JP4217465B2 - Method for purifying 1,2-dichloroethane - Google Patents

Method for purifying 1,2-dichloroethane Download PDF

Info

Publication number
JP4217465B2
JP4217465B2 JP2002345461A JP2002345461A JP4217465B2 JP 4217465 B2 JP4217465 B2 JP 4217465B2 JP 2002345461 A JP2002345461 A JP 2002345461A JP 2002345461 A JP2002345461 A JP 2002345461A JP 4217465 B2 JP4217465 B2 JP 4217465B2
Authority
JP
Japan
Prior art keywords
liquid
dichloroethane
iron
crude
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002345461A
Other languages
Japanese (ja)
Other versions
JP2003238456A (en
Inventor
正之 森脇
幸二郎 宮崎
智章 藤井
大志 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2002345461A priority Critical patent/JP4217465B2/en
Publication of JP2003238456A publication Critical patent/JP2003238456A/en
Application granted granted Critical
Publication of JP4217465B2 publication Critical patent/JP4217465B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、鉄系触媒の存在下にエチレンと塩素とを反応せしめて得られる粗1,2−ジクロロエタン中の鉄成分を、水を抽剤として使用して抽出除去するための新規な精製方法に関する。詳しくは、該粗1,2−ジクロロエタンと抽剤とを接触せしめる精製方法において、接触により生成する固形分による悪影響を防止し、長期間連続した精製を可能とした精製方法を提供するものである。
【0002】
【従来の技術】
1,2−ジクロロエタンの製造方法として、塩素とエチレンとを鉄系触媒の存在下に反応せしめる方法が行われる。かかる反応によって得られる1,2−ジクロロエタンは、1,1,2−トリクロロエタン等の副生物及び鉄系触媒としての塩化第二鉄を含有するため、蒸留によりこれらを除去する必要がある。
【0003】
従来、上記精製は、粗1,2−ジクロロエタンより鉄系触媒を水を抽剤として抽出除去した後、副生物を蒸留により分離する方法が採用される。
【0004】
上記精製方法において、水を抽剤として鉄系触媒の除去を連続して行う場合、図3に示すような構造を有する連続向流塔が使用される。上記連続向流塔は、垂直方向に延在する筒状体よりなる液向流部101の内部に多孔板よりなるプレートを、間隔をあけて複数段設けた多孔板塔、内部にラシヒリングの如き充填物を充填した充填塔が一般に使用され、上記液向流部101の上部に設けた液供給口107より比重が大きい重液を供給し、また、液向流部1下部に設けた液供給口108より比重が小さい軽液を供給し、液向流部にて向流接触せしめることにより、両液を接触せしめるものである。そして、接触後の液は、液貯留部105、106を経て液取出口102、103よりそれぞれ取り出される。
【0005】
しかしながら、上記連続向流塔を使用して、上部より重液である粗1,2−ジクロロエタンを、下部より軽液である水を供給して鉄系触媒の抽出を実施した場合、該連続向流塔における水の供給近辺のpHが7から4までの領域で塩化第二鉄が水酸化鉄に変化し、その結果固形分として塔内に設けた多孔板或いは充填層にスケールとして付着する。その結果、塔内での通液路が閉塞され、長期間の連続した精製が困難となるという問題を有する。
【0006】
【発明が解決しようとする課題】
従って、本発明の目的は、前記液向流部を有する連続向流塔を使用して、粗1,2−ジクロロエタンに含まれる鉄系触媒等の鉄成分を、水を抽剤として該粗1,2−ジクロロエタンより抽出除去する精製方法において、該塔内でのスケール発生による閉塞を防止し、長期間に亘って安定した精製を行うことを可能とした精製方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記目的を達成するため鋭意研究を重ねた。その結果、連続向流塔の使用概念を打ち破り、該塔の軽液と重液との供給口を別途設けず、それぞれの供給口に重液及び軽液として供給していた粗1,2−ジクロロエタン及び抽剤としての水を予め混合した後、上記連続向流塔の液向流部の中間部分に供給して向流分離することにより、該塔内でのスケール発生による閉塞を防止し、長期間に亘って安定した精製を行うことが可能となり、しかも、鉄成分の抽出率の低下も無いことを見出し、本発明を完成するに至った。
【0008】
即ち、本発明は、鉄系触媒の存在下にエチレンと塩素とを反応せしめて得られる粗1,2−ジクロロエタン中の鉄成分を、水を抽剤として用いて精製するに際し、垂直方向に延在した筒状体よりなる液向流部を有し、該液向流部の上部及び下部にそれぞれ液取出口を有し、該上部及び下部の液取出口の間に位置する液向流部に液供給口を有する構造を成した連続向流塔を使用し、前記粗1,2−ジクロロエタンと抽剤とを予め混合し、得られる混合液を上記連続向流塔の液供給口に供給し、1,2−ジクロロエタンをその下部の液取出口より回収することを特徴とする1,2−ジクロロエタンの精製方法である。
【0009】
【発明の実施の形態】
本発明において、精製の対象とされる粗1,2−ジクロロエタンは、公知の方法によって鉄系触媒の存在下にエチレンと塩素とを反応させて得られ、1,2−ジクロロエタンが主成分であるが、副生物として1,1,2−トリクロロエタンと共にこれに伴って当量の塩化水素が含まれる。この生成物中には、前記したように、副生物の他触媒である鉄成分が溶解しており、蒸留により該副生物を除去する前に、該鉄成分を除去する必要がある。
【0010】
また、本発明において、粗1,2−ジクロロエタンより鉄成分を抽出するための抽剤としての水は、鉄成分を抽出可能な状態のものであれば特に制限されない。例えば、工業用水、水道水、純水等の水が一般に使用される。また、上記純水と共に、一旦鉄成分の抽出に使用した水や後述する粗1,2−ジクロロエタンと上記純水との混合によって得られる混合液(以下、抽剤−粗1,2−ジクロロエタン混合液ともいう。)の一部を循環使用することもできる。この循環の効果は、静的混合器への流量負荷が低減した場合にその負荷を調整し、混合器の性能を維持することができる点にある。
【0011】
本発明において、1,2−ジクロロエタンに対する抽剤の使用量は特に制限されるものではないが、1,2−ジクロロエタン1重量部に対して、抽剤である水を0.05〜1.5重量部、好ましくは0.1〜0.8重量部が適当である。また、抽剤の使用量は、混合液のpHが3以下となるように調整することが望ましい。
【0012】
また、本発明において、連続向流塔は、抽剤である水と1,2−ジクロロエタンとを比重差によって分離するための、垂直方向に延在した筒状体よりなる液向流部を有し、該液向流部の上部及び下部に液取出口、それぞれの液取出口の中間部に位置する箇所に液供給口を有するものであれば特に制限されない。
【0013】
図1は、本発明において好適に使用することができる連続向流塔の代表的な態様を示す概念図である。図1に示すように、本発明において、連続向流塔は、液向流部1の上部に液(水)取出口2を、下部に液(1,2−ジクロロエタン)取出口3を、また、液取出口2と液取出口3との間の任意の箇所に液供給口4を有する構造を基本的に有する。
【0014】
上記連続向流塔の液向流部1は、ここでの液の向流接触を効果的に行うため、該液向流部中に多孔板よりなるプレートを設けたり、充填物を充填した公知の構造が好適に採用される。
【0015】
かかる構造のうち、特に、プレートを設けた構造が、後記の抽剤−粗1,2−ジクロロエタン混合液から抽剤を精度良く分離できるため好ましく、この場合、塔の大きさにもよるが、複数枚、具体的には、20〜100枚のプレートを10〜100mm間隔で配置した構造が好適である。また、プレートの開口率は、30〜70%程度が一般的である。更に、上記プレートを通過する液に振動を与える手段を具備する構造が好適に採用される。例えば、該プレートを上下方向に振動させる構造が挙げられる。かかる振動のストローク幅は、5〜50mmが好ましく、また、ストローク回数は、100〜500回/分程度が一般的である。プレートに振動を与える方法は、公知の手段が特に制限なく採用されるが、モーターの回転を、クランクシャフトを介して該プレートの振動に変える手段が好適に採用される。
【0016】
また、液向流部の上下には、移動後の液を貯留し、相分離を更に効率よく行うための液貯留部5及び6をそれぞれ設けることが好ましい。この場合、液取出口2は、水貯留部となる液貯留部5の上部に設けられ、また、液取出口3は、粗1,2−ジクロロエタン貯留部となる液貯留部6の下部に設けることが好ましい。
【0017】
また、液向流部1に設ける液供給口4は、後で詳述する抽剤−粗1,2−ジクロロエタン混合液を連続向流塔に供給する供給口である。その取付位置は前記液取出口2と液取出口3との間であれば特に制限されないが、好適な取付位置は、液向流部1の上部であり、特に水貯留部5の直下、即ち、液向流部の上端付近である。
【0018】
上記本発明において使用する連続向流塔は、従来の液供給口を2つ有する連続向流塔の下方の液供給口(軽液供給口)を塞いで使用することができることは言うまでもない。
【0019】
本発明の最大の特徴は、上記構造を有する連続向流塔を使用し、粗1,2−ジクロロエタン及び抽剤としての水を予め混合した混合液を該連続向流塔の液供給口より供給することにある。
【0020】
かかる混合によって、粗1,2−ジクロロエタンの中に含まれる酸分により、溶剤−粗1,2−ジクロロエタン混合液のpHが均一に下がるため、連続向流塔において、従来の方法では粗1,2−ジクロロエタンと水との向流接触によってpHが徐々に変化することにより多量に生成していた水酸化鉄等の固形分の生成量が抑制され、該固形分の少ない抽剤−粗1,2−ジクロロエタン混合液を得ることができる。そして、この抽剤−粗1,2−ジクロロエタン混合液は酸性を示し、混合後に固形分が析出することはないため、この混合液を連続向流塔に供給した場合、該塔内での固形分の生成がほぼ完全に防止できる。
【0021】
また、抽剤と粗1,2−ジクロロエタンとを静的混合器で混合することにより、混合と同時に1,2−ジクロロエタンに含まれた鉄成分の抽剤への抽出は開始され、連続向流塔に供給するまでに酸性状態で抽出が進行する。該混合液は連続向流塔に供給され、従来の抽出効果と共に、分離槽として1,2−ジクロロエタン中に微分散した鉄を含んだ抽剤を分離する効果を発揮し、極めて高い精度で粗1,2−ジクロロエタンより鉄成分を除去することができるという驚くべき効果を発揮する。
【0022】
本発明の精製方法の好適な実施態様を図2に工程図として示す。図2によれば、鉄系触媒の存在下にエチレンと塩素とを反応せしめて得られる粗1,2−ジクロロエタン7は、工業用水8と接触後直ちに静的混合器9に供給されて瞬時に且つ均一に混合され、抽剤−粗1,2−ジクロロエタン混合液として連続向流塔1に供給されて相分離される。この場合、静的混合器9で混合された液をライン10を経て、工業用水8の供給箇所の前に循環することもできる。かかる循環により、前記したように、静的混合器への流量負荷が低減した場合にその負荷を調整し、混合器の性能を維持することができる。
【0023】
上記抽剤−粗1,2−ジクロロエタン混合液を得るための粗1,2−ジクロロエタンと抽剤との混合方法は特に制限されないが、両者が接触後、できるだけ短い時間内に実施する方法が好ましい。例えば、図4に示すごとく、粗1,2−ジクロロエタン7への抽剤8の供給を、粗1,2−ジクロロエタンの流れと同一方向に、且つ混合器9の近傍に抽剤を供給するため、挿入管11により行うことによって混合する方法が好適に採用される。即ち、かかる混合時間が長くなったり、不均一な混合が生じる場合、前記した固形分が発生し易くなる傾向があり、抽剤−粗1,2−ジクロロエタン混合液を連続向流塔において固形分が蓄積するおそれがある。上記の瞬時に行う混合は、10秒以内、特に、5秒以内に実施することが好ましい。また、かかる混合を行う手段としては、公知の市販の静的混合器が、何ら制限される事なく使用することができる。具体的には、板状またはカップ状の衝突板式の静的混合器、およびKenics型、Sulzer型、Etoflo型、Tray Hi−mixer型、Bran&Lubbe型、N−form型、Komax型、Lightnin型、Ross ISG型、Prematechnik PMR型の静的混合器等を挙げることができる。特に衝突板式の静的混合器が、粗1,2−ジクロロエタンと抽剤の瞬時の混合に好ましいことに加え、粗1,2−ジクロロエタン中に分散した抽剤の合一が少なく好ましい。
【0024】
本発明の精製方法によって得られた1,2−ジクロロエタンは、必要に応じて、蒸留等の公知の精製方法を適用し、更に精製を行うことができる。
【0025】
【発明の効果】
以上の説明より理解されるように、本発明によれば、粗1,2−ジクロロエタンと抽剤としての水とを予め混合した後、上記連続向流塔に供給して向流分離することにより、該塔内での水酸化鉄等のスケールの発生による閉塞を防止し、該連続向流塔を使用して長期間に亘って安定した精製を行うことが可能となり、しかも、高い抽出率で鉄成分を除去し、精製された1,2−ジクロロエタンを得ることができる。
【0026】
特に、静的混合器を使用して抽剤と粗1,2−ジクロロエタンとの混合を瞬時に行う態様を採用することにより、本発明の効果を一層向上せしめることができる。
【0027】
【実施例】
以下、本発明をより具体的に説明するため、実施例を示すが、本発明はこれらの実施例に何ら限定されるものではない。
【0028】
実施例1
連続向流塔は、図1に示す構造を有する下記の仕様のものを用いて行なった。・液向流部 塔径25mmφ、高さ3000mm
・上部の水貯留部 塔径51mmφ、高さ300mm
・下部の1,2−ジクロロエタン貯留部 塔径51mmφ、高さ300mm
・液向流部設置のプレート 開孔率50%
・液向流部設置のプレート間隔 50mm、56枚設置
・プレートの振動のストローク長さ 25mm
・プレートの振動回数 300ストローク回数/分
上記連続向流塔に鉄を30ppm溶解した1,2−ジクロロエタン18.7L/hrと、抽剤としての工業用水3.3L/hrを静的混合器に供給し、両液の接触から該混合器出口までの時間が2秒となるように接触させた。
【0029】
得られた混合液のpHは1.5であった。この混合液を上記連続向流塔の液向流部の中間部から供給した。
【0030】
その結果、1,2−ジクロロエタン取出口3から、液中に鉄が0.5ppm含有する1,2−ジクロロエタンが、水取出口2から、液中に鉄を196ppm含有する水が連続的に取り出された。
【0031】
上記結果より、除鉄率[%]を(入口1,2ジクロロエタン中鉄濃度−出口1,2ジクロロエタン中鉄濃度)/入口1,2ジクロロエタン中鉄濃度×100で計算したところ、除鉄率は98.3%であった。
【0032】
上記操作を50日連続運転した結果、連続向流塔内部にスケールは観察されず、除鉄率も98.3%が維持されていた。
【0033】
比較例1
図3に示す従来の連続向流塔を使用し、粗1,2−ジクロロエタンを液供給口107より、抽剤としての工業用水を液供給口108より供給した以外は実施例1と同様に抽出による1,2ジクロロエタンの精製を行なった。
【0034】
その結果、1,2−ジクロロエタン取出口3から、液中に鉄が0.6ppm含有する1,2−ジクロロエタンが、水取出口2から、液中に鉄を186ppm含有する水が連続的に取り出された。この場合の除鉄率は98.0%であった。
【0035】
上記操作を50日連続運転した結果、連続向流塔内部のプレートにスケールが付着し、水貯留部に1,2−ジクロロエタンが溜り始め、除鉄率も93.3%まで低下した。
【0036】
実施例2
1,2−ジクロロエタンと工業用水を静的混合器で混合した混合液を液向流部の水貯留部の直下に位置する液向流部に供給した以外は、実施例1と同様に行なった。
【0037】
その結果、1,2−ジクロロエタン取出口3から、液中に鉄が0.3ppm含有する1,2−ジクロロエタンが、水取出口2から、液中に鉄を198ppm含有する水が連続的に取り出された。こり場合の除鉄率は99.0%であった。
【0038】
上記操作を50日連続運転した結果、連続向流塔内部にスケールは観察されず、除鉄率も99.0%が維持されていた。
【0039】
実施例3
図4に示すように、1,2−ジクロロエタンと共に工業用水を挿入管11より静的混合器に供給し、両液の接触から該混合器出口までの時間が0.5秒となるように、静的混合器で混合した以外は、実施例1と同様に行なった。
【0040】
その結果、1,2−ジクロロエタン取出口3から、液中に鉄が0.5ppm含有する1,2−ジクロロエタンが、水取出口2から、液中に鉄を196ppm含有する水が連続的に取り出された。この場合の除鉄率は98.3%であった。
【0041】
上記操作を100日連続運転した結果、連続向流塔内部にスケールは観察されず、除鉄率は98.3%が維持されていた。
【図面の簡単な説明】
【図1】本発明の方法に使用する代表的な連続向流塔の構造を示す概念図
【図2】本発明の方法の好適な実施の態様を示す工程図
【図3】従来の連続向流塔の構造を示す概念図
【図4】本発明の方法の好適な実施態様を示す部分工程図
【符号の説明】
1:液向流部
2:水取出口
3:1,2−ジクロロエタン取出口
4:液供給口
5:水貯留部
6:1,2−ジクロロエタン貯留部
7:粗1,2−ジクロロエタン
8:水
9:静的混合器
11:挿入管
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a novel purification method for extracting and removing iron components in crude 1,2-dichloroethane obtained by reacting ethylene and chlorine in the presence of an iron-based catalyst using water as an extractant. About. More specifically, the present invention provides a purification method in which the crude 1,2-dichloroethane and the extractant are brought into contact with each other, by preventing the adverse effects due to the solid content produced by the contact, and enabling continuous purification for a long period of time. .
[0002]
[Prior art]
As a method for producing 1,2-dichloroethane, a method of reacting chlorine and ethylene in the presence of an iron-based catalyst is performed. Since 1,2-dichloroethane obtained by such a reaction contains by-products such as 1,1,2-trichloroethane and ferric chloride as an iron-based catalyst, it is necessary to remove them by distillation.
[0003]
Conventionally, the purification employs a method in which an iron-based catalyst is extracted and removed from crude 1,2-dichloroethane using water as an extractant, and then by-products are separated by distillation.
[0004]
In the above purification method, when the iron-based catalyst is continuously removed using water as an extractant, a continuous countercurrent tower having a structure as shown in FIG. 3 is used. The continuous countercurrent tower is a perforated plate tower in which a plate made of a perforated plate is provided inside a liquid countercurrent portion 101 made of a cylindrical body extending in the vertical direction, and a plurality of stages are provided at intervals. A packed tower packed with a packing is generally used, and a heavy liquid having a specific gravity larger than that of the liquid supply port 107 provided at the upper part of the liquid counterflow part 101 is supplied, and a liquid supply provided at the lower part of the liquid counterflow part 1 Both liquids are brought into contact with each other by supplying a light liquid having a smaller specific gravity from the mouth 108 and bringing it into countercurrent contact at the liquid counterflow part. Then, the liquid after contact is taken out from the liquid outlets 102 and 103 through the liquid reservoirs 105 and 106, respectively.
[0005]
However, when the above-described continuous countercurrent tower is used to extract crude 1,2-dichloroethane, which is a heavy liquid, from the top and water, which is a light liquid, from the bottom, the iron-based catalyst is extracted. In the region where the pH in the vicinity of the water supply in the flow tower is 7 to 4, ferric chloride changes to iron hydroxide, and as a result, it adheres as a solid to a porous plate or packed bed provided in the tower as a scale. As a result, there is a problem in that the liquid passage in the tower is blocked and continuous purification for a long time becomes difficult.
[0006]
[Problems to be solved by the invention]
Therefore, the object of the present invention is to use the continuous counter-current tower having the liquid counter-current part, to convert the iron component such as iron-based catalyst contained in the crude 1,2-dichloroethane into the crude 1 An object of the present invention is to provide a purification method for extracting and removing from 2,2-dichloroethane, which prevents clogging due to scale generation in the tower and enables stable purification over a long period of time.
[0007]
[Means for Solving the Problems]
The inventors of the present invention have made extensive studies to achieve the above object. As a result, the concept of use of the continuous countercurrent tower was broken down, and the crude liquid 1,2-has been supplied as heavy liquid and light liquid to the respective supply ports without providing separate supply ports for the light liquid and heavy liquid of the tower. After premixing dichloroethane and water as the extractant, by supplying to the middle part of the liquid countercurrent part of the continuous countercurrent tower and separating it countercurrently, blockage due to scale generation in the tower is prevented, It has become possible to carry out stable purification over a long period of time and that the extraction rate of the iron component does not decrease, and the present invention has been completed.
[0008]
That is, the present invention extends in the vertical direction when purifying the iron component in crude 1,2-dichloroethane obtained by reacting ethylene and chlorine in the presence of an iron-based catalyst using water as an extractant. A liquid counterflow portion comprising a cylindrical body, having a liquid outlet at the upper and lower portions of the liquid countercurrent portion, and positioned between the upper and lower liquid outlets A continuous countercurrent tower having a liquid supply port is used, the crude 1,2-dichloroethane and the extractant are mixed in advance, and the resulting mixed liquid is supplied to the liquid supply port of the continuous countercurrent tower. 1,2-dichloroethane is recovered from the liquid outlet at the bottom thereof, and this is a method for purifying 1,2-dichloroethane.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, crude 1,2-dichloroethane to be purified is obtained by reacting ethylene and chlorine in the presence of an iron-based catalyst by a known method, and 1,2-dichloroethane is the main component. However, as a by-product, 1,1,2-trichloroethane is accompanied by an equivalent amount of hydrogen chloride. As described above, the iron component, which is another catalyst of the byproduct, is dissolved in this product, and it is necessary to remove the iron component before removing the byproduct by distillation.
[0010]
Moreover, in this invention, the water as an extractant for extracting an iron component from crude 1, 2- dichloroethane will not be restrict | limited especially if it is a state which can extract an iron component. For example, water such as industrial water, tap water, or pure water is generally used. Further, together with the pure water, water once used for extraction of iron components or a mixture obtained by mixing crude 1,2-dichloroethane described later and the pure water (hereinafter referred to as extractant-crude 1,2-dichloroethane mixed) A part of the liquid can also be recycled. The effect of this circulation is that when the flow load on the static mixer is reduced, the load can be adjusted to maintain the performance of the mixer.
[0011]
In the present invention, the amount of the extractant to be used for 1,2-dichloroethane is not particularly limited, but the extractant water is 0.05 to 1.5 per 1 part by weight of 1,2-dichloroethane. Part by weight, preferably 0.1 to 0.8 part by weight is suitable. Moreover, it is desirable to adjust the usage-amount of an extractant so that the pH of a liquid mixture may be 3 or less.
[0012]
Further, in the present invention, the continuous countercurrent tower has a liquid countercurrent portion composed of a vertically extending cylindrical body for separating the extractant water and 1,2-dichloroethane by a specific gravity difference. And if it has a liquid supply outlet in the location located in the intermediate part of each liquid extraction outlet in the upper part and the lower part of this liquid counterflow part, it will not restrict | limit in particular.
[0013]
FIG. 1 is a conceptual diagram showing a typical embodiment of a continuous countercurrent tower that can be suitably used in the present invention. As shown in FIG. 1, in the present invention, the continuous countercurrent tower has a liquid (water) outlet 2 at the top of the liquid counterflow section 1, a liquid (1,2-dichloroethane) outlet 3 at the bottom, The liquid supply port 4 is basically provided at an arbitrary position between the liquid discharge port 2 and the liquid discharge port 3.
[0014]
The liquid countercurrent section 1 of the continuous countercurrent tower is provided with a plate made of a perforated plate in the liquid countercurrent section or filled with a filler in order to effectively perform the countercurrent contact of the liquid here. This structure is preferably employed.
[0015]
Among such structures, a structure provided with a plate is particularly preferable because the extractant can be accurately separated from the extractant-crude 1,2-dichloroethane mixture described later. In this case, depending on the size of the tower, A structure in which a plurality of plates, specifically, 20 to 100 plates are arranged at intervals of 10 to 100 mm is preferable. Further, the opening ratio of the plate is generally about 30 to 70%. Furthermore, a structure having means for applying vibration to the liquid passing through the plate is preferably employed. For example, the structure which vibrates this plate to an up-down direction is mentioned. The stroke width of such vibration is preferably 5 to 50 mm, and the number of strokes is generally about 100 to 500 times / minute. As a method for applying vibration to the plate, known means are employed without particular limitation, but means for changing the rotation of the motor to vibration of the plate via the crankshaft is preferably employed.
[0016]
Moreover, it is preferable to provide the liquid storage parts 5 and 6 for storing the liquid after movement and performing phase separation more efficiently above and below the liquid counterflow part, respectively. In this case, the liquid outlet 2 is provided in the upper part of the liquid reservoir 5 serving as a water reservoir, and the liquid outlet 3 is provided in the lower part of the liquid reservoir 6 serving as a crude 1,2-dichloroethane reservoir. It is preferable.
[0017]
Moreover, the liquid supply port 4 provided in the liquid counterflow part 1 is a supply port which supplies the extractant-crude 1, 2- dichloroethane mixed liquid explained in full detail later to a continuous countercurrent tower. The mounting position is not particularly limited as long as it is between the liquid outlet 2 and the liquid outlet 3, but the preferable mounting position is the upper part of the liquid counterflow portion 1, particularly directly below the water reservoir 5, that is, In the vicinity of the upper end of the liquid counterflow portion.
[0018]
It goes without saying that the continuous countercurrent tower used in the present invention can be used by closing the liquid supply port (light liquid supply port) below the conventional countercurrent tower having two liquid supply ports.
[0019]
The greatest feature of the present invention is that a continuous countercurrent tower having the above-described structure is used, and a mixed liquid in which crude 1,2-dichloroethane and water as an extractant are mixed in advance is supplied from the liquid supply port of the continuous countercurrent tower. There is to do.
[0020]
By such mixing, the pH of the solvent-crude 1,2-dichloroethane mixture is uniformly lowered by the acid content contained in the crude 1,2-dichloroethane. The amount of solid content such as iron hydroxide that has been produced in large quantities due to the gradual change in pH due to countercurrent contact between 2-dichloroethane and water is suppressed, and the extractant with a low solid content—crude 1, A 2-dichloroethane mixture can be obtained. And this extractant-crude 1,2-dichloroethane mixed liquid shows acidity, and since solid content does not precipitate after mixing, when this mixed liquid is supplied to a continuous countercurrent tower, the solid in the tower Minute generation can be almost completely prevented.
[0021]
Also, by extracting the extractant and crude 1,2-dichloroethane with a static mixer, extraction of iron components contained in 1,2-dichloroethane into the extract simultaneously with mixing is started, and continuous countercurrent Extraction proceeds in an acidic state before being fed to the tower. The mixed solution is supplied to a continuous countercurrent tower, and exhibits the effect of separating the extractant containing iron finely dispersed in 1,2-dichloroethane as a separation tank, together with the conventional extraction effect, and with extremely high accuracy. The surprising effect that iron components can be removed from 1,2-dichloroethane is exhibited.
[0022]
A preferred embodiment of the purification method of the present invention is shown as a flow chart in FIG. According to FIG. 2, crude 1,2-dichloroethane 7 obtained by reacting ethylene and chlorine in the presence of an iron-based catalyst is supplied to the static mixer 9 immediately after contact with the industrial water 8 and instantly. The mixture is uniformly mixed and supplied to the continuous countercurrent tower 1 as an extractant-crude 1,2-dichloroethane mixed liquid to be phase-separated. In this case, the liquid mixed by the static mixer 9 can also be circulated through the line 10 and before the supply location of the industrial water 8. By this circulation, as described above, when the flow load on the static mixer is reduced, the load can be adjusted and the performance of the mixer can be maintained.
[0023]
The mixing method of the crude 1,2-dichloroethane and the extractant for obtaining the above-described extractant-crude 1,2-dichloroethane mixed solution is not particularly limited, but a method in which both are carried out within as short a time as possible after the contact is preferable. . For example, as shown in FIG. 4, to supply the extractant 8 to the crude 1,2-dichloroethane 7 in the same direction as the flow of the crude 1,2-dichloroethane and to the vicinity of the mixer 9 The method of mixing by carrying out with the insertion tube 11 is preferably employed. That is, when the mixing time becomes long or non-uniform mixing occurs, the above-described solid content tends to be generated, and the extractant-crude 1,2-dichloroethane mixed solution is removed in the continuous countercurrent tower. May accumulate. The instantaneous mixing is preferably performed within 10 seconds, particularly within 5 seconds. Moreover, as a means for performing such mixing, a known commercially available static mixer can be used without any limitation. Specifically, a plate-shaped or cup-shaped collision plate type static mixer, and Kenics type, Sulzer type, Etoflo type, Ray Hi-mixer type, Bran & Lube type, N-form type, Komax type, Lightnin type, Ross Examples thereof include ISG type and Prematenik PMR type static mixers. In particular, a collision plate type static mixer is preferable for instantaneous mixing of the crude 1,2-dichloroethane and the extractant, and is preferable because the coalescence of the extract dispersed in the crude 1,2-dichloroethane is small.
[0024]
The 1,2-dichloroethane obtained by the purification method of the present invention can be further purified by applying a known purification method such as distillation, if necessary.
[0025]
【The invention's effect】
As can be understood from the above description, according to the present invention, crude 1,2-dichloroethane and water as an extractant are mixed in advance, and then supplied to the continuous countercurrent tower to perform countercurrent separation. In addition, it is possible to prevent clogging due to generation of scale such as iron hydroxide in the tower, and to perform stable purification over a long period of time using the continuous countercurrent tower, and at a high extraction rate. By removing the iron component, purified 1,2-dichloroethane can be obtained.
[0026]
In particular, the effect of the present invention can be further improved by adopting an embodiment in which a static mixer is used to instantaneously mix the extractant and crude 1,2-dichloroethane.
[0027]
【Example】
EXAMPLES Hereinafter, examples will be shown to describe the present invention more specifically, but the present invention is not limited to these examples.
[0028]
Example 1
The continuous countercurrent tower was used with the following specifications having the structure shown in FIG.・ Liquid counterflow section Tower diameter 25mmφ, Height 3000mm
-Upper water storage part Tower diameter 51mmφ, height 300mm
Lower 1,2-dichloroethane reservoir, tower diameter 51mmφ, height 300mm
・ Plate open area 50%
・ Plate spacing 50mm, 56 plates installed for liquid counterflow part ・ Stroke length of plate vibration 25mm
・ Number of plate vibrations 300 strokes / min. 18.7 L / hr of 1,2-dichloroethane in which 30 ppm of iron is dissolved in the above continuous countercurrent tower and 3.3 L / hr of industrial water as extractant in a static mixer. The two solutions were brought into contact with each other so that the time from the contact between the two liquids to the outlet of the mixer was 2 seconds.
[0029]
The pH of the obtained liquid mixture was 1.5. This mixed solution was supplied from an intermediate portion of the liquid countercurrent portion of the continuous countercurrent tower.
[0030]
As a result, 1,2-dichloroethane containing 0.5 ppm of iron in the liquid was continuously taken out from the 1,2-dichloroethane outlet 3, and water containing 196 ppm of iron in the liquid was continuously taken out from the water outlet 2. It was.
[0031]
From the above results, the iron removal rate [%] was calculated by (iron concentration in inlet 1,2 dichloroethane−iron concentration in outlet 1,2 dichloroethane) / iron concentration in inlet 1,2 dichloroethane × 100. It was 98.3%.
[0032]
As a result of continuously operating the above operation for 50 days, no scale was observed inside the continuous countercurrent tower, and the iron removal rate was maintained at 98.3%.
[0033]
Comparative Example 1
Extraction was performed in the same manner as in Example 1 except that crude conventional 1,2-dichloroethane was supplied from the liquid supply port 107 and industrial water as an extractant was supplied from the liquid supply port 108 using the conventional continuous countercurrent tower shown in FIG. Purification of 1,2 dichloroethane by
[0034]
As a result, 1,2-dichloroethane containing 0.6 ppm of iron in the liquid was continuously taken out from the 1,2-dichloroethane outlet 3, and water containing 186 ppm of iron in the liquid was continuously taken out from the water outlet 2. It was. The iron removal rate in this case was 98.0%.
[0035]
As a result of continuous operation of the above operation for 50 days, scale adhered to the plate in the continuous countercurrent tower, 1,2-dichloroethane began to accumulate in the water reservoir, and the iron removal rate decreased to 93.3%.
[0036]
Example 2
It carried out similarly to Example 1 except having supplied the liquid mixture which mixed 1, 2- dichloroethane and industrial water with the static mixer to the liquid countercurrent part located just under the water storage part of a liquid countercurrent part. .
[0037]
As a result, 1,2-dichloroethane containing 0.3 ppm of iron in the liquid was continuously taken out from the 1,2-dichloroethane outlet 3, and water containing 198 ppm of iron in the liquid was continuously taken out from the water outlet 2. It was. In this case, the iron removal rate was 99.0%.
[0038]
As a result of continuous operation of the above operation for 50 days, no scale was observed inside the continuous countercurrent tower, and the iron removal rate was maintained at 99.0%.
[0039]
Example 3
As shown in FIG. 4, industrial water together with 1,2-dichloroethane is supplied to the static mixer through the insertion tube 11, and the time from the contact of both liquids to the outlet of the mixer is 0.5 seconds. The same procedure as in Example 1 was performed except that mixing was performed using a static mixer.
[0040]
As a result, 1,2-dichloroethane containing 0.5 ppm of iron in the liquid was continuously taken out from the 1,2-dichloroethane outlet 3, and water containing 196 ppm of iron in the liquid was continuously taken out from the water outlet 2. It was. The iron removal rate in this case was 98.3%.
[0041]
As a result of continuously operating the above operation for 100 days, no scale was observed inside the continuous countercurrent tower, and the iron removal rate was maintained at 98.3%.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing the structure of a typical continuous countercurrent tower used in the method of the present invention. FIG. 2 is a process diagram showing a preferred embodiment of the method of the present invention. FIG. 4 is a conceptual diagram showing the structure of a flow tower. FIG. 4 is a partial process diagram showing a preferred embodiment of the method of the present invention.
1: Liquid counter-flow part 2: Water outlet 3: 1,2-dichloroethane outlet 4: Liquid supply port 5: Water reservoir 6: 1,2-dichloroethane reservoir 7: Crude 1,2-dichloroethane 8: Water 9: Static mixer 11: Insertion tube

Claims (1)

鉄系触媒の存在下にエチレンと塩素とを反応せしめて得られる粗1,2−ジクロロエタン中の鉄成分を、水を抽剤として用いて精製するに際し、垂直方向に延在した筒状体よりなる液向流部を有し、該液向流部の上部及び下部にそれぞれ液取出口を有し、該上部及び下部の液取出口の間に位置する液向流部に液供給口を有する構造を成した連続向流塔を使用し、前記粗1,2−ジクロロエタンと抽剤とを予め混合し、得られる混合液を上記連続向流塔の液供給口に供給し、1,2−ジクロロエタンをその下部の液取出口より回収することを特徴とする1,2−ジクロロエタンの精製方法。When refining the iron component in crude 1,2-dichloroethane obtained by reacting ethylene and chlorine in the presence of an iron-based catalyst using water as an extractant, from a cylindrical body extending vertically A liquid counterflow portion, a liquid outlet is provided at each of the upper and lower portions of the liquid counterflow portion, and a liquid supply port is provided at the liquid countercurrent portion located between the upper and lower liquid outlets. Using the continuous countercurrent tower having the structure, the crude 1,2-dichloroethane and the extractant are mixed in advance, and the resulting mixed liquid is supplied to the liquid supply port of the continuous countercurrent tower, A process for purifying 1,2-dichloroethane, characterized in that dichloroethane is recovered from the liquid outlet at the bottom thereof.
JP2002345461A 2001-12-14 2002-11-28 Method for purifying 1,2-dichloroethane Expired - Lifetime JP4217465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002345461A JP4217465B2 (en) 2001-12-14 2002-11-28 Method for purifying 1,2-dichloroethane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-381787 2001-12-14
JP2001381787 2001-12-14
JP2002345461A JP4217465B2 (en) 2001-12-14 2002-11-28 Method for purifying 1,2-dichloroethane

Publications (2)

Publication Number Publication Date
JP2003238456A JP2003238456A (en) 2003-08-27
JP4217465B2 true JP4217465B2 (en) 2009-02-04

Family

ID=27790870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002345461A Expired - Lifetime JP4217465B2 (en) 2001-12-14 2002-11-28 Method for purifying 1,2-dichloroethane

Country Status (1)

Country Link
JP (1) JP4217465B2 (en)

Also Published As

Publication number Publication date
JP2003238456A (en) 2003-08-27

Similar Documents

Publication Publication Date Title
TWI422526B (en) Method for purifying hydrogen chloride
US7223332B1 (en) Reactor and process for mercaptan oxidation and separation in the same vessel
JP4594602B2 (en) Method for oxidative desulfurization of liquid petroleum products
KR101013472B1 (en) Apparutus and process for extracting sulfur compounds from a hydrocarbon stream
JPH11511430A (en) Method and apparatus for degassing sulfur
JP2006315931A (en) Method and apparatus for recovering phosphoric acid from metal ion-containing mixed acid aqueous solution containing phosphoric acid and at least one kind of acid except phosphoric acid
KR101164900B1 (en) Removal of propylene glycol and/or propylene glycol ethers from aqueous streams
KR20160054493A (en) Anion exchanger, mixture of anion exchanger and cation exchanger, mixed bed comprising anion exchanger and cation exchanger, production processes therefor, and method for purifying aqueous hydrogen peroxide solution
TW201245166A (en) System and process for producing an oxirane
JP4217465B2 (en) Method for purifying 1,2-dichloroethane
KR100721050B1 (en) Liquid-liquid extracting method
JP2003327562A (en) Method for producing alkyl nitrite
US8846994B2 (en) Method for producing low-odor n-butane
JP4065714B2 (en) Method for purifying 1,2-dichloroethane
JP2005281157A (en) Method for distilling 1,3-bis(aminomethyl)cyclohexane
JP5781166B2 (en) Apparatus and method using nitroalkane as an azeotropic agent for azeotropic removal of water from hydrous acid solutions
EP0058074B1 (en) Liquid-liquid contacting process
WO2008133681A1 (en) Reactor and process for mercaptan oxidation and separation in the same vessel
TW201350463A (en) A process for purifying organic product solution obtained from oxime synthesis section
JP4010847B2 (en) Method for purifying nitrogen trifluoride gas
JP5351934B2 (en) Method and apparatus for converting sulfur compounds in a hydrocarbon stream
JP2987948B2 (en) Removal method of vinyl acetate mixed in vinyl chloride
CN103384660A (en) Method for producing high-quality epsilon-caprolactam
CN103382164B (en) A kind of method for purifying the organic solution obtained from cyclohexanone oxime synthesis zone
EP2912026B1 (en) Process for preparing epichlorohydrin from dichlorohydrin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4217465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141114

Year of fee payment: 6

EXPY Cancellation because of completion of term