JP6504662B2 - Lightning charge estimation method and system - Google Patents

Lightning charge estimation method and system Download PDF

Info

Publication number
JP6504662B2
JP6504662B2 JP2015148799A JP2015148799A JP6504662B2 JP 6504662 B2 JP6504662 B2 JP 6504662B2 JP 2015148799 A JP2015148799 A JP 2015148799A JP 2015148799 A JP2015148799 A JP 2015148799A JP 6504662 B2 JP6504662 B2 JP 6504662B2
Authority
JP
Japan
Prior art keywords
electric field
lightning strike
lightning
time
charge amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015148799A
Other languages
Japanese (ja)
Other versions
JP2017026587A (en
Inventor
幸志 道下
幸志 道下
洋助 橋本
洋助 橋本
英宏 中田
英宏 中田
聡史 栗原
聡史 栗原
浩二 高野
浩二 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Kyushu Electric Power Co Inc
Original Assignee
Shizuoka University NUC
Kyushu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC, Kyushu Electric Power Co Inc filed Critical Shizuoka University NUC
Priority to JP2015148799A priority Critical patent/JP6504662B2/en
Publication of JP2017026587A publication Critical patent/JP2017026587A/en
Application granted granted Critical
Publication of JP6504662B2 publication Critical patent/JP6504662B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、落雷の電荷量を高い精度で推定可能とする落雷電荷量推定方法及びシステムに関する。   The present invention relates to a lightning strike charge amount estimation method and system capable of estimating a lightning strike charge amount with high accuracy.

電力会社等のインフラ設備を保有する企業や、広範囲に設備を分散配置し管理する事業者においては、落雷による設備被害をできるだけ早く把握することが求められる。
落雷が発生したときに、その落雷のエネルギー(電荷量)が分かれば、設備被害の想定を行う上で大変有効である。
In a company that owns infrastructure equipment such as a power company or a company that distributes and manages the equipment widely, it is required to grasp equipment damage by lightning strike as soon as possible.
When a lightning strike occurs, knowing the energy (charge amount) of the lightning strike is very effective in predicting equipment damage.

雷は雷雲等の空中の電荷が変化し地上の電荷と中和される過程で発生するため、特許文献1(特許第4217728号公報)に記載されるように、このときの空中での電荷の変化を図1に示すように点電荷の変化で模擬するとともに、落雷位置(電荷中心)から観測点までの水平距離D[m]、落雷前後における電界変化量ΔE[V/m]及び電荷中心の高度H[m]を測定することで、式(1)から落雷の電荷量を推定することが知られている。
ΔQ=2πε03ΔE{1+(H/D)2}3/2/H・・・(1)
ただし、ΔQは落雷電荷量[C]、πは円周率、ε0は空気の誘電率である。
特許文献1では、Dは落雷位置標定装置から標定された落雷位置と測定対象位置との距離から算出し、ΔEは電界変化の勾配の大きさで落雷と判定した場合、最初の電界変化の直前の電界値と最後の電界変化の直後の電界値の差により算出し、Hは電界センサで検知した落雷の発生時点と磁界センサから検知した落雷に先行するリーダの発生時点からリーダ進展時間を求め、その進展時間と一定のリーダ進展速度から算出している。
Since lightning is generated in the process of charge change in the air such as thunderclouds changing and being neutralized with charge on the ground, as described in Patent Document 1 (Japanese Patent No. 4217728), the charge of the air at this time is The change is simulated by the change in point charge as shown in FIG. 1, and the horizontal distance D [m] from the lightning strike position (charge center) to the observation point, electric field variation ΔE [V / m] before and after lightning strike and charge center It is known to estimate the charge amount of a lightning strike from equation (1) by measuring the altitude H [m] of
ΔQ = 2πε 0 D 3 ΔE {1+ (H / D) 2 } 3/2 / H (1)
However, ΔQ is a lightning strike charge amount [C], π is a circle ratio, and ε 0 is a dielectric constant of air.
In Patent Document 1, D is calculated from the distance between the lightning strike position and the measurement target position which are measured from the lightning strike position determination device, and ΔE is immediately before the first electric field change when it is determined as a lightning strike based on the magnitude of the gradient of the electric field change. Calculated from the difference between the electric field value of the sensor and the electric field value immediately after the last electric field change, and H determines the reader extension time from the point of occurrence of lightning strike detected by the electric field sensor and the point of occurrence of the reader preceding lightning strike detected from the magnetic field sensor , It is calculated from the progress time and constant leader progress speed.

特許第4217728号公報Patent No. 4217728

しかし、特許文献1に記載されている方法では、雷撃の種類によりリーダ進展速度が大きく変化するため、一定のリーダ進展速度を用いたのでは正しい電荷中心の高度の算出結果を得ることができない。
本発明の課題は、リーダ進展速度を用いることなく電荷中心の高度を求め、精度良く落雷電荷量を推定できるようにすることである。
However, according to the method described in Patent Document 1, the leader advancing speed largely changes depending on the type of lightning strike, and therefore, using a constant leader advancing speed, it is not possible to obtain the calculation result of the height of the correct charge center.
An object of the present invention is to determine the height of the charge center without using the leader development speed, so that the lightning charge amount can be accurately estimated.

請求項1に係る発明は、落雷電荷量を算出するための点電荷変化モデルによる落雷電荷量推定方法であって、観測地域における気象条件毎及び最初の放電が生じた時点からの時間差の範囲毎に、推定電荷量と測定電荷量との差が小さくなる空気層の温度との対応関係を予め定めておき、落雷位置から観測点までの水平距離D[m]及び前記観測点における落雷前後の電界値を計測し、前記落雷前後の電界値に基づいて、落雷を形成する放電における最初の電界変化直前の電界値と最後の電界変化直後の電界値の差である電界変化量ΔE[V/m]を算出し、前記落雷位置及び落雷発生時点に近い箇所及び時点における気象観測データから気温が−5℃〜−15℃である空気層の地上高の範囲を推定し、前記落雷位置、落雷発生時点における気象条件、最初の放電が生じた時点からの時間差の範囲及び前記落雷位置を含む観測地域における予め定められた対応関係に基づいて推定電荷量と測定電荷量との差が小さくなる空気層の温度を決定し、決定した前記空気層の温度及び推定した前記地上高の範囲に基づいて一つの高さH[m]を選択し、前記水平距離D、前記電界変化量ΔE及び前記高さHを用いて次式によって、前記放電における落雷電荷量ΔQ[C]を算出することを特徴とする。
ΔQ=2πε03ΔE{1+(H/D)2}3/2/H
(ただし、πは円周率、ε0は空気の誘電率を表す。)
The invention according to claim 1 is a method for estimating lightning strike charge amount by a point charge change model for calculating a lightning strike charge amount, which is provided for each weather condition in the observation area and for each time difference range from the time when the first discharge occurs. In addition, the correspondence relationship between the estimated charge amount and the temperature of the air layer in which the difference between the measured charge amount decreases is determined in advance, and the horizontal distance D [m] from the lightning strike position to the observation point and before and after the lightning strike at the observation point The electric field value is measured, and based on the electric field values before and after the lightning strike, an electric field change amount ΔE [V /, which is the difference between the electric field value immediately before the first electric field change and the electric field value immediately after the last electric field change in the discharge forming the lightning. m) to estimate the height range of the air layer where the air temperature is −5 ° C. to −15 ° C. from the meteorological observation data at the lightning strike position and the location and time point near the lightning strike occurrence point , the lightning strike position, lightning strike Weather conditions at the time of occurrence Determine the temperature of the air layer where the difference between the estimated amount of charge and the amount of measured charge is reduced based on the range of time difference from the time of the first discharge and the predetermined correspondence in the observation area including the lightning strike position Select one height H [m] based on the determined temperature of the air layer and the estimated range of the ground height, and use the horizontal distance D, the electric field variation ΔE and the height H to select The lightning charge amount ΔQ [C] in the discharge is calculated by the equation.
ΔQ = 2πε 0 D 3 ΔE {1+ (H / D) 2 } 3/2 / H
(However, π represents the circumstantial ratio, and ε 0 represents the dielectric constant of air.)

請求項2に係る発明は、請求項1に記載の落雷電荷量推定方法において、前記最初の電界変化直前の電界値と最後の電界変化直後の電界値に基づいて、正極性落雷であったか負極性落雷であったかを判定し、正極性落雷と判定した場合に、該正極性落雷を形成する複数回の放電のうちの最初の放電における最初の電界変化が生じた時点を落雷開始時点とし、各回の放電における最初の電界変化が生じた時点と前記落雷開始時点との時間差を求め、
該時間差が第1所定時間未満である初期段階の放電における前記落雷電荷量ΔQ[C]の算出に際しては、前記気象観測データから気温が−13℃〜−15℃である空気層の地上高の範囲を推定し、
前記時間差が第1所定時間以上第2所定時間未満である中期段階の放電における前記落雷電荷量ΔQ[C]の算出に際しては、前記気象観測データから気温が−10℃〜−13℃である空気層の地上高の範囲を推定し、
前記時間差が第2所定時間以上である終期段階の放電における前記落雷電荷量ΔQ[C]の算出に際しては、前記気象観測データから気温が−5℃〜−10℃である空気層の地上高の範囲を推定することを特徴とする。
The invention according to claim 2 is the lightning strike charge amount estimation method according to claim 1, wherein the lightning strike was positive polarity or negative polarity based on the electric field value immediately before the first electric field change and the electric field value immediately after the last electric field change. If it is determined that the lightning strike has occurred and it is determined that the lightning strike is positive, the point at which the first electric field change occurs in the first discharge of the multiple discharges forming the positive strike is defined as the lightning start time, Calculate the time difference between the time when the first electric field change occurs in the discharge and the time when the lightning strike starts,
At the time of calculation of the lightning charge amount ΔQ [C] in the discharge of the initial stage where the time difference is less than the first predetermined time, the air height above the ground of the air layer is -13 ° C to -15 ° C from the meteorological observation data. Estimate the range,
In the calculation of the lightning charge amount ΔQ [C] in the middle stage discharge where the time difference is not less than the first predetermined time and less than the second predetermined time, the air whose temperature is -10 ° C to -13 ° C from the meteorological observation data Estimate the range of ground elevation of the layer,
At the time of calculation of the lightning charge amount ΔQ [C] in the final stage discharge where the time difference is the second predetermined time or more, the air height at the ground height of the air layer is -5 ° C to -10 ° C from the meteorological observation data. It is characterized in that the range is estimated.

請求項3に係る発明は、請求項1又は2に記載の落雷電荷量推定方法において、前記最初の電界変化直前の電界値と最後の電界変化直後の電界値に基づいて、正極性落雷であったか負極性落雷であったかを判定し、負極性落雷と判定した場合に、該負極性落雷を形成する複数回の放電のうちの最初の放電における最初の電界変化が生じた時点を落雷開始時点とし、各回の放電における最初の電界変化が生じた時点と前記落雷開始時点との時間差を求め、
該時間差が所定時間未満である前期段階の放電における前記落雷電荷量ΔQ[C]の算出に際しては、前記気象観測データから気温が−5℃〜−10℃である空気層の地上高の範囲を推定し、
前記時間差が所定時間以上である後期段階の放電における前記落雷電荷量ΔQ[C]の算出に際しては、前記気象観測データから気温が−10℃〜−15℃である空気層の地上高の範囲を推定することを特徴とする。
The invention according to claim 3 is the lightning strike charge amount estimation method according to claim 1 or 2, wherein the lightning strike was positive based on the electric field value immediately before the first electric field change and the electric field value immediately after the last electric field change. When it is determined that the lightning strike is negative and it is determined that the lightning strike is negative, the time when the first electric field change occurs in the first discharge among the multiple discharges forming the negative lightning strike is taken as the lightning strike start time, Calculate the time difference between the time when the first electric field change occurs in each discharge and the time when the lightning strike starts,
When calculating the lightning charge amount ΔQ [C] in the previous stage discharge where the time difference is less than a predetermined time, the above-mentioned meteorological observation data has a range of height above the ground of the air layer where the temperature is -5 ° C to -10 ° C. Estimate
When calculating the lightning charge amount ΔQ [C] in the later stage discharge where the time difference is a predetermined time or more, the range of the ground height of the air layer where the air temperature is −10 ° C. to −15 ° C. from the meteorological observation data It is characterized by estimating.

請求項4に係る発明は、落雷電荷量を算出するための落雷電荷量推定システムであって、観測地域における気象条件毎及び最初の放電が生じた時点からの時間差の範囲毎に、推定電荷量と測定電荷量との差が小さくなる空気層の温度との予め定められた対応関係が記録されている対応関係記録手段と、落雷位置から観測点までの水平距離D[m] を計測する落雷位置標定手段と、前記観測点における落雷前後の電界値を計測する電界計測手段と、前記落雷前後の電界値に基づいて、落雷を形成する放電における最初の電界変化直前の電界値と最後の電界変化直後の電界値の差である電界変化量ΔE[V/m]を算出する電界変化量演算手段と、前記落雷位置及び落雷発生時点に近い箇所及び時点における気象観測データから気温が−5℃〜−15℃である空気層の地上高の範囲を推定する地上高範囲推定手段と、前記落雷位置、落雷発生時点における気象条件、最初の放電が生じた時点からの時間差の範囲及び前記落雷位置を含む観測地域における予め定められた対応関係に基づいて推定電荷量と測定電荷量との差が小さくなる空気層の温度を決定する空気層温度決定手段と、該空気層温度決定手段が決定した前記空気層の温度及び前記地上高範囲推定手段が推定した前記地上高の範囲に基づいて一つの高さH[m]を選択する高さ選択手段と、前記水平距離D、前記電界変化量ΔE及び前記高さHを用いて次式の演算を行い、前記放電における落雷電荷量ΔQ[C]を算出する電荷量計算手段とを備えていることを特徴とする。
ΔQ=2πε03ΔE{1+(H/D)2}3/2/H
(ただし、πは円周率、ε0は空気の誘電率を表す。)
The invention according to claim 4 is a lightning strike charge amount estimation system for calculating a lightning strike charge amount, which is an estimated charge amount for each weather condition in the observation area and for each time difference from the time when the first discharge occurs. Correspondence recording means in which a predetermined correspondence with the temperature of the air layer where the difference between the measured charge and the amount of charge decreases is recorded, and a lightning strike that measures the horizontal distance D [m] from the lightning strike position to the observation point The electric field value immediately before the first electric field change and the last electric field in the discharge forming the lightning strike based on the position locating means, the electric field measuring means for measuring the electric field value before and after the lightning strike at the observation point, and the electric field value before and after the lightning strike Electric field change amount computing means for calculating electric field change amount ΔE [V / m] which is difference of electric field value immediately after change, temperature from the observation data at the location and time point near the lightning strike position and lightning strike occurrence time -5 ° C ~ -15 ° C Ground height range estimation means for estimating the height range of the air layer, the observation position including the lightning strike position, the weather condition at the time of the lightning strike, the range of time difference from the time when the first discharge occurs, and the lightning strike position Air layer temperature determining means for determining the temperature of the air layer in which the difference between the estimated charge amount and the measured charge amount is reduced based on a predetermined correspondence relationship between the air layer temperature determined by the air layer temperature determining means; Height selection means for selecting one height H [m] based on the temperature and the range of the ground height estimated by the ground high range estimation means, the horizontal distance D, the electric field variation ΔE, and the height The apparatus is characterized by including charge amount calculation means for calculating the following equation using H and calculating the lightning charge amount ΔQ [C] in the discharge.
ΔQ = 2πε 0 D 3 ΔE {1+ (H / D) 2 } 3/2 / H
(However, π represents the circumstantial ratio, and ε 0 represents the dielectric constant of air.)

請求項5に係る発明は、請求項4に記載の落雷電荷量推定システムにおいて、前記最初の電界変化直前の電界値と最後の電界変化直後の電界値に基づいて、正極性落雷であったか負極性落雷であったかを判定する落雷極性判定手段と、前記落雷極性判定手段が正極性落雷と判定した場合に、該正極性落雷を形成する複数回の放電のうちの最初の放電における最初の電界変化が生じた時点を落雷開始時点として記憶する落雷開始時点記憶手段と、各回の放電における最初の電界変化が生じた時点と前記落雷開始時点との時間差を求める放電開始時間差演算手段を有し、
前記地上高範囲推定手段は、
前記放電開始時間差演算手段が求めた時間差が第1所定時間未満である初期段階の放電における前記落雷電荷量ΔQ[C]の算出に際しては、前記気象観測データから気温が−13℃〜−15℃である空気層の地上高の範囲を推定し、
前記放電開始時間差演算手段が求めた時間差が第1所定時間以上第2所定時間未満である中期段階の放電における前記落雷電荷量ΔQ[C]の算出に際しては、前記気象観測データから気温が−10℃〜−13℃である空気層の地上高の範囲を推定し、
前記放電開始時間差演算手段が求めた時間差が第2所定時間以上である終期段階の放電における前記落雷電荷量ΔQ[C]の算出に際しては、前記気象観測データから気温が−10℃〜−15℃である空気層の地上高の範囲を推定することを特徴とする。
The invention according to claim 5 is the lightning strike charge amount estimation system according to claim 4, wherein the lightning strike was positive polarity or negative polarity based on the electric field value immediately before the first electric field change and the electric field value immediately after the last electric field change. The first change in electric field in the first discharge among a plurality of discharges forming the positive polarity lightning strike is a lightning strike polarity judging means for judging whether it is a lightning strike and a case where the lightning strike polarity judging means judges a positive polarity lightning strike It has a lightning strike start time storage means for storing the time of occurrence as the lightning strike start time, and a discharge start time difference computing means for obtaining a time difference between the time when the first electric field change occurs in each discharge and the lightning start time.
The above ground high range estimation means
When calculating the lightning charge amount ΔQ [C] in the initial stage of discharge where the time difference obtained by the discharge start time difference calculation means is less than the first predetermined time, the air temperature is -13 ° C to -15 ° C from the meteorological observation data. Estimate the height of the airspace above
At the time of calculation of the lightning charge amount ΔQ [C] in the middle stage discharge where the time difference calculated by the discharge start time difference calculating means is the first predetermined time or more but less than the second predetermined time, the air temperature is -10 from the meteorological observation data Estimate the height of the airspace above the ground in the range of -13 ° C,
From the meteorological observation data, air temperature is −10 ° C. to −15 ° C. when calculating the lightning charge amount ΔQ [C] in the final stage discharge where the time difference calculated by the discharge start time difference calculating means is the second predetermined time or more. And estimating the range of height above the airspace.

請求項6に係る発明は、請求項4又は5に記載の落雷電荷量推定システムにおいて、前記最初の電界変化直前の電界値と最後の電界変化直後の電界値に基づいて、正極性落雷であったか負極性落雷であったかを判定する落雷極性判定手段と、前記落雷極性判定手段が負極性落雷と判定した場合に、該負極性落雷を形成する複数回の放電のうちの最初の放電における最初の電界変化が生じた時点を落雷開始時点として記憶する落雷開始時点記憶手段と、各回の放電における最初の電界変化が生じた時点と前記落雷開始時点との時間差を求める放電開始時間差演算手段を有し、
前記地上高範囲推定手段は、
前記放電開始時間差演算手段が求めた時間差が所定時間未満である前期段階の放電における前記落雷電荷量ΔQ[C]の算出に際しては、前記気象観測データから気温が−5℃〜−10℃である空気層の地上高の範囲を推定し、
前記放電開始時間差演算手段が求めた時間差が所定時間以上である後期段階の放電における前記落雷電荷量ΔQ[C]の算出に際しては、前記気象観測データから気温が−10℃〜−15℃である空気層の地上高の範囲を推定することを特徴とする。
The invention according to claim 6 is the lightning strike charge amount estimation system according to claim 4 or 5, wherein the lightning strike was positive based on the electric field value immediately before the change of the first electric field and the electric field value immediately after the change of the last electric field. A lightning strike polarity judging means for judging whether it is a negative lightning strike and a first electric field in a first discharge of a plurality of discharges forming the negative lightning strike, when the lightning strike polarity judging means judges it as a negative lightning strike It has a lightning strike start time storage means for storing the time when a change occurs as a lightning strike start time, and a discharge start time difference computing means for obtaining a time difference between the time when the first electric field change occurs in each discharge and the lightning start time.
The above ground high range estimation means
The air temperature is −5 ° C. to −10 ° C. from the meteorological observation data in the calculation of the lightning charge amount ΔQ [C] in the discharge of the previous stage where the time difference calculated by the discharge start time difference calculating means is less than a predetermined time. Estimate the height of the airspace above the ground,
The air temperature is -10 ° C to -15 ° C according to the meteorological observation data when calculating the lightning charge amount ΔQ [C] in the later stage discharge where the time difference calculated by the discharge start time difference calculation means is equal to or longer than a predetermined time. It is characterized in that the range of the ground height of the air layer is estimated.

請求項1又は4に係る発明によれば、電荷中心の高度をリーダ進展時間及び所定のリーダ進展速度から算出せず、観測地域における気象条件毎及び最初の放電が生じた時点からの時間差の範囲毎に、推定電荷量と測定電荷量との差が小さくなる空気層の温度との対応関係を予め定めておき、落雷位置及び落雷発生時点に近い箇所及び時点における気象観測データから気温が−5℃〜−15℃である空気層の地上高の範囲を推定し、落雷位置、落雷発生時点における気象条件、最初の放電が生じた時点からの時間差の範囲及び落雷位置を含む観測地域における予め定められた対応関係に基づいて推定電荷量と測定電荷量との差が小さくなる空気層の温度を決定し、決定した前記空気層の温度及び推定した地上高の範囲に基づいて一つの高さH[m]を選択することにより決定しているので、磁界センサ及び雷撃の種類により大きく変化するリーダ進展速度を用いずに電荷中心の高度を得ることができ、低コストで精度良く落雷電荷量を推定することができる。
According to the invention of claim 1 or 4, the height of the charge center is not calculated from the leader development time and the predetermined leader development speed, but the range of time difference for each weather condition and the time of the first discharge in the observation area. The correspondence relationship between the estimated charge amount and the temperature of the air layer where the difference between the measured charge amount decreases is determined in advance, and the temperature is -5 from the meteorological observation data at the location and time point near the lightning strike position and lightning strike occurrence time Estimate the height range of the air layer which is ° C to -15 ° C, and predetermine in the observation area including the position of lightning strike, weather conditions at the time of lightning strike, the range of time difference from the time of first discharge occurrence, and position of lightning strike Determine the temperature of the air layer where the difference between the estimated charge amount and the measured charge amount becomes small based on the determined correspondence relationship, and determine the height H of the air layer based on the determined temperature of the air layer and the estimated ground height range [m Can be obtained without using a leader development speed that changes greatly depending on the type of magnetic field sensor and lightning strike, so that the lightning charge quantity can be estimated accurately at low cost. be able to.

請求項2又は5に係る発明では、請求項1又は4に係る発明による効果に加えて、正極性落雷であったか負極性落雷であったかを判定し、正極性落雷と判定した場合に、正極性落雷を形成する複数回の放電のうちの最初の放電における最初の電界変化が生じた時点を落雷開始時点とし、各回の放電における最初の電界変化が生じた時点と落雷開始時点との時間差を求め、時間差が第1所定時間未満である初期段階の放電における落雷電荷量ΔQ[C]の算出に際しては、気温が−13℃〜−15℃である空気層の地上高の範囲を推定し、時間差が第1所定時間以上第2所定時間未満である中期段階の放電における落雷電荷量ΔQ[C]の算出に際しては、気温が−10℃〜−13℃である空気層の地上高の範囲を推定し、時間差が第2所定時間以上である終期段階の放電における落雷電荷量ΔQ[C]の算出に際しては、気温が−5℃〜−10℃である空気層の地上高の範囲を推定し、推定した地上高の範囲に基づいて一つの高さH[m]を選択することにより電荷中心の高度を決定しているので、正極性落雷であった場合に、より精度良く落雷電荷量を推定することができる。   In the invention according to claim 2 or 5, in addition to the effect by the invention according to claim 1 or 4, it is determined whether it is a positive lightning strike or a negative lightning strike, and when it is determined to be a positive lightning strike, a positive lightning strike The time when the first electric field change occurs in the first of the multiple discharges that form the first discharge is the lightning start time, and the time difference between the time when the first electric field change occurs in each discharge and the lightning start time is determined When calculating the lightning charge amount ΔQ [C] in the initial stage discharge where the time difference is less than the first predetermined time, the range of the ground height of the air layer where the air temperature is -13 ° C to -15 ° C is estimated, and the time difference is In calculating the lightning charge amount ΔQ [C] in the middle stage discharge which is the first predetermined time or more but less than the second predetermined time, the range of the ground height of the air layer where the air temperature is -10 ° C to -13 ° C is estimated , The time difference is more than the second predetermined time When calculating the lightning charge amount ΔQ [C] in a certain final stage discharge, the range of the ground height of the air layer where the air temperature is -5 ° C to -10 ° C is estimated, and one is calculated based on the estimated range of the ground height. Since the height of the charge center is determined by selecting one height H [m], the charge amount of lightning can be estimated more accurately in the case of a positive lightning strike.

請求項3又は6に係る発明によれば、請求項1、2、4及び5のいずれかに係る発明による効果に加えて、正極性落雷であったか負極性落雷であったかを判定し、負極性落雷と判定した場合に、負極性落雷を形成する複数回の放電のうちの最初の放電における最初の電界変化が生じた時点を落雷開始時点とし、各回の放電における最初の電界変化が生じた時点と落雷開始時点との時間差を求め、時間差が所定時間未満である前期段階の放電における落雷電荷量ΔQ[C]の算出に際しては、気温が−5℃〜−10℃である空気層の地上高の範囲を推定し、時間差が所定時間以上である後期段階の放電における落雷電荷量ΔQ[C]の算出に際しては、気温が−10℃〜−15℃である空気層の地上高の範囲を推定し、推定した地上高の範囲に基づいて一つの高さH[m]を選択することにより電荷中心の高度を決定しているので、負極性落雷であった場合に、より精度良く落雷電荷量を推定することができる。   According to the invention as set forth in claim 3 or 6, in addition to the effect of the invention as set forth in any one of claims 1, 2, 4 and 5, it is determined whether it is a positive lightning strike or a negative lightning strike. When it is determined that the first electric field change in the first discharge among the multiple discharges forming the negative polarity lightning strike is the lightning start time, the first electric field change in each discharge occurs and When calculating the lightning charge amount ΔQ [C] in the previous stage discharge where the time difference is less than a predetermined time, the time difference from the lightning strike start time is determined, the air height is -5 ° C to -10 ° C above the ground height of the air layer. The range is estimated, and the ground height range of the air layer where the air temperature is -10 ° C to -15 ° C is estimated when calculating the lightning charge amount ΔQ [C] in the late stage discharge where the time difference is a predetermined time or more. , Based on the range of estimated ground height Since determining the altitude of the charge centers by selecting one of the height H [m], when was negative polarity lightning, can be estimated more accurately lightning charge amount.

点電荷モデルを示す図。The figure which shows a point charge model. 落雷電荷量推定システムの概念図。A conceptual diagram of a lightning strike charge amount estimation system. 負極性落雷の測定電荷量と推定電荷量とを比較したグラフ。The graph which compared the measurement electric charge of negative polarity lightning with the presumed electric charge. 正極性落雷の測定電荷量と推定電荷量とを比較したグラフ。The graph which compared the measurement electric charge amount of positive polarity lightning strike, and presumed electric charge amount. 正極性落雷における推定電荷量の誤差率を示すグラフ。The graph which shows the error rate of the presumed charge amount in positive polarity lightning strike. 本発明の落雷電荷量推定システムを示す図。The figure which shows the lightning charge amount estimation system of this invention.

以下、実施例によって本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described by way of examples.

実施例1の落雷電荷量推定システムの概念図を図2に示す。
図2に示すように、実施例1の落雷電荷量推定システムは次の各手段を備えている。
(1)雷電流を直接観測するために風力発電設備の下部に設置されたロゴスキーコイルと風力発電設備に落雷があった際にロゴスキーコイルに誘導される電流を測定する装置を備え、精度約0.2マイクロ秒(以下「μs」と記載する。)のGPS時計によるトリガ時刻を記録するとともに、サンプル時間間隔0.1μsで測定された電流値を記録する雷電流観測手段1。
なお、全記録時間はトリガ時刻前約100ミリ秒(以下「ms」と記載する。)及びトリガ時刻後300msの約400msである。
(2)落雷に伴う電界の変化を計測するスローアンテナを備え、精度約0.2μsのGPS時計で上記(1)の雷電流観測手段1と時刻同期を取ってサンプル時間間隔0.1μsで計測された電界値を記録する電界計測手段2。
(3)上記(1)のロゴスキーコイルが設置されている風力発電設備に近い測候所で観測された高層気象観測データを取得するデータ取得手段3。
(4)落雷のあった風力発電設備(落雷位置)と電界計測手段2(観測点)の水平距離D[m]を計測する落雷位置標定手段4。
なお、落雷位置標定手段4は、落雷による雷放電から放射される電磁波を複数の地点で受信し、それらの受信した電磁波を周知の手段(例えば、特許文献1に示された非特許文献1である岸本保夫、「雷観測システムおよび雷保護規格の最新動向」、NTT建築総合研究所を参照。)を用いて解析することにより落雷位置を標定し、その落雷位置と電界計測手段2の水平距離D[m]を計測するものとしても良い。
A conceptual diagram of the lightning strike charge amount estimation system of the first embodiment is shown in FIG.
As shown in FIG. 2, the lightning strike charge amount estimation system of the first embodiment includes the following means.
(1) Accuracy is equipped with a device that measures the current induced in the Rogowski coil when there is a lightning strike on the Rogowski coil installed at the bottom of the wind power generation facility to directly observe the lightning current and the wind power generation facility Lightning current observing means 1 which records a trigger time by a GPS clock of about 0.2 microseconds (hereinafter referred to as "μs") and records a current value measured at a sample time interval of 0.1 μs.
The total recording time is about 100 ms (hereinafter referred to as “ms”) before the trigger time and about 400 ms of 300 ms after the trigger time.
(2) A slow antenna equipped with a slow antenna that measures changes in the electric field caused by lightning strikes, and time synchronization with lightning current observation means 1 of (1) above with a GPS watch with an accuracy of approximately 0.2 μs, and measurement is made with a sample time interval of 0.1 μs Electric field measuring means 2 for recording the value of the received electric field.
(3) Data acquisition means 3 for acquiring high-rise meteorological observation data observed at a weather station near the wind power generation facility where the Rogowski coil of (1) is installed.
(4) A lightning strike position locating means 4 which measures the horizontal distance D [m] between the wind power generation facility (the lightning strike position) where the lightning strikes and the electric field measurement means 2 (observation point).
In addition, the lightning strike position determination means 4 receives the electromagnetic waves radiated from the lightning discharge by the lightning at a plurality of points, and the received electromagnetic waves are known means (for example, Non-Patent Document 1 shown in Patent Document 1) The location of a lightning strike is determined by analysis using one Kinomoto Yasuo, “Latest trends in lightning observation systems and lightning protection standards,” NTT Building Research Institute, Inc.), and the horizontal distance between the location of the lightning strike and the electric field measurement means 2 It is good also as what measures D [m].

(5)上記(3)のデータ取得手段3で取得した電界値のデータからトリガ時刻の前後における電界値のデータを抽出し、落雷を形成する放電における最初の電界変化直前の電界値と最後の電界変化直後の電界値の差である電界変化量ΔE[V/m]を算出する電界変化量演算手段5。
(6)落雷のあった風力発電設備に最も近い測候所において、落雷時点に最も近い時点に観測された高層気象観測データを抽出し、落雷のあった風力発電設備上空における気温が−5℃〜−15℃である空気層の地上高の範囲を推定する地上高範囲推定手段6。
(7)上記(6)の地上高範囲推定手段6が推定した地上高の範囲から一つの高さH[m]を選択する高さ選択手段7。
なお、一つの高さH[m]を選択する方法については後述する。
(8)上記(4)の落雷位置標定手段4で計測された水平距離D[m]、上記(5)の電界変化量演算手段5で算出された電界変化量ΔE[V/m]及び上記(7)の高さ選択手段7で選択された高さH[m]を用いて式(1)による演算を行い、風力発電設備に落ちた雷の落雷電荷量ΔQ[C]を算出する電荷量計算手段8及び計算結果を表示する表示手段9。
(9)上記(1)の雷電流観測手段1より得られた電流値から変換した測定電荷量を表示する表示手段10。
(5) The data of the electric field value before and after the trigger time is extracted from the data of the electric field value acquired by the data acquiring means 3 of (3) above, and the electric field value immediately before the first electric field change in the discharge forming the lightning strike and the last Electric field change amount calculation means 5 for calculating an electric field change amount ΔE [V / m] which is a difference between electric field values immediately after the electric field change.
(6) At the weather station closest to the wind power generation facility where lightning strikes, high-rise meteorological observation data observed at the point closest to the time of lightning strike is extracted, and the air temperature above the wind power generation facility where lightning strikes is -5 ° C-- Ground height range estimation means 6 which estimates the range of the ground height of the air layer which is 15 ° C.
(7) Height selection means 7 for selecting one height H [m] from the range of the ground height estimated by the ground high range estimation means 6 of (6) above.
The method of selecting one height H [m] will be described later.
(8) The horizontal distance D [m] measured by the lightning strike position locating means 4 of the above (4), the electric field variation ΔE [V / m] calculated by the electric field variation calculation means 5 of the above (5) The electric charge which calculates the lightning charge amount ΔQ [C] of the lightning which has been calculated by the equation (1) using the height H [m] selected by the height selection means 7 of (7) to the wind power generation facility Quantity calculation means 8 and display means 9 for displaying calculation results.
(9) Display means 10 for displaying the measured charge amount converted from the current value obtained from the lightning current observation means 1 of (1) above.

高さH[m]の選択方法を確立するにあたって、南九州地区で実施した雷に伴う電界の観測に基づき式(1)による演算を行って得られた推定電荷量と測定によって得られた測定電荷量とを比較した。
なお、実施例1における落雷電荷量ΔQ[C]の観測は、雷雲に負の電荷が蓄積される負極性落雷について行われたが、負極性落雷か否かは放電における最初の電界変化直前の電界値が高く、最後の電界変化直後の電界値が低くなっていることで判定できる。
In establishing the selection method of the height H [m], the estimated charge amount obtained by performing the calculation according to equation (1) based on the observation of the electric field accompanying the lightning conducted in the South Kyushu area and the measurement obtained by the measurement The amount of charge was compared.
The observation of the lightning charge amount ΔQ [C] in Example 1 was performed for a negative lightning with a negative charge accumulated in the thundercloud, but it is determined whether the negative lightning is immediately before the first electric field change in the discharge. It can be determined by the fact that the electric field value is high and the electric field value immediately after the last electric field change is low.

図3に示すグラフは、負極性落雷を形成する複数回の放電のうち、最初の電界変化が生じた時点から1ms未満に発生した放電における電界変化量等に基づく推定電荷量、同じく1ms以上2ms未満に発生した放電における電界変化量等に基づく推定電荷量、同じく2ms以上3ms未満に発生した放電における電界変化量等に基づく推定電荷量、同じく3ms以上4ms未満に発生した放電における電界変化量等に基づく推定電荷量及び同じく4ms以上5ms未満に発生した放電における電界変化量等に基づく推定電荷量と測定電荷量とを比較したものである。
そして、落雷電荷量ΔQ[C]の推定に用いる高さH[m]には、落雷のあった風力発電設備に最も近い測候所(鹿児島気象台)で落雷発生時点に最も近い時点において観測された高層気象観測データから推定された5000m(気温が−1.8℃である空気層の高さ)、6000m(気温が−6.8℃である空気層の高さ)、6500m(気温が−10.0℃である空気層の高さ)及び7000m(気温が−12.0℃である空気層の高さ)の4つを選択した。
The graph shown in FIG. 3 is an estimated charge amount based on the amount of change in the electric field and the like in the discharge generated in less than 1 ms from the time when the first change in electric field occurs among the multiple discharges forming the negative polarity lightning strike Estimated charge amount based on the electric field change amount etc. in the discharge generated less than the same, Estimated charge amount based on the electric field change amount etc. in the discharge generated similarly 2 ms or more and less than 3 ms, Electric field change amount etc. similarly generated in 3 ms or more The estimated charge amount based on the estimated charge amount based on the above and the electric field change amount etc. in the discharge generated for 4 ms or more and less than 5 ms is compared with the measured charge amount.
And the height H [m] used to estimate the lightning charge amount ΔQ [C] is the high-rise observed at the point closest to the lightning strike occurrence point at the weather station (Kagoshima Meteorology Meteorological Observatory) closest to the wind power generation facility where the lightning strike occurred. 5000 m (the height of the air layer where the temperature is -1.8 ° C), 6000 m (the height of the air layer where the temperature is -6.8 ° C) estimated from the meteorological observation data, 6500 m (the temperature is -10. Four air layers having a height of 0 ° C. and 7000 m (the height of an air layer having a temperature of -12.0 ° C.) were selected.

選択された4つの高さH[m]を用いて得られた推定電荷量と測定電荷量とを比較すると、1ms未満に発生した放電においては高さH[m]を6000m(気温が−6.8℃である空気層の高さ)とした場合の推定電荷量と測定電荷量との差が最も小さく、2ms以上3ms未満に発生した放電においては高さH[m]を6500m(気温が−10.0℃である空気層の高さ)とした場合の推定電荷量と測定電荷量との差が最も小さく、1ms以上2ms未満に発生した放電においては高さH[m]を6000mとした場合の推定電荷量と測定電荷量との差及び高さH[m]を6500mとした場合の推定電荷量と測定電荷量との差が同程度の小ささとなっていることが分かる。   Comparing the estimated charge amount obtained using the four selected heights H [m] with the measured charge amount, the height H [m] is 6000 m (a temperature is -6) in the discharge generated in less than 1 ms. The difference between the estimated amount of charge and the amount of measured charge when the height of the air layer is 8 ° C) is the smallest, and the height H [m] is 6500 m (the temperature is The difference between the estimated charge amount and the measured charge amount when the height of the air layer is −10.0 ° C.) is the smallest, and the height H [m] is set to 6000 m in the discharge generated for 1 ms or more and less than 2 ms. It can be seen that the difference between the estimated charge amount and the measured charge amount when the difference between the estimated charge amount and the measured charge amount and the height H [m] is 6500 m is as small as possible.

そして、4ms以上5ms未満に発生した放電においては1ms以上2ms未満に発生した放電と同様の結果を示しているものの、上記の比較結果を雷放電の理論に照らしつつ考察すると、負極性落雷の場合、推定電荷量と測定電荷量との差が小さくなる高さH[m]が時間と共に高くなる傾向を示していることから、落雷を形成する複数回の放電の電荷中心は時間と共に上昇しているものと考えられる。   And although the discharge generated in 4 ms or more and less than 5 ms shows the same result as the discharge generated in 1 ms or more and less than 2 ms, the case of the negative polarity lightning in consideration of the above comparison result in light of the theory of lightning discharge Since the height H [m] with which the difference between the estimated charge amount and the measured charge amount decreases becomes higher with time, the charge centers of the multiple discharges forming the lightning strike rise with time. It is thought that

この考察結果に基づけば、この観測を行った地域における観測時と同様の条件下での負極性落雷の場合、落雷を形成する複数回の放電のうちの最初の放電における最初の電界変化が生じた時点を落雷開始時点とし、各回の放電における最初の電界変化が生じた時点と落雷開始時点との時間差を求めた上で、時間差が1ms未満である放電においては気温が−6.7℃である空気層の地上高を選択し、時間差が1ms以上2ms未満である放電においては気温が−8.5℃である空気層の地上高を選択し、時間差が2ms以上3ms未満である放電においては気温が−10.3℃である空気層の地上高を選択し、時間差が3ms以上4ms未満である放電においては気温が−11.1℃である空気層の地上高を選択し、時間差が4ms以上5ms未満である放電においては気温が−11.9℃である空気層の地上高を選択すれば、精度の良い落雷電荷量の推定ができる。   Based on this observation result, in the case of a negative lightning strike under the same conditions as the observation in the region where this observation was made, the first electric field change occurs in the first of the multiple discharges forming the lightning strike. The time point is the lightning strike start time, and the time difference between the time when the first electric field change occurs in each discharge and the lightning strike start time is determined, and the temperature difference is -6.7 ° C for the discharge whose time difference is less than 1 ms. In the discharge where the air height above the air layer is selected and the time difference is 1 ms or more and less than 2 ms, the air height above the air layer is -8.5 ° C. The discharge height is 2 ms or more and less than 3 ms Select the ground height of the air layer whose temperature is -10.3 ° C and select the ground height of the air layer whose temperature is -11.1 ° C in the case of discharge with a time difference of 3ms or more and less than 4ms, the time difference is 4ms 5m or more By selecting the ground clearance of the air layer temperature is -11.9 ° C. in a is discharged below can estimate the accurate lightning charge amount.

実施例2は、実施例1の落雷電荷量推定システムと同じシステムを用いて、島根県西部で実施した雷雲に正の電荷が蓄積される正極性落雷に伴う電界の観測に基づいて、式(1)による演算を行って得られた推定電荷量と測定によって得られた測定電荷量とを比較したものである。
なお、正極性落雷か否かは放電における最初の電界変化直前の電界値が低く、最後の電界変化直後の電界値が高くなっていることで判定できる。
The second embodiment uses the same system as the lightning strike charge amount estimation system of the first embodiment, and based on the observation of the electric field associated with the positive lightning strike in which the positive charge is accumulated in the thundercloud carried out in western Shimane prefecture, The estimated charge amount obtained by performing the calculation according to 1) is compared with the measured charge amount obtained by measurement.
In addition, it can be determined whether the electric field value immediately before the first electric field change in the discharge is low and the electric field value immediately after the last electric field change is high whether the lightning strike is positive polarity or not.

図4に示すグラフは図3と同様、正極性落雷を形成する複数回の放電のうち、最初の電界変化が生じた時点から1ms未満に発生した放電における電界変化量等に基づく推定電荷量、同じく1ms以上2ms未満に発生した放電における電界変化量等に基づく推定電荷量、同じく2ms以上3ms未満に発生した放電における電界変化量等に基づく推定電荷量、同じく3ms以上4ms未満に発生した放電における電界変化量等に基づく推定電荷量、同じく4ms以上5ms未満に発生した放電における電界変化量等に基づく推定電荷量、同じく5ms以上10ms未満に発生した放電における電界変化量等に基づく推定電荷量、同じく10ms以上15ms未満に発生した放電における電界変化量等に基づく推定電荷量、同じく15ms以上20ms未満に発生した放電における電界変化量等に基づく推定電荷量、同じく20ms以上25ms未満に発生した放電における電界変化量等に基づく推定電荷量及び同じく25ms以上27.9ms未満に発生した放電における電界変化量等に基づく推定電荷量と測定電荷量とを比較したものである。
そして、落雷電荷量ΔQ[C]の推定に用いる高さH[m]には、落雷のあった風力発電設備に最も近い測候所(松江気象台)で落雷発生時点に最も近い時点において観測された高層気象観測データから推定された2000m(気温が−8.0℃である空気層の高さ)、2500m(気温が−11.5℃である空気層の高さ)、3000m(気温が−15.0℃である空気層の高さ)の3つを選択した。
Similar to FIG. 3, the graph shown in FIG. 4 is an estimated charge amount based on the electric field change amount etc. in the discharge generated less than 1 ms from the time when the first electric field change occurs among the multiple discharges forming positive polarity lightning strike Similarly, the estimated charge amount based on the electric field change amount etc. in the discharge generated in 1 ms to 2 ms, and the estimated charge amount based on the electric field change amount etc in the discharge generated 2 ms to 3 ms in the discharge generated similarly Estimated charge amount based on electric field change amount etc. Estimated charge amount based on electric field change amount etc. in discharge similarly generated between 4 ms and less than 5 ms Estimated charge amount based on electric field change amount etc. similarly generated in 5 ms or more and less than 10 ms Similarly, the estimated charge amount based on the change amount of the electric field in the discharge generated for 10 ms or more and less than 15 ms. Estimated charge amount based on electric field change amount etc. in discharge generated less than 20 ms, electric charge estimated discharge amount based on electric field change amount etc in discharge generated similarly in 20 ms or more and less than 25 ms, and electric field in discharge generated similarly 25 ms or more but less than 27.9 ms The estimated charge amount based on the change amount etc. is compared with the measured charge amount.
And the height H [m] used to estimate the lightning charge amount ΔQ [C] is the high-rise observed at the point closest to the lightning strike occurrence point at the weather station (Matsue Meteorological Observatory) closest to the wind power generation facility where the lightning strikes. 2000 m (the height of the air layer at a temperature of −8.0 ° C.) estimated from meteorological observation data, 2500 m (the height of the air layer at a temperature of −11.5 ° C.), 3000 m (the temperature of −15 ° C.). Three of the air layer height), which is 0 ° C., were selected.

また、図5に示すグラフは、正極性落雷について各時間帯において選択された3つの高さH[m]を用いて得られた推定電荷量の測定電荷量に対する誤差率を示すものであり、このグラフからみて、正極性落雷においては、5ms未満では高さH[m]を3000m(気温が−15.0℃である空気層の高さ)、5ms以上15ms未満では高さH[m]を2500m(気温が−11.5℃である空気層の高さ)、15ms以上では高さH[m]を2000m(気温が−8.0℃である空気層の高さ)とした場合の推定電荷量と測定電荷量との差が最も小さくなっていることが分かる。
すなわち、正極性落雷においては落雷を形成する放電の電荷中心の移動は、負極性落雷の場合よりも長い時間継続し移動距離も大きくなっており、推定電荷量と測定電荷量との差が小さくなる高さH[m]が時間と共に低くなる傾向を示していることから、落雷を形成する複数回の放電の電荷中心は時間と共に下降しているものと考えられる。
Further, the graph shown in FIG. 5 shows an error rate of the estimated charge amount to the measured charge amount obtained using three heights H [m] selected in each time zone for positive polarity lightning strike, From this graph, for positive lightning strikes, the height H [m] is 3000 m (height of the air layer at a temperature of -15.0 ° C) for less than 5 ms, and height H [m] for 5 ms or more and less than 15 ms. Is 2500 m (air temperature is -11.5 ° C), height H [m] is 15 m or more 2000 m (air temperature is -8.0 ° C) It can be seen that the difference between the estimated charge amount and the measured charge amount is the smallest.
That is, in positive polarity lightning, the movement of the charge center of the discharge forming the lightning continues for a longer time than in the case of negative polarity lightning, and the movement distance is longer, and the difference between the estimated charge amount and the measured charge amount is small. Since the height H [m] tends to decrease with time, it is considered that the charge centers of the multiple discharges forming the lightning strike are falling with time.

この考察結果に基づけば、この観測を行った地域における観測時と同様の条件下での正極性落雷の場合、落雷を形成する複数回の放電のうちの最初の放電における最初の電界変化が生じた時点を落雷開始時点とし、各回の放電における最初の電界変化が生じた時点と落雷開始時点との時間差を求めた上で、時間差が5ms未満である放電においては気温が−15.0℃である空気層の地上高を選択し、時間差が5ms以上15ms未満である放電においては気温が−11.5℃である空気層の地上高を選択し、時間差が15ms以上である放電においては気温が−8.0℃である空気層の地上高を選択すれば、精度の良い落雷電荷量の推定ができる。   Based on this observation result, in the case of a positive lightning strike under the same conditions as the observation in the region where this observation was made, the first electric field change occurs in the first of the multiple discharges forming the lightning strike. The time point is the lightning strike start time, and the time difference between the time when the first electric field change occurs in each discharge and the lightning strike start time is determined, and the temperature difference is -15.0 ° C for the discharge whose time difference is less than 5 ms. Select the height above ground of a certain air layer, select the height above ground of air layer where air temperature is -11.5 ° C for discharge with time difference of 5 ms or more and less than 15 ms, for discharge with time difference of 15 ms or more If the ground height of the air layer which is −8.0 ° C. is selected, it is possible to estimate the lightning charge amount with high accuracy.

実施例1及び2の変形例を列記する。
(1)実施例1及び2においては、雷電流観測手段1として風力発電設備の下部にロゴスキーコイルを設置したが、風力発電設備に限らず高いビルや鉄塔の避雷針に設置しても良く、ロゴスキーコイルに代えてシャント抵抗を用いても良い。
また、すでに説明したように、雷電流観測手段1を用いずに他の手段によって落雷位置を標定することもできるが、そうした場合、実施例1、2における雷電荷量推定システムは図6に示すようなものとなる。
すなわち、図2の概念図から雷電流観測手段1及び表示手段10が省かれるとともに、計測された電界値に基づいて正極性落雷であったか負極性落雷であったかを判定する落雷極性判定手段11と、複数回の放電のうちの最初の放電における最初の電界変化が生じた時点を落雷開始時点として記憶する落雷開始時点記憶手段12と、最初の電界変化が生じた時点と記憶された落雷開始時点との時間差を求める放電開始時間差演算手段13が追加されたものとなる。
(2)実施例1及び2においては、正極性落雷であったか負極性落雷であったかを判定し、各回の放電における最初の電界変化が生じた時点と落雷開始時点との時間差を求めた上で、その時間差に応じて一つの高さH[m]を選択したが、正極性落雷であったか負極性落雷であったかを判定せずに、落雷時における付近の風力、風向、地上の気温又は予め設定された調整値等を考慮して、地上高範囲推定手段が推定した地上高の範囲に基づいて一つの高さH[m]を選択するようにしても良く、その場合、雷電荷量推定システムは図6から落雷極性判定手段11、落雷開始時点記憶手段12及び放電開始時間差演算手段13を削除した簡易なものとなる。
(3)実施例1及び2においては、電界計測手段2としてスローアンテナを備えることとしたが、併せてファーストアンテナを備えるものとしても良い。
(4)実施例1及び2においては、雷電流観測手段1及び電界計測手段2のサンプル時間間隔は0.1μsであったが、トリガ時刻、電界変化量及び時間差の特定に支障がなければ、サンプル時間間隔は0.1μsより大きくても小さくても良い。
The modification of Example 1 and 2 is listed.
(1) In the first and second embodiments, the Rogowski coil is installed at the lower part of the wind power generation facility as the lightning current observation means 1, but it may be installed not only at the wind power generation facility but also at high height lightning rods of buildings or steel towers. A shunt resistor may be used instead of the Rogowski coil.
Also, as described above, the lightning strike position can be determined by other means without using the lightning current observation means 1. In such a case, the lightning charge amount estimation system in the first and second embodiments is shown in FIG. It will be like.
That is, a lightning strike polarity judging unit 11 which judges whether the lightning strike is a positive lightning strike or a negative strike based on the measured electric field value while the lightning current observation means 1 and the display means 10 are omitted from the conceptual view of FIG. Lightning strike start point storage means 12 which memorizes the point of time when the first electric field change in the first one of multiple discharges occurs as the lightning strike start point, the point of time when the first electric field change occurs and the stored strike start point The discharge start time difference calculating means 13 is added to obtain the time difference of.
(2) In Examples 1 and 2, it was determined whether it was a positive lightning strike or a negative lightning strike, and the time difference between the time when the first electric field change occurred in each discharge and the time when the lightning strike started was determined, One height H [m] was selected according to the time difference, but without determining whether it was a positive lightning strike or a negative lightning strike, the wind power near the time of lightning strike, wind direction, ground temperature or preset One height H [m] may be selected based on the range of the ground height estimated by the ground high range estimation means in consideration of the adjustment value etc. In that case, the lightning charge amount estimation system It becomes the simple thing which deleted the lightning strike polarity determination means 11, the lightning start time memory | storage means 12, and the discharge start time difference calculating means 13 from FIG.
(3) In the first and second embodiments, although the slow antenna is provided as the electric field measuring means 2, it may be provided with a first antenna.
(4) In the first and second embodiments, the sample time interval of the lightning current observation means 1 and the electric field measurement means 2 is 0.1 μs, but there is no problem in specifying the trigger time, the electric field change amount and the time difference The sample time interval may be greater or less than 0.1 μs.

(5)実施例1においては、時間差が1ms未満である放電においては気温が−6.7℃である空気層の地上高を選択し、時間差が1ms以上2ms未満である放電においては気温が−8.5℃である空気層の地上高を選択し、時間差が2ms以上3ms未満である放電においては気温が−10.3℃である空気層の地上高を選択し、時間差が3ms以上4ms未満である放電においては気温が−11.1℃である空気層の地上高を選択し、時間差が4ms以上5ms未満である放電においては気温が−11.9℃である空気層の地上高を選択すれば、精度の良い落雷電荷量の推定ができるとした。
ただし、同じ負極性落雷であっても、地域、地表面の温度、風の強さや向きによって、選択すべき高さH[m]は変化するので、各地域において予め様々な条件下で実施例1と同様の観測を行い、観測された高層気象観測データから各放電において高さH[m]を選択する方法を確立する必要がある。
したがって、負極性落雷の各放電において高層気象観測データから高さH[m]を的確に選択するにはデータの積み上げが欠かせないところであるが、定性的には、時間差が所定時間未満である前期段階の放電における落雷電荷量ΔQ[C]の算出に際しては、観測された高層気象観測データから推定された気温が−5℃〜−10℃である空気層の地上高のいずれかを選択し、時間差が所定時間以上である後期段階の放電における落雷電荷量ΔQ[C]の算出に際しては、観測された高層気象観測データから推定された気温が−10℃〜−15℃である空気層の地上高のいずれかを選択すれば良いということができる。
(5) In the first embodiment, for discharges with a time difference of less than 1 ms, the ground height of the air layer with air temperature of −6.7 ° C. is selected, and for discharges with a time difference of 1 ms or more and less than 2 ms, the air temperature is − Select the ground height of the air layer which is 8.5 ° C, and select the ground height of the air layer whose temperature is -10.3 ° C in the discharge where the time difference is 2ms or more and less than 3ms, and the time difference is 3ms or more and less than 4ms In the discharge, select the ground height of the air layer whose temperature is -11.1 ° C, and in the discharge where the time difference is 4ms or more and less than 5ms, select the ground height of the air layer whose temperature is -11.9 ° C. Therefore, it is possible to estimate the lightning charge amount with high accuracy.
However, even for the same negative lightning, the height H [m] to be selected changes depending on the area, surface temperature, wind intensity and direction, so the examples under each condition in advance in each area It is necessary to conduct the same observation as 1 and establish a method to select the height H [m] in each discharge from the observed upper meteorological observation data.
Therefore, in each discharge of negative polarity lightning, data accumulation is essential to select the height H [m] properly from the high-rise meteorological observation data, but qualitatively, the time difference is less than the predetermined time When calculating the lightning charge amount ΔQ [C] in the early stage discharge, select one of the ground heights of the air layer where the air temperature estimated from the observed upper meteorological observation data is -5 ° C to -10 ° C. When calculating the lightning charge amount ΔQ [C] in the later stage discharge where the time difference is a predetermined time or more, the temperature of the air layer is -10 ° C to -15 ° C estimated from the observed upper meteorological observation data It can be said that one of the ground heights should be selected.

(6)実施例2においては、時間差が5ms未満である放電においては気温が−15.0℃である空気層の地上高を選択し、時間差が5ms以上15ms未満である放電においては気温が−11.5℃である空気層の地上高を選択し、時間差が15ms以上である放電においては気温が−8.0℃である空気層の地上高を選択すれば、精度の良い落雷電荷量の推定ができるとした。
ただし、同じ正極性落雷であっても、地域、地表面の温度、風の強さや向きによって、選択すべき高さH[m]は変化するので、各地域において予め様々な条件下で実施例2と同様の観測を行い、観測された高層気象観測データから各放電において高さH[m]を選択する方法を確立する必要がある。
したがって、正極性落雷の各放電において高層気象観測データから高さH[m]を的確に選択するにはデータの積み上げが欠かせないところであるが、定性的には、時間差が第1所定時間未満である初期段階の放電における落雷電荷量ΔQ[C]の算出に際しては、観測された高層気象観測データから推定された気温が−15℃〜−13℃である空気層の地上高のいずれかを選択し、時間差が第1所定時間以上第2所定時間未満である中期段階の放電における落雷電荷量ΔQ[C]の算出に際しては、観測された高層気象観測データから推定された気温が−10℃〜−13℃である空気層の地上高のいずれかを選択し、時間差が第2所定時間以上である終期段階の放電における落雷電荷量ΔQ[C]の算出に際しては、観測された高層気象観測データから推定された気温が−5℃〜−10℃である空気層の地上高のいずれかを選択すれば良いということができる。
(6) In the second embodiment, in the discharge where the time difference is less than 5 ms, the ground height of the air layer having the air temperature of −15.0 ° C. is selected, and in the discharge where the time difference is 5 ms or more and less than 15 ms, the air temperature is − If the ground height of the air layer which is 11.5 ° C is selected and the air height of -8.0 ° C is selected in the discharge where the time difference is 15 ms or more, the accurate lightning charge amount is It can be estimated.
However, even for the same positive lightning strike, the height H [m] to be selected changes depending on the area, the surface temperature, the wind intensity and direction, so the examples under each condition in advance in each area It is necessary to conduct the same observation as 2 and establish a method to select the height H [m] in each discharge from the observed upper meteorological observation data.
Therefore, in each discharge of positive polarity lightning, data accumulation is essential to select the height H [m] properly from the high-rise meteorological observation data, but qualitatively, the time difference is less than the first predetermined time In calculating the amount of lightning charge ΔQ [C] in the early stage discharge, the air temperature at the air temperature estimated from the observed upper meteorological observation data is -15 ° C to -13 ° C. At the time of calculation of the lightning charge amount ΔQ [C] in the middle-stage discharge where the time difference is between the first predetermined time and the second predetermined time, the air temperature estimated from the observed upper meteorological observation data is -10 ° C When calculating the lightning charge amount ΔQ [C] in the final stage discharge with a time difference of at least the second predetermined time by selecting any of the ground heights of the air layer which is ~ -13 ° C, observed high-rise meteorological observation From data Constant air temperatures can be said that may be selected either ground clearance of the air layer is -5 ℃ ~-10 ℃.

1 雷電流観測手段 2 電界計測手段 3 データ取得手段
4 落雷位置標定手段 5 電界変化量演算手段 6 地上高範囲推定手段
7 高さ選択手段 8 電荷量計算手段 9、10 表示手段
11 落雷極性判定手段 12 落雷開始時点記憶手段
13 放電開始時間差演算手段
D 水平距離 ΔE 電界変化量 H 高さ ΔQ 落雷電荷量
DESCRIPTION OF SYMBOLS 1 Lightning current observation means 2 Electric field measurement means 3 Data acquisition means 4 Lightning position determination means 5 Electric field change amount calculation means 6 Ground high range estimation means 7 Height selection means 8 Charge amount calculation means 9, 10 Display means 11 Lightning strike polarity judgment means 12 lightning start time storage means 13 discharge start time difference calculation means D horizontal distance ΔE electric field change amount H height ΔQ lightning charge amount

Claims (6)

落雷電荷量を算出するための点電荷変化モデルによる落雷電荷量推定方法であって、
観測地域における気象条件毎及び最初の放電が生じた時点からの時間差の範囲毎に、推定電荷量と測定電荷量との差が小さくなる空気層の温度との対応関係を予め定めておき、
落雷位置から観測点までの水平距離D[m]及び前記観測点における落雷前後の電界値を計測し、
前記落雷前後の電界値に基づいて、落雷を形成する放電における最初の電界変化直前の電界値と最後の電界変化直後の電界値の差である電界変化量ΔE[V/m]を算出し、
前記落雷位置及び落雷発生時点に近い箇所及び時点における気象観測データから気温が−5℃〜−15℃である空気層の地上高の範囲を推定し、
前記落雷位置、落雷発生時点における気象条件、最初の放電が生じた時点からの時間差の範囲及び前記落雷位置を含む観測地域における予め定められた対応関係に基づいて推定電荷量と測定電荷量との差が小さくなる空気層の温度を決定し、
決定した前記空気層の温度及び推定した前記地上高の範囲に基づいて一つの高さH[m]を選択し、
前記水平距離D、前記電界変化量ΔE及び前記高さHを用いて次式によって、前記放電における落雷電荷量ΔQ[C]を算出する
ΔQ=2πε03ΔE{1+(H/D)2}3/2/H
(ただし、πは円周率、ε0は空気の誘電率を表す。)
ことを特徴とする落雷電荷量推定方法。
A method for estimating lightning strike charge quantity using a point charge change model for calculating lightning strike charge quantity, comprising
The correspondence relationship between the temperature of the air layer where the difference between the estimated charge amount and the measured charge amount decreases is determined in advance for each weather condition in the observation area and for each time difference range from the time when the first discharge occurs.
Measure the horizontal distance D [m] from the lightning strike point to the observation point and the electric field value before and after the lightning strike at the observation point,
Based on the electric field values before and after the lightning strike, an electric field change amount ΔE [V / m] which is a difference between the electric field value immediately before the first electric field change and the electric field value immediately after the last electric field change in the discharge forming the lightning is calculated;
From the meteorological observation data at the location and time point near the lightning strike position and the lightning strike time point, the range of the ground height of the air layer where the air temperature is -5 ° C to -15 ° C is estimated;
The charge amount between the estimated charge amount and the measured charge amount based on the lightning position, the weather condition at the time of the lightning strike, the range of time difference from the time when the first discharge occurs, and the predetermined correspondence in the observation area including the lightning position. Determine the temperature of the air layer where the difference is small,
One height H [m] is selected based on the determined temperature of the air layer and the estimated range of the ground height,
Using the horizontal distance D, the electric field change amount ΔE and the height H, the lightning charge amount ΔQ [C] in the discharge is calculated by the following equation: ΔQ = 2πε 0 D 3 ΔE {1+ (H / D) 2 } 3/2 / H
(However, π represents the circumstantial ratio, and ε 0 represents the dielectric constant of air.)
A lightning strike charge amount estimation method characterized in that.
前記最初の電界変化直前の電界値と最後の電界変化直後の電界値に基づいて、正極性落雷であったか負極性落雷であったかを判定し、
正極性落雷と判定した場合に、該正極性落雷を形成する複数回の放電のうちの最初の放電における最初の電界変化が生じた時点を落雷開始時点とし、
各回の放電における最初の電界変化が生じた時点と前記落雷開始時点との時間差を求め、
該時間差が第1所定時間未満である初期段階の放電における前記落雷電荷量ΔQ[C]の算出に際しては、前記気象観測データから気温が−13℃〜−15℃である空気層の地上高の範囲を推定し、
前記時間差が第1所定時間以上第2所定時間未満である中期段階の放電における前記落雷電荷量ΔQ[C]の算出に際しては、前記気象観測データから気温が−10℃〜−13℃である空気層の地上高の範囲を推定し、
前記時間差が第2所定時間以上である終期段階の放電における前記落雷電荷量ΔQ[C]の算出に際しては、前記気象観測データから気温が−5℃〜−10℃である空気層の地上高の範囲を推定する
ことを特徴とする請求項1に記載の落雷電荷量推定方法。
Based on the electric field value immediately before the first electric field change and the electric field value immediately after the last electric field change, it is determined whether it is a positive lightning strike or a negative lightning strike.
When it is determined that the lightning strike is positive polarity, the time when the first electric field change occurs in the first discharge of the multiple discharges forming the positive polarity lightning strike is defined as the lightning strike start time,
Calculate the time difference between the time when the first electric field change occurs in each discharge and the time when the lightning strike starts,
At the time of calculation of the lightning charge amount ΔQ [C] in the discharge of the initial stage where the time difference is less than the first predetermined time, the air height above the ground of the air layer is -13 ° C to -15 ° C from the meteorological observation data. Estimate the range,
In the calculation of the lightning charge amount ΔQ [C] in the middle stage discharge where the time difference is not less than the first predetermined time and less than the second predetermined time, the air whose temperature is -10 ° C to -13 ° C from the meteorological observation data Estimate the range of ground elevation of the layer,
At the time of calculation of the lightning charge amount ΔQ [C] in the final stage discharge where the time difference is the second predetermined time or more, the air height at the ground height of the air layer is -5 ° C to -10 ° C from the meteorological observation data. The lightning strike charge amount estimation method according to claim 1, wherein the range is estimated.
前記最初の電界変化直前の電界値と最後の電界変化直後の電界値に基づいて、正極性落雷であったか負極性落雷であったかを判定し、
負極性落雷と判定した場合に、該負極性落雷を形成する複数回の放電のうちの最初の放電における最初の電界変化が生じた時点を落雷開始時点とし、
各回の放電における最初の電界変化が生じた時点と前記落雷開始時点との時間差を求め、
該時間差が所定時間未満である前期段階の放電における前記落雷電荷量ΔQ[C]の算出に際しては、前記気象観測データから気温が−5℃〜−10℃である空気層の地上高の範囲を推定し、
前記時間差が所定時間以上である後期段階の放電における前記落雷電荷量ΔQ[C]の算出に際しては、前記気象観測データから気温が−10℃〜−15℃である空気層の地上高の範囲を推定する
ことを特徴とする請求項1又は2に記載の落雷電荷量推定方法。
Based on the electric field value immediately before the first electric field change and the electric field value immediately after the last electric field change, it is determined whether it is a positive lightning strike or a negative lightning strike.
When it is determined to be a negative lightning strike, the point at which the first electric field change occurs in the first of the multiple discharges forming the negative lightning strike is taken as the lightning strike start point,
Calculate the time difference between the time when the first electric field change occurs in each discharge and the time when the lightning strike starts,
When calculating the lightning charge amount ΔQ [C] in the previous stage discharge where the time difference is less than a predetermined time, the above-mentioned meteorological observation data has a range of height above the ground of the air layer where the temperature is -5 ° C to -10 ° C. Estimate
When calculating the lightning charge amount ΔQ [C] in the later stage discharge where the time difference is a predetermined time or more, the range of the ground height of the air layer where the air temperature is −10 ° C. to −15 ° C. from the meteorological observation data The lightning strike charge amount estimation method according to claim 1 or 2, characterized by estimating.
落雷電荷量を算出するための落雷電荷量推定システムであって、
観測地域における気象条件毎及び最初の放電が生じた時点からの時間差の範囲毎に、推定電荷量と測定電荷量との差が小さくなる空気層の温度との予め定められた対応関係が記録されている対応関係記録手段と、
落雷位置から観測点までの水平距離D[m] を計測する落雷位置標定手段と、
前記観測点における落雷前後の電界値を計測する電界計測手段と、
前記落雷前後の電界値に基づいて、落雷を形成する放電における最初の電界変化直前の電界値と最後の電界変化直後の電界値の差である電界変化量ΔE[V/m]を算出する電界変化量演算手段と、
前記落雷位置及び落雷発生時点に近い箇所及び時点における気象観測データから気温が−5℃〜−15℃である空気層の地上高の範囲を推定する地上高範囲推定手段と、
前記落雷位置、落雷発生時点における気象条件、最初の放電が生じた時点からの時間差の範囲及び前記落雷位置を含む観測地域における予め定められた対応関係に基づいて推定電荷量と測定電荷量との差が小さくなる空気層の温度を決定する空気層温度決定手段と、
該空気層温度決定手段が決定した前記空気層の温度及び前記地上高範囲推定手段が推定した前記地上高の範囲に基づいて一つの高さH[m]を選択する高さ選択手段と、
前記水平距離D、前記電界変化量ΔE及び前記高さHを用いて次式の演算を行い、前記放電における落雷電荷量ΔQ[C]を算出する電荷量計算手段とを備えている
ΔQ=2πε03ΔE{1+(H/D)2}3/2/H
(ただし、πは円周率、ε0は空気の誘電率を表す。)
ことを特徴とする落雷電荷量推定システム。
A lightning strike charge amount estimation system for calculating a lightning strike charge amount, comprising
For each weather condition in the observation area and for each time difference range from the time when the first discharge occurs, a predetermined correspondence relationship between the estimated charge amount and the temperature of the air layer where the difference between the measured charge amount decreases is recorded. Correspondence relationship recording means,
Lightning position locating means for measuring the horizontal distance D [m] from the lightning position to the observation point,
Electric field measuring means for measuring an electric field value before and after lightning strike at the observation point;
An electric field for calculating an electric field change amount ΔE [V / m] which is a difference between the electric field value immediately before the first electric field change and the electric field value immediately after the last electric field change in the discharge forming the lightning strike based on the electric field values before and after the lightning strike. Change amount calculation means,
Ground height range estimation means for estimating the range of the ground height of the air layer, the temperature of which is -5 ° C to -15 ° C, from meteorological observation data at the lightning strike position and at a point and time point near the lightning strike occurrence point
The charge amount between the estimated charge amount and the measured charge amount based on the lightning position, the weather condition at the time of the lightning strike, the range of time difference from the time when the first discharge occurs, and the predetermined correspondence in the observation area including the lightning position. Air layer temperature determining means for determining the temperature of the air layer at which the difference is reduced;
Height selection means for selecting one height H [m] based on the temperature of the air layer determined by the air layer temperature determination means and the range of the ground height estimated by the high ground range estimation means;
Charge amount calculation means for calculating the following formula using the horizontal distance D, the electric field change amount ΔE and the height H to calculate the lightning charge amount ΔQ [C] in the discharge: ΔQ = 2πε 0 D 3 ΔE {1+ (H / D) 2 } 3/2 / H
(However, π represents the circumstantial ratio, and ε 0 represents the dielectric constant of air.)
Lightning charge amount estimation system characterized by
前記最初の電界変化直前の電界値と最後の電界変化直後の電界値に基づいて、正極性落雷であったか負極性落雷であったかを判定する落雷極性判定手段と、
前記落雷極性判定手段が正極性落雷と判定した場合に、該正極性落雷を形成する複数回の放電のうちの最初の放電における最初の電界変化が生じた時点を落雷開始時点として記憶する落雷開始時点記憶手段と、
各回の放電における最初の電界変化が生じた時点と前記落雷開始時点との時間差を求める放電開始時間差演算手段を有し、
前記地上高範囲推定手段は、
前記放電開始時間差演算手段が求めた時間差が第1所定時間未満である初期段階の放電における前記落雷電荷量ΔQ[C]の算出に際しては、前記気象観測データから気温が−13℃〜−15℃である空気層の地上高の範囲を推定し、
前記放電開始時間差演算手段が求めた時間差が第1所定時間以上第2所定時間未満である中期段階の放電における前記落雷電荷量ΔQ[C]の算出に際しては、前記気象観測データから気温が−10℃〜−13℃である空気層の地上高の範囲を推定し、
前記放電開始時間差演算手段が求めた時間差が第2所定時間以上である終期段階の放電における前記落雷電荷量ΔQ[C]の算出に際しては、前記気象観測データから気温が−10℃〜−15℃である空気層の地上高の範囲を推定する
ことを特徴とする請求項4に記載の落雷電荷量推定システム。
Lightning strike polarity judging means for judging whether it is a positive lightning strike or a negative lightning strike based on the electric field value immediately before the first electric field change and the electric field value immediately after the last electric field change;
When the lightning strike polarity judging means judges that the lightning strike is positive polarity, the point at which the first electric field change in the first discharge among the multiple discharges forming the positive polarity lightning strike is stored as the lightning strike start time Time point storage means,
It has discharge start time difference calculating means for obtaining a time difference between the time when the first change of electric field occurs in each discharge and the time when the lightning strike starts,
The above ground high range estimation means
When calculating the lightning charge amount ΔQ [C] in the initial stage of discharge where the time difference obtained by the discharge start time difference calculation means is less than the first predetermined time, the air temperature is -13 ° C to -15 ° C from the meteorological observation data. Estimate the height of the airspace above
At the time of calculation of the lightning charge amount ΔQ [C] in the middle stage discharge where the time difference calculated by the discharge start time difference calculating means is the first predetermined time or more but less than the second predetermined time, the air temperature is -10 from the meteorological observation data Estimate the height of the airspace above the ground in the range of -13 ° C,
From the meteorological observation data, air temperature is −10 ° C. to −15 ° C. when calculating the lightning charge amount ΔQ [C] in the final stage discharge where the time difference calculated by the discharge start time difference calculating means is the second predetermined time or more. The lightning strike charge amount estimation system according to claim 4, wherein the range of the ground height of the air layer is estimated.
前記最初の電界変化直前の電界値と最後の電界変化直後の電界値に基づいて、正極性落雷であったか負極性落雷であったかを判定する落雷極性判定手段と、
前記落雷極性判定手段が負極性落雷と判定した場合に、該負極性落雷を形成する複数回の放電のうちの最初の放電における最初の電界変化が生じた時点を落雷開始時点として記憶する落雷開始時点記憶手段と、
各回の放電における最初の電界変化が生じた時点と前記落雷開始時点との時間差を求める放電開始時間差演算手段を有し、
前記地上高範囲推定手段は、
前記放電開始時間差演算手段が求めた時間差が所定時間未満である前期段階の放電における前記落雷電荷量ΔQ[C]の算出に際しては、前記気象観測データから気温が−5℃〜−10℃である空気層の地上高の範囲を推定し、
前記放電開始時間差演算手段が求めた時間差が所定時間以上である後期段階の放電における前記落雷電荷量ΔQ[C]の算出に際しては、前記気象観測データから気温が−10℃〜−15℃である空気層の地上高の範囲を推定する
ことを特徴とする請求項4又は5に記載の落雷電荷量推定システム。
Lightning strike polarity judging means for judging whether it is a positive lightning strike or a negative lightning strike based on the electric field value immediately before the first electric field change and the electric field value immediately after the last electric field change;
When the lightning strike polarity judging means judges that the lightning strike is negative, a point at which the first electric field change in the first discharge among the multiple discharges forming the negative strike is stored as the lightning strike start time Time point storage means,
It has discharge start time difference calculating means for obtaining a time difference between the time when the first change of electric field occurs in each discharge and the time when the lightning strike starts,
The above ground high range estimation means
The air temperature is −5 ° C. to −10 ° C. from the meteorological observation data in the calculation of the lightning charge amount ΔQ [C] in the discharge of the previous stage where the time difference calculated by the discharge start time difference calculating means is less than a predetermined time. Estimate the height of the airspace above the ground,
The air temperature is -10 ° C to -15 ° C according to the meteorological observation data when calculating the lightning charge amount ΔQ [C] in the later stage discharge where the time difference calculated by the discharge start time difference calculation means is equal to or longer than a predetermined time. The lightning strike charge amount estimation system according to claim 4 or 5, wherein the range of the ground height of the air layer is estimated.
JP2015148799A 2015-07-28 2015-07-28 Lightning charge estimation method and system Active JP6504662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015148799A JP6504662B2 (en) 2015-07-28 2015-07-28 Lightning charge estimation method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015148799A JP6504662B2 (en) 2015-07-28 2015-07-28 Lightning charge estimation method and system

Publications (2)

Publication Number Publication Date
JP2017026587A JP2017026587A (en) 2017-02-02
JP6504662B2 true JP6504662B2 (en) 2019-04-24

Family

ID=57949593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015148799A Active JP6504662B2 (en) 2015-07-28 2015-07-28 Lightning charge estimation method and system

Country Status (1)

Country Link
JP (1) JP6504662B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6628641B2 (en) * 2016-03-03 2020-01-15 一般財団法人電力中央研究所 Method for estimating charge amount, estimation device, and estimation program
JP6872192B2 (en) * 2017-06-13 2021-05-19 国立大学法人静岡大学 Lightning charge amount estimation method and system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4217728B2 (en) * 2006-05-25 2009-02-04 中国電力株式会社 Lightning strike advanced evaluation apparatus and method, lightning charge evaluation apparatus and method, lightning charge advanced evaluation program
EP2225810B1 (en) * 2007-12-28 2017-06-07 Vestas Wind Systems A/S Method for detection of charge originating from lightning
JP5355344B2 (en) * 2009-10-16 2013-11-27 中国電力株式会社 Lightning charge evaluation system, lightning determination method, lightning charge evaluation method
JP2012037387A (en) * 2010-08-06 2012-02-23 Chugoku Electric Power Co Inc:The Lightning charge evaluation system, lightning determination method, and lightning charge evaluation method

Also Published As

Publication number Publication date
JP2017026587A (en) 2017-02-02

Similar Documents

Publication Publication Date Title
Piepgrass et al. Lightning and surface rainfall during Florida thunderstorms
Christian et al. Airborne and ground‐based studies of thunderstorms in the vicinity of Langmuir Laboratory
Foth et al. Water vapour profiles from Raman lidar automatically calibrated by microwave radiometer data during HOPE
JP6067741B2 (en) Lightning strike charge amount estimation system, lightning strike charge amount estimation method, and program
JP6504662B2 (en) Lightning charge estimation method and system
JP5915916B1 (en) Observation system
CN110244387B (en) Method, device, equipment and storage medium for predicting rainfall weather based on atmospheric water-reducing amount
CN113167922B (en) Method for calculating a wind speed associated with a regression period in which a proposed wind turbine park is located
US7957902B2 (en) Method and system for determining cloud-to-ground lightning information
CN109188113B (en) Device and method for simulating uniform ion flow field to perform simulated environment test
JP2012103209A (en) Lightning charge amount calculation system and lightning charge amount calculation method
JP2001004731A (en) Broad-band interferometer
RU158491U1 (en) RADAR METER OF TRACK SPEED OF NON-MANEUVERING AERODYNAMIC GOAL FOR SELECTION OF RANGE SQUARE
CN105891078A (en) Quantitative inversion estimation method for sand dust storm sand dust mass concentration on basis of wind profile radar
JP6872192B2 (en) Lightning charge amount estimation method and system
JP2017156282A (en) Charge amount estimation method, estimation device, and estimation program
Suparta et al. Nowcasting the lightning activity in Peninsular Malaysia using the GPS PWV during the 2009 inter-monsoons
CN109507759B (en) Method for forecasting rainfall
Cheng et al. A total lightning activity process and parameter characteristics at pearl river delta in China
CN110426755B (en) Ground temperature data quality control method based on improved reverse distance weighting
JP6593139B2 (en) Ground displacement observation method and information processing apparatus
CN110441224A (en) The inspection device of electric power transmission equipment metal atmospheric corrosion
Shvets et al. Automatic method for monitoring the lower ionosphere and lightning location by tweek-atmospherics
Gerhatova et al. Short-term and long-term variability of antenna position due to thermal bending of pillar monument at permanent GNSS station
Shvets et al. A Technique for Automatic Monitoring the Lower Ionosphere and Lightning Location by Tweekatmospherics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190322

R150 Certificate of patent or registration of utility model

Ref document number: 6504662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250