine device by the lubricant oil supply device 9 and the jack oil supply device 7 according to the following procedure.
[0008]
(1) First, the operation of the lubricating oil supply device 9 is started on the condition that the operation of the lubricating oil supply device 9 can be started (for example, the temperature of each part including the lubricating oil 99 is normal temperature or higher). Lubricating oil 99 is circulated through the turbine device before the start of operation. However, the lubricating oil supply device 9 starts operation without supplying the refrigerant to the cooler 93. (2) In this state, the lubricating oil 99 is heated by the heat loss of the main oil pump 92, and the temperature of the lubricating oil 99 supplied to the turbine apparatus is a condition that allows the turbine apparatus to start operation (for example, the lubricating oil temperature Is raised to 45 ° C. or higher). (3) When the temperature of the lubricating oil 99 reaches a condition where the operation of the turbine device can be started, the screw pump 6 of the jack oil supply device 7 is operated as an operation on the turbine device immediately before the operation start, and the turbine device Jack oil 79 is supplied to the bearing. (4) Thus, the operation of the turbine apparatus is performed under the condition that the temperatures of the respective parts become the conditions under which the operation can be started and the lubricating oil 99 and the jack oil 79 having a predetermined temperature and pressure are supplied to the bearings and the like. Is started.
[0009]
[Problems to be solved by the invention]
The above-described jack oil supply device 7 according to the prior art can supply the jack oil 79 required by the turbine device. However, there is a problem described below, and the solution is desired. For example, in the case of a biaxial screw pump, the screw pump 6 used in the jack oil supply device 7 is a pair (two pieces) of cylinders having the same outer diameter with screws in opposite directions formed on the outer peripheral surface portion. The rotors are in a state in which screws are engaged with each other, and both ends thereof are supported by the casing and are disposed in the casing. The screw pump 6 is operated so that the pair of rotors rotate in the reverse direction to discharge high pressure oil without pressure pulsation. Thus, in order to obtain a high hydraulic pressure value, the mutual clearance between the screws of both rotors is set to a very narrow value.
[0010]
The screw pump 6 starts operation when the turbine device is started up (see (3) in the section of “Prior Art”), but the screw pump 6 that is still in the room temperature state is supplied with the lubrication. The oil 99 is heated by oil 99 (having a temperature of 45 ° C. or higher according to the item (2) in the section “Prior Art”), and each part thereof undergoes thermal expansion. However, a rotor having a relatively small heat capacity and having a screw and having a large heat receiving area from the lubricating oil 99 thermally expands faster than the casing.
[0011]
At this time, because the thermal expansion of the casing is slow, the distance between the centers of the pair of rotors is almost the same as that before the start of operation, and interference occurs between the screws of the rotor. The interference between the screws of the rotor not only causes damage to the screw pump 6, but also causes powdered metal foreign matter generated by the damage to flow into the jack oil 79 and flow out of the screw pump 6, and the bearings of the turbine device, etc. May cause damage. In order to cope with this, in the jack oil supply device 7 of the conventional example, it is essential to install the oil cleaning device 71 on the discharge side of the jack oil 79 of the screw pump 6.
[0012]
The present invention has been made in view of the above-described problems of the prior art, and an object of the invention is to provide a jack for a large rotating machine that enables heating of a screw pump using lubricating oil before the operation of the large rotating machine is started. It is to provide an oil supply device.
[0013]
[Means for Solving the Problems]
In the present invention, the aforementioned object is
1) In a jack oil supply device for a large rotating machine, the lubricating oil supplied from the lubricating oil supply device is branched and supplied to a bearing of the large rotating machine as a high-pressure jack oil via a screw pump.
An oil circulation system for forcibly flowing the lubricating oil through the screw pump as circulating oil when the screw pump is stopped during operation of the lubricating oil supply device, and the screw pump is heated by the circulating oil. Or
2) In the means described in item 1, the oil circulation system is configured to flow the circulating oil through a screw pump using a discharge pressure of a main oil pump of the lubricating oil supply device, or
3) In the means described in item 1, the oil circulation system is achieved by allowing the circulating oil to flow through a screw pump by utilizing a hydraulic pressure difference of the lubricating oil generated in the lubricating oil supply device. The
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same parts as those of the conventional jack oil supply device for large rotating machinery and the lubricating oil supply device of one example shown in FIG. 3 and FIG. To do. In the drawings used for the following description, only representative symbols are shown for the symbols given in FIGS. FIG. 1 is a main piping system diagram showing a jack oil supply device for a large rotating machine according to an embodiment of the present invention together with a lubricating oil supply device. In FIG. 1, reference numeral 1 denotes a jack oil in which the oil circulation system 2 is added to the jack oil supply apparatus 7 according to the conventional example shown in FIG. 3 and the oil cleaning device 71 for the jack oil 79 is removed. It is a supply device.
[0015]
The oil circulation system 2 forcibly passes a part of the lubricating oil 99 as the circulating oil 19 using the discharge pressure of the main oil pump 92 when the operation of the lubricating oil supply device 9 is stopped. This is an oil system to be flowed. The oil circulation system 2 includes an electromagnetic valve 21 and a fixed throttle body 22 arranged in series with each other along the flow path of the circulating oil 19 and a jack on the discharge side of the screw pump 6. The piping for the circulating oil 19 is connected between the piping for the oil 79 and the lubricating oil tank 91. Thus, in the jack oil supply device 1, when the solenoid valve 21 is opened, the main oil pump 92 → cooler 93 → variable throttle device 8 → oil cleaning device 94 → screw pump 6 → solenoid valve 21 → fixed throttle body 22 → lubrication. An oil system that allows the circulating oil 19 to flow through the path of the oil tank 91 is formed.
[0016]
The fixed throttle body 22 is used for setting the flow rate of the circulating oil 19 flowing through the screw pump 6 when the lubricating oil supply device 9 is in operation and the screw pump 6 is stopped. The circulating flow rate of the circulating oil 19 is, for example, a flow rate sufficient to make the temperature of the screw pump 6 at the start of operation of the turbine device close to the temperature of the lubricating oil 99 at that time. The solenoid valve 21 is opened by a command device (not shown) so that the circulating oil 19 flows through the screw pump 6 when the lubricating oil supply device 9 is in operation and the screw pump 6 is stopped. 6 is closed at the timing of starting operation.
[0017]
Since the jack oil supply device 1 according to an example of the embodiment of the present invention shown in FIG. 1 is configured as described above, in the state where the lubricating oil supply device 9 is operating and the screw pump 6 is not operating, A circulating oil 19 having a flow rate passes through the screw pump 6. The lubricating oil 99 at this time is rising toward 45 ° C. or higher according to the item (2) in the section “Prior Art”. Accordingly, the screw pump 6 is heated by the circulating oil 19 having a temperature equivalent to that of the lubricating oil 99 at this time, and the entire temperature thereof is made substantially equal to the temperature of the circulating oil 19. That is, when the temperature of the lubricating oil 99 reaches a condition where the operation of the turbine device can be started and the jack oil 79 is supplied to the bearing of the turbine device (see item (3) in the section of “Prior Art” above). In the reference), the temperature of the screw pump 6 is substantially equal to the temperature of the jack oil 79. This is natural because the circulating oil 19 and the jack oil 79 are both based on the lubricating oil 99.
[0018]
Thus, in the jack oil supply device 1 according to the present invention, there is no interference problem between the screws of the rotor of the screw pump 6 at the start of the supply of the jack oil 79 to the bearings of the turbine device. 79 is not mixed with powdery metallic foreign matter. This is why the jack oil supply device 1 does not include the oil cleaning device 71. Since the screw pump 6 does not cause interference between the screws of the rotor and the oil cleaning device 71 is not installed, the jack oil supply device 1 of the present invention is more than the jack oil supply device 7 of the conventional example. The maintenance work becomes much easier. In addition, these advantages can be obtained without providing a device dedicated to heating.
[0019]
In the above description, the jack oil supply device 1 has opened the electromagnetic valve 21 in all cases where the lubricant oil supply device 9 is in operation and the screw pump 6 is not operating. However, when the screw pump 6 is maintained at a temperature of 45 ° C. or higher by the operation of the turbine device, for example, when the jack oil 79 is passed through the screw pump 6 while the screw pump 6 flows, If the interference does not occur, the solenoid valve 21 may not be opened even when the lubricating oil supply device 9 is in operation and the screw pump 6 is stopped. In addition, as at least a part of the piping for the circulating oil 19 connected to the lubricating oil tank 91, a return piping (not shown) provided in the lubricating oil supply device 9 (lubricating oil 99 supplied to the turbine device is supplied to the lubricating oil tank 91). Piping for returning) may be used.
[0020]
Next, a jack oil supply device for a large rotating machine according to a different example of the embodiment of the present invention will be described with reference to FIG. In the following description, the same parts as those of the jack oil supply device for a large rotating machine according to the present invention shown in FIG. FIG. 2 is a main piping system diagram showing a jack oil supply device for a large rotating machine according to a different example of the embodiment of the present invention together with a lubricating oil supply device. 2, reference numeral 3 denotes a jack oil supply apparatus 1 according to the present invention shown in FIG. 1, which changes the connection position of the piping through which the circulating oil 19 flows, and replaces the solenoid valve 21 with a check valve 41. It is a jack oil supply apparatus provided with the oil circulation system 4 made to use.
[0021]
In this case, the lubricating oil supply device 9 is different in the connection position of the variable throttle device 8 from the cases shown in FIGS. 1 and 3, but the function is the same, and the variable throttle device 8 will be described with reference to FIG. As described above, since the foreign matter is not generated, it is allowed to install the variable throttle device 8 at the end portion related to the flow of the lubricating oil 99. The oil circulation system 4 of the jack oil supply device 3 uses the lubricating oil 99 as a circulating oil 19 when the operation of the lubricating oil supply device 9 is stopped. This is an oil system forcibly flowing using the hydraulic pressure difference of the oil 99. The oil circulation system 4 includes a fixed throttle body 22 and a check valve 41 arranged in series with each other along the flow path of the circulating oil 19, and the lubricating oil of the variable throttle device 8. A connection between the inflow pipe 99 and the pipe of the jack oil 79 on the discharge side of the screw pump 6 is connected.
[0022]
As a result, when the screw pump 6 is stopped in the jack oil supply device 3, the lubricating oil 99 inflow side of the variable throttle device 8 → the fixed throttle body 22 → the check valve 41 → the screw pump 6 → the lubricating oil 99 of the variable throttle device 8. An oil system through which the circulating oil 19 flows is formed in the path on the outflow side. In this oil system, the pressure source for circulating the circulating oil 19 is a hydraulic pressure difference generated by the lubricating oil 99 in the variable throttle device 8. Since the variable throttle device 8 has a stable fluid resistance value as described with reference to FIG. 4, unlike the oil cleaning device 94 in which the fluid resistance value varies depending on the amount of foreign matter or the like, the circulating oil 19 is supplied. It is suitable as a pressure source for flowing through the screw pump 6. The check valve 41 allows the circulating oil 19 to flow when the screw pump 6 is stopped and the discharge pressure value is lower than the pressure force value on the inflow side of the lubricating oil 99 of the variable throttle device 8. However, when the discharge pressure value is higher than the pressure value on the inflow side of the lubricating oil 99 of the variable throttle device 8, the circulation of the circulating oil 19 is blocked by the function of the check valve 41.
[0023]
Since the jack oil supply device 3 according to a different example of the embodiment of the present invention shown in FIG. 2 has the above-described configuration, in the state where the lubricating oil supply device 9 is operating and the screw pump 6 is not operating, As in the case of the jack oil supply device 1, the circulating oil 19 is passed through the screw pump 6. Accordingly, it is possible to prevent the occurrence of interference between the screws of the rotor of the screw pump 6 when the supply of the jack oil 79 to the bearing of the turbine device is started without providing a dedicated heating device. It is also possible to prevent contamination of powdery foreign metal. The advantage of the jack oil supply device 3 over the jack oil supply device 1 is that it is not necessary to return the circulating oil 19 to the lubricating oil tank 91, and for switching the supply / stop of the circulating oil 19 to the screw pump 6. A relatively inexpensive check valve 41 can be used in place of the electromagnetic valve 21.
[0024]
As a result, the manufacturing cost of the jack oil supply device is reduced, and the device for commanding the operation of the solenoid valve 21 is not necessary, thereby reducing the manufacturing cost accordingly. In the above description with reference to FIG. 2, the jack oil supply device 3 of the present invention uses the check valve 41 for switching between supply / stop of the circulating oil 19 to the screw pump 6, but the present invention is limited to this. For example, when the screw pump 6 is maintained at an appropriate temperature (for example, 45 ° C. or more) by the operation of the turbine device, the solenoid valve 21 may be provided instead of the check valve 41. Thus, in this case, when the lubricating oil supply device 9 is in operation and the screw pump 6 has stopped operating and is about to stop the turbine device, the jack oil supply device 1 of the present invention is used. Similarly to the above, the solenoid valve 21 can be operated so as not to open.
[0025]
【The invention's effect】
In the jack oil supply device for a large rotating machine according to the present invention, the following effects can be obtained by adopting the configuration described in the section for solving the above-mentioned problems.
(1) By adopting the configuration according to the items (1) and (2) of the means for solving the above-mentioned problems, the lubricating oil supply device 9 is in operation and the lubrication is performed when the operation of the screw pump 6 is stopped. Circulating oil 19 that branches off a part of oil 99 is passed through screw pump 6 using the discharge pressure of main oil pump 6, and the temperature of lubricating oil 99 (similar to jack oil 79) is set in screw pump 6. It becomes possible to heat to almost the same value. As a result, the problem of interference with the rotor of the screw pump 6 at the start of the supply of the jack oil 79 can be solved, and installation of an oil cleaning device for cleaning the jack oil 79 discharged from the screw pump 6 is unnecessary. It becomes possible to. Also,
(2) By adopting the configuration according to the item (3) of the means for solving the problems, the screw pump 6 of the circulating oil 19 when the lubricating oil supply device 9 is in operation and the screw pump 6 is stopped. It is possible to perform the flow to the position using the hydraulic pressure difference of the lubricating oil 99 generated in the lubricating oil supply device 9. This makes it possible to simplify the configuration of the flow path of the circulating oil 19 to the screw pump 6 while maintaining the effect of the item (1) as it is.
[Brief description of the drawings]
FIG. 1 is a piping system diagram of a main part showing a jack oil supply device for a large rotating machine according to an example of an embodiment of the present invention together with a lubricating oil supply device. FIG. 2 is a diagram according to a different example of an embodiment of the present invention. Fig. 3 is a piping system diagram of a main portion showing a jack oil supply device for a large rotating machine together with a lubricating oil supply device. Fig. 3 is a diagram of a main portion showing a jack oil supply device for a large rotating machinery of a conventional example together with a lubricating oil supply device. Piping system diagram [Fig. 4] Cross-sectional view of the variable throttle device of the lubricating oil supply device [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Jack oil supply apparatus 19 Circulating oil 2 Oil circulation system 21 Solenoid valve 22 Fixed throttle body 6 Screw pump 79 Jack oil 9 Lubricating oil supply apparatus 91 Lubricating oil tank 92 Main oil pump 99 Lubricating oil

Claims (3)

潤滑油供給装置から供給される潤滑油を分岐して,大形回転機械の軸受にねじポンプを介して高圧のジャッキ油として供給する大形回転機械用のジャッキ油供給装置において、
前記潤滑油供給装置の稼働時の前記ねじポンプの運転停止時に前記潤滑油をねじポンプに循環油として強制的に通流させる油循環系統を備え、ねじポンプを循環油により加熱するようにしたことを特徴とする大形回転機械用のジャッキ油供給装置。
In a jack oil supply device for a large rotating machine, the lubricating oil supplied from the lubricating oil supply device is branched and supplied to a bearing of the large rotating machine as a high-pressure jack oil via a screw pump.
An oil circulation system for forcibly flowing the lubricating oil through the screw pump as circulating oil when the screw pump is stopped during operation of the lubricating oil supply device, and the screw pump is heated by the circulating oil. A jack oil supply device for large rotating machines.
請求項1に記載の大形回転機械用のジャッキ油供給装置において、前記油循環系統は前記潤滑油供給装置の主油ポンプの吐出圧を利用して前記循環油をねじポンプに通流させるようにしたことを特徴とする大形回転機械用のジャッキ油供給装置。2. The jack oil supply device for a large rotating machine according to claim 1, wherein the oil circulation system causes the circulating oil to flow through a screw pump using a discharge pressure of a main oil pump of the lubricating oil supply device. A jack oil supply device for a large rotating machine, characterized in that 請求項1に記載の大形回転機械用のジャッキ油供給装置において、前記油循環系統は前記潤滑油供給装置に発生する潤滑油の油圧差を利用して前記循環油をねじポンプに通流させるようにしたことを特徴とする大形回転機械用のジャッキ油供給装置。2. The jack oil supply device for a large rotating machine according to claim 1, wherein the oil circulation system allows the circulating oil to flow through a screw pump by utilizing a hydraulic pressure difference of the lubricating oil generated in the lubricating oil supply device. A jack oil supply device for a large-sized rotating machine, characterized in that it is configured as described above.
JP2001002805A 2001-01-10 2001-01-10 Jack oil feeder for large rotating machinery Expired - Lifetime JP4218210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001002805A JP4218210B2 (en) 2001-01-10 2001-01-10 Jack oil feeder for large rotating machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001002805A JP4218210B2 (en) 2001-01-10 2001-01-10 Jack oil feeder for large rotating machinery

Publications (2)

Publication Number Publication Date
JP2002206488A JP2002206488A (en) 2002-07-26
JP4218210B2 true JP4218210B2 (en) 2009-02-04

Family

ID=18871249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001002805A Expired - Lifetime JP4218210B2 (en) 2001-01-10 2001-01-10 Jack oil feeder for large rotating machinery

Country Status (1)

Country Link
JP (1) JP4218210B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010040910A1 (en) * 2010-09-16 2012-03-22 Robert Bosch Gmbh Fuel injector
DE102010040898A1 (en) * 2010-09-16 2012-03-22 Robert Bosch Gmbh Fuel injector
JP2012062872A (en) * 2010-09-17 2012-03-29 Mitsubishi Heavy Ind Ltd Apparatus and method for assisting turbine rotor levitation
CN107559193B (en) * 2017-08-23 2019-05-03 陈则韶 A kind of intelligent control twin-screw steam boosting equipment

Also Published As

Publication number Publication date
JP2002206488A (en) 2002-07-26

Similar Documents

Publication Publication Date Title
US20200208536A1 (en) Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
JP7266707B2 (en) Power generation system and method of generating power by operation of such power generation system
US20040065089A1 (en) Method for maintaining a combined-cycle power station at readiness
JPS62189305A (en) Transport type power device
JPH03155350A (en) Turbine generator system
JP2013057264A (en) Generator
JP2008082622A (en) Compression type refrigerating device
JP4218210B2 (en) Jack oil feeder for large rotating machinery
US20060153696A1 (en) Screw pump
JP5639534B2 (en) Binary power generator
JP2011140899A (en) Method of modifying gas turbine plant
JPH05340207A (en) Temperature-equalizing apparatus of gas turbine and method for minimizing cover-to-base temperature differential
CN110730855B (en) Model-based monitoring of expander operating conditions
KR20160112309A (en) Leak fluid regenerative turbo expander
JP2007218507A (en) Heat pump device and control method thereof
KR101587253B1 (en) Domestic combined heat and power system where components are replaceable without loss of working fluid
JP2630217B2 (en) Variable preload spindle unit
KR101596485B1 (en) Domestic combined heat and power system with oil separator
JPH11107709A (en) Binary power generating system
KR101596486B1 (en) Domestic combined heat and power system having pump protection function
JPS5941609A (en) Rankine machinery
KR20170000384U (en) Small power generator using oil injection screw air end making extensive modifications to the oil less screw air end
JP4795726B2 (en) High temperature motor pump
JPH0327724B2 (en)
CN113661307B (en) Power generation system and method of generating power by operating such power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081103

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4218210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term