JP2011226467A - Compression heat recovery system - Google Patents

Compression heat recovery system Download PDF

Info

Publication number
JP2011226467A
JP2011226467A JP2011047610A JP2011047610A JP2011226467A JP 2011226467 A JP2011226467 A JP 2011226467A JP 2011047610 A JP2011047610 A JP 2011047610A JP 2011047610 A JP2011047610 A JP 2011047610A JP 2011226467 A JP2011226467 A JP 2011226467A
Authority
JP
Japan
Prior art keywords
water
coolers
temperature
compressor
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011047610A
Other languages
Japanese (ja)
Other versions
JP5598724B2 (en
Inventor
Yusuke Okamoto
裕介 岡本
Yoshihiro Sagawa
良浩 寒川
Kazuyuki Otani
和之 大谷
Yusuke Tsuyuguchi
勇輔 露口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2011047610A priority Critical patent/JP5598724B2/en
Publication of JP2011226467A publication Critical patent/JP2011226467A/en
Application granted granted Critical
Publication of JP5598724B2 publication Critical patent/JP5598724B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve hot water at a desired temperature by recovering the compression heat of a compressor.SOLUTION: An air cooler 5 is a heat exchanger between compressed air delivered from the compressor 5 and the cooling water. An oil cooler 6 is a heat exchanger between lubricating oil of the compressor 4 and the cooling water. A heat exchange water supply pump 17 is controlled by an inverter to adjust the quantity of water to be supplied to the air cooler 5 and the oil cooler 6 based on a temperature of the cooling water after passing through the air cooler 5 and the oil cooler 6, and thereby, the hot water at the desired temperature can be obtained.

Description

本発明は、空気圧縮機の圧縮熱回収システムに関するものである。   The present invention relates to a compression heat recovery system for an air compressor.

下記特許文献1には、ボイラの給水タンクへの給水を用いて、圧縮空気の冷却や圧縮機の潤滑油の冷却を図ると共に、それにより給水タンクへの給水の加温を図ることで圧縮熱を回収するシステムが開示されている。具体的には、エアクーラとオイルクーラとを介してボイラの給水タンクへ水が供給され、エアクーラでは圧縮空気の冷却が図られる一方、オイルクーラでは圧縮機の潤滑油の冷却が図られ、各クーラにおいて給水タンクへの給水が加温される。   In Patent Document 1 below, compressed water is supplied to the water supply tank of the boiler to cool the compressed air and the lubricating oil of the compressor, thereby heating the water supplied to the water supply tank. Is disclosed. Specifically, water is supplied to a boiler water supply tank via an air cooler and an oil cooler, and the air cooler cools compressed air, while the oil cooler cools the lubricating oil of the compressor. The water supply to the water supply tank is heated at.

特開2010−38385号公報JP 2010-38385 A

しかしながら、オイルクーラに通される潤滑油を所定温度に維持するように、給水タンクへの給水量を調整する構成である。従って、各クーラを通過後の水温は変動するため、ボイラへの給水以外の用途には利用しにくい場合があった。また、圧縮機の負荷によっては、各クーラを通過後の水が100℃を超えてしまい、高温仕様の配管を必要としたり、蒸気化したりするものであった。   However, the amount of water supplied to the water supply tank is adjusted so that the lubricating oil passed through the oil cooler is maintained at a predetermined temperature. Therefore, since the water temperature after passing through each cooler fluctuates, it may be difficult to use for purposes other than water supply to the boiler. Further, depending on the load of the compressor, the water after passing through each cooler exceeds 100 ° C., requiring high-temperature specification piping or vaporizing.

本発明が解決しようとする課題は、圧縮機の負荷が変動しても、エアクーラやオイルクーラを通過後の水温の変動を抑制し、所望温度の温水を得ることにある。また、ボイラへの給水以外の用途にも対応可能な圧縮熱回収システムを提供することを課題とする。   The problem to be solved by the present invention is to suppress the fluctuation of the water temperature after passing through the air cooler or the oil cooler and obtain hot water having a desired temperature even if the load of the compressor fluctuates. It is another object of the present invention to provide a compressed heat recovery system that can be used for applications other than water supply to a boiler.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、圧縮機から吐出される圧縮空気とその冷却水とを熱交換するエアクーラと、前記圧縮機の潤滑油とその冷却水とを熱交換するオイルクーラと、前記各クーラを通された後の冷却水の温度に基づき、前記各クーラへ供給する冷却水の流量を調整する熱交給水量調整手段とを備えることを特徴とする圧縮熱回収システムである。   The present invention has been made to solve the above problems, and the invention according to claim 1 is directed to an air cooler for exchanging heat between compressed air discharged from the compressor and its cooling water, and lubrication of the compressor. An oil cooler for exchanging heat between the oil and its cooling water, and a heat supply water amount adjusting means for adjusting the flow rate of the cooling water supplied to each cooler based on the temperature of the cooling water after passing through each of the coolers. It is a compression heat recovery system characterized by comprising.

請求項1に記載の発明によれば、各クーラを通過後の水温に基づき、各クーラへの給水量を調整するので、圧縮機の負荷変動があっても、水温の変動を抑制することができる。また、所望温度の水温を得ることができるので、ボイラへの給水以外の用途にも利用しやすい。   According to the first aspect of the present invention, since the amount of water supplied to each cooler is adjusted based on the water temperature after passing through each cooler, it is possible to suppress fluctuations in the water temperature even if there is a load fluctuation of the compressor. it can. Moreover, since the water temperature of desired temperature can be obtained, it is easy to utilize also for uses other than the water supply to a boiler.

請求項2に記載の発明は、前記圧縮機から前記オイルクーラへ潤滑油を送る油送り路と、前記オイルクーラから前記圧縮機へ潤滑油を戻す油戻し路とをバイパス路で接続し、前記油送り路と前記バイパス路との分岐部、または前記油戻し路と前記バイパス路との合流部に、温調三方弁を設け、この温調三方弁により、前記オイルクーラに通す潤滑油の流量を調整して、前記圧縮機内の潤滑油を設定温度に維持することを特徴とする請求項1に記載の圧縮熱回収システムである。   According to a second aspect of the present invention, an oil feed path for sending lubricating oil from the compressor to the oil cooler and an oil return path for returning lubricating oil from the oil cooler to the compressor are connected by a bypass path, A temperature-controlled three-way valve is provided at the junction between the oil feed path and the bypass path, or at the junction between the oil return path and the bypass path, and the flow rate of lubricating oil passed through the oil cooler by the temperature-controlled three-way valve The compression heat recovery system according to claim 1, wherein the lubricating oil in the compressor is maintained at a set temperature by adjusting

請求項2に記載の発明によれば、温調三方弁によりオイルクーラに通す潤滑油の流量を調整することで、圧縮機の潤滑油を所望温度に維持することができる。   According to the second aspect of the present invention, the lubricating oil of the compressor can be maintained at a desired temperature by adjusting the flow rate of the lubricating oil that is passed through the oil cooler by the temperature control three-way valve.

請求項3に記載の発明は、直列に配置された前記両クーラに冷却水が通され、前記両クーラを通過後の冷却水の温度に基づき、前記両クーラへの給水路に設けた熱交給水ポンプをインバータ制御するか、前記両クーラへの給水路に設けた電動弁の開度を調整することを特徴とする請求項2に記載の圧縮熱回収システムである。   According to a third aspect of the present invention, the cooling water is passed through the two coolers arranged in series, and based on the temperature of the cooling water after passing through the two coolers, the heat exchange provided in the water supply passages to the two coolers. 3. The compression heat recovery system according to claim 2, wherein the feed water pump is controlled by an inverter, or the opening degree of the motor-operated valve provided in the water supply path to both the coolers is adjusted.

請求項3に記載の発明によれば、エアクーラとオイルクーラとを直列に接続して、熱交給水ポンプをインバータ制御するか、給水路に設けた電動弁の開度を調整することで、簡易な構成で各クーラ通過後の水温を所望に維持することができる。   According to the third aspect of the present invention, the air cooler and the oil cooler are connected in series, and the heat exchange water pump is inverter-controlled, or the opening degree of the motor-operated valve provided in the water supply passage is adjusted. With such a configuration, the water temperature after passing through each cooler can be maintained as desired.

請求項4に記載の発明は、前記圧縮機は、蒸気を用いて動力を起こすスクリュ式蒸気エンジンにより駆動され、前記両クーラで加温された冷却水を、前記スクリュ式蒸気エンジンの軸封部から漏れる蒸気でさらに加温し、この加温後の冷却水の温度に基づき、前記熱交給水ポンプをインバータ制御するか、前記電動弁の開度を調整することを特徴とする請求項3に記載の圧縮熱回収システムである。   According to a fourth aspect of the present invention, the compressor is driven by a screw-type steam engine that generates power using steam, and the cooling water heated by the both coolers is supplied to a shaft seal portion of the screw-type steam engine. 4. The method according to claim 3, wherein further heating is performed with steam leaking from the refrigerant, and the heat exchange water pump is inverter-controlled or the opening of the motor-operated valve is adjusted based on the temperature of the cooling water after the heating. It is a compression heat recovery system of description.

請求項4に記載の発明によれば、スクリュ式蒸気エンジンの軸漏れ蒸気からの熱回収を図ることができる。   According to the fourth aspect of the present invention, it is possible to recover heat from the shaft leakage steam of the screw steam engine.

請求項5に記載の発明は、前記圧縮熱回収システムの起動時、第一設定条件を満たすまで、前記各クーラへ冷却水を設定流量で流し、前記第一設定条件を満たすと、前記各クーラを通された後の冷却水の温度に基づき、前記各クーラへの通水量を調整することを特徴とする請求項1〜4のいずれか1項に記載の圧縮熱回収システムである。   According to a fifth aspect of the present invention, when the compression heat recovery system is started up, cooling water is allowed to flow through each of the coolers at a set flow rate until the first set condition is satisfied. The compressed heat recovery system according to any one of claims 1 to 4, wherein the amount of water flow to each cooler is adjusted based on the temperature of the cooling water after being passed.

請求項5に記載の発明によれば、圧縮熱回収システムの起動時に各クーラに強制的に通水することで、水温上昇の検知の遅れを防止できる。これにより、圧縮空気や潤滑油の所期の冷却を図ることができる。さらに、通水量は設定流量に制限されるので、冷却水が無駄に送られることも防止できる。   According to the fifth aspect of the present invention, it is possible to prevent a delay in detection of a rise in water temperature by forcibly passing water through each cooler when the compression heat recovery system is activated. Thereby, desired cooling of compressed air and lubricating oil can be aimed at. Furthermore, since the water flow rate is limited to the set flow rate, it is possible to prevent the cooling water from being sent unnecessarily.

請求項6に記載の発明は、前記第一設定条件を満たすまでの前記各クーラへの通水量は、前記各クーラを通された後の冷却水の温度上昇に伴い増加するよう設定されることを特徴とする請求項5に記載の圧縮熱回収システムである。   According to a sixth aspect of the present invention, the amount of water passing through each of the coolers until the first setting condition is satisfied is set so as to increase as the temperature of the cooling water after passing through each of the coolers increases. The compression heat recovery system according to claim 5.

請求項6に記載の発明によれば、水温の上昇に伴い通水量を増加させるので、圧縮空気や潤滑油の所期の冷却を図ることができる。   According to the sixth aspect of the invention, the amount of water flow is increased as the water temperature rises, so that the desired cooling of the compressed air and the lubricating oil can be achieved.

さらに、請求項7に記載の発明は、前記圧縮熱回収システムの停止時、第二設定条件を満たすまで、前記各クーラへ冷却水を設定流量で流し、前記第二設定条件を満たすと、前記各クーラへの通水を停止することを特徴とする請求項1〜6のいずれか1項に記載の圧縮熱回収システムである。   Further, in the invention according to claim 7, when the compression heat recovery system is stopped, the cooling water is allowed to flow to each of the coolers at a set flow rate until the second set condition is satisfied. The compressed heat recovery system according to any one of claims 1 to 6, wherein water flow to each cooler is stopped.

請求項7に記載の発明によれば、圧縮熱回収システムの停止時に各クーラに強制的に通水することで、圧縮空気や潤滑油の所期の冷却を図ることができる。さらに、通水量は設定流量に制限されるので、冷却水が無駄に送られることも防止できる。   According to the seventh aspect of the present invention, the forced cooling of the compressed air and the lubricating oil can be achieved by forcibly passing water through each cooler when the compression heat recovery system is stopped. Furthermore, since the water flow rate is limited to the set flow rate, it is possible to prevent the cooling water from being sent unnecessarily.

本発明によれば、圧縮機の負荷が変動しても、エアクーラやオイルクーラを通過後の水温の変動を抑制し、所望温度の温水を得ることができる。また、ボイラへの給水以外の用途にも対応可能な圧縮熱回収システムを実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if the load of a compressor is fluctuate | varied, the fluctuation | variation of the water temperature after passing an air cooler or an oil cooler can be suppressed, and hot water of desired temperature can be obtained. Moreover, the compression heat recovery system which can respond also to uses other than the water supply to a boiler is realizable.

本発明の圧縮熱回収システムの一実施例を示す概略図である。It is the schematic which shows one Example of the compression heat recovery system of this invention. 図1の圧縮熱回収システムの変形例を示す概略図である。It is the schematic which shows the modification of the compression heat recovery system of FIG.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の圧縮熱回収システムの一実施例を示す概略図である。本実施例の圧縮熱回収システム1は、ボイラ2の給水タンク3への給水を用いて、圧縮空気の冷却と圧縮機4の潤滑油の冷却を図ると共に、それにより給水タンク3への給水の加温を図ることで圧縮熱を回収するシステムである。そのために、本実施例の圧縮熱回収システム1は、圧縮機4、エアクーラ5およびオイルクーラ6を主要部として備える。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic view showing an embodiment of the compression heat recovery system of the present invention. The compression heat recovery system 1 of the present embodiment uses the water supplied to the water supply tank 3 of the boiler 2 to cool the compressed air and the lubricating oil of the compressor 4, thereby supplying water to the water supply tank 3. This system recovers compression heat by heating. Therefore, the compression heat recovery system 1 of the present embodiment includes a compressor 4, an air cooler 5, and an oil cooler 6 as main parts.

圧縮機4は、その構成を特に問わないが、本実施例では油潤滑式で且つスクリュ式の空気圧縮機である。圧縮機4から吐出される圧縮空気は、エアクーラ5において所望温度に水冷された後、各種の圧縮空気利用機器(図示省略)へ送られる。一方、圧縮機4の潤滑油は、オイルクーラ6との間を循環して所望温度に水冷される。   The configuration of the compressor 4 is not particularly limited. In the present embodiment, the compressor 4 is an oil-lubricated and screw-type air compressor. Compressed air discharged from the compressor 4 is cooled to a desired temperature in the air cooler 5 and then sent to various types of compressed air utilization equipment (not shown). On the other hand, the lubricating oil of the compressor 4 circulates between the oil cooler 6 and is water-cooled to a desired temperature.

圧縮機4は、本実施例では、蒸気エンジン7により駆動される。蒸気エンジン7は、蒸気を用いて動力を起こす装置である。蒸気エンジン7は、その構成を特に問わないが、本実施例ではスクリュ式の蒸気エンジンである。スクリュ式蒸気エンジンは、互いにかみ合うスクリュロータ間に蒸気が導入され、その蒸気によりスクリュロータを回転させつつ蒸気を膨張して減圧し、その際のスクリュロータの回転により動力を得る装置である。   In this embodiment, the compressor 4 is driven by a steam engine 7. The steam engine 7 is a device that generates power using steam. The configuration of the steam engine 7 is not particularly limited, but is a screw-type steam engine in the present embodiment. A screw-type steam engine is an apparatus in which steam is introduced between screw rotors that mesh with each other, and the steam is expanded and decompressed while rotating the screw rotor by the steam, and power is obtained by rotation of the screw rotor at that time.

蒸気エンジン7へは、給蒸路8を介して蒸気が供給され、排蒸路9を介して蒸気が排出される。給蒸路8に設けた給蒸弁10の開閉または開度を調整することで、蒸気エンジン7の作動の有無または出力を調整できる。本実施例では、上述したように、圧縮機4は蒸気エンジン7により駆動されるが、電動機(図示省略)により補助駆動可能とされてもよい。あるいは、図1において蒸気エンジン7に代えて電動機を設置することで、圧縮機4は電動機により駆動されてもよい。なお、圧縮機4、蒸気エンジン7、エアクーラ5およびオイルクーラ6は、図1において一点鎖線で示すように、ユニット11として構成されてもよい。   Steam is supplied to the steam engine 7 through the steam supply path 8, and the steam is discharged through the exhaust steam path 9. By adjusting the opening / closing or opening degree of the steam supply valve 10 provided in the steam supply path 8, the presence or absence of the operation of the steam engine 7 or the output can be adjusted. In the present embodiment, as described above, the compressor 4 is driven by the steam engine 7, but may be auxiliary driven by an electric motor (not shown). Alternatively, the compressor 4 may be driven by an electric motor by installing an electric motor instead of the steam engine 7 in FIG. Note that the compressor 4, the steam engine 7, the air cooler 5, and the oil cooler 6 may be configured as a unit 11 as shown by a one-dot chain line in FIG.

エアクーラ5は、圧縮空気とその冷却水との間接熱交換器である。具体的には、圧縮機4から吐出される圧縮空気は、オイルセパレータ(図示省略)を介してエアクーラ5へ送られ、エアクーラ5において水冷を図られた後、エアドライヤ(図示省略)にて水分除去され、圧縮空気利用機器(図示省略)へ送られる。   The air cooler 5 is an indirect heat exchanger between compressed air and its cooling water. Specifically, the compressed air discharged from the compressor 4 is sent to the air cooler 5 through an oil separator (not shown), water-cooled in the air cooler 5, and then moisture-removed by an air dryer (not shown). And sent to a compressed air utilization device (not shown).

オイルクーラ6は、圧縮機4の潤滑油とその冷却水との間接熱交換器である。具体的には、圧縮機4とオイルクーラ6とは、油送り路12と油戻し路13とにより接続される。これにより、圧縮機4の潤滑油(本実施例のような油潤滑式の圧縮機の場合、より厳密には前記オイルセパレータで圧縮空気から分離された潤滑油)は、油送り路12を介してオイルクーラ6へ送られ、オイルクーラ6において水冷を図られた後、油戻し路13を介して圧縮機4本体へ戻される。   The oil cooler 6 is an indirect heat exchanger between the lubricating oil of the compressor 4 and its cooling water. Specifically, the compressor 4 and the oil cooler 6 are connected by an oil feed path 12 and an oil return path 13. As a result, the lubricating oil of the compressor 4 (in the case of an oil-lubricated compressor as in the present embodiment, more precisely, the lubricating oil separated from the compressed air by the oil separator) passes through the oil feed path 12. After being sent to the oil cooler 6 and water-cooled in the oil cooler 6, it is returned to the main body of the compressor 4 through the oil return path 13.

また、本実施例では、油送り路12と油戻し路13とは、バイパス路14で接続される。そして、油送り路12とバイパス路14との分岐部には、温調三方弁15が設けられる。この温調三方弁15は、ワックス式のものが好適に用いられ、圧縮機4からの潤滑油の温度に基づき、潤滑油をオイルクーラ6へ送るか、オイルクーラ6を介さずにバイパス路14を介して圧縮機4へ戻すかの分配割合を自力で調整する。これにより、オイルクーラ6へ通す潤滑油の流量を調整して、圧縮機4内の潤滑油を所望温度に維持することができる。   In this embodiment, the oil feed path 12 and the oil return path 13 are connected by a bypass path 14. A temperature-controlled three-way valve 15 is provided at a branch portion between the oil feed path 12 and the bypass path 14. The temperature control three-way valve 15 is preferably a wax type, and the lubricant oil is sent to the oil cooler 6 based on the temperature of the lubricant oil from the compressor 4, or the bypass passage 14 without passing through the oil cooler 6. The distribution ratio to be returned to the compressor 4 via is adjusted by itself. Thereby, the flow volume of the lubricating oil passed through the oil cooler 6 can be adjusted, and the lubricating oil in the compressor 4 can be maintained at a desired temperature.

エアクーラ5およびオイルクーラ6は、給水タンク3への給水路16の中途に順に設けられる。言い換えれば、給水タンク3への給水路16には、エアクーラ5とオイルクーラ6とが直列に設けられる。従って、給水タンク3への給水は、エアクーラ5とオイルクーラ6とを順に介して、ボイラ2の給水タンク3へ供給される。なお、給水タンク3への給水は、ボイラ2への給水となるので、好適には脱気された軟水が用いられる。   The air cooler 5 and the oil cooler 6 are sequentially provided in the middle of the water supply path 16 to the water supply tank 3. In other words, the air cooler 5 and the oil cooler 6 are provided in series in the water supply path 16 to the water supply tank 3. Therefore, the water supply to the water supply tank 3 is supplied to the water supply tank 3 of the boiler 2 through the air cooler 5 and the oil cooler 6 in order. In addition, since the water supply to the water supply tank 3 turns into water supply to the boiler 2, the deaerated soft water is used suitably.

各クーラ5,6を介した給水タンク3への給水量は、熱交給水量調整手段としてのインバータポンプにより変更可能とされる。具体的には、給水タンク3への給水路16には、両クーラ5,6よりも上流側に熱交給水ポンプ17が設けられており、この熱交給水ポンプ17はインバータ18により回転数を制御可能とされ、回転数を変更されることで各クーラ5,6への給水量が調整される。   The amount of water supplied to the water supply tank 3 via each of the coolers 5 and 6 can be changed by an inverter pump as heat exchange water amount adjustment means. Specifically, a heat exchange water pump 17 is provided in the water supply passage 16 to the water supply tank 3 on the upstream side of the coolers 5 and 6, and the heat exchange water pump 17 is rotated by an inverter 18. The amount of water supplied to each of the coolers 5 and 6 is adjusted by changing the rotation speed.

この給水量は、両クーラ5,6を通過後の水温に基づき調整される。具体的には、給水タンク3への給水路16には、オイルクーラ6より下流に温度センサ19が設けられており、この温度センサ19の検出信号に基づき、熱交給水ポンプ17をインバータ制御して、給水量が調整される。温度センサ19の検出温度を設定温度に維持するように熱交給水ポンプ17による給水量を調整すれば、所望温度の温水を得ることができる。   This amount of water supply is adjusted based on the water temperature after passing through both coolers 5 and 6. Specifically, a temperature sensor 19 is provided downstream of the oil cooler 6 in the water supply path 16 to the water supply tank 3, and the heat exchange water pump 17 is inverter-controlled based on a detection signal of the temperature sensor 19. Thus, the amount of water supply is adjusted. If the amount of water supplied by the heat exchange water supply pump 17 is adjusted so that the temperature detected by the temperature sensor 19 is maintained at the set temperature, hot water having a desired temperature can be obtained.

給水タンク3には、各クーラ5,6を介した給水の他、補給水路20を介しても給水可能とされる。この水もボイラ2への給水となることを考慮して、好適には脱気された軟水が用いられる。補給水路20には補給水弁21が設けられており、この補給水弁21を開閉することで給水タンク3への給水の有無が切り替えられる。   The water supply tank 3 can be supplied with water through the replenishment water channel 20 in addition to the water supplied through the coolers 5 and 6. Considering that this water is also supplied to the boiler 2, degassed soft water is preferably used. A replenishment water valve 21 is provided in the replenishment water channel 20, and the presence or absence of water supply to the water supply tank 3 is switched by opening and closing the replenishment water valve 21.

各クーラ5,6を介した給水だけでは、圧縮機4の負荷によっては給水タンク3内の水量が所望に確保できないおそれがあるが、その場合には補給水路20を介して直接に給水タンク3へ給水される。具体的には、給水タンク3には水位検出器22が設けられており、この水位検出器22による検出信号に基づき補給水弁21を制御することで、給水タンク3内の水位は設定範囲に維持される。なお、給水タンク3には、所定以上の水を外部へあふれさせるオーバフロー路23も設けられている。   Although there is a possibility that the amount of water in the water supply tank 3 cannot be secured as desired depending on the load of the compressor 4 only by water supply through the coolers 5 and 6, in that case, the water supply tank 3 directly through the replenishment water channel 20. Water is supplied. Specifically, a water level detector 22 is provided in the water supply tank 3, and the water level in the water supply tank 3 is set within a set range by controlling the makeup water valve 21 based on a detection signal from the water level detector 22. Maintained. In addition, the water supply tank 3 is also provided with an overflow path 23 for overflowing a predetermined amount of water to the outside.

給水タンク3内の貯留水は、所望により給水ポンプ24および逆止弁25を介してボイラ2へ供給される。その水は、ボイラ2において蒸気化され、ボイラ2からの蒸気は、蒸気エンジン7などの各種の蒸気利用機器へ送られる。   The stored water in the water supply tank 3 is supplied to the boiler 2 through a water supply pump 24 and a check valve 25 as required. The water is vaporized in the boiler 2, and the steam from the boiler 2 is sent to various steam utilizing devices such as the steam engine 7.

本実施例の圧縮熱回収システム1では、給水タンク3への給水は、エアクーラ5において圧縮空気の冷却を図り、またオイルクーラ6において潤滑油の冷却を図った後、給水タンク3へ供給される。この際、給水タンク3への給水は、エアクーラ5およびオイルクーラ6において圧縮熱を回収して加温される。このようにして、給水タンク3への給水により圧縮機4の潤滑油と圧縮空気との冷却を図ると共に、両クーラ5,6において給水タンク3への給水の加温を図ることができる。さらに、本実施例の圧縮熱回収システム1では、各クーラ5,6を通過後の水温を設定温度(たとえば80℃)に維持するように、熱交給水ポンプ17をインバータ制御することができ、それにより所望温度の温水を得ることができる。しかも、圧縮機4の潤滑油の冷却は、温調三方弁15により自動で調整される。   In the compression heat recovery system 1 of this embodiment, the water supplied to the water supply tank 3 is supplied to the water supply tank 3 after cooling the compressed air in the air cooler 5 and cooling the lubricating oil in the oil cooler 6. . At this time, the water supplied to the water supply tank 3 is heated by collecting the compression heat in the air cooler 5 and the oil cooler 6. In this way, cooling of the lubricating oil and compressed air of the compressor 4 can be achieved by supplying water to the water supply tank 3, and heating of the water supplied to the water supply tank 3 can be achieved in both coolers 5 and 6. Furthermore, in the compression heat recovery system 1 of the present embodiment, the heat exchange water pump 17 can be inverter-controlled so that the water temperature after passing through each of the coolers 5 and 6 is maintained at a set temperature (for example, 80 ° C.), Thereby, hot water at a desired temperature can be obtained. Moreover, the cooling of the lubricating oil in the compressor 4 is automatically adjusted by the temperature control three-way valve 15.

本発明の圧縮熱回収システム1は、前記実施例の構成に限らず適宜変更可能である。特に、エアクーラ5とオイルクーラ6とを備え、これらクーラ5,6を通された後の水温に基づき各クーラ5,6への給水量を調整する構成であれば、その他の構成や制御は適宜に変更可能である。たとえば、前記実施例では、圧縮機4は蒸気エンジン7により駆動されたが、電動機により駆動される圧縮機4に対しても同様に適用できる。   The compression heat recovery system 1 of the present invention is not limited to the configuration of the above embodiment, and can be changed as appropriate. In particular, as long as the air cooler 5 and the oil cooler 6 are provided and the amount of water supplied to each of the coolers 5 and 6 is adjusted based on the water temperature after passing through the coolers 5 and 6, other configurations and controls are appropriately set. Can be changed. For example, in the above embodiment, the compressor 4 is driven by the steam engine 7, but the present invention can be similarly applied to the compressor 4 driven by an electric motor.

また、前記実施例では、各クーラ5,6を通過後の加温された水は、ボイラ2への給水として用いたが、空調機や食品機械など、ボイラ給水以外の用途にも適用可能である。得られる温水の温度を所望に維持できるので、幅広い用途に適用できる。   Moreover, in the said Example, although the warmed water after passing each cooler 5 and 6 was used as feed water to the boiler 2, it is applicable also to uses other than boiler feed water, such as an air conditioner and a food machine. is there. Since the temperature of the obtained warm water can be maintained as desired, it can be applied to a wide range of uses.

また、前記実施例では、給水路16にはエアクーラ5とオイルクーラ6とを順に設けたが、この設置順序は場合により逆にしてもよい。また、前記実施例では、給水路16にはエアクーラ5とオイルクーラ6とを直列に設けたが、場合により並列に設けてもよい。その場合も、各クーラ5,6を通過後の水を合流させて、その水温に基づき各クーラ5,6への給水量を調整すればよい。この場合において、各クーラ5,6への給水量を個別に調整可能としてもよい。   Moreover, in the said Example, although the air cooler 5 and the oil cooler 6 were provided in order in the water supply path 16, this installation order may be reversed depending on the case. Moreover, in the said Example, although the air cooler 5 and the oil cooler 6 were provided in series in the water supply path 16, you may provide in parallel depending on the case. Even in this case, the water after passing through the coolers 5 and 6 may be merged, and the amount of water supplied to the coolers 5 and 6 may be adjusted based on the water temperature. In this case, the amount of water supplied to each of the coolers 5 and 6 may be individually adjustable.

また、前記実施例において、圧縮機4を複数段にしてもよい。たとえば、圧縮機4を二段にする場合、一段目の圧縮機4からの圧縮空気は、第一のエアクーラ(インタークーラ)5で水冷を図られた後、二段目の圧縮機4でさらに圧縮され、第二のエアクーラ(アフタークーラ)5で水冷を図られる。そして、この二つのエアクーラ5,5とオイルクーラ6とは、給水路16に直列に設置してもよいし、それらの内の二つまたは全部を並列に設置してもよい。いずれの場合も、その設置順序は適宜に変更可能である。たとえば、オイルクーラ6、アフタークーラ(5)、インタークーラ(5)の順に冷却水が通される。   In the embodiment, the compressor 4 may have a plurality of stages. For example, when the compressor 4 has two stages, the compressed air from the first stage compressor 4 is cooled by the first air cooler (intercooler) 5 and then further cooled by the second stage compressor 4. Compressed and water-cooled by a second air cooler (aftercooler) 5. And these two air coolers 5 and 5 and the oil cooler 6 may be installed in series in the water supply path 16, and two or all of them may be installed in parallel. In any case, the installation order can be changed as appropriate. For example, the cooling water is passed through the oil cooler 6, the aftercooler (5), and the intercooler (5) in this order.

また、これと同様にして、圧縮機4は、油潤滑式に限らず、無潤滑式(オイルフリー式)とされてもよい。つまり、無潤滑式の圧縮機4の場合も、一段目の圧縮機4からの圧縮空気は、第一のエアクーラ(インタークーラ)5で水冷を図られた後、二段目の圧縮機4でさらに圧縮され、第二のエアクーラ(アフタークーラ)5で水冷を図られる。無潤滑式の圧縮機の場合、圧縮機本体には潤滑油はない訳であるが、ギア部分には潤滑油があり、この潤滑油は前記実施例と同様にオイルクーラ6で冷却を図ることができる。   Similarly, the compressor 4 is not limited to the oil lubrication type but may be a non-lubricating type (oil-free type). That is, even in the case of the non-lubricated compressor 4, the compressed air from the first stage compressor 4 is cooled by the first air cooler (intercooler) 5 and then the second stage compressor 4. It is further compressed and water-cooled by a second air cooler (aftercooler) 5. In the case of a non-lubricated compressor, there is no lubricating oil in the compressor body, but there is lubricating oil in the gear portion, and this lubricating oil is cooled by the oil cooler 6 as in the above embodiment. Can do.

また、前記実施例において、図1の二点鎖線で示すように、スクリュ式蒸気エンジン7からの軸漏れ蒸気で、給水タンク3への給水をさらに加温してもよい。具体的には、給水タンク3への給水路16には、オイルクーラ6より下流に、さらに別の熱交換器26が設けられる。そして、この熱交換器26には、給水タンク3への給水が通されると共に、蒸気エンジン7からの軸漏れ蒸気が通される。これにより、給水タンク3への給水をさらに加温することができる。この場合、この熱交換器26を通過後の水温に基づき、各クーラ5,6,26への給水量を調整すればよい。これにより、軸漏れ蒸気の増減にも対応することができる。   Moreover, in the said Example, as shown with the dashed-two dotted line of FIG. 1, you may further heat the water supply to the water supply tank 3 with the axial leak steam from the screw-type steam engine 7. FIG. Specifically, another heat exchanger 26 is provided in the water supply path 16 to the water supply tank 3 downstream from the oil cooler 6. The heat exchanger 26 is supplied with water supplied to the water supply tank 3 and is also supplied with shaft leakage steam from the steam engine 7. Thereby, the water supply to the water supply tank 3 can be further heated. In this case, the amount of water supplied to each of the coolers 5, 6 and 26 may be adjusted based on the water temperature after passing through the heat exchanger 26. Thereby, it can respond also to the increase / decrease in axial leakage steam.

また、前記実施例では、油送り路12とバイパス路14との分岐部に温調三方弁15を設けたが、図2に示すように、油戻し路13とバイパス路14との合流部に温調三方弁15を設けてもよい。この場合も、温調三方弁15は、圧縮機4からの潤滑油の温度に基づき、潤滑油をオイルクーラ6へ送るか、オイルクーラ6を介さずにバイパス路14を介して圧縮機4へ戻すかの分配割合を自力で調整する。これにより、オイルクーラ6へ通す潤滑油の流量を調整して、圧縮機4内の潤滑油を所望温度に維持することができる。   Moreover, in the said Example, although the temperature control three-way valve 15 was provided in the branch part of the oil feed path 12 and the bypass path 14, in the junction part of the oil return path 13 and the bypass path 14, as shown in FIG. A temperature-controlled three-way valve 15 may be provided. Also in this case, the temperature control three-way valve 15 sends the lubricating oil to the oil cooler 6 based on the temperature of the lubricating oil from the compressor 4 or passes through the bypass passage 14 to the compressor 4 without passing through the oil cooler 6. Adjust the return distribution ratio by yourself. Thereby, the flow volume of the lubricating oil passed through the oil cooler 6 can be adjusted, and the lubricating oil in the compressor 4 can be maintained at a desired temperature.

さらに、前記実施例では、熱交給水量調整手段として、熱交給水ポンプ17をインバータ制御したが、図2に示すように、給水路16には熱交給水ポンプ17と電動弁27とを直列に設けてもよい。この場合、熱交給水ポンプ17はオンオフ制御され、電動弁27は温度センサ19の検出信号に基づき開度調整される。なお、図2では、熱交給水量調整手段の構成と温調三方弁15の設置位置とにおいて図1と異なるが、熱交給水量調整手段の構成と温調三方弁15の設置位置との内、いずれか一方のみを図1と異ならしてもよいのは言うまでもない。   Further, in the above embodiment, the heat exchange water pump 17 is inverter-controlled as the heat exchange water supply amount adjusting means. However, as shown in FIG. 2, the heat exchange water pump 17 and the electric valve 27 are connected in series to the water supply path 16. May be provided. In this case, the heat supply water pump 17 is on / off controlled, and the opening of the motor operated valve 27 is adjusted based on the detection signal of the temperature sensor 19. 2 is different from FIG. 1 in the configuration of the heat supply water amount adjusting means and the installation position of the temperature control three-way valve 15, but the configuration of the heat supply water amount adjustment means and the installation position of the temperature control three-way valve 15 are different. Of course, only one of them may be different from that shown in FIG.

ところで、圧縮熱回収システム1は、前述したように、温度センサ19の検出温度に基づき両クーラ5,6への通水量を制御するが、圧縮熱回収システム1の冷態起動時には、水温上昇を検出するまでに多少の遅れを生じる。従って、起動してすぐに温度センサ19による通水量制御を行うのでは、実際の通水が遅れ、圧縮空気や潤滑油の温度上昇を招くおそれがある。そこで、圧縮熱回収システム1の起動時には、第一設定条件を満たすまで、各クーラ5,6へ冷却水を設定流量で強制的に通水するのがよい。   By the way, as described above, the compression heat recovery system 1 controls the amount of water flow to both the coolers 5 and 6 based on the temperature detected by the temperature sensor 19, but when the compression heat recovery system 1 starts cold, the water temperature rises. There will be some delay before detection. Therefore, if the water flow amount control by the temperature sensor 19 is performed immediately after activation, the actual water flow may be delayed and the temperature of the compressed air or lubricating oil may increase. Therefore, when the compression heat recovery system 1 is started, it is preferable to forcibly pass the cooling water at the set flow rate to each of the coolers 5 and 6 until the first setting condition is satisfied.

たとえば、起動信号から所定時間を経過するか、温度センサ19の検出温度が所定温度に上昇するまで、熱交給水ポンプ17で少流量を送り出すか(図1)、電動弁27を設定開度(典型的には最小開度)だけ開けばよい(図2)。そして、第一設定条件を満たした後は、温度センサ19による通水量制御に切り替えればよい。   For example, the heat exchange water pump 17 sends out a small flow rate until a predetermined time elapses from the start signal or the temperature detected by the temperature sensor 19 rises to a predetermined temperature (FIG. 1), or the motorized valve 27 is set to a set opening degree ( (Typically, the minimum opening) only needs to be opened (FIG. 2). And after satisfy | filling 1st setting conditions, what is necessary is just to switch to the water flow control by the temperature sensor 19. FIG.

なお、第一設定条件を満たすまでの各クーラ5,6への通水量は、温度センサ19の検出温度の上昇に伴い、通水量を増加させるようにしてもよい。つまり、温度センサ19の検出温度の上昇に伴い、熱交給水ポンプ17で送り出す水量を徐々に増加させるか(図1)、電動弁27の開度を徐々に大きくすればよい(図2)。   Note that the water flow amount to each of the coolers 5 and 6 until the first setting condition is satisfied may be increased as the temperature detected by the temperature sensor 19 increases. That is, as the temperature detected by the temperature sensor 19 rises, the amount of water sent out by the heat exchange water pump 17 is gradually increased (FIG. 1), or the opening degree of the motor-operated valve 27 may be gradually increased (FIG. 2).

このようにして起動時に各クーラ5,6に強制的に通水することで、温度センサ19による検出遅れを防止することができる。これにより、圧縮空気や潤滑油の過度の温度上昇を防止することができる。また、通水量を制限することで、給水タンク3へ低温の水が無駄に供給されるおそれもない。   By forcibly passing water through the coolers 5 and 6 at the time of startup in this way, detection delay by the temperature sensor 19 can be prevented. Thereby, the excessive temperature rise of compressed air or lubricating oil can be prevented. Further, by limiting the amount of water flow, there is no possibility that low-temperature water is supplied to the water supply tank 3 wastefully.

また、逆に、圧縮熱回収システム1の停止時、各クーラ5,6への通水をすぐに停止してしまうと、圧縮熱の回収が最後までできないおそれがある。特に、蒸気エンジン7への給蒸弁10を閉じても、蒸気エンジン7内には蒸気が残っているので、これを前記熱交換器26で回収するにしても、各クーラ5,6へ通水する必要がある。そこで、圧縮熱回収システム1の停止時、第二設定条件を満たすまで、各クーラ5,6へ冷却水を設定流量で強制的に通水するのがよい。   Conversely, if the water flow to each of the coolers 5 and 6 is stopped immediately when the compression heat recovery system 1 is stopped, the compression heat may not be recovered to the end. In particular, even if the steam supply valve 10 to the steam engine 7 is closed, steam remains in the steam engine 7, so that even if it is recovered by the heat exchanger 26, it passes through the coolers 5 and 6. I need water. Therefore, when the compression heat recovery system 1 is stopped, it is preferable to forcibly supply the cooling water to each of the coolers 5 and 6 at a set flow rate until the second setting condition is satisfied.

たとえば、停止信号から所定時間を経過するか、温度センサ19の検出温度が所定温度に下がるまで、熱交給水ポンプ17で少流量を送り出すか(図1)、電動弁27を設定開度(典型的には最小開度)だけ開けばよい(図2)。そして、第二設定条件を満たした後は、各クーラ5,6への通水を完全に停止すればよい。   For example, a small flow rate is sent out by the heat exchange water pump 17 until a predetermined time elapses from the stop signal or the temperature detected by the temperature sensor 19 falls to a predetermined temperature (FIG. 1), or the motorized valve 27 is set to a set opening (typical In other words, it is only necessary to open only the minimum opening (FIG. 2). And after satisfy | filling 2nd setting conditions, what is necessary is just to stop the water flow to each cooler 5 and 6 completely.

このようにして停止時に各クーラ5,6に強制的に通水することで、圧縮機4の潤滑油の冷却と、蒸気エンジン7内に残留する蒸気からの熱回収とを図ることができる。   By forcibly passing water through each of the coolers 5 and 6 at the time of stopping as described above, it is possible to cool the lubricating oil of the compressor 4 and recover heat from the steam remaining in the steam engine 7.

1 圧縮熱回収システム
3 給水タンク
4 圧縮機
5 エアクーラ
6 オイルクーラ
7 蒸気エンジン
12 油送り路
13 油戻し路
14 バイパス路
15 温調三方弁
16 給水路
17 熱交給水ポンプ
18 インバータ
19 温度センサ
26 熱交換器
27 電動弁
DESCRIPTION OF SYMBOLS 1 Compression heat recovery system 3 Water supply tank 4 Compressor 5 Air cooler 6 Oil cooler 7 Steam engine 12 Oil feed path 13 Oil return path 14 Bypass path 15 Temperature control three-way valve 16 Water supply path 17 Heat exchange water pump 18 Inverter 19 Temperature sensor 26 Heat Exchanger 27 Electric valve

Claims (7)

圧縮機から吐出される圧縮空気とその冷却水とを熱交換するエアクーラと、
前記圧縮機の潤滑油とその冷却水とを熱交換するオイルクーラと、
前記各クーラを通された後の冷却水の温度に基づき、前記各クーラへ供給する冷却水の流量を調整する熱交給水量調整手段と
を備えることを特徴とする圧縮熱回収システム。
An air cooler for exchanging heat between the compressed air discharged from the compressor and its cooling water;
An oil cooler for exchanging heat between the lubricating oil of the compressor and its cooling water;
And a heat supply water amount adjusting means for adjusting a flow rate of the cooling water supplied to each of the coolers based on a temperature of the cooling water after passing through each of the coolers.
前記圧縮機から前記オイルクーラへ潤滑油を送る油送り路と、前記オイルクーラから前記圧縮機へ潤滑油を戻す油戻し路とをバイパス路で接続し、
前記油送り路と前記バイパス路との分岐部、または前記油戻し路と前記バイパス路との合流部に、温調三方弁を設け、
この温調三方弁により、前記オイルクーラに通す潤滑油の流量を調整して、前記圧縮機内の潤滑油を設定温度に維持する
ことを特徴とする請求項1に記載の圧縮熱回収システム。
An oil feed path for sending lubricating oil from the compressor to the oil cooler and an oil return path for returning the lubricating oil from the oil cooler to the compressor are connected by a bypass path,
A temperature control three-way valve is provided at the junction between the oil feed path and the bypass path, or the junction between the oil return path and the bypass path,
2. The compression heat recovery system according to claim 1, wherein the temperature of the lubricating oil passing through the oil cooler is adjusted by the temperature control three-way valve to maintain the lubricating oil in the compressor at a set temperature.
直列に配置された前記両クーラに冷却水が通され、
前記両クーラを通過後の冷却水の温度に基づき、前記両クーラへの給水路に設けた熱交給水ポンプをインバータ制御するか、前記両クーラへの給水路に設けた電動弁の開度を調整する
ことを特徴とする請求項2に記載の圧縮熱回収システム。
Cooling water is passed through both the coolers arranged in series,
Based on the temperature of the cooling water after passing through both coolers, the inverter of the heat exchange water pump provided in the water supply passages to the both coolers is controlled by the inverter, or the opening degree of the motor operated valve provided in the water supply passages to the both coolers It adjusts. The compression heat recovery system of Claim 2 characterized by the above-mentioned.
前記圧縮機は、蒸気を用いて動力を起こすスクリュ式蒸気エンジンにより駆動され、
前記両クーラで加温された冷却水を、前記スクリュ式蒸気エンジンの軸封部から漏れる蒸気でさらに加温し、
この加温後の冷却水の温度に基づき、前記熱交給水ポンプをインバータ制御するか、前記電動弁の開度を調整する
ことを特徴とする請求項3に記載の圧縮熱回収システム。
The compressor is driven by a screw-type steam engine that generates power using steam,
The cooling water heated by the both coolers is further heated by steam leaking from the shaft seal portion of the screw steam engine,
The compression heat recovery system according to claim 3, wherein the heat exchange water pump is inverter-controlled or the opening degree of the motor-operated valve is adjusted based on the temperature of the cooling water after heating.
前記圧縮熱回収システムの起動時、第一設定条件を満たすまで、前記各クーラへ冷却水を設定流量で流し、
前記第一設定条件を満たすと、前記各クーラを通された後の冷却水の温度に基づき、前記各クーラへの通水量を調整する
ことを特徴とする請求項1〜4のいずれか1項に記載の圧縮熱回収システム。
When starting the compression heat recovery system, until the first setting condition is satisfied, the cooling water is allowed to flow at a set flow rate to each of the coolers.
When the first setting condition is satisfied, the amount of water flow to each cooler is adjusted based on the temperature of the cooling water after being passed through each cooler. The compression heat recovery system described in 1.
前記第一設定条件を満たすまでの前記各クーラへの通水量は、前記各クーラを通された後の冷却水の温度上昇に伴い増加するよう設定される
ことを特徴とする請求項5に記載の圧縮熱回収システム。
The amount of water flow to each of the coolers until the first setting condition is satisfied is set so as to increase with an increase in temperature of the cooling water after passing through each of the coolers. Compression heat recovery system.
前記圧縮熱回収システムの停止時、第二設定条件を満たすまで、前記各クーラへ冷却水を設定流量で流し、
前記第二設定条件を満たすと、前記各クーラへの通水を停止する
ことを特徴とする請求項1〜6のいずれか1項に記載の圧縮熱回収システム。
When the compression heat recovery system is stopped, the cooling water is allowed to flow to each of the coolers at a set flow rate until the second setting condition is satisfied.
The compressed heat recovery system according to any one of claims 1 to 6, wherein when the second setting condition is satisfied, water flow to each of the coolers is stopped.
JP2011047610A 2010-04-01 2011-03-04 Compression heat recovery system Active JP5598724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011047610A JP5598724B2 (en) 2010-04-01 2011-03-04 Compression heat recovery system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010084756 2010-04-01
JP2010084756 2010-04-01
JP2011047610A JP5598724B2 (en) 2010-04-01 2011-03-04 Compression heat recovery system

Publications (2)

Publication Number Publication Date
JP2011226467A true JP2011226467A (en) 2011-11-10
JP5598724B2 JP5598724B2 (en) 2014-10-01

Family

ID=45042068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011047610A Active JP5598724B2 (en) 2010-04-01 2011-03-04 Compression heat recovery system

Country Status (1)

Country Link
JP (1) JP5598724B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016048141A (en) * 2014-08-27 2016-04-07 三浦工業株式会社 Heat recovery system
CN106468478A (en) * 2016-08-31 2017-03-01 惠州市骏亚数字技术有限公司 A kind of heat-energy recovering apparatus of heat-producing device
KR20170117663A (en) * 2016-04-14 2017-10-24 주식회사 엔박 the hot water generater using the recovery heat of both compressed air and cooling oil of screw typed air compressor
JP2018025322A (en) * 2016-08-08 2018-02-15 三浦工業株式会社 Heat recovery system
KR20180124801A (en) * 2018-10-31 2018-11-21 주식회사 엔박 the electricity generater using the recovery heat of both compressed air and cooling oil of screw typed air compressor
KR102144662B1 (en) * 2019-10-14 2020-08-14 (주)스마트에어 Waste heat recovery apparatus of air compressor
KR102144663B1 (en) * 2019-10-14 2020-08-14 (주)스마트에어 Waste heat recovery apparatus of air compressor
EP3499037B1 (en) 2013-01-28 2021-03-03 Hitachi Industrial Equipment Systems Co., Ltd. Waste-heat recovery system in oil-cooled gas compressor
KR102240006B1 (en) * 2019-12-02 2021-04-14 (주)스마트에어 Air compressor waste heat recycling system for ship
CN114076100A (en) * 2020-08-21 2022-02-22 亿利洁能科技有限公司 Heat recovery system of air compressor
CN116804381A (en) * 2023-06-29 2023-09-26 米奇科技(北京)有限公司 Liquid air energy storage power generation system and equipment
US11821657B2 (en) 2013-01-28 2023-11-21 Hitachi Industrial Equipment Systems Co., Ltd. Waste-heat recovery system in oil-cooled gas compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299682A (en) * 2008-06-10 2009-12-24 General Electric Co <Ge> System for recovering waste heat generated by auxiliary system of turbo machine
JP2010038385A (en) * 2008-07-31 2010-02-18 Miura Co Ltd Water supply system for boiler

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299682A (en) * 2008-06-10 2009-12-24 General Electric Co <Ge> System for recovering waste heat generated by auxiliary system of turbo machine
JP2010038385A (en) * 2008-07-31 2010-02-18 Miura Co Ltd Water supply system for boiler

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11300322B2 (en) 2013-01-28 2022-04-12 Hitachi Industrial Equipment Systems Co., Ltd. Waste-heat recovery system in oil-cooled gas compressor
US11821657B2 (en) 2013-01-28 2023-11-21 Hitachi Industrial Equipment Systems Co., Ltd. Waste-heat recovery system in oil-cooled gas compressor
EP3499037B1 (en) 2013-01-28 2021-03-03 Hitachi Industrial Equipment Systems Co., Ltd. Waste-heat recovery system in oil-cooled gas compressor
JP2016048141A (en) * 2014-08-27 2016-04-07 三浦工業株式会社 Heat recovery system
KR20170117663A (en) * 2016-04-14 2017-10-24 주식회사 엔박 the hot water generater using the recovery heat of both compressed air and cooling oil of screw typed air compressor
JP2018025322A (en) * 2016-08-08 2018-02-15 三浦工業株式会社 Heat recovery system
CN106468478A (en) * 2016-08-31 2017-03-01 惠州市骏亚数字技术有限公司 A kind of heat-energy recovering apparatus of heat-producing device
KR20180124801A (en) * 2018-10-31 2018-11-21 주식회사 엔박 the electricity generater using the recovery heat of both compressed air and cooling oil of screw typed air compressor
KR102113004B1 (en) 2018-10-31 2020-05-20 주식회사 엔박 a hot water generater using the recovery heat of both compressed air and cooling oil of screw typed air compressor
KR102144662B1 (en) * 2019-10-14 2020-08-14 (주)스마트에어 Waste heat recovery apparatus of air compressor
KR102144663B1 (en) * 2019-10-14 2020-08-14 (주)스마트에어 Waste heat recovery apparatus of air compressor
KR102240006B1 (en) * 2019-12-02 2021-04-14 (주)스마트에어 Air compressor waste heat recycling system for ship
CN114076100A (en) * 2020-08-21 2022-02-22 亿利洁能科技有限公司 Heat recovery system of air compressor
CN116804381A (en) * 2023-06-29 2023-09-26 米奇科技(北京)有限公司 Liquid air energy storage power generation system and equipment

Also Published As

Publication number Publication date
JP5598724B2 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
JP5598724B2 (en) Compression heat recovery system
KR101935274B1 (en) Heat recovery system
JP6194274B2 (en) Waste heat recovery system and waste heat recovery method
JP5821235B2 (en) Liquid cooling system
US10794278B2 (en) Compressed air storage power generation device
KR20190134805A (en) A cooling device for cooling at least one further component of the electrical machine and the electrical power unit and a vehicle comprising such cooling device
US8522523B2 (en) Steam system
KR101674804B1 (en) Supercritical CO2 generation system
JP5621721B2 (en) Rankine cycle
JP5989072B2 (en) Oil-free compressor and control method thereof
KR101707744B1 (en) Compressing device
JP5675568B2 (en) Oil-free screw compressor and control method thereof
JP6258422B2 (en) Compressor and control method thereof
EP2581689A1 (en) Engine-driven hot water supply circuit, and engine-driven hot water supply system using same
JP2013231377A (en) Waste heat regeneration system
WO2009147873A1 (en) Steam system
JP2017141992A (en) Compressed air energy storage power generation device and compressed air energy storage power generation method
CN106196761B (en) Refrigeration cycle system and control method thereof
JP2008164204A (en) Heat pump system
JP2017150689A (en) Air conditioner
JP5256932B2 (en) Leakage steam heat recovery structure from steam motor shaft seal
JP5653320B2 (en) Waste heat regeneration system
KR101638286B1 (en) Supercritical CO2 generation system and method for controlling output thereof
JP2018053856A (en) Thermal energy recovery system
JP2018025166A (en) Air compression system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140730

R150 Certificate of patent or registration of utility model

Ref document number: 5598724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250