JP4217728B2 - Lightning strike advanced evaluation apparatus and method, lightning charge evaluation apparatus and method, lightning charge advanced evaluation program - Google Patents

Lightning strike advanced evaluation apparatus and method, lightning charge evaluation apparatus and method, lightning charge advanced evaluation program Download PDF

Info

Publication number
JP4217728B2
JP4217728B2 JP2006145775A JP2006145775A JP4217728B2 JP 4217728 B2 JP4217728 B2 JP 4217728B2 JP 2006145775 A JP2006145775 A JP 2006145775A JP 2006145775 A JP2006145775 A JP 2006145775A JP 4217728 B2 JP4217728 B2 JP 4217728B2
Authority
JP
Japan
Prior art keywords
lightning
electric field
time
lightning strike
occurrence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006145775A
Other languages
Japanese (ja)
Other versions
JP2007315910A (en
Inventor
博之 住谷
広治 前田
幸志 道下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Chugoku Electric Power Co Inc
Original Assignee
Shizuoka University NUC
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC, Chugoku Electric Power Co Inc filed Critical Shizuoka University NUC
Priority to JP2006145775A priority Critical patent/JP4217728B2/en
Publication of JP2007315910A publication Critical patent/JP2007315910A/en
Application granted granted Critical
Publication of JP4217728B2 publication Critical patent/JP4217728B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

電界と磁界の計測結果を利用して落雷電荷の高度を評価する機能を有する落雷電荷評価装置及び方法に関する。   The present invention relates to a lightning strike evaluation apparatus and method having a function of evaluating the height of a lightning strike using measurement results of an electric field and a magnetic field.

落雷は送電設備等さまざまな設備や機器に対して甚大な損害を与えうるため、従来より、雷の接近を検知して警報を発生するための装置が提案されている(例えば、特許文献1、特許文献2を参照)。   Since lightning strikes can cause enormous damage to various facilities and equipment such as power transmission facilities, conventionally, an apparatus for detecting an approach of lightning and generating an alarm has been proposed (for example, Patent Document 1, (See Patent Document 2).

ところで、落雷が発生した場合、落雷の電荷量が大きいほど、落雷による損害の程度も大きくなる傾向があることが知られている。よって、落雷による損害の程度を把握するためには、落雷の電荷量を正しく算出することが必要である。しかしながら、上記特許文献1に記載された装置は、雷サージ電流に基づいて雷の接近を検知するものであり、また、特許文献2に記載された装置は、コロナ電流と電界の変化から雷の接近を検知するものであって、何れにおいても、落雷の電荷量を算出することは考慮されていない。   By the way, when a lightning strike occurs, it is known that the greater the amount of lightning charge, the greater the damage caused by the lightning strike. Therefore, in order to grasp the degree of damage caused by lightning, it is necessary to correctly calculate the lightning charge amount. However, the device described in Patent Document 1 detects the approach of lightning based on the lightning surge current, and the device described in Patent Document 2 detects lightning due to changes in corona current and electric field. In any case, it is not considered to calculate the amount of lightning strike.

一般に、雷の電荷に関して、雷の有する電荷量Q(C)は次式(1)で表されることが知られている。

Figure 0004217728
In general, regarding the lightning charge, it is known that the charge amount Q (C) of the lightning is expressed by the following equation (1).
Figure 0004217728

ただし、πは円周率、ε0は空気の誘電率であり、ΔE(V/m)は落雷の前後での電界の変化量、D(m)は落雷が地上に着地した落雷地点から観測地点までの水平距離、H(m)は雷発生直前の電荷の高度を示している。 Where π is the circular constant, ε 0 is the dielectric constant of air, ΔE (V / m) is the change in electric field before and after the lightning strike, and D (m) is observed from the lightning strike point where the lightning strikes the ground. The horizontal distance to the point, H (m), indicates the height of the charge immediately before the occurrence of lightning.

ここで、電界変化量ΔEは周知の電界計測装置により計測することができ、距離Dは落雷位置標定システム(例えば非特許文献1を参照)により計測することができる。そして従来は、評価対象とする雷に対して、2つの地点において電界変化量ΔEと距離Dとを計測し、各地点の計測値を(1)式に代入することにより、電荷量Qと高度Hとを未知数とする連立方程式を立て、この連立方程式を解くことにより電荷量Qと高度Hを算出していた。
特許第3098078号公報 特開2003−149349号公報 岸本保夫、「雷観測システムおよび雷保護規格の最新動向」、[online]、NTT建築総合研究所、[平成17年10月26日検索]、インターネット<URL:http://www.ntt-bti.co.jp/pdf/2005_kish.pdf> マーティン・ウマン(Martin A. Uman)著、「ザ・ライトンニング・ディスチャージ(The Lightning Discharge)」、(米国)、第1版、ドーバーパブリケイションズ(Dover Publications)、2001年、p.313−317
Here, the electric field change amount ΔE can be measured by a known electric field measuring device, and the distance D can be measured by a lightning strike location system (see, for example, Non-Patent Document 1). Conventionally, with respect to the lightning to be evaluated, the electric field change amount ΔE and the distance D are measured at two points, and the measured value at each point is substituted into the equation (1), whereby the charge amount Q and the altitude A simultaneous equation with H as an unknown is set up, and the charge amount Q and the altitude H are calculated by solving the simultaneous equation.
Japanese Patent No. 3098078 JP 2003-149349 A Yasuo Kishimoto, “Latest Trends in Lightning Observation Systems and Lightning Protection Standards”, [online], NTT Architecture Research Institute, [October 26, 2005 search], Internet <URL: http: //www.ntt-bti .co.jp / pdf / 2005_kish.pdf> Martin A. Uman, “The Lightning Discharge” (USA), 1st edition, Dover Publications, 2001, p. 313-317

しかし、上述したような連立方程式により電荷量Qと高度Hを算出する手法では、算出結果に大きな誤差が生じることがある。すなわち、(1)式は、落雷地点の真上に点電荷として電荷が一点に集中していると仮定しているが、電荷の高度が低くなって電荷の空間的な広がりを無視できなくなる場合や、雷道に傾きがあって電荷が落雷地点の真上付近にない場合には、(1)式の前提が成り立たず、算出結果に大きな誤差が生じてしまうのである。   However, in the method of calculating the charge amount Q and the altitude H by the simultaneous equations as described above, a large error may occur in the calculation result. In other words, Equation (1) assumes that the charge is concentrated as a point charge directly above the lightning strike point, but the charge height is low and the spatial spread of the charge cannot be ignored. In addition, if the lightning path is inclined and the charge is not near the lightning strike point, the assumption of equation (1) is not satisfied, and a large error occurs in the calculation result.

本発明は、上記の点に鑑みてなされたものであり、電界と磁界の計測結果を利用して落雷電荷高度を正確に算出できるようにすることを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to make it possible to accurately calculate the lightning charge altitude using measurement results of electric and magnetic fields.

上記の目的を達成するため、第一の発明は、落雷発生時の落雷電荷の高度を算出する機能を有する落雷電荷の高度評価装置であって、
所定の測定対象地点における電界の時間変化を示す電界データ及び前記所定の対象地点における磁界の時間変化を示す磁界データを取得するデータ取得部と、
前記取得した電界データに基づいて落雷の発生を検知する落雷発生検知部と、
前記落雷発生検知部により落雷発生が検知された場合に、前記取得した磁界データに基づいて、前記落雷発生検知部により検知された落雷に先行するリーダの発生時点を検知するリーダ検知部と、
前記リーダ検知部により検知されたリーダ発生時点から、前記落雷発生検知部により検知された落雷の発生時点までの時間をリーダ進展時間として算出するリーダ進展時間算出部と、
前記算出したリーダ進展時間と所定のリーダ進展速度とに基づいて、落雷電荷の高度を算出する電荷高度算出部と、を備えることを特徴とする。
In order to achieve the above object, the first invention is a lightning charge altitude evaluation apparatus having a function of calculating a lightning charge altitude at the time of lightning strike,
A data acquisition unit for acquiring electric field data indicating a time change of an electric field at a predetermined measurement target point and magnetic field data indicating a time change of a magnetic field at the predetermined target point;
A lightning strike detection unit that detects the occurrence of a lightning strike based on the acquired electric field data;
When a lightning occurrence is detected by the lightning occurrence detection unit, based on the acquired magnetic field data, a reader detection unit that detects an occurrence time of a reader preceding the lightning detected by the lightning occurrence detection unit;
A leader progress time calculation unit that calculates a time from a reader occurrence time detected by the reader detection unit to a lightning occurrence time detected by the lightning occurrence detection unit as a leader progress time;
A charge height calculating unit that calculates the height of the lightning charge based on the calculated leader progress time and a predetermined leader progress speed;

第二の発明は、落雷電荷を評価する落雷電荷評価装置であって、
所定の測定対象地点における電界の時間変化を示す電界データ及び前記所定の対象地点における磁界の時間変化を示す磁界データを取得するデータ取得部と、
前記取得した電界データに基づいて落雷の発生を検知する落雷発生検知部と、
前記落雷発生検知部により落雷発生が検知された場合に、前記取得した磁界データに基づいて、前記落雷発生検知部により検知された落雷に先行するリーダの発生時点を検知するリーダ検知部と、
前記リーダ検知部により検知されたリーダ発生時点から、前記落雷発生検知部により検知された落雷の発生時点までの時間をリーダ進展時間として算出するリーダ進展時間算出部と、
前記算出したリーダ進展時間と所定のリーダ進展速度とに基づいて、落雷電荷の高度を算出する電荷高度算出部と、
落雷位置を標定する落雷位置標定装置から、標定された落雷位置を取得する落雷位置取得部と、
前記取得した落雷位置と前記所定の測定対象地点との距離と、前記算出した落雷電荷の高度とに基づいて、落雷電荷量を算出する落雷電荷算出部と、を備えることを特徴とする。
A second invention is a lightning charge evaluation device for evaluating a lightning charge,
A data acquisition unit for acquiring electric field data indicating a time change of an electric field at a predetermined measurement target point and magnetic field data indicating a time change of a magnetic field at the predetermined target point;
A lightning strike detection unit that detects the occurrence of a lightning strike based on the acquired electric field data;
When a lightning occurrence is detected by the lightning occurrence detection unit, based on the acquired magnetic field data, a reader detection unit that detects an occurrence time of a reader preceding the lightning detected by the lightning occurrence detection unit;
A leader progress time calculation unit that calculates a time from a reader occurrence time detected by the reader detection unit to a lightning occurrence time detected by the lightning occurrence detection unit as a leader progress time;
A charge height calculation unit for calculating the height of the lightning charge based on the calculated leader progress time and a predetermined leader progress speed;
A lightning position acquisition unit that acquires a lightning position determined from a lightning position determination device that determines a lightning position,
A lightning strike charge calculating unit configured to calculate a lightning strike charge amount based on the distance between the acquired lightning strike position and the predetermined measurement target point and the calculated lightning charge charge altitude.

第三の発明は、第二の発明において、前記落雷電荷算出部は、
前記取得した電界データに第1の所定の勾配より大きい電界変化があった場合に、この電界変化を落雷による電界変化であると判定する第1判定部と、
前記取得した電界データに前記第1の所定の勾配よりも小さい第2の所定の勾配よりも大きく、かつ、前記第1の所定の勾配以下の電界変化があった場合に、当該電界変化が起きている間の前記磁界データに所定の度合い以上の変化が生じていれば、当該電界変化は落雷による電界変化であると判定し、前記磁界データに前記所定の度合い以上の変化が生じていなければ当該電界は落雷による電界変化ではないと判定する第2判定部と、
前記第1判定部又は前記第2判定部により落雷による電界変化であると判定された最初の電界変化の直前の電界値と、前記第1判定部又は前記第2判定部により落雷による電界変化であると判定された最後の電界変化の直後の電界値との差を落雷による電界変化量として判定する電界変化量判定部と、
前記判定された電界変化量に基づいて、落雷電荷量を計算する電荷計算部と、を備えることを特徴とする。
In a third aspect based on the second aspect, the lightning strike charge calculating unit
A first determination unit that determines that the electric field change is an electric field change caused by a lightning strike when the acquired electric field data has an electric field change larger than a first predetermined gradient;
When the acquired electric field data has an electric field change that is greater than a second predetermined gradient that is smaller than the first predetermined gradient and less than or equal to the first predetermined gradient, the electric field change occurs. If the change in the magnetic field data is more than a predetermined level during the operation, it is determined that the change in the electric field is an electric field change caused by lightning, and if the change in the magnetic field data is not more than the predetermined degree. A second determination unit that determines that the electric field is not an electric field change caused by lightning,
The electric field value immediately before the first electric field change determined by the first determination unit or the second determination unit as the electric field change due to the lightning strike, and the electric field change due to the lightning strike by the first determination unit or the second determination unit. An electric field change amount determination unit for determining a difference between the electric field value immediately after the last electric field change determined to be as an electric field change amount by lightning,
A charge calculation unit that calculates a lightning strike charge amount based on the determined electric field change amount.

本発明によれば、電界と磁界の計測結果を利用して落雷電荷高度を正確に算出することができる。   According to the present invention, the lightning strike altitude can be accurately calculated using the measurement results of the electric and magnetic fields.

図1は、本発明の一実施形態である落雷電荷評価装置1を含むシステムの全体構成図である。同図に示すように、本実施形態の落雷電荷評価装置1には、雷放電位置標定装置50と、複数の計測子局10とが接続されている。   FIG. 1 is an overall configuration diagram of a system including a lightning charge evaluation device 1 according to an embodiment of the present invention. As shown in the figure, the lightning charge evaluation device 1 of this embodiment is connected to a lightning discharge position locating device 50 and a plurality of measuring slave stations 10.

計測子局10は、電界計測部12及び磁界計測部14を備えており、雷の監視対象地域に例えば数十km程度の間隔で各地に配置される。電界計測部12は、計測子局10の設置地点での電界を計測し、電界の時間変化を示すデータ(以下、電界データという)を生成する。また、磁界計測部14は、計測子局の配置された地点での磁界を計測し、磁界の時間変化を示すデータ(以下、磁界データという)を生成する。そして、これらの電界データ及び磁界データは、当該計測子局10の識別情報と共に、落雷電荷評価装置1へ伝送される。図2に、計測子局10にて計測され、落雷電荷評価装置1へ伝送される電界データ及び磁界データの例を示す。   The measurement slave station 10 includes an electric field measurement unit 12 and a magnetic field measurement unit 14, and is arranged in a lightning monitoring target area at intervals of, for example, several tens of kilometers. The electric field measurement unit 12 measures the electric field at the installation location of the measurement slave station 10 and generates data indicating the time change of the electric field (hereinafter referred to as electric field data). The magnetic field measurement unit 14 measures the magnetic field at the point where the measurement slave station is arranged, and generates data indicating the temporal change of the magnetic field (hereinafter referred to as magnetic field data). These electric field data and magnetic field data are transmitted to the lightning strike evaluation device 1 together with the identification information of the measurement slave station 10. FIG. 2 shows an example of electric field data and magnetic field data measured by the measuring slave station 10 and transmitted to the lightning charge evaluation device 1.

また、雷放電位置標定装置50は、雷放電から放射される電磁波を複数の地点で受信し、それらの受信した電磁波を解析することにより、落雷位置を標定する機能を有する周知の装置であり、その詳細は、例えば、上記非特許文献1等に記載されている。雷放電位置標定装置50により標定された落雷位置を示す情報は、落雷電荷評価装置1へ伝送される。   The lightning discharge position locating device 50 is a known device having a function of locating a lightning strike position by receiving electromagnetic waves radiated from lightning discharge at a plurality of points and analyzing the received electromagnetic waves. The details are described in Non-Patent Document 1 and the like, for example. Information indicating the lightning strike position determined by the lightning discharge position locating device 50 is transmitted to the lightning strike evaluation device 1.

図1に示す如く、落雷電荷評価装置1は、データ取得部20、落雷位置取得部22、落雷発生検知部24、リーダ検知部26、リーダ進展時間算出部28、電荷高度算出部30、及び、落雷電荷算出部32の各機能部と、CRTや液晶等のディスプレイ装置である表示装置34とを備えている。なお、落雷電荷評価装置1は、例えば、コンピュータシステムにより構成され、上記機能部22〜32はコンピュータのCPUがハードディスク装置などの記憶装置に記憶されたプログラムを読み出して実行することにより実現される。   As shown in FIG. 1, the lightning strike evaluation apparatus 1 includes a data acquisition unit 20, a lightning strike position acquisition unit 22, a lightning strike detection unit 24, a reader detection unit 26, a reader progress time calculation unit 28, a charge altitude calculation unit 30, and Each function unit of the lightning charge calculation unit 32 and a display device 34 which is a display device such as a CRT or a liquid crystal are provided. The lightning strike evaluation device 1 is configured by, for example, a computer system, and the functional units 22 to 32 are realized by a computer CPU reading and executing a program stored in a storage device such as a hard disk device.

データ取得部20は、計測子局10から伝送されてきた電界データ及び磁界データを取得する。また、落雷位置取得部22は、雷放電位置評定装置50から伝送されてきた落雷位置情報を取得する。   The data acquisition unit 20 acquires electric field data and magnetic field data transmitted from the measurement slave station 10. In addition, the lightning strike position acquisition unit 22 acquires the lightning strike position information transmitted from the lightning discharge position assessment device 50.

落雷発生検知部24は、データ取得部20が取得した電界データに基づいて、落雷発生時点を検知する。具体的には、電界データにおいて、図2に示す電界波形に符号Aで示すように、数ミリ秒程度の微小時間の間に電界の大きさが急激に変化するピーク波形が現れた場合に、そのピーク波形の発生時点を、落雷発生時点であると判定する。より具体的には、所定の勾配を超える急峻な電界変化が生じた時点を、落雷発生時点と判定する。なお、図2では、電界波形のピークは符号A,B,C,D等で示すように、複数回生じているが、これは、1回の落雷が複数回の放電に分かれて起きることによるものであり、最初に現れたピークAを落雷発生時点として判定する。   The lightning strike detection unit 24 detects a lightning strike time based on the electric field data acquired by the data acquisition unit 20. Specifically, in the electric field data, as shown by the symbol A in the electric field waveform shown in FIG. 2, when a peak waveform in which the magnitude of the electric field rapidly changes in a minute time of about several milliseconds appears, The generation time of the peak waveform is determined to be the lightning occurrence time. More specifically, a point in time when a steep electric field change exceeding a predetermined gradient occurs is determined as a lightning strike occurrence point. In FIG. 2, the peak of the electric field waveform is generated a plurality of times as indicated by the symbols A, B, C, D, etc. This is because one lightning strike is divided into a plurality of discharges. The peak A that appears first is determined as a lightning strike point.

リーダ検知部26は、データ取得部20が取得した磁界データに基づいて、落雷発生に先行して起こるリーダの発生時点を検知する。なお、リーダとは、落雷発生前に、雷電荷が雷雲の中で放電する現象であり、雷雲で生じたリーダが地上に向けて進展することにより落雷に至ることとなる。リーダ検知部26は、落雷発生検知部24が検知した落雷発生時点より前の所定期間における磁界データを参照し、その期間内で磁界波形に、短時間の間に電界の大きさが急激に変化するピーク波形が現れた場合に、そのピーク波形の発生時点を、リーダ発生時点であると判定する。より具体的には、落雷発生時点を判定する場合と同様に、所定の勾配を超える急峻な磁界変化が生じた時点を、リーダ発生時点と判定する。図2においては、符号Xの時点がリーダ発生時点と判定される。   Based on the magnetic field data acquired by the data acquisition unit 20, the reader detection unit 26 detects the generation time of the reader that occurs prior to the occurrence of a lightning strike. Note that the leader is a phenomenon in which lightning charges are discharged in a thundercloud before the occurrence of a lightning strike, and a lightning strike occurs when the leader generated in the thundercloud progresses toward the ground. The reader detection unit 26 refers to the magnetic field data in a predetermined period before the lightning strike detection point detected by the lightning occurrence detection unit 24, and the magnitude of the electric field suddenly changes in the magnetic field waveform within a short period of time. When the peak waveform to appear appears, the generation time of the peak waveform is determined to be the reader generation time. More specifically, as in the case of determining the lightning occurrence time point, the time point when the steep magnetic field change exceeding a predetermined gradient occurs is determined as the reader generation time point. In FIG. 2, it is determined that the time point X is the time when the leader is generated.

リーダ進展時間算出部28は、リーダ検知部26が検知したリーダ発生時点から、落雷発生検知部24が検知した落雷の発生時点までの時間をリーダ進展時間として算出する。   The leader progress time calculation unit 28 calculates the time from the occurrence of the reader detected by the reader detection unit 26 to the occurrence of the lightning strike detected by the lightning occurrence detection unit 24 as the leader progress time.

電荷高度算出部30は、リーダ進展時間算出部28で算出されたリーダ進展時間と、リーダ進展速度とに基づいて落雷電荷の高度を算出する。上述のように、雷雲の中で発生したリーダが地表に向けて進展して、地上に到達することにより落雷が発生するのであるが、その際にリーダが雷雲から地表に向けて進展する際の速度がリーダ進展速度であり、一般に、0.2m/μsecである。したがって、リーダ発生時点から落雷時点までの時間であるリーダ進展時間に、リーダ進展速度を乗ずることにより、落雷電荷の高度(地上からの高さ)を求めることができる。   The charge height calculation unit 30 calculates the height of the lightning strike based on the leader progress time calculated by the reader progress time calculation unit 28 and the reader progress speed. As mentioned above, a lightning strike occurs when a leader generated in a thundercloud progresses toward the ground and reaches the ground, but when the leader progresses from the thundercloud toward the ground, The speed is the leader progress speed and is generally 0.2 m / μsec. Therefore, the altitude (height from the ground) of the lightning strike can be obtained by multiplying the leader progress time, which is the time from the occurrence of the leader to the time of the lightning strike, by the leader advance speed.

落雷電荷算出部32は、上記のように落雷高度算出部30で求めた落雷電荷の高さと、落雷位置取得部22が取得した落雷発生位置と、データ取得部20が取得した電界データとに基づいて落雷電荷量を算出する。   The lightning charge calculation unit 32 is based on the height of the lightning charge determined by the lightning height calculation unit 30 as described above, the lightning occurrence position acquired by the lightning position acquisition unit 22, and the electric field data acquired by the data acquisition unit 20. To calculate the lightning charge amount.

表示装置34は、落雷高度算出部30で算出した落雷高度や、落雷電荷算出部32で算出した落雷電荷を表示し、必要に応じて、データ取得部20で取得したデータと、落雷位置取得部22で取得した位置情報も表示する。   The display device 34 displays the lightning strike height calculated by the lightning strike height calculation unit 30 and the lightning strike charge calculated by the lightning charge calculation unit 32, and the data acquired by the data acquisition unit 20 and the lightning strike position acquisition unit as necessary. The position information acquired at 22 is also displayed.

背景技術の欄で述べたように、落雷によって生ずる電界変化をΔE、落雷地点と観測地点との距離をD、落雷電荷の高さをHとすると、落雷電荷量Qは(1)式で表される。

Figure 0004217728
As described in the background section, assuming that the electric field change caused by a lightning strike is ΔE, the distance between the lightning strike point and the observation point is D, and the height of the lightning strike charge is H, the lightning charge amount Q is expressed by the equation (1). Is done.
Figure 0004217728

落雷電荷量Qを求めるのに必要なパラメータのうち、落雷電荷の高さHは、上記のように、電荷高度算出部30により算出でき、距離Dは、電界データ及び磁界データの送信元である計測子局の位置情報と、落雷位置取得部22が取得した落雷位置情報とから算出できる。また、落雷による電界変化ΔEは電界データから求めることができる。なお、落雷電荷評価装置1は、各計測子局10の識別情報と、位置情報との対応関係を保持するデータベースを備えており、電荷高度算出部30は、電界データ及び磁界データと共に送られてきた識別情報に基づき、上記データベースを参照して、計測子局10の位置情報を取得することができる。   Among the parameters necessary for determining the lightning charge amount Q, the lightning charge height H can be calculated by the charge height calculation unit 30 as described above, and the distance D is the transmission source of the electric field data and magnetic field data. It can be calculated from the position information of the measurement slave station and the lightning position information acquired by the lightning position acquisition unit 22. Further, the electric field change ΔE due to lightning can be obtained from the electric field data. The lightning strike charge evaluation apparatus 1 includes a database that holds the correspondence between the identification information of each measurement slave station 10 and the position information, and the charge height calculation unit 30 is sent together with the electric field data and the magnetic field data. Based on the identification information, the position information of the measurement slave station 10 can be acquired by referring to the database.

以下において、電界データから落雷による電界変化ΔEを求める手法について説明する。
図3は、落雷が発生したときの電界及び磁界の波形を、上記図2よりも時間スケールを千倍程度に拡大して示す図であり、電界を実線で、磁界を破線で示している。一般に、落雷は電荷が複数回に分けて地上に放電して起こることが多く、図3に示す電界波形にも、複数回の放電に対応する複数回の変化が生じている。このうち、同図の電界波形に現れる電界変化ΔE1、ΔE2、ΔE3、ΔE5、ΔE6、ΔE7は急峻に立ち上がっており、落雷に伴う電界変化であると判断できる。これに対して、電界変化ΔE4は、比較的小さな緩やかな勾配で電界が上昇することにより生じている。このような緩やかな電界の変化は、ノイズによって生ずることもあり、この電界変化ΔE4は落雷による放電によるものかどうか、電界波形から直ちに判定することは困難である。
Hereinafter, a method for obtaining the electric field change ΔE caused by lightning from the electric field data will be described.
FIG. 3 is a diagram showing the waveforms of the electric field and the magnetic field when a lightning strike occurs by enlarging the time scale to about 1000 times that of FIG. 2, and the electric field is indicated by a solid line and the magnetic field is indicated by a broken line. In general, lightning strikes often occur when electric charges are divided into a plurality of times and discharged to the ground, and the electric field waveform shown in FIG. 3 also changes a plurality of times corresponding to the plurality of discharges. Among these, the electric field changes ΔE1, ΔE2, ΔE3, ΔE5, ΔE6, and ΔE7 appearing in the electric field waveform of the same figure rise steeply and can be determined to be electric field changes accompanying lightning strikes. On the other hand, the electric field change ΔE4 is caused by the electric field rising with a relatively small gentle gradient. Such a gradual change in the electric field may be caused by noise, and it is difficult to immediately determine from the electric field waveform whether this electric field change ΔE4 is caused by a lightning strike.

これに対して、本実施形態では、落雷電荷算出部32は、以下のように、磁界データを参照することにより、電界変化ΔE4のような緩やかな変化が落雷によるものか否かを正確に判定できるようにしている。   On the other hand, in this embodiment, the lightning charge calculation unit 32 accurately determines whether or not a gentle change such as the electric field change ΔE4 is caused by a lightning strike by referring to the magnetic field data as follows. I can do it.

本願発明者らが行った調査・研究によると、落雷により電界変化が生じている間、図3に符号S1、S2、S3、S5、S6、S7等で示すように、磁界も間欠的に変化することが分っている。そこで、落雷電荷算出部32は、上記電界変化ΔE4のように緩やかな電界変化が生じている期間の磁界データにノイズレベルを超える変化が生じているか否かを判定し、磁界に変化が生じていれば(図3においては、符号S4)、当該電界変化は落雷による電界変化であると判断する。そして、落雷による最初に電界変化(図3の例では、ΔE1)が起きる直前の電界の値(以下、電界初期値E0という)から、最後の電界変化(図3の例ではΔE7)が終了した時点での電界の値(以下、落雷後電界値Eeという)までの電界変化量Etotal(=Ee−E0)を落雷による電界変化ΔEとし、これを(1)式に代入して、落雷電荷量Qを算出する。なお、ここでは、図3に示す電界変化ΔE7の後、一定時間をおいても落雷による電界変化が現れていなかったものとして、このΔE7を今回の落雷による最後の電界変化であると判断している。   According to the investigation and research conducted by the inventors of the present application, while the electric field changes due to lightning, the magnetic field also changes intermittently as indicated by reference numerals S1, S2, S3, S5, S6, S7 in FIG. I know what to do. Accordingly, the lightning charge calculation unit 32 determines whether or not a change exceeding the noise level has occurred in the magnetic field data during the period in which the gentle electric field change occurs, such as the electric field change ΔE4, and the change in the magnetic field has occurred. If so (reference S4 in FIG. 3), it is determined that the electric field change is an electric field change caused by a lightning strike. Then, from the value of the electric field immediately before the first electric field change (ΔE1 in the example of FIG. 3) due to the lightning strike (hereinafter referred to as the electric field initial value E0), the final electric field change (ΔE7 in the example of FIG. 3) is completed. The electric field change amount Etotal (= Ee-E0) up to the electric field value at the time (hereinafter referred to as the electric field value Ee after the lightning strike) is defined as the electric field change ΔE caused by the lightning strike, and this is substituted into the equation (1), Q is calculated. Here, it is assumed that the electric field change due to the lightning strike does not appear even after a certain time after the electric field change ΔE7 shown in FIG. 3, and this ΔE7 is determined to be the last electric field change due to the current lightning strike. Yes.

図4は、落雷電荷算出部32の機能ブロック図である。同図に示すように、落雷電荷算出部32は、第1判定部40、第2判定部42、電界変化判定部44、及び、電荷計算部46を備えている。   FIG. 4 is a functional block diagram of the lightning charge calculation unit 32. As shown in the figure, the lightning charge calculation unit 32 includes a first determination unit 40, a second determination unit 42, an electric field change determination unit 44, and a charge calculation unit 46.

第1判定部40は、電界データに所定の勾配K1より大きい電界変化があった場合に、この電界変化を落雷による電界変化であると判定する。   The first determination unit 40 determines that the electric field change is an electric field change caused by a lightning strike when the electric field data has an electric field change larger than a predetermined gradient K1.

第2判定部42は、電界データに勾配K1以下であり、かつ、勾配K1よりも小さい所定の勾配K2よりも大きい電界変化があった場合に、当該電界変化が起きている間の前記磁界データに所定レベル以上の変化が生じていれば、当該電界変化は落雷による電界変化であると判定する。一方、磁界データに前記所定レベル以上の変化が生じていなければ当該電界変化は落雷による電界変化ではないと判定する。   When the electric field data has an electric field change that is equal to or less than the gradient K1 and greater than a predetermined gradient K2 that is smaller than the gradient K1, the second determination unit 42 is configured to store the magnetic field data while the electric field change is occurring. If a change of a predetermined level or more has occurred, it is determined that the electric field change is an electric field change caused by a lightning strike. On the other hand, if the magnetic field data does not change more than the predetermined level, it is determined that the electric field change is not an electric field change caused by a lightning strike.

電界変化判定部44は、第1判定部40又は第2判定部42によって落雷による電界変化であると判定された最初の電界変化の直前の電界値(すなわち電界初期値E0)と、落雷による電界変化であると判定された最後の電界変化の直後の電界値(すなわち落雷後電界値Ee)との差を落雷による電界変化量ΔEとして求める。   The electric field change determination unit 44 includes an electric field value immediately before the first electric field change determined by the first determination unit 40 or the second determination unit 42 as an electric field change due to a lightning strike (that is, an electric field initial value E0), and an electric field caused by a lightning strike. The difference from the electric field value immediately after the last electric field change determined to be a change (that is, the electric field value Ee after the lightning strike) is obtained as the electric field change amount ΔE due to the lightning strike.

電荷計算部46は、電界変化判定部44により求められた電界変化量ΔEと、電荷高度算出部30により求められた電界高度Hと、計測子局10の位置情報と、落雷位置取得部22が取得した落雷位置情報とから算出される距離Dとを(1)式に代入することにより、落雷電荷量Qを計算する。   The charge calculation unit 46 includes the electric field change amount ΔE obtained by the electric field change determination unit 44, the electric field height H obtained by the charge height calculation unit 30, the position information of the measuring slave station 10, and the lightning strike position acquisition unit 22 The lightning strike charge amount Q is calculated by substituting the distance D calculated from the obtained lightning strike position information into the equation (1).

図5は、落雷電荷算出部32による電荷算出処理を示すフローチャートである。先ず、落雷発生検知部24により落雷発生が検知される(S100)と、その落雷発時点の直前の電界の大きさが電界初期値E0として記憶される(S102)。そして、第1判定部40及び第2判定部42は、落雷発生時点以降の電界データを時間軸方向にスキャンし、所定の勾配Kを超える変化があるか否かを判別する(S104)。そして、勾配Kを超える変化があれば、第1判定部40は、この電界変化は、落雷による電界変化と判断し、当該変化後の電界値を落雷後電界値Eeとする(S106)。一方、勾配Kより小さい第2の所定の勾配K0を超える程度の緩やかな電界変化が生じている場合は(S108)、第2判定部42は、その緩やかな変化が生じている間に磁界に所定の勾配K1を超える変化が生じているか否かを判別する(S110)。その結果、肯定判別された場合は、S108で判別された緩やかな電界変化が落雷によるものと判断して、落雷後電界値Eeを、当該緩やかな電界変化後の電界値に更新する(S112)。そして、所定時間以上の間、落雷に起因する電界変化が検知されなければ、落雷後電界値Eeの値が確定され(S114)、電界変化判定部44は、ΔE=Ee−E0により、落雷に伴う電界変化ΔEを算出する(S116)。そして、落雷位置取得部22から取得した落雷位置情報と、電界データ及び磁界データの送信元である計測子局10の位置情報とに基づいて、測定地点から落雷地点までの距離Dを算出し(S118)、この距離Dと、電荷高度算出部30が算出した落雷電荷高度Hと、上記電界変化ΔEとを(1)式に代入することにより、落雷電荷量Qを算出する(S120)。   FIG. 5 is a flowchart showing the charge calculation processing by the lightning charge calculation unit 32. First, when a lightning strike is detected by the lightning strike detection unit 24 (S100), the magnitude of the electric field immediately before the lightning strike is stored as the electric field initial value E0 (S102). And the 1st determination part 40 and the 2nd determination part 42 scan the electric field data after the time of a lightning strike in a time-axis direction, and discriminate | determine whether there exists any change exceeding the predetermined gradient K (S104). If there is a change exceeding the gradient K, the first determination unit 40 determines that the electric field change is an electric field change caused by a lightning strike, and sets the electric field value after the change as a post-lightning electric field value Ee (S106). On the other hand, when a gradual electric field change that exceeds a second predetermined gradient K0 smaller than the gradient K occurs (S108), the second determination unit 42 applies a magnetic field to the magnetic field while the gradual change occurs. It is determined whether or not a change exceeding a predetermined gradient K1 has occurred (S110). As a result, when an affirmative determination is made, it is determined that the gentle electric field change determined in S108 is due to lightning, and the post-lightning electric field value Ee is updated to the electric field value after the gentle electric field change (S112). . If a change in the electric field due to the lightning strike is not detected for a predetermined time or more, the electric field value Ee after the lightning strike is determined (S114), and the electric field change determination unit 44 detects the lightning strike by ΔE = Ee−E0. The accompanying electric field change ΔE is calculated (S116). Then, based on the lightning strike position information acquired from the lightning strike position acquisition unit 22 and the position information of the measurement slave station 10 that is the transmission source of the electric field data and magnetic field data, the distance D from the measurement point to the lightning strike point is calculated ( In step S118, the lightning charge amount Q is calculated by substituting the distance D, the lightning charge height H calculated by the charge height calculation unit 30, and the electric field change ΔE into the equation (1) (S120).

以上説明したように、本実施形態のシステムによれば、落雷電荷評価装置1は、計測子局10から伝送されてくる電界データ及び磁界データに基づいて、リーダ進展時間を求め、これに既知のリーダ進展速度を乗ずることにより、従来のように、連立方程式を解くことなく、落雷電荷高度を正確に算出することができる。   As described above, according to the system of the present embodiment, the lightning strike evaluation apparatus 1 obtains the reader progress time based on the electric field data and magnetic field data transmitted from the measurement slave station 10, and is known to this. By multiplying the leader progress speed, the lightning strike altitude can be accurately calculated without solving simultaneous equations as in the conventional case.

また、緩やかな電界変化が生じている場合に、この電界変化が落雷によるものか否かを、その間の磁界変化に基づいて正確に判定できるので、落雷による磁界変化ΔEも正確に求めることができる。   In addition, when a gradual electric field change occurs, whether or not the electric field change is caused by a lightning strike can be accurately determined based on the magnetic field change during that time, so that the magnetic field change ΔE caused by the lightning strike can also be accurately obtained. .

このように、本実施形態のシステムによれば落雷電荷高度及び落雷電荷量の両方を正確に求めることが可能である。   As described above, according to the system of the present embodiment, it is possible to accurately obtain both the lightning strike altitude and the lightning strike charge amount.

また、従来手法では、背景技術の欄で説明したように、2つの地点で計測地点での電界変化ΔE及び落雷地点までの距離Dが必要であるが、本実施形態では、1つの地点の電界データ及び磁界データが計測するだけで、落雷電荷高度H及び落雷電荷量Qを算出することができる。   Further, in the conventional method, as described in the background art section, the electric field change ΔE at the measurement point and the distance D to the lightning strike point are necessary at two points. In this embodiment, the electric field at one point is used. The lightning strike height H and the lightning charge amount Q can be calculated simply by measuring the data and the magnetic field data.

本発明の一実施形態である落雷電荷評価装置の全体構成図である。1 is an overall configuration diagram of a lightning charge evaluation device according to an embodiment of the present invention. 落雷時における地上での磁界と電界の時間変化を示した図である。It is the figure which showed the time change of the magnetic field and electric field on the ground at the time of a lightning strike. 図2に示す磁界と電界の時間変化を、時間軸のスケールを千倍程度に拡大して示す図である。It is a figure which shows the time change of the magnetic field and electric field which are shown in FIG. 2, expanding the scale of a time axis about 1000 times. 落雷電荷算出部の機能ブロック図である。It is a functional block diagram of a lightning strike charge calculation part. 落雷電荷算出部の電荷算出処理を示すフローチャートである。It is a flowchart which shows the electric charge calculation process of a lightning strike electric charge calculation part.

符号の説明Explanation of symbols

1 落雷電荷評価装置
10 計測子局
12 電界計測部
14 磁界計測部
20 データ取得部
22 落雷位置取得部
24 落雷発生検知部
26 リーダ検知部
28 リーダ進展時間算出部
30 電荷高度算出部
32 落雷電荷算出部
40 第1判定部
42 第2判定部
44 電界変化判定部
46 電荷計算部
50 雷放電位置標定装置
DESCRIPTION OF SYMBOLS 1 Lightning strike evaluation apparatus 10 Measurement slave station 12 Electric field measurement part 14 Magnetic field measurement part 20 Data acquisition part 22 Lightning position acquisition part 24 Lightning strike detection part 26 Reader detection part 28 Reader progress time calculation part 30 Charge height calculation part 32 Lightning charge calculation part 32 Unit 40 First determination unit 42 Second determination unit 44 Electric field change determination unit 46 Charge calculation unit 50 Lightning discharge position locating device

Claims (7)

落雷発生時の落雷電荷の高度を算出する機能を有する落雷電荷の高度評価装置であって、
所定の測定対象地点における電界の時間変化を示す電界データ及び前記所定の対象地点における磁界の時間変化を示す磁界データを取得するデータ取得部と、
前記取得した電界データに基づいて落雷の発生を検知する落雷発生検知部と、
前記落雷発生検知部により落雷発生が検知された場合に、前記取得した磁界データに基づいて、前記落雷発生検知部により検知された落雷に先行するリーダの発生時点を検知するリーダ検知部と、
前記リーダ検知部により検知されたリーダ発生時点から、前記落雷発生検知部により検知された落雷の発生時点までの時間をリーダ進展時間として算出するリーダ進展時間算出部と、
前記算出したリーダ進展時間と所定のリーダ進展速度とに基づいて、落雷電荷の高度を算出する電荷高度算出部と、を備えることを特徴とする落雷電荷の高度評価装置。
A lightning strike altitude evaluation device having a function of calculating a lightning strike altitude at the time of lightning strike,
A data acquisition unit for acquiring electric field data indicating a time change of an electric field at a predetermined measurement target point and magnetic field data indicating a time change of a magnetic field at the predetermined target point;
A lightning strike detection unit that detects the occurrence of a lightning strike based on the acquired electric field data;
When a lightning occurrence is detected by the lightning occurrence detection unit, based on the acquired magnetic field data, a reader detection unit that detects an occurrence time of a reader preceding the lightning detected by the lightning occurrence detection unit;
A leader progress time calculation unit that calculates a time from a reader occurrence time detected by the reader detection unit to a lightning occurrence time detected by the lightning occurrence detection unit as a leader progress time;
A lightning strike charge altitude evaluation apparatus comprising: a charge height calculation unit that calculates a lightning strike charge altitude based on the calculated leader progress time and a predetermined leader progress speed.
落雷電荷を評価する落雷電荷評価装置であって、
所定の測定対象地点における電界の時間変化を示す電界データ及び前記所定の対象地点における磁界の時間変化を示す磁界データを取得するデータ取得部と、
前記取得した電界データに基づいて落雷の発生を検知する落雷発生検知部と、
前記落雷発生検知部により落雷発生が検知された場合に、前記取得した磁界データに基づいて、前記落雷発生検知部により検知された落雷に先行するリーダの発生時点を検知するリーダ検知部と、
前記リーダ検知部により検知されたリーダ発生時点から、前記落雷発生検知部により検知された落雷の発生時点までの時間をリーダ進展時間として算出するリーダ進展時間算出部と、
前記算出したリーダ進展時間と所定のリーダ進展速度とに基づいて、落雷電荷の高度を算出する電荷高度算出部と、
落雷位置を標定する落雷位置標定装置から、標定された落雷位置を取得する落雷位置取得部と、
前記取得した落雷位置と前記所定の測定対象地点との距離と、前記算出した落雷電荷の高度とに基づいて、落雷電荷量を算出する落雷電荷算出部と、を備えることを特徴とする落雷電荷評価装置。
A lightning charge evaluation device for evaluating lightning charge,
A data acquisition unit for acquiring electric field data indicating a time change of an electric field at a predetermined measurement target point and magnetic field data indicating a time change of a magnetic field at the predetermined target point;
A lightning strike detection unit that detects the occurrence of a lightning strike based on the acquired electric field data;
When a lightning occurrence is detected by the lightning occurrence detection unit, based on the acquired magnetic field data, a reader detection unit that detects an occurrence time of a reader preceding the lightning detected by the lightning occurrence detection unit;
A leader progress time calculation unit that calculates a time from a reader occurrence time detected by the reader detection unit to a lightning occurrence time detected by the lightning occurrence detection unit as a leader progress time;
A charge height calculation unit for calculating the height of the lightning charge based on the calculated leader progress time and a predetermined leader progress speed;
A lightning position acquisition unit that acquires a lightning position determined from a lightning position determination device that determines a lightning position,
A lightning strike charge, comprising: a lightning strike charge calculation unit that calculates a lightning strike charge amount based on a distance between the acquired lightning strike position and the predetermined measurement target point, and the calculated lightning strike charge altitude. Evaluation device.
請求項2記載の落雷電荷評価装置であって、
前記落雷電荷算出部は、
前記取得した電界データに第1の所定の勾配より大きい電界変化があった場合に、この電界変化を落雷による電界変化であると判定する第1判定部と、
前記取得した電界データに前記第1の所定の勾配よりも小さい第2の所定の勾配よりも大きく、かつ、前記第1の所定の勾配以下の電界変化があった場合に、当該電界変化が起きている間の前記磁界データに所定の度合い以上の変化が生じていれば、当該電界変化は落雷による電界変化であると判定し、前記磁界データに前記所定の度合い以上の変化が生じていなければ当該電界は落雷による電界変化ではないと判定する第2判定部と、
前記第1判定部又は前記第2判定部により落雷による電界変化であると判定された最初の電界変化の直前の電界値と、前記第1判定部又は前記第2判定部により落雷による電界変化であると判定された最後の電界変化の直後の電界値との差を落雷による電界変化量として判定する電界変化量判定部と、
前記判定された電界変化量に基づいて、落雷電荷量を計算する電荷計算部と、を備えることを特徴とする落雷電荷評価装置。
A lightning strike evaluation device according to claim 2,
The lightning strike charge calculation unit
A first determination unit that determines that the electric field change is an electric field change caused by a lightning strike when the acquired electric field data has an electric field change larger than a first predetermined gradient;
When the acquired electric field data has an electric field change that is greater than a second predetermined gradient that is smaller than the first predetermined gradient and less than or equal to the first predetermined gradient, the electric field change occurs. If the change in the magnetic field data is more than a predetermined level during the operation, it is determined that the change in the electric field is an electric field change caused by lightning, and if the change in the magnetic field data is not more than the predetermined degree. A second determination unit that determines that the electric field is not an electric field change caused by lightning,
The electric field value immediately before the first electric field change determined by the first determination unit or the second determination unit as the electric field change due to the lightning strike, and the electric field change due to the lightning strike by the first determination unit or the second determination unit. An electric field change amount determination unit for determining a difference between the electric field value immediately after the last electric field change determined to be as an electric field change amount by lightning,
A lightning strike evaluation apparatus, comprising: a charge calculation unit that calculates a lightning strike charge amount based on the determined electric field change amount.
電界を計測し、所定の測定対象地点における電界の時間変化を示す電界データを取得するステップと、
磁界を計測し、前記所定の測定対象地点における磁界の時間変化を示す磁界データを取得するステップと、
前記取得した電界データに基づいて落雷の発生を検知するステップと、
落雷の発生が検知された場合に、前記取得した磁界に基づいて、前記検知された落雷に先行するリーダの発生時点を検知するステップと、
前記検知されたリーダ発生時点から、前記検知された落雷の発生時点までの時間をリーダ進展時間として算出するステップと、
前記算出したリーダ進展時間と所定のリーダ進展速度とに基づいて、落雷電荷の高度を算出するステップと、を備えることを特徴とする落雷電荷の高度評価方法。
Measuring an electric field and obtaining electric field data indicating a time change of the electric field at a predetermined measurement target point;
Measuring a magnetic field and obtaining magnetic field data indicating a temporal change of the magnetic field at the predetermined measurement target point;
Detecting the occurrence of lightning based on the acquired electric field data;
When the occurrence of a lightning strike is detected, based on the acquired magnetic field, detecting the occurrence time of a reader preceding the detected lightning strike;
Calculating the time from the detected leader occurrence time to the detected lightning occurrence time as the leader progress time;
Based on reader development time it was the calculated and predetermined reader expansion speed, altitude Evaluation of lightning charges, characterized in that it comprises a step of calculating a high degree of lightning charge.
電界を計測し、所定の測定対象地点における電界の時間変化を示す電界データを取得するステップと、
磁界を計測し、前記所定の測定対象地点における磁界の時間変化を示す磁界データを取得するステップと、
前記取得した電界データに基づいて落雷の発生を検知するステップと、
落雷の発生が検知された場合に、前記取得した磁界に基づいて、前記検知された落雷に先行するリーダの発生時点を検知するステップと、
前記検知されたリーダ発生時点から、前記検知された落雷の発生時点までの時間をリーダ進展時間として算出するステップと、
前記算出したリーダ進展時間と所定のリーダ進展速度とに基づいて、落雷電荷の高度を算出するステップと、
落雷位置を標定する落雷位置標定装置から、標定された落雷位置を取得するステップと、
前記取得した落雷位置と前記所定の測定対象地点との距離と、前記算出した落雷電荷の高度とに基づいて、落雷電荷量を算出するステップと、を備えることを特徴とする落雷電荷量評価方法。
Measuring an electric field and obtaining electric field data indicating a time change of the electric field at a predetermined measurement target point;
Measuring a magnetic field and obtaining magnetic field data indicating a temporal change of the magnetic field at the predetermined measurement target point;
Detecting the occurrence of lightning based on the acquired electric field data;
When the occurrence of a lightning strike is detected, based on the acquired magnetic field, detecting the occurrence time of a reader preceding the detected lightning strike;
Calculating the time from the detected leader occurrence time to the detected lightning occurrence time as the leader progress time;
Based on the calculated leader progress time and a predetermined leader progress speed, calculating a lightning charge altitude;
Obtaining a lightning position determined from a lightning position locating device for locating a lightning position;
A lightning strike charge amount evaluation method comprising: calculating a lightning strike charge amount based on the distance between the acquired lightning strike position and the predetermined measurement target point and the calculated lightning strike charge altitude. .
コンピュータにより落雷電荷を評価するためのプログラムであって、前記コンピュータに、
所定の測定対象地点における電界の時間変化を示す電界データ及び前記所定の対象地点における磁界の時間変化を示す磁界データを取得する手順と、
前記取得した電界データに基づいて落雷の発生を検知する手順と、
発生が検知された場合に、前記計測された磁界に基づいて、前記検知された落雷に先行するリーダの発生時点を検知する手順と、
記検知されたリーダ発生時点から、前記検知された落雷の発生時点までの時間をリーダ進展時間として算出する手順と、
前記算出したリーダ進展時間と所定のリーダ進展速度とに基づいて、落雷電荷の高度を算出する手順と、を実行させることを特徴とする落雷電荷の高度評価プログラム。
A program for evaluating lightning charges by a computer,
A procedure for obtaining electric field data indicating a time change of an electric field at a predetermined measurement target point and magnetic field data indicating a time change of a magnetic field at the predetermined target point;
A procedure for detecting the occurrence of lightning based on the acquired electric field data;
If the occurrence of lightning is detected, the procedure on the basis of the measured magnetic field, to detect the time point of generation of the reader that preceded dangerous knowledge been lightning,
Ago dangerous knowledge has been reader occurrence time, the procedure for calculating the time until the generation point before dangerous knowledge been lightning as a reader development time,
A lightning strike charge altitude evaluation program that executes a procedure for calculating a lightning strike charge altitude based on the calculated leader progress time and a predetermined leader progress speed.
請求項記載の落雷電荷の高度評価プログラムを記録したコンピュータ読み取り可能な記録媒体。 A computer-readable recording medium on which the lightning strike charge altitude evaluation program according to claim 6 is recorded.
JP2006145775A 2006-05-25 2006-05-25 Lightning strike advanced evaluation apparatus and method, lightning charge evaluation apparatus and method, lightning charge advanced evaluation program Expired - Fee Related JP4217728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006145775A JP4217728B2 (en) 2006-05-25 2006-05-25 Lightning strike advanced evaluation apparatus and method, lightning charge evaluation apparatus and method, lightning charge advanced evaluation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006145775A JP4217728B2 (en) 2006-05-25 2006-05-25 Lightning strike advanced evaluation apparatus and method, lightning charge evaluation apparatus and method, lightning charge advanced evaluation program

Publications (2)

Publication Number Publication Date
JP2007315910A JP2007315910A (en) 2007-12-06
JP4217728B2 true JP4217728B2 (en) 2009-02-04

Family

ID=38849898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006145775A Expired - Fee Related JP4217728B2 (en) 2006-05-25 2006-05-25 Lightning strike advanced evaluation apparatus and method, lightning charge evaluation apparatus and method, lightning charge advanced evaluation program

Country Status (1)

Country Link
JP (1) JP4217728B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106370938A (en) * 2016-08-26 2017-02-01 武汉大学 Long-gap discharge leader development speed measurement method based on radiated electromagnetic wave detection

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5355344B2 (en) * 2009-10-16 2013-11-27 中国電力株式会社 Lightning charge evaluation system, lightning determination method, lightning charge evaluation method
KR101295617B1 (en) * 2012-04-06 2013-08-12 주식회사 티지오 System for warning thunderbolt
JP6569996B2 (en) * 2015-06-24 2019-09-04 東京電力ホールディングス株式会社 Lightning damage determination device and lightning damage determination system
JP6504662B2 (en) * 2015-07-28 2019-04-24 国立大学法人静岡大学 Lightning charge estimation method and system
CN107091957B (en) * 2017-03-13 2019-11-12 张宁 A kind of thunder measuring and orientation system and its localization method
JP6872192B2 (en) * 2017-06-13 2021-05-19 国立大学法人静岡大学 Lightning charge amount estimation method and system
CN110488165B (en) * 2019-08-29 2021-11-30 南方电网科学研究院有限责任公司 Lightning stroke discharge comprehensive analysis method and device, terminal equipment and storage medium
CN116755005A (en) * 2023-08-23 2023-09-15 宁波麦思捷科技有限公司武汉分公司 Model-based method and system for monitoring magnetic field during lightning generation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106370938A (en) * 2016-08-26 2017-02-01 武汉大学 Long-gap discharge leader development speed measurement method based on radiated electromagnetic wave detection
CN106370938B (en) * 2016-08-26 2020-10-30 武汉大学 Long-gap discharge lead development speed measuring method based on radiation electromagnetic wave detection

Also Published As

Publication number Publication date
JP2007315910A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
JP4217728B2 (en) Lightning strike advanced evaluation apparatus and method, lightning charge evaluation apparatus and method, lightning charge advanced evaluation program
JP5793961B2 (en) Electromagnetic wave identification device, electromagnetic wave identification method and program
JP2010085386A (en) Apparatus for measuring superhigh frequency partial discharge and partial discharge position for high-voltage power apparatus
JP4171752B2 (en) Lightning strike electric field amount calculation device and method, program, computer-readable recording medium
JP5355344B2 (en) Lightning charge evaluation system, lightning determination method, lightning charge evaluation method
JP4784976B2 (en) Radio wave arrival direction estimation device, radio wave arrival direction estimation program, and recording medium
JP5367134B1 (en) Noise identification device and noise identification method
KR102058841B1 (en) Systems and methods to detect generator collector flashover
US10352912B2 (en) Structure evaluation system, structure evaluation apparatus, and structure evaluation method
JP2011033538A (en) Method and apparatus for diagnosis of partial discharge in gas insulated switchgear
EP2937689A1 (en) Adaptive baseline damage detection system and method
JP2012103209A (en) Lightning charge amount calculation system and lightning charge amount calculation method
EP2894484B1 (en) Electromagnetic wave identification method and identification device
JP2006058278A (en) Elastic wave generation position calculation device and method
JP5302926B2 (en) Smoke detector
JP2010133746A (en) Partial discharge discrimination method
JP2007292700A (en) Partial discharge position specifying method of stationary induction apparatus
US20180074023A1 (en) Structure evaluation system, structure evaluation apparatus, and structure evaluation method
EP3012643A1 (en) Method and apparatus for identifying causes for cable overcurrent
JP4266858B2 (en) Local heavy rain monitoring system
EP4160166A1 (en) Estimation program, estimation device and estimation method
JP2012037387A (en) Lightning charge evaluation system, lightning determination method, and lightning charge evaluation method
JP4998706B2 (en) Transformer internal abnormality diagnosis method
EP3321674A1 (en) Structure evaluation system, structure evaluation device, and structure evaluation method
JP2016023818A (en) Method for detecting operation of air conditioner and system for detecting operation of air conditioner

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081110

R150 Certificate of patent or registration of utility model

Ref document number: 4217728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees