JP6872192B2 - Lightning charge amount estimation method and system - Google Patents

Lightning charge amount estimation method and system Download PDF

Info

Publication number
JP6872192B2
JP6872192B2 JP2017116070A JP2017116070A JP6872192B2 JP 6872192 B2 JP6872192 B2 JP 6872192B2 JP 2017116070 A JP2017116070 A JP 2017116070A JP 2017116070 A JP2017116070 A JP 2017116070A JP 6872192 B2 JP6872192 B2 JP 6872192B2
Authority
JP
Japan
Prior art keywords
lightning
lightning strike
electric field
equation
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017116070A
Other languages
Japanese (ja)
Other versions
JP2019002740A (en
Inventor
幸志 道下
幸志 道下
浩二 高野
浩二 高野
聡史 栗原
聡史 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Original Assignee
Shizuoka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC filed Critical Shizuoka University NUC
Priority to JP2017116070A priority Critical patent/JP6872192B2/en
Publication of JP2019002740A publication Critical patent/JP2019002740A/en
Application granted granted Critical
Publication of JP6872192B2 publication Critical patent/JP6872192B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、落雷の電荷量を高い精度で推定可能とする落雷電荷量推定方法及びシステムに関する。 The present invention relates to a method and system for estimating a lightning charge amount that enables the lightning charge amount to be estimated with high accuracy.

電力会社等のインフラ設備を保有する企業や、広範囲に設備を分散配置し管理する事業者においては、落雷による設備被害をできるだけ早く把握することが求められる。
落雷が発生したときに、その落雷のエネルギー(電荷量)が分かれば、設備被害の想定を行う上で大変有効である。
Companies that own infrastructure equipment such as electric power companies and businesses that distribute and manage equipment over a wide area are required to grasp equipment damage caused by lightning strikes as soon as possible.
When a lightning strike occurs, knowing the energy (charge amount) of the lightning strike is very effective in estimating equipment damage.

雷は雷雲等の空中の電荷が変化し地上の電荷と中和される過程で発生するため、特許文献1(特許第4217728号公報)に記載されるように、このときの空中での電荷の変化を図11に示すように点電荷の変化で模擬するとともに、落雷位置(電荷中心)から観測点までの水平距離D[m]、落雷前後における電界変化量ΔE[V/m]及び電荷中心の高度L[m]を測定することで、下記(式9)から落雷の電荷量を推定することが知られている。
(式9)ΔQ=2πε03ΔE{1+(L/D)2}3/2/L
(ただし、ΔQは落雷電荷量[C]、πは円周率、ε0は空気の誘電率である。)
特許文献1では、Dは落雷位置標定装置から標定された落雷位置と測定対象位置との距離から算出し、ΔEは電界変化の勾配の大きさで落雷と判定した場合、最初の電界変化の直前の電界値と最後の電界変化の直後の電界値の差により算出し、Lは電界センサで検知した落雷の発生時点と磁界センサから検知した落雷に先行するリーダの発生時点からリーダ進展時間を求め、その進展時間と一定のリーダ進展速度から算出している。
Since lightning is generated in the process of changing the electric charge in the air such as a thundercloud and neutralizing it with the electric charge on the ground, as described in Patent Document 1 (Japanese Patent No. 42177728), the electric charge in the air at this time As shown in FIG. 11, the change is simulated by the change of the point charge, the horizontal distance D [m] from the lightning strike position (charge center) to the observation point, the electric field change amount ΔE [V / m] before and after the lightning strike, and the charge center. It is known that the amount of electric charge of lightning is estimated from the following (Equation 9) by measuring the altitude L [m] of.
(Equation 9) ΔQ = 2πε 0 D 3 ΔE {1 + (L / D) 2 } 3/2 / L
(However, ΔQ is the amount of lightning charge [C], π is the pi, and ε 0 is the permittivity of air.)
In Patent Document 1, D is calculated from the distance between the lightning position defined by the lightning position locating device and the measurement target position, and ΔE is immediately before the first electric field change when it is determined to be a lightning by the magnitude of the gradient of the electric field change. Calculated from the difference between the electric field value of and the electric field value immediately after the last electric field change, L is the leader advance time from the time of occurrence of the lightning strike detected by the electric field sensor and the time of occurrence of the reader preceding the lightning strike detected by the magnetic field sensor. , It is calculated from the progress time and the constant leader progress speed.

また、近年では非特許文献1(電学論B、128巻5号、785頁〜794頁)に記載されるように、帰還雷撃モデルとしてTLモデル、MTLLモデル、MTLDモデル、TCSモデル、DUモデル、MTLD2モデル、MDUDモデル等様々な工学モデルを用いて帰還雷撃路上の電流波形が計算されるようになってきている。
ところで、空中での電荷の変化を点電荷の変化で模擬する点電荷モデルを仮定して推定する落雷の電荷量は1〜20ミリ秒(以下「ms」と記載する。)程度の比較的長時間に亘る電荷量(ストローク電荷)を対象としているので、電荷量の推定に際してはΔEの測定にスローアンテナを用いた電界観測によるものが多かった。
しかし、近年用いられるようになった帰還雷撃モデルを仮定しての電荷量推定においては、1msまで又は波尾において波高値が1kA以下となるまでといった比較的短時間における電荷量(インパルス電荷)の推定を要求される場合があるため、ファーストアンテナを用いた電界観測も行われるようになってきている。
Further, in recent years, as described in Non-Patent Document 1 (Electronics B, Vol. 128, No. 5, pp. 785 to 794), the TL model, MTLL model, MTLD model, TCS model, and DU model are used as the return lightning strike model. , MTLD2 model, MDUD model and other various engineering models have come to be used to calculate the current waveform on the return lightning path.
By the way, the amount of electric charge of a lightning strike estimated by assuming a point charge model that simulates a change in charge in the air by a change in point charge is relatively long, about 1 to 20 milliseconds (hereinafter referred to as "ms"). Since the target is the amount of electric charge (stroke charge) over time, most of the estimation of the amount of electric charge is based on electric field observation using a slow antenna to measure ΔE.
However, in the charge amount estimation assuming the feedback lightning strike model that has been used in recent years, the charge amount (impulse charge) in a relatively short time such as up to 1 ms or until the peak value becomes 1 kA or less at the wave tail. Since estimation may be required, electric field observation using the first antenna is also being performed.

特許第4217728号公報Japanese Patent No. 4217728

馬場吉弘著「帰還雷撃の工学モデルと雷電磁界パルス計算への応用」、電学論B、128巻5号、2008年、785頁〜794頁Yoshihiro Baba, "Engineering Model of Returning Lightning Strike and Application to Lightning Electromagnetic Field Pulse Calculation", Denki B, Vol. 128, No. 5, 2008, pp. 785-794

上記のとおり、落雷の電荷量(ストローク電荷やインパルス電荷)を推定するため、様々な方法が提案されているが、特許文献1に記載されている方法では、雷撃の種類によりリーダ進展速度が大きく変化するため、一定のリーダ進展速度を用いたのでは正しい電荷中心の高度の算出結果を得ることができない。
また、非特許文献1に記載されているDUモデル等においては、帰還雷撃電流は雷道上に分布した電荷がその源とされているため、一般に数10マイクロ秒(以下「μs」と記載する。)程度の規約波尾長を持つ帰還雷撃電流が0になると、その時の電界は雷道上で中和された電荷を反映することになる。
そのため、ファーストアンテナにより得られた電界値から電荷量(インパルス電荷)を推定するためにはリーダにより雷道上に蓄積された電荷分布を求める必要があるが、リーダ上の電荷分布は雷撃毎に異なるため、これを求めるには帰還雷撃モデルを仮定して電流推定を行う必要がある。
本発明の第1の課題は、帰還雷撃モデルとして大地に垂直な雷道に電荷が均一に分布していると仮定した均一分布電荷モデルを利用するとともに、リーダ進展速度を用いることなく均一分布電荷モデルにおける分布電荷の上限高さを求めて、簡便かつ精度良く落雷電荷量(インパルス電荷)を推定できるようにすることである。
そして、本発明の第2の課題は、均一分布電荷モデルにおける分布電荷の下限高さを加味することによって、より精度良く落雷電荷量(インパルス電荷)を推定できるようにすることである。
さらに、本発明の第3の課題は、均一分布電荷モデルによる推定値と真の落雷電荷量とのエラー率を推定することによって、より精度良く落雷電荷量(インパルス電荷)を推定できるようにすることである。
As described above, various methods have been proposed for estimating the charge amount (stroke charge and impulse charge) of a lightning strike, but the method described in Patent Document 1 has a large leader advance speed depending on the type of lightning strike. Since it changes, it is not possible to obtain the correct calculation result of the altitude of the charge center by using a constant leader advance rate.
Further, in the DU model and the like described in Non-Patent Document 1, since the return lightning current is the source of the electric charge distributed on the lightning path, it is generally described as several tens of microseconds (hereinafter referred to as “μs”). When the feedback lightning current with a specified wave tail length of about) becomes 0, the electric charge at that time reflects the electric charge neutralized on the lightning path.
Therefore, in order to estimate the amount of charge (impulse charge) from the electric field value obtained by the first antenna, it is necessary to obtain the charge distribution accumulated on the lightning path by the reader, but the charge distribution on the reader differs for each lightning strike. Therefore, in order to obtain this, it is necessary to estimate the current by assuming a return lightning strike model.
The first object of the present invention is to use a uniformly distributed charge model assuming that the charges are uniformly distributed in a lightning path perpendicular to the ground as a return lightning strike model, and to use a uniformly distributed charge without using the leader propagation speed. The upper limit of the distributed charge in the model is obtained so that the lightning charge amount (impulse charge) can be estimated easily and accurately.
A second object of the present invention is to make it possible to estimate the lightning strike charge amount (impulse charge) more accurately by adding the lower limit height of the distributed charge in the uniformly distributed charge model.
Further, the third object of the present invention is to make it possible to estimate the lightning charge amount (impulse charge) more accurately by estimating the error rate between the estimated value by the uniformly distributed charge model and the true lightning charge amount. That is.

請求項1に係る発明は、落雷電荷量を算出するための均一分布電荷モデルによる落雷電荷量推定方法であって、
観測地域における気象条件毎及び最初の放電が生じた時点からの時間差の範囲毎に、推定電荷量と測定電荷量との差が小さくなる空気層の温度との対応関係を予め定めておき、
落雷位置から観測点までの水平距離D[m]及び前記観測点における落雷前後の電界値を計測し、前記落雷前後の電界値に基づいて、帰還雷撃開始直前の電界値と前記帰還雷撃開始後所定時間経過後の電界値の差である電界変化量ΔE[V/m]を算出し、前記落雷位置及び落雷発生時点に近い箇所及び時点における気象観測データから気温が−5℃〜−15℃である空気層の地上高の範囲を推定し、前記落雷位置、落雷発生時点における気象条件、最初の放電が生じた時点からの時間差の範囲及び前記落雷位置を含む観測地域における予め定められた対応関係に基づいて推定電荷量と測定電荷量との差が小さくなる空気層の温度を決定し、
決定した前記空気層の温度及び推定した前記地上高の範囲に基づいて分布電荷の上限高さH[m]を決定し、
前記水平距離D、前記電界変化量ΔE及び前記上限高さHを用いて下記(式1)によって落雷電荷量ΔQ[C]を算出することを特徴とする。
(式1)ΔQ=2πε0HΔE/{1/D−1/(D2+H2)1/2}
(ただし、πは円周率、ε0は空気の誘電率を表す。)
The invention according to claim 1 is a method for estimating a lightning charge amount by a uniformly distributed charge model for calculating a lightning charge amount.
For each meteorological condition in the observation area and for each range of time difference from the time when the first discharge occurs, the correspondence relationship with the temperature of the air layer where the difference between the estimated charge amount and the measured charge amount becomes small is determined in advance.
The horizontal distance D [m] from the lightning strike position to the observation point and the electric field value before and after the lightning strike at the observation point are measured, and based on the electric field value before and after the lightning strike, the electric field value immediately before the start of the return lightning strike and after the start of the return lightning strike. The amount of change in the electric field ΔE [V / m], which is the difference between the electric field values after the lapse of a predetermined time, is calculated, and the temperature is -5 ° C to -15 ° C from the lightning strike position, the location near the lightning strike occurrence point, and the meteorological observation data at the time point. The range of the above-ground height of the air layer is estimated, and the predetermined response in the observation area including the lightning strike position, the weather conditions at the time of the lightning strike, the time difference range from the time when the first discharge occurs, and the lightning strike position. Based on the relationship, determine the temperature of the air layer where the difference between the estimated charge amount and the measured charge amount becomes small,
The upper limit height H [m] of the distributed charge is determined based on the determined temperature of the air layer and the estimated range of the ground clearance.
Using the horizontal distance D, the electric field change amount ΔE, and the upper limit height H, the lightning charge amount ΔQ [C] is calculated by the following (Equation 1).
(Equation 1) ΔQ = 2πε 0 HΔE / {1 / D-1 / (D 2 + H 2 ) 1/2 }
(However, π represents the pi and ε 0 represents the permittivity of air.)

請求項2に係る発明は、請求項1に記載の落雷電荷量推定方法において、推定した前記地上高の範囲に基づいて分布電荷の下限高さh[m]を決定し、
前記水平距離D、前記電界変化量ΔE、前記上限高さH及び前記下限高さhを用いて前記(式1)に代え下記(式2)によって落雷電荷量ΔQを算出することを特徴とする。
(式2)ΔQ=2πε0(H−h)ΔE/{1/(D2+h2)1/2−1/(D2+H2)1/2}
(ただし、πは円周率、ε0は空気の誘電率を表し、0≦h<Hである。)
In the invention according to claim 2, in the method for estimating the amount of lightning strike according to claim 1, the lower limit height h [m] of the distributed charge is determined based on the estimated range of the above-ground height.
Using the horizontal distance D, the electric field change amount ΔE, the upper limit height H, and the lower limit height h, the lightning charge amount ΔQ is calculated by the following (Equation 2) instead of the above (Equation 1). ..
(Equation 2) ΔQ = 2πε 0 (H−h) ΔE / {1 / (D 2 + h 2 ) 1/2 -1 / (D 2 + H 2 ) 1/2 }
(However, π represents the pi and ε 0 represents the dielectric constant of air, and 0 ≦ h <H.)

請求項3に係る発明は、請求項2に記載の落雷電荷量推定方法において、前記下限高さhを前記落雷位置と前記観測点の高さの差を算出して決定することを特徴とする。 The invention according to claim 3 is characterized in that, in the method for estimating the amount of lightning charge according to claim 2, the lower limit height h is determined by calculating the difference between the height of the lightning strike position and the height of the observation point. ..

請求項4に係る発明は、請求項1に記載の落雷電荷量推定方法において、前記(式1)によって算出される落雷電荷量ΔQのエラー率Er[%]を推定し、
前記水平距離D、前記電界変化量ΔE、前記上限高さH及び前記エラー率Erを用いて前記(式1)に代え下記(式3)によって落雷電荷量ΔQを算出することを特徴とする。
(式3)ΔQ=2πε0HΔE×100/(100+Er)/{1/D−1/(D2+H2)1/2}
(ただし、πは円周率、ε0は空気の誘電率を表す。)
In the invention according to claim 4, the error rate Er [%] of the lightning strike charge amount ΔQ calculated by the above (Equation 1) is estimated by the lightning strike charge amount estimation method according to claim 1.
Using the horizontal distance D, the electric field change amount ΔE, the upper limit height H, and the error rate Er, the lightning charge amount ΔQ is calculated by the following (Equation 3) instead of the above (Equation 1).
(Equation 3) ΔQ = 2πε 0 HΔE × 100 / (100 + Er) / {1 / D-1 / (D 2 + H 2 ) 1/2 }
(However, π represents the pi and ε 0 represents the permittivity of air.)

請求項5に係る発明は、請求項4に記載の落雷電荷量推定方法において、前記落雷前後の電界値に基づいて、前記落雷前後における電界波形の波尾長T[μs]を算出し、
算出された波尾長Tを用いて下記(式4)によって前記エラー率Erを推定することを特徴とする。
(式4)Er=αT+β
(ただし、α及びβは落雷電荷量の測定及び推定に基づいて予め決定される定数である。)
In the invention according to claim 5, in the method for estimating the amount of lightning charge according to claim 4, the wave tail length T [μs] of the electric field waveform before and after the lightning strike is calculated based on the electric field values before and after the lightning strike.
Using the calculated wave tail length T, the error rate Er is estimated by the following (Equation 4).
(Equation 4) Er = αT + β
(However, α and β are constants determined in advance based on the measurement and estimation of the amount of lightning strike charge.)

請求項6に係る発明は、落雷電荷量を算出するための落雷電荷量推定システムであって、
観測地域における気象条件毎及び最初の放電が生じた時点からの時間差の範囲毎に、推定電荷量と測定電荷量との差が小さくなる空気層の温度との予め定められた対応関係が記録されている対応関係記録手段と、
落雷位置から観測点までの水平距離D[m]を計測する落雷位置標定手段と、前記観測点における落雷前後の電界値を計測する電界計測手段と、前記落雷前後の電界値に基づいて、帰還雷撃開始直前の電界値と前記帰還雷撃開始後所定時間経過後の電界値の差である電界変化量ΔE[V/m]を算出する電界変化量演算手段と、前記落雷位置及び落雷発生時点に近い箇所及び時点における気象観測データから気温が−5℃〜−15℃である空気層の地上高の範囲を推定する地上高範囲推定手段と、前記落雷位置、落雷発生時点における気象条件、最初の放電が生じた時点からの時間差の範囲及び前記落雷位置を含む観測地域における予め定められた対応関係に基づいて推定電荷量と測定電荷量との差が小さくなる空気層の温度を決定する空気層温度決定手段と、
該空気層温度決定手段が決定した前記空気層の温度及び前記地上高範囲推定手段が推定した前記地上高の範囲に基づいて分布電荷の上限高さH[m]を決定する上限高さ決定手段と、
前記水平距離D、前記電界変化量ΔE及び前記上限高さHを用いて下記(式1)の演算を行い落雷電荷量ΔQ[C]を算出する電荷量計算手段とを備えていることを特徴とする。
(式1)ΔQ=2πε0HΔE/{1/D−1/(D2+H2)1/2}
(ただし、πは円周率、ε0は空気の誘電率を表す。)
The invention according to claim 6 is a lightning charge amount estimation system for calculating a lightning charge amount.
A predetermined correspondence with the temperature of the air layer where the difference between the estimated charge amount and the measured charge amount becomes small is recorded for each meteorological condition in the observation area and for each range of time difference from the time when the first discharge occurs. Correspondence relationship recording means and
Return based on the lightning strike position setting means for measuring the horizontal distance D [m] from the lightning strike position to the observation point, the electric field measuring means for measuring the electric field value before and after the lightning strike at the observation point, and the electric field value before and after the lightning strike. At the electric field change amount calculation means for calculating the electric field change amount ΔE [V / m], which is the difference between the electric field value immediately before the start of the lightning strike and the electric field value after a predetermined time has elapsed after the start of the return lightning strike, and at the lightning strike position and the time when the lightning strike occurs. A means for estimating the above-ground height range of the air layer whose temperature is -5 ° C to -15 ° C from meteorological observation data at a nearby location and time point, the above-mentioned lightning strike position, the weather conditions at the time of the lightning strike, and the first An air layer that determines the temperature of the air layer where the difference between the estimated charge amount and the measured charge amount becomes small based on the range of the time difference from the time when the discharge occurs and the predetermined correspondence relationship in the observation area including the lightning strike position. Temperature determination means,
Upper limit height determining means for determining the upper limit height H [m] of the distributed charge based on the temperature of the air layer determined by the air layer temperature determining means and the above- ground height range estimated by the ground clearance estimating means. When,
It is characterized by including a charge amount calculation means for calculating the lightning charge amount ΔQ [C] by performing the following calculation (Equation 1) using the horizontal distance D, the electric field change amount ΔE, and the upper limit height H. And.
(Equation 1) ΔQ = 2πε 0 HΔE / {1 / D-1 / (D 2 + H 2 ) 1/2 }
(However, π represents the pi and ε 0 represents the permittivity of air.)

請求項7に係る発明は、請求項6に記載の落雷電荷量推定システムにおいて、前記地上高範囲推定手段が推定した前記地上高の範囲に基づいて分布電荷の下限高さh[m]を決定する下限高さ決定手段をさらに備え、
前記電荷量計算手段は、前記水平距離D、前記電界変化量ΔE、前記上限高さH及び前記下限高さhを用いて前記(式1)に代え下記(式2)の演算を行うことを特徴とする。
(式2)ΔQ=2πε0(H−h)ΔE/{1/(D2+h2)1/2−1/(D2+H2)1/2}
(ただし、πは円周率、ε0は空気の誘電率を表し、0≦h<Hである。)
In the invention according to claim 7, in the lightning charge amount estimation system according to claim 6, the lower limit height h [m] of the distributed charge is determined based on the range of the above-ground height estimated by the above-ground height range estimation means. Further equipped with a means for determining the lower limit height
The charge amount calculation means uses the horizontal distance D, the electric field change amount ΔE, the upper limit height H, and the lower limit height h to perform the following calculation (Equation 2) instead of the (Equation 1). It is a feature.
(Equation 2) ΔQ = 2πε 0 (H−h) ΔE / {1 / (D 2 + h 2 ) 1/2 -1 / (D 2 + H 2 ) 1/2 }
(However, π represents the pi and ε 0 represents the dielectric constant of air, and 0 ≦ h <H.)

請求項8に係る発明は、請求項7に記載の落雷電荷量推定システムにおいて、前記下限高さ決定手段は、前記落雷位置と前記観測点の高さの差を算出する手段を有していることを特徴とする。 According to the eighth aspect of the present invention, in the lightning charge amount estimation system according to the seventh aspect, the lower limit height determining means includes means for calculating the difference between the height of the lightning strike position and the height of the observation point. It is characterized by that.

請求項9に係る発明は、請求項6に記載の落雷電荷量推定システムにおいて、前記(式1)によって算出される落雷電荷量ΔQのエラー率Er[%]を推定するエラー率推定手段をさらに備え、
前記電荷量計算手段は、前記水平距離D、前記電界変化量ΔE、前記上限高さH及び前記エラー率Erを用いて前記(式1)に代え下記(式3)の演算を行うことを特徴とする。
(式3)ΔQ=2πε0HΔE×100/(100+Er)/{1/D−1/(D2+H2)1/2}
(ただし、πは円周率、ε0は空気の誘電率を表す。)
The invention according to claim 9 further provides an error rate estimation means for estimating the error rate Er [%] of the lightning strike charge amount ΔQ calculated by the above (Equation 1) in the lightning strike charge amount estimation system according to claim 6. Prepare,
The electric charge amount calculation means uses the horizontal distance D, the electric field change amount ΔE, the upper limit height H, and the error rate Er to perform the following calculation (Equation 3) instead of the (Equation 1). And.
(Equation 3) ΔQ = 2πε 0 HΔE × 100 / (100 + Er) / {1 / D-1 / (D 2 + H 2 ) 1/2 }
(However, π represents the pi and ε 0 represents the permittivity of air.)

請求項10に係る発明は、請求項9に記載の落雷電荷量推定システムにおいて、前記落雷前後の電界値に基づいて、前記落雷前後における電界波形の波尾長T[μs]を算出する波尾長演算手段をさらに備え、
前記エラー率推定手段は、算出された波尾長Tを用いて下記(式4)の演算を行うことを特徴とする。
(式4)Er=αT+β
(ただし、α及びβは落雷電荷量の測定及び推定に基づいて予め決定される定数である。)
The invention according to claim 10 is a wave tail length calculation for calculating the wave tail length T [μs] of the electric field waveform before and after the lightning strike based on the electric field values before and after the lightning strike in the lightning charge amount estimation system according to claim 9. With more means,
The error rate estimating means is characterized in that the following calculation (Equation 4) is performed using the calculated wave tail length T.
(Equation 4) Er = αT + β
(However, α and β are constants determined in advance based on the measurement and estimation of the amount of lightning strike charge.)

請求項1又は6に係る発明によれば、分布電荷の上限高さH[m]をリーダ進展時間及び所定のリーダ進展速度から算出せず、観測地域における気象条件毎及び最初の放電が生じた時点からの時間差の範囲毎に、推定電荷量と測定電荷量との差が小さくなる空気層の温度との対応関係を予め定めておき、落雷位置及び落雷発生時点に近い箇所及び時点における気象観測データから気温が−5℃〜−15℃である空気層の地上高の範囲を推定し、落雷位置、落雷発生時点における気象条件、最初の放電が生じた時点からの時間差の範囲及び落雷位置を含む観測地域における予め定められた対応関係に基づいて推定電荷量と測定電荷量との差が小さくなる空気層の温度を決定し、決定した空気層の温度及び推定した地上高の範囲に基づいて一つの上限高さH[m]を選択することにより決定しているので、磁界センサ及び雷撃の種類により大きく変化するリーダ進展速度を用いずにHを得ることができる。
そして、帰還雷撃モデルとして大地に垂直な雷道に電荷が均一に分布していると仮定した均一分布電荷モデルに基づく(式1)による演算を行うことで、電界計測手段であるファーストアンテナにより得られた帰還雷撃開始から所定時間(1msまで又は観測された雷電流の波高値が波尾において1kA以下となるまでの時間から選択した時間)経過後における電界値に基づいて低コストで精度良く落雷電荷量を推定することができる。
According to the invention according to claim 1 or 6, the upper limit height H [m] of the distributed charge is not calculated from the leader advance time and the predetermined leader advance speed, and the first discharge occurs for each meteorological condition in the observation area. For each range of time difference from the time point, the correspondence relationship with the temperature of the air layer where the difference between the estimated charge amount and the measured charge amount becomes small is determined in advance, and the meteorological observation at the place and time near the lightning position and the time when the lightning occurs. Estimate the range of the above-ground height of the air layer where the temperature is -5 ° C to -15 ° C from the data, and determine the position of the lightning strike, the meteorological conditions at the time of the lightning strike, the range of the time difference from the time when the first discharge occurred, and the position of the lightning strike. Determine the temperature of the air layer where the difference between the estimated charge amount and the measured charge amount becomes small based on the predetermined correspondence relationship in the observation area including, and based on the determined air layer temperature and the estimated ground height range. Since it is determined by selecting one upper limit height H [m], H can be obtained without using the leader propagation speed that greatly changes depending on the magnetic field sensor and the type of lightning strike.
Then, by performing the calculation based on the uniformly distributed charge model (Equation 1) assuming that the charges are uniformly distributed in the lightning path perpendicular to the ground as the return lightning strike model, it is obtained by the first antenna which is an electric field measuring means. A low-cost and accurate lightning strike based on the electric field value after a predetermined time (up to 1 ms or the time selected from the time until the observed peak value of the lightning current becomes 1 kA or less at the crest) from the start of the returned lightning strike. The amount of charge can be estimated.

請求項2又は7に係る発明では、請求項1又は6に係る発明による効果に加えて、推定した地上高の範囲に基づいて分布電荷の下限高さh[m]を決定し、
(式1)に代えて、帰還雷撃モデルとして大地に垂直な雷道に電荷が変化して分布していると仮定した均一分布電荷モデルに基づく(式2)によって落雷電荷量ΔQを算出するので、より精度良く落雷電荷量を推定することができる。
In the invention according to claim 2 or 7, in addition to the effect of the invention according to claim 1 or 6, the lower limit height h [m] of the distributed charge is determined based on the estimated ground clearance.
Instead of (Equation 1), the lightning strike charge amount ΔQ is calculated by (Equation 2) based on the uniformly distributed charge model assuming that the charge changes and is distributed in the lightning path perpendicular to the ground as a return lightning strike model. , The amount of lightning charge can be estimated more accurately.

請求項3又は8に係る発明では、請求項2又は7に係る発明による効果に加えて、落雷位置と観測点の高さの差を算出して下限高さhを決定するので、より精度良く落雷電荷量を推定することができる。 In the invention according to claim 3 or 8, in addition to the effect of the invention according to claim 2 or 7, the difference between the height of the lightning strike position and the height of the observation point is calculated to determine the lower limit height h, so that the lower limit height h is determined more accurately. The amount of lightning charge can be estimated.

請求項4又は9に係る発明によれば、(式1)によって算出される落雷電荷量ΔQのエラー率Er[%]を推定し、そのエラー率Erを用いて(式1)に代え(式3)によって落雷電荷量ΔQを算出するので、より精度良く落雷電荷量を推定することができるという効果が得られる。 According to the invention according to claim 4 or 9, the error rate Er [%] of the lightning charge amount ΔQ calculated by (Equation 1) is estimated, and the error rate Er is used instead of (Equation 1) (Equation 1). Since the lightning charge amount ΔQ is calculated by 3), the effect that the lightning charge amount can be estimated more accurately can be obtained.

請求項5又は10に係る発明によれば、請求項4又は9に係る発明による効果に加えて、落雷前後における電界波形の波尾長T[μs]を算出し、算出された波尾長Tを用いて(式4)によってエラー率Erを推定するので、エラー率Erが落雷ごとに正確に推定され、さらに精度良く落雷電荷量を推定することができるという効果が得られる。 According to the invention of claim 5 or 10, in addition to the effect of the invention of claim 4 or 9, the wave tail length T [μs] of the electric field waveform before and after the lightning strike is calculated, and the calculated wave tail length T is used. Since the error rate Er is estimated by (Equation 4), the error rate Er is estimated accurately for each lightning strike, and the effect that the amount of lightning strike charge can be estimated more accurately can be obtained.

均一分布電荷モデルを示す図。The figure which shows the uniformly distributed charge model. 実施例1の落雷電荷量推定システムの概念図。The conceptual diagram of the lightning charge amount estimation system of Example 1. FIG. 測定電荷量と式9による推定電荷量とを比較したグラフ。The graph which compared the measured charge amount and the estimated charge amount by equation 9. 電界波形測定グラフの例。An example of an electric field waveform measurement graph. 実施例3の落雷電荷量推定システムの概念図。The conceptual diagram of the lightning charge amount estimation system of Example 3. FIG. 高域遮断フィルタ処理後の電界波形測定グラフの例。An example of an electric field waveform measurement graph after high-frequency cutoff filter processing. 波尾長とエラー率との関係を示すグラフ。A graph showing the relationship between wave tail length and error rate. 実施例4の落雷電荷量推定システムの概念図。The conceptual diagram of the lightning charge amount estimation system of Example 4. 変化分布電荷モデルを示す図。The figure which shows the change distribution charge model. 本発明の落雷電荷量推定システムの一例を示す図。The figure which shows an example of the lightning charge amount estimation system of this invention. 点電荷モデルを示す図。The figure which shows the point charge model.

以下、実施例によって本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to examples.

本発明は、帰還雷撃モデルとして図1に示す大地に垂直な雷道に電荷が均一に分布していると仮定した均一分布電荷モデルを利用しているので、まずその均一分布電荷モデルによる電荷量の推定方法について説明する。 Since the present invention uses a uniformly distributed charge model assuming that the charges are uniformly distributed in the lightning path perpendicular to the ground shown in FIG. 1 as a return lightning strike model, first, the amount of charges based on the uniformly distributed charge model is used. The estimation method of is described.

図1において、均一に分布している雷道上の電荷密度が落雷を形成する放電における最初の電界変化が起きた時点(帰還雷撃開始)から所定時間(1msまで又は観測された雷電流の波高値が波尾において1kA以下となるまでの時間から選択した時間)経過後までに変化する量をΔρ[C/m]、雷道の上限高さをH[m]、雷道の下限高さをh[m]とすると、雷道上の電荷変化量である落雷電荷量ΔQ[C]は下記(式5)で表すことができる。
(式5)ΔQ=Δρ×(H−h)
また、雷道からD[m]だけ離れた点における電界E[V/m]は、雷道上の電荷密度をρ[C/m]、r=(D2+z2)1/2とすれば下記(式6)が導出される。
(式6)E=∫(ρ×D/4πε0r)dz<積分区間はhからHまで>
(ただし、πは円周率、ε0は空気の誘電率を表し、0≦h<Hである。)
この積分の計算を行うと下記(式7)となり、ρ[C/m]は下記(式8)で計算できる。
(式7)E=ρ×{1/(D2+h2)1/2−1/(D2+H2)1/2}/2πε0
(式8)ρ=2πε0E/{1/(D2+h2)1/2−1/(D2+H2)1/2}
したがって、雷道からD[m]だけ離れた点の電界変化量ΔE[V/m]を計測すれば、上記(式5)と(式8)の関係から落雷電荷量ΔQを下記(式2)によって計算できる。
(式2)ΔQ=2πε0(H−h)ΔE/{1/(D2+h2)1/2−1/(D2+H2)1/2}
In FIG. 1, the peak value of the lightning current observed for a predetermined time (up to 1 ms or observed) from the time when the first electric field change in the discharge in which the charge density on the uniformly distributed lightning path forms a lightning strike occurs (start of the return lightning strike). The amount that changes after the lapse of (the time selected from the time until it becomes 1 kA or less at the wave tail) is Δρ [C / m], the upper limit height of the lightning path is H [m], and the lower limit height of the lightning path is Assuming h [m], the lightning charge amount ΔQ [C], which is the amount of charge change on the lightning path, can be expressed by the following (Equation 5).
(Equation 5) ΔQ = Δρ × (Hh)
Further, for the electric field E [V / m] at a point separated from the lightning path by D [m], if the charge density on the lightning path is ρ [C / m] and r = (D 2 + z 2 ) 1/2. The following (Equation 6) is derived.
(Equation 6) E = ∫ (ρ × D / 4πε 0 r) dz <Integration interval is from h to H>
(However, π represents the pi and ε 0 represents the dielectric constant of air, and 0 ≦ h <H.)
When this integral is calculated, it becomes the following (Equation 7), and ρ [C / m] can be calculated by the following (Equation 8).
(Equation 7) E = ρ × {1 / (D 2 + h 2 ) 1/2 -1 / (D 2 + H 2 ) 1/2 } / 2πε 0
(Equation 8) ρ = 2πε 0 E / {1 / (D 2 + h 2 ) 1/2 -1 / (D 2 + H 2 ) 1/2 }
Therefore, if the electric field change amount ΔE [V / m] at a point separated from the lightning path by D [m] is measured, the lightning charge amount ΔQ can be calculated as follows (Equation 2) from the relationship between (Equation 5) and (Equation 8). ) Can be calculated.
(Equation 2) ΔQ = 2πε 0 (H−h) ΔE / {1 / (D 2 + h 2 ) 1/2 -1 / (D 2 + H 2 ) 1/2 }

実施例1の落雷電荷量推定システムの概念図を図2に示す。
図2に示すように、実施例1の落雷電荷量推定システムは次の各手段を備えている。
(1)雷電流を直接観測するために風力発電設備の下部に設置されたロゴスキーコイルと風力発電設備に落雷があった際にロゴスキーコイルに誘導される電流を測定する装置を備え、精度約0.2μsのGPS時計によるトリガ時刻を記録するとともに、サンプル時間間隔0.1μsで測定された電流値を記録する雷電流観測手段1。
なお、全記録時間はトリガ時刻前約100ms及びトリガ時刻後300msの約400msである。
(2)落雷に伴う電界の変化を計測するファーストアンテナを備え、精度約0.2μsのGPS時計で上記(1)の雷電流観測手段1と時刻同期を取ってサンプル時間間隔0.1μsで計測された電界値を記録する電界計測手段2。
(3)上記(1)のロゴスキーコイルが設置されている風力発電設備に近い測候所で観測された高層気象観測データを取得するデータ取得手段3。
A conceptual diagram of the lightning charge amount estimation system of the first embodiment is shown in FIG.
As shown in FIG. 2, the lightning strike charge amount estimation system of the first embodiment includes the following means.
(1) It is equipped with a Rogowski coil installed at the bottom of the wind power generation facility to directly observe the lightning current and a device to measure the current induced in the Rogowski coil when the wind power generation facility is hit by a lightning strike. A lightning current observing means 1 for recording a trigger time with a GPS clock of about 0.2 μs and recording a current value measured at a sample time interval of 0.1 μs.
The total recording time is about 400 ms, which is about 100 ms before the trigger time and 300 ms after the trigger time.
(2) Equipped with a first antenna that measures changes in the electric field due to a lightning strike, and a GPS watch with an accuracy of about 0.2 μs is time-synchronized with the lightning current observation means 1 of (1) above and measured at a sample time interval of 0.1 μs. An electric field measuring means 2 for recording the generated electric field value.
(3) Data acquisition means 3 for acquiring high-rise meteorological observation data observed at a weather station near the wind power generation facility where the Rogowski coil of (1) above is installed.

(4)落雷のあった風力発電設備(落雷位置)と電界計測手段2(観測点)の水平距離D[m]を計測する落雷位置標定手段4。
なお、落雷位置標定手段4は、落雷による雷放電から放射される電磁波を複数の地点で受信し、それらの受信した電磁波を周知の手段(例えば、特許文献1に示された非特許文献である岸本保夫、「雷観測システムおよび雷保護規格の最新動向」、NTT建築総合研究所を参照。)を用いて解析することにより落雷位置を標定し、その落雷位置と電界計測手段2の水平距離D[m]を計測するものとしても良い。
(5)上記(2)の電界計測手段2に記録された電界値のデータからトリガ時刻の前後における電界値のデータを抽出し、帰還雷撃開始から所定時間(1msまで又は観測された雷電流の波高値が波尾において1kA以下となるまでの時間から選択した時間)経過後における電界値を電界変化量ΔE[V/m]として判定する電界変化量演算手段5。
(6)落雷のあった風力発電設備に最も近い測候所において、落雷時点に最も近い時点に観測された高層気象観測データを抽出し、落雷のあった風力発電設備上空における気温が−5℃〜−15℃である空気層の地上高の範囲を推定する地上高範囲推定手段6。
(4) A lightning strike position determining means 4 for measuring the horizontal distance D [m] between the wind power generation facility (lightning strike position) where there was a lightning strike and the electric field measuring means 2 (observation point).
The lightning strike position determining means 4 receives electromagnetic waves radiated from a lightning discharge due to a lightning strike at a plurality of points, and receives the received electromagnetic waves by a well-known means (for example, a non-patent document shown in Patent Document 1). Yasuo Kishimoto, "Latest Trends in Lightning Observation Systems and Lightning Protection Standards", see NTT Building Research Institute) to determine the lightning strike position, and the lightning strike position and the horizontal distance D of the electric field measuring means 2. It may be used to measure [m].
(5) The electric field value data before and after the trigger time is extracted from the electric field value data recorded in the electric field measuring means 2 of the above (2), and the specified time (up to 1 ms or the observed lightning current) from the start of the return lightning strike. 5. The electric field change amount calculation means 5 for determining the electric field value after the elapse of (a time selected from the time until the crest value becomes 1 kA or less at the crest) as the electric field change amount ΔE [V / m].
(6) At the weather station closest to the wind power generation facility where there was a lightning strike, the high-rise meteorological observation data observed at the time closest to the time of the lightning strike was extracted, and the temperature above the wind power generation facility where there was a lightning strike was -5 ° C ~-. Ground height range estimating means 6 for estimating the range of the ground height of the air layer at 15 ° C.

(7)上記(6)の地上高範囲推定手段6が推定した地上高の範囲から一つの上限高さH[m]を選択して分布電荷の上限高さを決定する上限高さ決定手段7。
なお、一つの上限高さH[m]を選択する方法については後述する。
(8)落雷のあった風力発電設備(落雷位置)の標高と電界計測手段2(観測点)の標高との差を算出する下限高さ決定手段8。
(9)上記(4)の落雷位置標定手段4で計測された水平距離D[m]、上記(5)の電界変化量演算手段5で算出された電界変化量ΔE[V/m]、上記(7)の上限高さ決定手段7で決定された上限高さH[m] 及び上記(8)の下限高さ決定手段8で決定された下限高さh[m]を用いて上記(式2)による演算を行い、風力発電設備に落ちた雷の落雷電荷量ΔQ[C]を算出する電荷量計算手段9及び計算結果を表示する表示手段10。
(10)上記(1)の雷電流観測手段1より得られた電流値から変換した測定電荷量を表示する表示手段11。
(7) The upper limit height determining means 7 that selects one upper limit height H [m] from the range of the ground clearance estimated by the ground clearance estimation means 6 of the above (6) and determines the upper limit height of the distributed charge. ..
The method of selecting one upper limit height H [m] will be described later.
(8) Lower limit height determining means 8 for calculating the difference between the altitude of the wind power generation facility (lightning strike position) where the lightning strike occurred and the altitude of the electric field measuring means 2 (observation point).
(9) The horizontal distance D [m] measured by the lightning position locating means 4 of the above (4), the electric field change amount ΔE [V / m] calculated by the electric field change amount calculating means 5 of the above (5), and the above. Using the upper limit height H [m] determined by the upper limit height determining means 7 of (7) and the lower limit height h [m] determined by the lower limit height determining means 8 of the above (8), the above (formula). The charge amount calculation means 9 for calculating the lightning charge amount ΔQ [C] of the lightning that has fallen on the wind power generation facility and the display means 10 for displaying the calculation result by performing the calculation according to 2).
(10) A display means 11 for displaying the measured charge amount converted from the current value obtained from the lightning current observation means 1 of the above (1).

上限高さH[m]の決定方法を確立するにあたって、南九州地区で実施した雷に伴う電界のスローアンテナによる観測に基づき上記(式9)による演算を行って得られた推定電荷量(ストローク電荷)と測定によって得られた測定電荷量とを比較した。
なお、この比較実験における落雷電荷量ΔQ[C]の観測は、雷雲に負の電荷が蓄積される負極性落雷について行われたが、負極性落雷か否かは放電における最初の電界変化直前の電界値が高く、最後の電界変化直後の電界値が低くなっていることで判定できる。
In establishing the method for determining the upper limit height H [m], the estimated charge amount (stroke) obtained by performing the calculation according to the above (Equation 9) based on the observation by the slow antenna of the electric field associated with lightning in the South Kyushu area. Charge) was compared with the measured charge amount obtained by the measurement.
The lightning charge amount ΔQ [C] in this comparative experiment was observed for the negative electrode lightning strike in which negative charges are accumulated in the thundercloud, but whether it is a negative electrode lightning strike or not is just before the first electric field change in the discharge. It can be determined by the fact that the electric field value is high and the electric field value immediately after the last electric field change is low.

図3に示すグラフは、負極性落雷を形成する複数回の放電のうち、最初の電界変化が生じた時点から1ms未満に発生した放電における電界変化量等に基づく推定電荷量、同じく最初の電界変化が生じた時点から2ms未満に発生した放電における電界変化量等に基づく推定電荷量、同じく最初の電界変化が生じた時点から3ms未満に発生した放電における電界変化量等に基づく推定電荷量、同じく最初の電界変化が生じた時点から4ms未満に発生した放電における電界変化量等に基づく推定電荷量及び同じく最初の電界変化が生じた時点から5ms未満に発生した放電における電界変化量等に基づく推定電荷量と測定電荷量とを比較したものである。
そして、落雷電荷量ΔQ[C]の推定に用いる点電荷高さL[m]には、落雷のあった風力発電設備に最も近い測候所(鹿児島気象台)で落雷発生時点に最も近い時点において観測された高層気象観測データから推定された5000m(気温が−1.8℃である空気層の地上高)、6000m(気温が−6.8℃である空気層の地上高)、6500m(気温が−10.0℃である空気層の地上高)及び7000m(気温が−12.0℃である空気層の地上高)の4つを選択した。
The graph shown in FIG. 3 shows the estimated charge amount based on the amount of electric charge change in the discharge generated less than 1 ms from the time when the first electric field change occurs among the plurality of discharges forming the negative lightning strike, and the same initial electric charge amount. Estimated charge amount based on the amount of electric charge change in the discharge that occurred less than 2 ms from the time when the change occurred, and the estimated amount of charge based on the amount of electric charge change in the discharge that occurred less than 3 ms from the time when the first electric field change occurred. Similarly, it is based on the estimated charge amount based on the amount of electric charge change in the discharge generated less than 4 ms from the time when the first electric field change occurs, and the amount of electric charge change in the discharge generated less than 5 ms from the time when the first electric field change occurs. This is a comparison between the estimated charge amount and the measured charge amount.
The point charge height L [m] used to estimate the lightning charge amount ΔQ [C] was observed at the weather station (Kagoshima Meteorological Observatory) closest to the wind power generation facility where the lightning strike occurred, at the time closest to the time when the lightning strike occurred. 5000m (the above-ground height of the air layer where the temperature is -1.8 ° C), 6000m (the above-ground height of the air layer where the temperature is -6.8 ° C), 6500m (the temperature is-) estimated from the high-level meteorological observation data. Four were selected: the above-ground height of the air layer at 10.0 ° C. and 7,000 m (the above-ground height of the air layer at -12.0 ° C.).

選択された4つの高さL[m]を用いて得られた点電荷モデルに基づく推定電荷量(ストローク電荷)と測定電荷量とを比較すると、最初の電界変化が生じた時点からの時間によらず高さL[m]を6500m(気温が−10.0℃である空気層の地上高)とした場合の推定電荷量と測定電荷量との差が比較的小さくなっていることが分かる。
そこで、本実施例の均一分布電荷モデルに基づく推定電荷量(インパルス電荷)の演算に際しては、落雷のあった風力発電設備に最も近い測候所(鹿児島気象台)で落雷発生時点に最も近い時点において観測された高層気象観測データから推定された気温が−10.0℃である空気層の地上高を上限高さH[m]として決定した。
Comparing the estimated charge (stroke charge) based on the point charge model obtained using the four selected heights L [m] with the measured charge, the time from the time when the first electric field change occurred Therefore, it can be seen that the difference between the estimated charge amount and the measured charge amount when the height L [m] is 6500 m (the ground height of the air layer where the temperature is -10.0 ° C) is relatively small. ..
Therefore, when calculating the estimated charge amount (impulse charge) based on the uniformly distributed charge model of this example, it was observed at the weather station (Kagoshima Meteorological Observatory) closest to the wind power generation facility where the lightning struck, at the point closest to the time when the lightning struck. The above-ground height of the air layer whose temperature is -10.0 ° C. estimated from the high-level meteorological observation data was determined as the upper limit height H [m].

表1は、落雷のあった風力発電設備(雷撃点)から約18km離れた南九州・国分(観測点)においてファーストアンテナを用いて観測された電界値に基づいて電界変化量ΔEを算出し、(式2)による演算を行って得られた推定電荷量と測定によって得られた測定電荷量とを比較したものである。
なお、表1の例では雷撃点と観測点の標高差が小さかったためh=0とし、ΔEについては、帰還雷撃開始後0.2msまでの電荷量変化を対象としたため、図4のグラフに示すように0.175msから0.225msまでに観測された電界値の平均値とした(図4ではΔE=41V/m)。
表1は、電流波形が測定できた4つの雷撃に関して電流波形の時間積分から計算した電荷量変化(実測値)と、対象雷撃に伴って発生した電界波形から推定した電荷量変化(推定値)と、実測値に対する推定値の誤差率を示している。

Figure 0006872192
Table 1 calculates the amount of electric charge change ΔE based on the electric field value observed using the first antenna at the Kokubu (observation point) in South Kyushu, which is about 18 km away from the wind power generation facility (lightning point) where the lightning struck. This is a comparison between the estimated charge amount obtained by performing the calculation according to (Equation 2) and the measured charge amount obtained by the measurement.
In the example of Table 1, since the elevation difference between the lightning strike point and the observation point was small, h = 0, and ΔE was shown in the graph of FIG. 4 because the charge amount change up to 0.2 ms after the start of the return lightning strike was targeted. As described above, the average value of the electric field values observed from 0.175 ms to 0.225 ms was used (ΔE = 41 V / m in FIG. 4).
Table 1 shows the change in the amount of charge calculated from the time integration of the current waveform (measured value) for the four lightning strikes for which the current waveform could be measured, and the change in the amount of charge estimated from the electric field waveform generated by the target lightning strike (estimated value). The error rate of the estimated value with respect to the measured value is shown.
Figure 0006872192

表1におけるデータ1と2は、2013年8月4日の10時35分に下向きリーダにより発生した第一雷撃及び第二雷撃に伴って観測されたものであり、データ3と4は、同日の10時38分に同じく下向きリーダにより発生した第一雷撃及び第二雷撃に伴って観測されたものである。
表1に示すとおり、誤差率は−16.6%〜21.0%となったが、上記(式2)の導出にあたっては、(1)雷道が大地に垂直である(2)雷道上に電荷が一様分布する(3)帰還雷撃開始後0.2msで雷電流はゼロとなっている等、多くの仮定をすることで得られたものであることを考え合わせれば、この程度の誤差率は想定内であり、十分利用に耐えるものである。
また、上述した誤差率の範囲は、スローアンテナを用いて観測された電界値に基づく推定値の誤差率と同程度である。
Data 1 and 2 in Table 1 were observed in association with the first and second lightning strokes that occurred by the downward leader at 10:35 on August 4, 2013, and data 3 and 4 were observed on the same day. It was observed at 10:38 with the first and second lightning strokes also caused by the downward leader.
As shown in Table 1, the error rate was -16.6% to 21.0%, but in deriving the above (Equation 2), (1) the lightning path is perpendicular to the ground (2) on the lightning path. (3) The lightning current is zero 0.2 ms after the start of the return lightning strike. Considering that it was obtained by making many assumptions, it is about this level. The error rate is within the expected range and can be used sufficiently.
Further, the range of the error rate described above is about the same as the error rate of the estimated value based on the electric field value observed using the slow antenna.

実施例2は、実施例1の落雷電荷量推定システムから下限高さ決定手段8を省略し、下限高さhを用いずに上記(式2)による演算に代えて下記(式1)による演算を行い、風力発電設備に落ちた雷の落雷電荷量ΔQ[C]を算出する点のみで異なり、他の構成は実施例1と同じである。
(式1)ΔQ=2πε0HΔE/{1/D−1/(D2+H2)1/2}
したがって、実施例2の落雷電荷量推定システムの概念図は、図2から下限高さ決定手段8を省き、上限高さ決定手段7のみから電荷量計算手段9に上限高さHを入力するものとなる。
そして、実施例2の構成であっても実施例1で説明したように、雷撃点と観測点の標高差が小さければ下限高さhを0としても実測値に対する推定値の誤差率は想定内の範囲となることから、平野部において落雷電荷量を推定するに際しては十分に利用可能である。
In the second embodiment, the lower limit height determining means 8 is omitted from the lightning charge amount estimation system of the first embodiment, and the calculation by the following (Equation 1) is performed instead of the calculation by the above (Equation 2) without using the lower limit height h. The only difference is that the lightning charge amount ΔQ [C] of the lightning that has fallen on the wind power generation facility is calculated, and the other configurations are the same as those of the first embodiment.
(Equation 1) ΔQ = 2πε 0 HΔE / {1 / D-1 / (D 2 + H 2 ) 1/2 }
Therefore, in the conceptual diagram of the lightning charge amount estimation system of the second embodiment, the lower limit height determining means 8 is omitted from FIG. 2, and the upper limit height H is input to the charge amount calculating means 9 only from the upper limit height determining means 7. It becomes.
Then, even in the configuration of the second embodiment, as described in the first embodiment, if the elevation difference between the lightning strike point and the observation point is small, the error rate of the estimated value with respect to the actually measured value is within the assumption even if the lower limit height h is set to 0. Therefore, it can be sufficiently used when estimating the amount of lightning strike charge in the plain area.

実施例3は、実施例1又は2におけるインパルス電荷の落雷電荷量推定システムと、スローアンテナによる観測に基づき点電荷モデルに基づく上記(式9)による演算を行って得られるストローク電荷の落雷電荷量推定システムとを統合したシステムであり、図5のような構成となっている。
なお、図5は実施例1におけるインパルス電荷の落雷電荷量推定システムとストローク電荷の落雷電荷量推定システムとを統合したシステムの例である。
In the third embodiment, the lightning charge amount of the stroke charge obtained by performing the calculation by the above (Equation 9) based on the point charge model based on the observation by the slow antenna and the lightning charge amount estimation system of the impulse charge in the first or second embodiment. It is a system integrated with an estimation system, and has a configuration as shown in FIG.
Note that FIG. 5 is an example of a system in which the impulse charge lightning charge amount estimation system and the stroke charge lightning charge amount estimation system are integrated in the first embodiment.

すなわち、雷電流観測手段1、高層気象観測データを取得するデータ取得手段3、水平距離D[m]を計測する落雷位置標定手段4及び気温が−5℃〜−15℃である空気層の地上高の範囲を推定する地上高範囲推定手段6については、インパルス電荷の落雷電荷量推定システムのものを利用することができるので、次の手段を追加してストローク電荷の落雷電荷量推定システムを構成している。
(1)落雷に伴う電界の変化を計測するスローアンテナを備え、精度約0.2μsのGPS時計で雷電流観測手段1と時刻同期を取ってサンプル時間間隔0.1μsで計測された電界値を記録する第2電界計測手段12。
(2)落雷を形成する放電における最初の電界変化直前の電界値と最後の電界変化直後の電界値の差である電界変化量ΔE2[V/m]を算出する第2電界変化量演算手段13。
(3)地上高範囲推定手段6が推定した地上高の範囲から一つの高さL[m]を決定する高さ決定手段14。
なお、実施例3では実施例1及び2と同じく、気温が−10.0℃であると推定された空気層の地上高を電荷中心の高さL[m]とした。
(4)落雷位置標定手段4で計測された水平距離D[m]、上記(2)の第2電界変化量演算手段13で算出された第2電界変化量ΔE2[V/m]、上記()の高さ決定手段14で決定された高さL[m] を用いて式9による演算を行い、風力発電設備に落ちた雷の第2落雷電荷量ΔQ2[C]を算出する第2電荷量計算手段15及びその計算結果を表示する第2表示手段16。
That is, the lightning current observing means 1, the data acquiring means for acquiring high-level meteorological observation data 3, the lightning strike position locating means 4 for measuring the horizontal distance D [m], and the ground of the air layer where the temperature is -5 ° C to -15 ° C. As the ground high range estimation means 6 for estimating the high range, the one of the lightning charge amount estimation system for impulse charge can be used. Therefore, the following means are added to configure the lightning charge amount estimation system for stroke charge. doing.
(1) Equipped with a slow antenna that measures changes in the electric field due to a lightning strike, and a GPS watch with an accuracy of about 0.2 μs is used to synchronize the time with the lightning current observation means 1 and measure the electric field value at a sample time interval of 0.1 μs. Second electric field measuring means 12 for recording.
(2) Second electric field change amount calculation means 13 for calculating the electric field change amount ΔE2 [V / m], which is the difference between the electric field value immediately before the first electric field change and the electric field value immediately after the last electric field change in the discharge forming a lightning strike. ..
(3) the height determining means for ground clearance range estimating means 6 determines one height L [m] from the ground clearance of the range estimated 14.
In Example 3, as in Examples 1 and 2, the ground clearance of the air layer estimated to have a temperature of -10.0 ° C. was defined as the height L [m] of the charge center.
(4) The horizontal distance D [m] measured by the lightning position locating means 4, the second electric field change amount ΔE2 [V / m] calculated by the second electric field change amount calculation means 13 of the above (2), and the above ( The second lightning charge amount ΔQ2 [C] of the lightning that has fallen on the wind power generation facility is calculated by performing the calculation by the equation 9 using the height L [m] determined by the height determining means 14 of 3). The charge amount calculation means 15 and the second display means 16 for displaying the calculation result.

実施例4は、実施例2の(式1)によって算出される落雷電荷量ΔQに対してエラー率Er[%]を推定し、下記(式3)による演算を行い、風力発電設備に落ちた雷の落雷電荷量ΔQ[C]を算出する点のみで異なり、他の構成は実施例2と同じである。
(式3)ΔQ=2πε0HΔE×100/(100+Er)/{1/D−1/(D2+H2)1/2}
ここで、エラー率Erは(式1)によって算出される落雷電荷量ΔQが真値より大きいときプラス、真値より小さいときマイナスであり、地形、気温、風速等に左右される。
そこで、事前に各地域において様々な条件下で、(式1)によって算出された落雷電荷量ΔQと測定電荷量とを比較し、各地域、各条件におけるエラー率Erを蓄積しておけば、対象となる落雷のあった地域と落雷時刻における条件に応じてエラー率Erを定めることができる。
また、新たな知見として、落雷時に計測された電界値を高域遮断フィルタ処理した後の波形における波尾長T[μs]とエラー率Erとの間に密接な関係あることが分かったので、以下では、その詳細について説明する。
In Example 4, the error rate Er [%] was estimated with respect to the lightning charge amount ΔQ calculated by (Equation 1) of Example 2, the calculation was performed by the following (Equation 3), and the lightning strike fell into the wind power generation facility. The only difference is that the lightning charge amount ΔQ [C] of the lightning strike is calculated, and the other configurations are the same as those in the second embodiment.
(Equation 3) ΔQ = 2πε 0 HΔE × 100 / (100 + Er) / {1 / D-1 / (D 2 + H 2 ) 1/2 }
Here, the error rate Er is positive when the lightning charge amount ΔQ calculated by (Equation 1) is larger than the true value, and negative when it is smaller than the true value, and depends on the terrain, air temperature, wind speed, and the like.
Therefore, if the lightning charge amount ΔQ calculated by (Equation 1) is compared with the measured charge amount in advance under various conditions in each region and the error rate Er in each region and each condition is accumulated, it is possible to accumulate the error rate Er. The error rate Er can be determined according to the target area where the lightning strike occurred and the conditions at the time of the lightning strike.
In addition, as a new finding, it was found that there is a close relationship between the wave tail length T [μs] and the error rate Er in the waveform after high-frequency cutoff filtering of the electric field value measured at the time of a lightning strike. Now, the details will be described.

図6は、図4のグラフと同じ南九州・国分(観測点)で計測された落雷における高域遮断フィルタ処理後の電界波形測定グラフの例である。
図6に示すとおり、このグラフにおけるピーク(46.1685[V/m])が現れる前において電界値がピークの90%となる点(以下「90%点」という。)及びピークの10%となる点(以下「10%点」という。)を特定し、90%点と10%点を結ぶ直線が時間軸と交わる点(-0.7467[μs])を始点とする。
次にピークが現れた後において電界値がピークの50%となる点(以下「50%点」という。)を終点(53.1075[μs])とする。
そして、始点と終点の時間差(53.8542[μs])を波尾長と定義する。
FIG. 6 is an example of an electric field waveform measurement graph after high-frequency cutoff filter processing in a lightning strike measured at the same South Kyushu / Kokubu (observation point) as the graph of FIG.
As shown in FIG. 6, the point where the electric field value becomes 90% of the peak (hereinafter referred to as “90% point”) and the point where the electric field value becomes 10% of the peak before the peak (46.1685 [V / m]) appears in this graph. (Hereinafter referred to as "10% point") is specified, and the starting point is the point (-0.7467 [μs]) where the straight line connecting the 90% point and the 10% point intersects the time axis.
Next, the point where the electric field value becomes 50% of the peak after the peak appears (hereinafter referred to as "50% point") is defined as the end point (53.1075 [μs]).
Then, the time difference between the start point and the end point (53.8542 [μs]) is defined as the wave tail length.

図7は、図4のグラフと同じ南九州・国分(観測点)で観測された複数回の落雷における、波尾長Tと(式1)によって算出された落雷電荷量ΔQのエラー率Erとの関係を示すグラフである。
このグラフからも見てとれるように、波尾長Tとエラー率Erには下記(式4)で表すことのできる直線的な相関関係があることが分かる。
(式4)Er=αT+β
そして、図7のグラフにおいては、α=-1.5743、β=75.919となり、波尾長Tとエラー率Erの関係式は、Er=-1.5743T+75.919となることが分かった。
また、この相関関係には地域差があることが分かっているが、予め各地域において関係式(α及びβの値)を定めておけば、落雷時刻におけるその他の条件を考慮することなく、エラー率Erをファーストアンテナ等によって計測された電界値の変化に基づいて特定される波尾長Tを用いて正確に推定することができる。
FIG. 7 shows the wave tail length T and the error rate Er of the lightning charge amount ΔQ calculated by (Equation 1) in multiple lightning strikes observed at the same South Kyushu / Kokubu (observation point) as the graph of FIG. It is a graph which shows the relationship.
As can be seen from this graph, it can be seen that the wave tail length T and the error rate Er have a linear correlation that can be expressed by the following (Equation 4).
(Equation 4) Er = αT + β
Then, in the graph of FIG. 7, it was found that α = -1.5743 and β = 75.919, and the relational expression between the wave tail length T and the error rate Er was Er = -1.5743T + 75.919.
In addition, it is known that there are regional differences in this correlation, but if the relational expressions (values of α and β) are determined in advance in each region, an error will occur without considering other conditions at the time of the lightning strike. The rate Er can be accurately estimated using the wave tail length T specified based on the change in the electric field value measured by the first antenna or the like.

図8は、実施例4において、波尾長Tを用いてエラー率Erを推定して落雷電荷量ΔQを算出する落雷電荷量推定システムの概念図である。
実施例4では、計測された電界値の変化に基づいて波尾長Tを特定し、波尾長Tを用いてエラー率Erを推定するので、実施例1における落雷電荷量推定システム(図2)に、電界計測手段から得たデータを基に波尾長Tを特定するための波尾長演算手段17と、波尾長Tを用いてエラー率Erを推定するためのエラー率推定手段18が追加されたものとなっている。
FIG. 8 is a conceptual diagram of a lightning charge amount estimation system that estimates the error rate Er using the wave tail length T and calculates the lightning charge amount ΔQ in the fourth embodiment.
In the fourth embodiment, the wave tail length T is specified based on the change in the measured electric field value, and the error rate Er is estimated using the wave tail length T. , A wave tail length calculation means 17 for specifying the wave tail length T based on the data obtained from the electric field measuring means, and an error rate estimation means 18 for estimating the error rate Er using the wave tail length T are added. It has become.

図9は、大地に垂直な雷道に電荷が直線的に変化して分布していると仮定した変化分布電荷モデルを示す図である。
この変化分布電荷モデルにおいて、1m上昇につき増加する電荷量をa[C]とすると、途中の式は省略するが、落雷電荷量ΔQは下記(式10)で計算できることとなる。
(式10)ΔQ=(2πε0ΔE−aG)×H/{1/D−1/(D2+H2)1/2
(ただし、G=ln[{(D2+H2)1/2+H}/D]−H/2D−H/2(D2+H2)1/2である。)
FIG. 9 is a diagram showing a change distribution charge model assuming that the charges are linearly changed and distributed in a lightning path perpendicular to the ground.
In this change distribution charge model, assuming that the amount of charge that increases with 1 m rise is a [C], the amount of lightning charge ΔQ can be calculated by the following (Equation 10), although the equation in the middle is omitted.
(Equation 10) ΔQ = (2πε 0 ΔE−aG) × H / {1 / D-1 / (D 2 + H 2 ) 1/2 }
(However, G = ln [{(D 2 + H 2 ) 1/2 + H} / D] -H / 2D-H / 2 (D 2 + H 2 ) 1/2 .)

(式10)を定性的に捉えると、Gは通常プラスの値となるので、均一分布電荷モデルに基づく落雷電荷量ΔQが大きく推定された場合(Er>0の場合)には、aはプラス、すなわち、電荷が放電路の上部に偏っているということができ、ΔQが小さく推定された場合(Er<0の場合)には、aはマイナス、すなわち、電荷が放電路の下部に偏っているということができる。 If (Equation 10) is qualitatively grasped, G is usually a positive value, so when the lightning charge amount ΔQ based on the uniformly distributed charge model is largely estimated (when Er> 0), a is positive. That is, it can be said that the charge is biased to the upper part of the discharge path, and when ΔQ is estimated to be small (when Er <0), a is negative, that is, the charge is biased to the lower part of the discharge path. It can be said that there is.

また、(式3)と(式10)によるΔQが同じ値になるものと仮定すれば、aとErの関係を下記(式11)で表すことができる。
(式11)a=2πε0ΔE×Er/(100+Er)×G
そして、(式11)に(式4)の関係を代入すると、aとTの関係を下記(式12)で表すことができる。
(式12)a=2πε0ΔE×(αT+β)/(100+αT+β)×G
Further, assuming that ΔQ according to (Equation 3) and (Equation 10) has the same value, the relationship between a and Er can be expressed by the following (Equation 11).
(Equation 11) a = 2πε 0 ΔE × Er / (100 + Er) × G
Then, by substituting the relationship of (Equation 4) into (Equation 11), the relationship between a and T can be expressed by the following (Equation 12).
(Equation 12) a = 2πε 0 ΔE × (αT + β) / (100 + αT + β) × G

実施例1〜4の変形例を列記する。
(1)実施例1〜4においては、雷電流観測手段1として風力発電設備の下部にロゴスキーコイルを設置したが、風力発電設備に限らず高いビルや鉄塔の避雷針に設置しても良く、ロゴスキーコイルに代えてシャント抵抗を用いても良い。
また、すでに説明したように、雷電流観測手段1を用いずに他の手段によって落雷位置を標定することもできるが、そうした場合、例えば実施例1における落雷電荷量推定システムは図10に示すようなものとなる。
すなわち、図2の概念図から雷電流観測手段1及び表示手段11が省かれたものとなる。
(2)実施例1〜4においては、雷電流観測手段1及び電界計測手段2のサンプル時間間隔は0.1μsであったが、トリガ時刻、電界変化量及び時間差の特定に支障がなければ、サンプル時間間隔は0.1μsより大きくても小さくても良い。
Modifications of Examples 1 to 4 are listed.
(1) In Examples 1 to 4, the Rogowski coil was installed under the wind power generation facility as the lightning current observation means 1, but it may be installed not only in the wind power generation facility but also in a lightning rod of a tall building or a steel tower. A shunt resistor may be used instead of the logoski coil.
Further, as already described, the lightning strike position can be determined by other means without using the lightning current observation means 1, but in such a case, for example, the lightning strike charge amount estimation system in the first embodiment is as shown in FIG. It will be something like that.
That is, the lightning current observing means 1 and the display means 11 are omitted from the conceptual diagram of FIG.
(2) In Examples 1 to 4, the sample time interval of the lightning current observing means 1 and the electric field measuring means 2 was 0.1 μs, but if there is no problem in specifying the trigger time, the amount of electric field change, and the time difference, The sample time interval may be greater than or less than 0.1 μs.

(3)実施例1〜4においては、上限高さH及び高さLを気温が−10.0℃であると推定された空気層の地上高としたが、誤差率の小さい上限高さH及び高さLは、地域、地表面の温度、風の強さや向きによって変化するので、各地域において予め様々な条件下で実施例1〜4と同様の観測を行い、観測された高層気象観測データから各落雷において上限高さH及び高さLを決定する方法を確立する必要がある。
したがって、各落雷において高層気象観測データから上限高さHを的確に決定するにはデータの積み上げが欠かせないところであるが、ストローク電荷を推定するために選択する高さLについては、通常は時間とともに上昇することが分かっているので、時間差が所定長さ(例えば2ms)未満である前期段階の放電における第2落雷電荷量ΔQ2[C]の算出に際しては、観測された高層気象観測データから推定された気温が−5℃〜−10℃である空気層の地上高のいずれかを選択し、時間差が所定長さ以上である後期段階の放電における第2落雷電荷量ΔQ2[C]の算出に際しては、観測された高層気象観測データから推定された気温が−10℃〜−15℃である空気層の地上高のいずれかを選択すれば良いといえる。
(3) In Examples 1 to 4, the upper limit height H and the height L were set to the above-ground height of the air layer estimated to have a temperature of -10.0 ° C., but the upper limit height H with a small error rate was used. And the height L changes depending on the area, the temperature of the ground surface, the strength and direction of the wind, so the same observations as in Examples 1 to 4 were performed in advance under various conditions in each area, and the observed high-level meteorological observations. It is necessary to establish a method for determining the upper limit height H and height L for each lightning strike from the data.
Therefore, it is indispensable to accumulate data in order to accurately determine the upper limit height H from the high-level meteorological observation data for each lightning strike, but the height L selected to estimate the stroke charge is usually time. Since it is known that the amount of lightning strikes rises with time, the second lightning charge amount ΔQ2 [C] in the early stage discharge with a time difference of less than a predetermined length (for example, 2 ms) is estimated from the observed high-level meteorological observation data. When calculating the second lightning charge amount ΔQ2 [C] in the late stage discharge where the time difference is equal to or greater than the predetermined length by selecting one of the above-ground heights of the air layer whose temperature is -5 ° C to -10 ° C. It can be said that one of the above-ground heights of the air layer whose temperature estimated from the observed high-level meteorological observation data is -10 ° C to -15 ° C may be selected.

(4)実施例1〜4においては、電界変化量ΔEを帰還雷撃開始後0.2msまでの電荷量変化を対象とし、0.175msから0.225msまでに観測された電界値の平均値としたが、帰還雷撃開始後1msまで又は観測された雷電流の波高値が波尾において1kA以下となるまでの時間から適宜選択できるようにしても良い。
また、電界変化量ΔEを帰還雷撃開始後0.2msにおいて観測された電界値の瞬時値としても良く、帰還雷撃開始後0.2msの前後0.1〜50μsにおいて観測された電界値の平均値としても良い。
(4) In Examples 1 to 4, the electric field change amount ΔE is the average value of the electric field values observed from 0.175 ms to 0.225 ms, targeting the charge amount change up to 0.2 ms after the start of the return lightning strike. However, it may be possible to appropriately select from the time from the start of the return lightning strike to 1 ms or the time until the peak value of the observed lightning current becomes 1 kA or less at the crest.
Further, the electric field change amount ΔE may be an instantaneous value of the electric field value observed 0.2 ms after the start of the feedback lightning strike, and the average value of the electric field values observed at 0.1 to 50 μs before and after 0.2 ms after the start of the feedback lightning strike. May be.

(5)実施例4においては、実施例2の(式1)によって算出される落雷電荷量ΔQに対してエラー率Er[%]を推定したが、実施例1の(式2)によって算出される落雷電荷量ΔQに対してエラー率Er[%]を推定しても良い。 (5) In Example 4, the error rate Er [%] was estimated with respect to the lightning charge amount ΔQ calculated by (Equation 1) of Example 2, but it was calculated by (Equation 2) of Example 1. The error rate Er [%] may be estimated with respect to the amount of lightning charge ΔQ.

1 雷電流観測手段 2 電界計測手段 3 データ取得手段
4 落雷位置標定手段 5 電界変化量演算手段 6 地上高範囲推定手段
7 上限高さ決定手段 8 下限高さ決定手段 9 電荷量計算手段
10、11 表示手段 12 第2電界計測手段
13 第2電界変化量演算手段 14 高さ決定手段
15 第2電荷量計算手段 16 第2表示手段
17 波尾長演算手段 18 エラー率推定手段
D 水平距離 ΔE 電界変化量 H 上限高さ h 下限高さ
L 電荷中心の高さ ΔQ 落雷電荷量 ΔQ2 第2落雷電荷量
Er エラー率 T 波尾長 a 1m上昇につき増加する電荷量
α、β 落雷電荷量の測定及び推定に基づいて予め決定される定数
1 Lightning current observation means 2 Electric field measurement means 3 Data acquisition means 4 Lightning position determination means 5 Electric field change amount calculation means 6 Ground height range estimation means 7 Upper limit height determination means 8 Lower limit height determination means 9 Charge amount calculation means 10, 11 Display means 12 Second electric field measurement means 13 Second electric field change amount calculation means 14 Height determination means 15 Second charge amount calculation means 16 Second display means 17 Wave tail length calculation means 18 Error rate estimation means D Horizontal distance ΔE Electric field change amount H Upper limit height h Lower limit height L Charge center height ΔQ Lightning charge amount ΔQ2 Second lightning charge amount Er Error rate T Wave tail length a Charge amount increasing with 1 m rise α, β Based on measurement and estimation of lightning charge amount Predetermined constant

Claims (10)

落雷電荷量を算出するための均一分布電荷モデルによる落雷電荷量推定方法であって、
観測地域における気象条件毎及び最初の放電が生じた時点からの時間差の範囲毎に、推定電荷量と測定電荷量との差が小さくなる空気層の温度との対応関係を予め定めておき、
落雷位置から観測点までの水平距離D[m]及び前記観測点における落雷前後の電界値を計測し、
前記落雷前後の電界値に基づいて、帰還雷撃開始直前の電界値と前記帰還雷撃開始後所定時間経過後の電界値の差である電界変化量ΔE[V/m]を算出し、
前記落雷位置及び落雷発生時点に近い箇所及び時点における気象観測データから気温が−5℃〜−15℃である空気層の地上高の範囲を推定し、
前記落雷位置、落雷発生時点における気象条件、最初の放電が生じた時点からの時間差の範囲及び前記落雷位置を含む観測地域における予め定められた対応関係に基づいて推定電荷量と測定電荷量との差が小さくなる空気層の温度を決定し、
決定した前記空気層の温度及び推定した前記地上高の範囲に基づいて分布電荷の上限高さH[m]を決定し、
前記水平距離D、前記電界変化量ΔE及び前記上限高さHを用いて下記(式1)によって落雷電荷量ΔQ[C]を算出する
ことを特徴とする落雷電荷量推定方法。
(式1)ΔQ=2πε0HΔE/{1/D−1/(D2+H2)1/2}
(ただし、πは円周率、ε0は空気の誘電率を表す。)
It is a method of estimating the amount of lightning strike by a uniformly distributed charge model for calculating the amount of lightning strike.
For each meteorological condition in the observation area and for each range of time difference from the time when the first discharge occurs, the correspondence relationship with the temperature of the air layer where the difference between the estimated charge amount and the measured charge amount becomes small is determined in advance.
Measure the horizontal distance D [m] from the lightning strike position to the observation point and the electric field value before and after the lightning strike at the observation point.
Based on the electric field values before and after the lightning strike, the electric field change amount ΔE [V / m], which is the difference between the electric field value immediately before the start of the return lightning strike and the electric field value after the elapse of a predetermined time after the start of the return lightning strike, is calculated.
The range of ground clearance of the air layer where the temperature is -5 ° C to -15 ° C is estimated from the location of the lightning strike and the meteorological observation data at the location and time when the lightning strike occurred.
The estimated charge amount and the measured charge amount based on the lightning strike position, the weather conditions at the time of the lightning strike, the range of the time difference from the time when the first discharge occurs, and the predetermined correspondence relationship in the observation area including the lightning strike position. Determine the temperature of the air layer where the difference is small,
The upper limit height H [m] of the distributed charge is determined based on the determined temperature of the air layer and the estimated range of the ground clearance.
A method for estimating a lightning charge amount, which comprises calculating a lightning charge amount ΔQ [C] by the following (Equation 1) using the horizontal distance D, the electric field change amount ΔE, and the upper limit height H.
(Equation 1) ΔQ = 2πε 0 HΔE / {1 / D-1 / (D 2 + H 2 ) 1/2 }
(However, π represents the pi and ε 0 represents the permittivity of air.)
推定した前記地上高の範囲に基づいて分布電荷の下限高さh[m]を決定し、
前記水平距離D、前記電界変化量ΔE、前記上限高さH及び前記下限高さhを用いて前記(式1)に代え下記(式2)によって落雷電荷量ΔQを算出する
ことを特徴とする請求項1に記載の落雷電荷量推定方法。
(式2)ΔQ=2πε0(H−h)ΔE/{1/(D2+h2)1/2−1/(D2+H2)1/2}
(ただし、πは円周率、ε0は空気の誘電率を表し、0≦h<Hである。)
The lower limit height h [m] of the distributed charge is determined based on the estimated ground clearance.
Using the horizontal distance D, the electric field change amount ΔE, the upper limit height H, and the lower limit height h, the lightning charge amount ΔQ is calculated by the following (Equation 2) instead of the above (Equation 1). The method for estimating the amount of lightning charge according to claim 1.
(Equation 2) ΔQ = 2πε 0 (H−h) ΔE / {1 / (D 2 + h 2 ) 1/2 -1 / (D 2 + H 2 ) 1/2 }
(However, π represents the pi and ε 0 represents the dielectric constant of air, and 0 ≦ h <H.)
前記下限高さhを前記落雷位置と前記観測点の高さの差を算出して決定する
ことを特徴とする請求項2に記載の落雷電荷量推定方法。
The method for estimating a lightning charge amount according to claim 2, wherein the lower limit height h is determined by calculating the difference between the height of the lightning strike position and the height of the observation point.
前記(式1)によって算出される落雷電荷量ΔQのエラー率Er[%]を推定し、
前記水平距離D、前記電界変化量ΔE、前記上限高さH及び前記エラー率Erを用いて前記(式1)に代え下記(式3)によって落雷電荷量ΔQを算出する
ことを特徴とする請求項1に記載の落雷電荷量推定方法。
(式3)ΔQ=2πε0HΔE×100/(100+Er)/{1/D−1/(D2+H2)1/2}
(ただし、πは円周率、ε0は空気の誘電率を表す。)
The error rate Er [%] of the lightning charge amount ΔQ calculated by the above (Equation 1) is estimated.
A claim characterized in that the lightning charge amount ΔQ is calculated by the following (Equation 3) instead of the above (Equation 1) using the horizontal distance D, the electric field change amount ΔE, the upper limit height H, and the error rate Er. Item 1. The method for estimating the amount of lightning charge according to Item 1.
(Equation 3) ΔQ = 2πε 0 HΔE × 100 / (100 + Er) / {1 / D-1 / (D 2 + H 2 ) 1/2 }
(However, π represents the pi and ε 0 represents the permittivity of air.)
前記落雷前後の電界値に基づいて、前記落雷前後における電界波形の波尾長T[μs]を算出し、
算出された波尾長Tを用いて下記(式4)によって前記エラー率Erを推定する
ことを特徴とする請求項4に記載の落雷電荷量推定方法。
(式4)Er=αT+β
(ただし、α及びβは落雷電荷量の測定及び推定に基づいて予め決定される定数である。)
Based on the electric field values before and after the lightning strike, the wave tail length T [μs] of the electric field waveform before and after the lightning strike is calculated.
The lightning strike charge amount estimation method according to claim 4, wherein the error rate Er is estimated by the following (Equation 4) using the calculated wave tail length T.
(Equation 4) Er = αT + β
(However, α and β are constants determined in advance based on the measurement and estimation of the amount of lightning strike charge.)
落雷電荷量を算出するための落雷電荷量推定システムであって、
観測地域における気象条件毎及び最初の放電が生じた時点からの時間差の範囲毎に、推定電荷量と測定電荷量との差が小さくなる空気層の温度との予め定められた対応関係が記録されている対応関係記録手段と、
落雷位置から観測点までの水平距離D[m] を計測する落雷位置標定手段と、
前記観測点における落雷前後の電界値を計測する電界計測手段と、
前記落雷前後の電界値に基づいて、帰還雷撃開始直前の電界値と前記帰還雷撃開始後所定時間経過後の電界値の差である電界変化量ΔE[V/m]を算出する電界変化量演算手段と、
前記落雷位置及び落雷発生時点に近い箇所及び時点における気象観測データから気温が−5℃〜−15℃である空気層の地上高の範囲を推定する地上高範囲推定手段と、
前記落雷位置、落雷発生時点における気象条件、最初の放電が生じた時点からの時間差の範囲及び前記落雷位置を含む観測地域における予め定められた対応関係に基づいて推定電荷量と測定電荷量との差が小さくなる空気層の温度を決定する空気層温度決定手段と、
該空気層温度決定手段が決定した前記空気層の温度及び前記地上高範囲推定手段が推定した前記地上高の範囲に基づいて分布電荷の上限高さH[m]を決定する上限高さ決定手段と、
前記水平距離D、前記電界変化量ΔE及び前記上限高さHを用いて下記(式1)の演算を行い落雷電荷量ΔQ[C]を算出する電荷量計算手段とを備えている
ことを特徴とする落雷電荷量推定システム。
(式1)ΔQ=2πε0HΔE/{1/D−1/(D2+H2)1/2}
(ただし、πは円周率、ε0は空気の誘電率を表す。)
It is a lightning charge amount estimation system for calculating the lightning charge amount.
A predetermined correspondence with the temperature of the air layer where the difference between the estimated charge amount and the measured charge amount becomes small is recorded for each meteorological condition in the observation area and for each range of time difference from the time when the first discharge occurs. Correspondence relationship recording means and
A lightning strike position positioning means that measures the horizontal distance D [m] from the lightning strike position to the observation point,
An electric field measuring means for measuring the electric field value before and after a lightning strike at the observation point,
Based on the electric field values before and after the lightning strike, the electric field change amount ΔE [V / m], which is the difference between the electric field value immediately before the start of the feedback lightning strike and the electric field value after a predetermined time has elapsed after the start of the feedback lightning strike, is calculated. Means and
Ground clearance estimating means for estimating the range of ground clearance of the air layer whose temperature is -5 ° C to -15 ° C from the location of the lightning strike and the meteorological observation data at the location and time when the lightning strike occurred.
The estimated charge amount and the measured charge amount based on the lightning strike position, the weather conditions at the time of the lightning strike, the range of the time difference from the time when the first discharge occurs, and the predetermined correspondence relationship in the observation area including the lightning strike position. An air layer temperature determining means for determining the temperature of the air layer where the difference is small,
Upper limit height determining means for determining the upper limit height H [m] of the distributed charge based on the temperature of the air layer determined by the air layer temperature determining means and the above- ground height range estimated by the ground clearance estimating means. When,
It is characterized in that it is provided with a charge amount calculation means for calculating the lightning charge amount ΔQ [C] by performing the following calculation (Equation 1) using the horizontal distance D, the electric field change amount ΔE, and the upper limit height H. Lightning charge estimation system.
(Equation 1) ΔQ = 2πε 0 HΔE / {1 / D-1 / (D 2 + H 2 ) 1/2 }
(However, π represents the pi and ε 0 represents the permittivity of air.)
前記地上高範囲推定手段が推定した前記地上高の範囲に基づいて分布電荷の下限高さh[m]を決定する下限高さ決定手段をさらに備え、
前記電荷量計算手段は、前記水平距離D、前記電界変化量ΔE、前記上限高さH及び前記下限高さhを用いて前記(式1)に代え下記(式2)の演算を行う
ことを特徴とする請求項6に記載の落雷電荷量推定システム。
(式2)ΔQ=2πε0(H−h)ΔE/{1/(D2+h2)1/2−1/(D2+H2)1/2}
(ただし、πは円周率、ε0は空気の誘電率を表し、0≦h<Hである。)
Further provided with a lower limit height determining means for determining the lower limit height h [m] of the distributed charge based on the ground clearance estimated by the ground clearance estimating means.
The electric charge amount calculation means uses the horizontal distance D, the electric field change amount ΔE, the upper limit height H, and the lower limit height h to perform the following calculation (Equation 2) instead of the (Equation 1). The lightning charge amount estimation system according to claim 6, wherein the lightning charge amount estimation system is characterized.
(Equation 2) ΔQ = 2πε 0 (H−h) ΔE / {1 / (D 2 + h 2 ) 1/2 -1 / (D 2 + H 2 ) 1/2 }
(However, π represents the pi and ε 0 represents the dielectric constant of air, and 0 ≦ h <H.)
前記下限高さ決定手段は、前記落雷位置と前記観測点の高さの差を算出する手段を有している
ことを特徴とする請求項7に記載の落雷電荷量推定システム。
The lightning strike charge amount estimation system according to claim 7, wherein the lower limit height determining means includes means for calculating the difference between the height of the lightning strike position and the height of the observation point.
前記(式1)によって算出される落雷電荷量ΔQのエラー率Er[%]を推定するエラー率推定手段をさらに備え、
前記電荷量計算手段は、前記水平距離D、前記電界変化量ΔE、前記上限高さH及び前記エラー率Erを用いて前記(式1)に代え下記(式3)の演算を行う
ことを特徴とする請求項6に記載の落雷電荷量推定システム。
(式3)ΔQ=2πε0HΔE×100/(100+Er)/{1/D−1/(D2+H2)1/2}
(ただし、πは円周率、ε0は空気の誘電率を表す。)
An error rate estimating means for estimating the error rate Er [%] of the lightning charge amount ΔQ calculated by the above (Equation 1) is further provided.
The electric charge amount calculation means uses the horizontal distance D, the electric field change amount ΔE, the upper limit height H, and the error rate Er to perform the following calculation (Equation 3) instead of the (Equation 1). The lightning charge amount estimation system according to claim 6.
(Equation 3) ΔQ = 2πε 0 HΔE × 100 / (100 + Er) / {1 / D-1 / (D 2 + H 2 ) 1/2 }
(However, π represents the pi and ε 0 represents the permittivity of air.)
前記落雷前後の電界値に基づいて、前記落雷前後における電界波形の波尾長T[μs]を算出する波尾長演算手段をさらに備え、
前記エラー率推定手段は、算出された波尾長Tを用いて下記(式4)の演算を行う
ことを特徴とする請求項9に記載の落雷電荷量推定方法。
(式4)Er=αT+β
(ただし、α及びβは落雷電荷量の測定及び推定に基づいて予め決定される定数である。)
A wave tail length calculation means for calculating the wave tail length T [μs] of the electric field waveform before and after the lightning strike is further provided based on the electric field values before and after the lightning strike.
The lightning strike charge amount estimation method according to claim 9, wherein the error rate estimating means performs the following calculation (Equation 4) using the calculated wave tail length T.
(Equation 4) Er = αT + β
(However, α and β are constants determined in advance based on the measurement and estimation of the amount of lightning strike charge.)
JP2017116070A 2017-06-13 2017-06-13 Lightning charge amount estimation method and system Active JP6872192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017116070A JP6872192B2 (en) 2017-06-13 2017-06-13 Lightning charge amount estimation method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017116070A JP6872192B2 (en) 2017-06-13 2017-06-13 Lightning charge amount estimation method and system

Publications (2)

Publication Number Publication Date
JP2019002740A JP2019002740A (en) 2019-01-10
JP6872192B2 true JP6872192B2 (en) 2021-05-19

Family

ID=65006827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017116070A Active JP6872192B2 (en) 2017-06-13 2017-06-13 Lightning charge amount estimation method and system

Country Status (1)

Country Link
JP (1) JP6872192B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2519657B2 (en) * 1993-08-04 1996-07-31 工業技術院長 Lightning detection method and device
JPH07146377A (en) * 1993-11-25 1995-06-06 Giichiro Kato Device for detecting approaching of thunderbolt falling point
JPH09311122A (en) * 1996-05-22 1997-12-02 Fujikura Ltd Standard sample for measuring space charge, and method of measuring space charge
JP2006300794A (en) * 2005-04-22 2006-11-02 Canon Inc Discharge analytical method and discharge analyzer
JP4217728B2 (en) * 2006-05-25 2009-02-04 中国電力株式会社 Lightning strike advanced evaluation apparatus and method, lightning charge evaluation apparatus and method, lightning charge advanced evaluation program
EP2921887B1 (en) * 2012-11-15 2018-07-04 Tohoku Electric Power Co., Inc. Lightning-strike electric charge estimation system and method
JP6504662B2 (en) * 2015-07-28 2019-04-24 国立大学法人静岡大学 Lightning charge estimation method and system
CN106771682B (en) * 2016-12-31 2019-08-30 中国气象科学研究院 A kind of space charge concentration acquisition methods and device

Also Published As

Publication number Publication date
JP2019002740A (en) 2019-01-10

Similar Documents

Publication Publication Date Title
Chowdhuri et al. Parameters of lightning strokes: A review
EP2921887B1 (en) Lightning-strike electric charge estimation system and method
KR100963532B1 (en) Rainfall estimation method of weather radar
CN105866641B (en) The measuring system and method for long air gap lightning discharge electron temperature
JP6872192B2 (en) Lightning charge amount estimation method and system
JP5355344B2 (en) Lightning charge evaluation system, lightning determination method, lightning charge evaluation method
JP2012103209A (en) Lightning charge amount calculation system and lightning charge amount calculation method
Hodgkins et al. 20th century mass balance and thermal regime change at Scott Turnerbreen, Svalbard
JP6504662B2 (en) Lightning charge estimation method and system
JP2001004731A (en) Broad-band interferometer
US11079461B2 (en) Consistent arrival time measurement and determination of discharge polarity
Wang et al. Impact of updraft on neutralized charge rate by lightning in thunderstorms: A simulation case study
JP6537467B2 (en) Method of estimating lightning current characteristic value, estimation device, and estimation program
RU112524U1 (en) DEVICE FOR DETECTING ICE DEPOSITS ON ELECTRIC TRANSMISSION LINES WIRES
Gomes et al. Vertical electric fields and field change parameters due to partly inclined lightning leader channels
Saito et al. Location of negative charge associated with continuing current of upward lightning flash in winter
Zhang et al. Validation and revision of far-field-current relationship for the lightning strike to electrically short objects
Wang et al. Practical Features of 3D Lightning Mapping System FALMA
Zhang et al. Evaluation for the performance of the Guangdong-Hongkong-Macau lightning location system
CN104614577A (en) Method for acquiring pole lightning striking rate of transmission line based on actually-measured lighting stroke data
Bazelyan et al. Recovery of the parameters of a lightning current pulse from measurements of the electromagnetic field in the far wave zone
Shvets et al. Automatic method for monitoring the lower ionosphere and lightning location by tweek-atmospherics
JP2023183949A (en) Lightning current estimation system
Becerra et al. On the velocity of lightning upward connecting positive leaders
Rachidi Indirect estimation of lightning currents from remote electromagnetic field measurements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200325

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210409

R150 Certificate of patent or registration of utility model

Ref document number: 6872192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150