JP4217310B2 - Polypropylene resin composition and film thereof - Google Patents

Polypropylene resin composition and film thereof Download PDF

Info

Publication number
JP4217310B2
JP4217310B2 JP29379098A JP29379098A JP4217310B2 JP 4217310 B2 JP4217310 B2 JP 4217310B2 JP 29379098 A JP29379098 A JP 29379098A JP 29379098 A JP29379098 A JP 29379098A JP 4217310 B2 JP4217310 B2 JP 4217310B2
Authority
JP
Japan
Prior art keywords
ethylene
film
propylene
weight
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29379098A
Other languages
Japanese (ja)
Other versions
JP2000119480A (en
Inventor
篤太郎 木村
義勝 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prime Polymer Co Ltd
Original Assignee
Prime Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prime Polymer Co Ltd filed Critical Prime Polymer Co Ltd
Priority to JP29379098A priority Critical patent/JP4217310B2/en
Publication of JP2000119480A publication Critical patent/JP2000119480A/en
Application granted granted Critical
Publication of JP4217310B2 publication Critical patent/JP4217310B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ポリプロピレン樹脂組成物及びそのフイルムに関するものである。詳しくは、プロピレン−エチレンブロック共重合体とエチレン−αオレフィン共重合体ゴムからなり、低温耐衝撃性、ヒートシール強度、透明性、耐屈曲白化性、耐熱性等のフイルム特性に優れた樹脂組成物及びそれを用いて成形したレトルト食品包装フイルムに関する。
【0002】
【従来の技術】
レトルト食品包装用フイルムとしては、通常、貼り合わせフイルムが用いられており、その代表的な仕様は、PET(外側)/アルミ箔(中間)/キャストPP(内側)、PET/NY/アルミ箔/キャストPP、PET/アルミ箔/NY/キャストPP、NY/キャストPP等である。最内面を構成するキャストPPは、キャスト成形されたフイルムであり、食品と接触し、レトルト釜で120〜135℃で加圧・殺菌する工程を経ることから▲1▼食品衛生性、▲2▼シール強度、▲3▼耐熱性、▲4▼耐衝撃性等のフイルム物性が要求される。
【0003】
このレトルト食品包装用フイルムとして用いられるキャストPPに適する樹脂として、これまでに多くの提案がなされてきた。例えば特開平6−93062号公報では、エチレン−プロピレン共重合部とプロピレン単独重合部が一定の割合で存在し、かつ前者の極限粘度の後者の極限粘度との比が特定の値以下である等を特徴とした特定のプロピレン−エチレンブロック共重合体について提案されている。
【0004】
しかし、プロピレン−エチレンブロック共重合体は、フイルム物性全体として良くバランスしており、特に低温での耐衝撃性に優れるているが、折り目の白化、更にそこからのピンホールの発生の懸念や透明性が不良である点で使用が制限される等、まだ充分ではない。
【0005】
【発明が解決しようとする課題】
本発明は、低温での耐衝撃性、ヒートシール強度、透明性、耐屈曲白化性、耐熱等の主要物性をバランスさせたプロピレン樹脂組成物及びそれを用いて成形したレトルト食品包装フイルムを提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明者は、上記課題について鋭意検討した結果、以下に示す本発明を完成させた。
〔1〕(A)下記(a1)〜(a3)の性状を有するプロピレン−エチレンブロック共重合体90〜99重量%、(B)下記(b1) 及び(b2)の性状を有するエチレン−αオレフィン共重合体ゴム1〜10重量%からなるポリプロピレン樹脂組成物。
(a1)メルトフローレート(MFR)が0.5〜20g/10分であり、
(a2) 沸騰パラキシレンに溶解後、25℃まで放冷した後のパラキシレン不溶部の割合が60〜90重量%で、その不溶部の極限粘度( [η]H )が1.5〜2.8dl/gであり、及び
(a3) 沸騰パラキシレンに溶解後、25℃まで放冷した後のパラキシレン可溶部の割合が10〜40重量%で、その可溶部の極限粘度( [η]EP)が1.5〜2.8dl/gであり、且つ [η]EP≦ [η]H +0.5であり、同可溶部のエチレン含有率が10〜50重量%である
(b1) メルトフローレート(MFR)が0.5〜20g/10分であり、
(b2) 極限粘度( [η]EPR )が2.8dl/g以下であり、且つ [η]EPR ≦ [η]H +0.5であり、及び
(b3) エチレン含有率が30〜90重量%である
〔2〕上記〔1〕記載のポリプロピレン樹脂組成物を押出成形したレトルト食品包装フイルム。
【0007】
【発明の実施の形態】
〔ポリプロピレン樹脂組成物〕
(A)プロピレン−エチレンブロック共重合体
本発明に用いるプロピレン−エチレンブロック共重合体は、下記(a1)〜(a3)の性状を有するプロピレン−エチレンブロック共重合体である。
(a1)メルトフローレート(MFR)が0.5〜20g/10分であり、
(a2) 沸騰パラキシレンに溶解後、25℃まで放冷した後のパラキシレン不溶部の割合が60〜90重量%、好ましくは70〜90重量%で、その不溶部の極限粘度( [η]H )が1.5〜2.8dl/gであり、及び
(a3) 沸騰パラキシレンに溶解後、25℃まで放冷した後のパラキシレン可溶部の割合が10〜40重量%、好ましくは10〜30重量%で、その可溶部の極限粘度( [η]EP)が1.5〜2.8dl/gであり、且つ [η]EP≦ [η]H +0.5であり、同可溶部のエチレン含有率が10〜50重量%、好ましくは15〜40重量%である
すなわち、メルトフローレート(MFR)は、0.5g/10分より小さければキャスト成形が困難であり、20g/10分より大きければ耐衝撃性の低下、ゲル、フィッシュアイの発生が懸念される。
【0008】
沸騰パラキシレン不溶部の極限粘度( [η]H )が1.5dl/gより小さければ耐衝撃性、透明性、耐屈曲白化性が不充分となり、2.8dl/gより大きければキャスト成形性が困難になる。
また、沸騰パラキシレン可溶部の極限粘度( [η]EP)が1.5dl/gより小さければフイルムがベタつくなど耐ブロッキング性が悪化し、2.8dl/gより大きければ透明性が悪化すると共にゲル、フィッシュアイ等が発生する懸念がある。更に、沸騰パラキシレン可溶部の極限粘度( [η]EP)がその不溶部の極限粘度 [η]H +0.5より大きければ透明性が悪化するなど不充分である。
【0009】
また、沸騰パラキシレン可溶部のエチレン含有率が10重量%より小さければ耐衝撃性が不充分であり、50重量%より大きければ透明性が悪化し、耐屈曲白化性が不充分となる。
そして沸騰パラキシレン不溶部と沸騰パラキシレン可溶部の割合が前者が60重量%より小さければ耐ブロッキング性、耐熱性、剛性、透明性、耐屈曲白化性が低下するし、前者が90重量%より大きければ耐衝撃性が不足する。
【0010】
なお、本発明に用いるプロピレン−エチレンブロック共重合体は、通常の方法により製造することが出来る。すなわち、例えばチグラー系固体触媒と分子量調製剤水素ガス等と共に原料プロピレンガスを第一段の反応器に投入し、気相状態で反応を進め、更に当該生成物に原料プロピレンとエチレンガスおよび分子量調製剤水素ガスを第二段目の反応器に追加投入して製造することができる。
【0011】
(B)エチレン−αオレフィン共重合体
本発明に用いるエチレン−αオレフィン共重合体は、下記(b1)〜(b3)の性状を有するエチレン−αオレフィン共重合体である。
(b1) メルトフローレート(MFR)が0.5〜20g/10分、好ましくは1〜5g/10分であり、及び
(b2) 極限粘度( [η]EPR )が2.8dl/g以下、好ましくは2.0dl/g以下であり、且つ [η]EPR ≦ [η]H +0.5であり、及び
(b3) エチレン含有率が30〜90重量%、好ましくは50〜85重量%であるすなわち、低結晶性のゴム状成分であり、主成分としてのエチレンと共重合モノマーのαオレフィンとのランダム共重合体であり、典型的にはチーグラー系触媒により製造できるがこれに限定されるものでなく、メタロセン系触媒により製造できるものであってよい。なお、α−オレフィンとしては、炭素数が3〜10のものを使用でき、具体的にはエチレン−プロピレン共重合体、エチレン−ブテン−1共重合体、エチレン−オクテン−1共重合体等であり、中でも好ましくはエチレン−プロピレンゴム(EPR)とエチレン−ブテンゴムを用いることができる。
【0012】
メルトフローレート(MFR)が0.5g/10分より小さければポリプロピレン中の分散が悪く、透明性、屈曲白化性が悪化し、20g/10分より大きければ耐衝撃性が不足する。また、極限粘度( [η]EPR )が2.8dl/gより大きければ透明性、屈曲白化性が悪化し、(A)成分の沸騰パラキシレン不溶部の極限粘度 [η]H +0.5より大きければ耐衝撃性が不足する。更に、エチレン含有量が30重量%より少なければ結晶性レジンとなる為耐衝撃性が低下し、90重量%を超えれば耐衝撃性が低下し、外観不良となる。
【0013】
本発明に用いるエチレン−αオレフィン共重合体の製造法は、特に限定されない。連続法でもバッチ法でもよく、更に溶液法、スラリー法、気相法もしくはこれらの組み合わせであってもよい。触媒系も特に限定されないが、エチレンとα−オレフィンが均一に共重合していることが好ましい。不均一に共重合すると、エチレン濃度の高い共重合体とエチレン濃度の低い共重合体が混在することになり、透明性が低下する。従って、バナジウム系触媒あるいはメタロセン系触媒等の均一系触媒を用いることが好ましい。
【0014】
なお、メタロセン系触媒としては、一般的にはシクロペンタジエニル環を有する周期律表第4族の遷移金属化合物及びメチルアルミノキサンあるいは周期律表第4族の遷移金属化合物と反応してイオン性の錯体を形成する化合物と有機アルミニウム化合物からなる触媒をいう。
更に、重合条件については、重合温度は通常、−50〜250℃、好ましくは、0〜200℃の範囲であり、重合時間は通常、1分間〜10時間の範囲であり、圧力は通常、常圧〜300kg/cm2-Gの範囲である。
【0015】
〔配合〕
上記の(A)プロピレン−エチレンブロック共重合体90〜99重量%と(B)エチレン−αオレフィン共重合体1〜10重量%を配合して、ポリプロピレン樹脂組成物を製造する。上記の(A)プロピレン−エチレンブロック共重合体が90重量%より少なければ、ヒートシール強度が低下し、99重量%より多ければ、耐衝撃性が低下する。
本発明の樹脂組成物を得るに必要な各成分の配合は、前記した成分のほか本発明の樹脂組成物の有する物性バランス効果を損なわない範囲で、各種充填剤、添加剤等を配合してもよく、これらを同時に混練機にかけて混合する方法でも、一部を予め混合し、次いで残りの成分を加えて混練する方法でもよい。具体的には、各成分をヘンシェルミキサーを使用してドライブレンドした後、混合物を二軸押出機でシリンダー温度を200℃〜280℃に設定して、混練し、ペレットを製造する。
なお、添加剤としてはフェノール系酸化防止剤、燐系酸化防止剤、紫外線吸収剤、脂肪酸アミド等の滑剤、帯電防止剤などである。
【0016】
〔レトルト食品用フイルム〕
上記説明してきたポリプロピレン樹脂組成物は、低温での耐衝撃性、ヒートシール強度、透明性、耐屈曲白化性、耐熱性等のフイルム主要物性がバランスしており、溶融押出成形法によりフイルムに成形される。特に、大型フイルム成形機で高速成形が可能なTダイキャスト成形法が好ましい。このようにして得られたフイルムはレトルト用シーラントフイルムとして好適であり、その厚さは耐衝撃性を保持するために厚さ30μm以上が好ましいから通常30〜200μm程度で使用される。
【0017】
【実施例】
本発明について、更に、実施例を用いて詳細に説明する。
なお、実施例等で用いた試験方法は、以下のとおりである。
〔樹脂の特性〕
(1)メルトフローインデックス(MFR)の測定
JIS K7210に準拠し、温度230℃,荷重2160gの条件で測定した値である。
(2)沸騰パラキシレン溶出試験
パラキシレン不溶部の割合は、パラキシレン700ミリリットルに試料5g及び酸化防止剤としての2,6−ジ−tert−ブチル−4−メチルフェノール(BHT)1gを添加し、加熱しながら攪拌して沸騰温度まで昇温し、完全に溶解させたのち、攪拌しながら25℃になるまで8時間以上放冷し、析出した成分をろ紙によりろ取し、不溶部として求めた値である
パラキシレン可溶部の割合は、サンプル総量から上記不溶部の値を除いた値とした。
【0018】
(3)極限粘度〔η〕の測定
パラキシレン不溶部の極限粘度〔η〕の測定は、上記不溶部量の測定に採取したパウダーをよく乾燥したのち、135℃デカリン中において、極限粘度〔η〕を測定する。
同可溶部の極限粘度〔η〕は、以下に示す方法で測定した値である。
すなわち、パラキシレン700ミリリットルに試料5g及び酸化防止剤としての2,6−ジ−tert−ブチル−4−メチルフェノール(BHT)1gを添加し、加熱しながら攪拌して沸騰温度まで昇温し、完全に溶解させたのち、攪拌しながら25℃になるまで8時間以上放冷し、析出した成分をろ紙によりろ別する。得られたろ液を大過剰のメタノールに投入して析出させ、ろ紙によりろ別して、これをパラキシレン可溶部とする。次によく乾燥したのち、135℃デカリン中において、極限粘度〔η〕を測定する。
【0019】
(4)共重合体中のエチレン含有量の測定
プロピレン−エチレンランダム共重合体およびプロピレン−エチレンブロック共重合体中のエチレン含有量を13C−NMRスペクトルの測定により行った。
日本電子社製のJNM−EX400型NMR装置を使用して、以下の測定条件にて行った。
(NMR測定条件)
試料濃度:220mg/NMR溶媒3ml
NMR溶媒:1,2,4−トリクロロベンゼン/ベンゼン−d6を90/10(体積比)
測定温度:130℃
パルス幅:45°
パルス繰り返し時間:4秒
積算回数:4000回
(測定)
共重合体中のエチレン単位の含有量(γ(wt%))は13C−NMRスペクトルの各シグナル強度から次式に従い算出した。なお各シグナルの帰属は表1に示す。
【0020】
γ={2X/(300−X)}×100
X=Et/S×100
Et=IEEE+2/3(IPEE+IEPE)+1/3(IPPE+IPEP)
S=IEPE+IPPE+IEEE+IPPP+IPEE+IPEP
IEPE=I(4) IPPP=I(8)
IPPE=I(5) IPEE=I(9)
IEEE=I(7)/2+ I(6)/4 IPEP=I(10)
但し、I(1)は表1におけるシグナル番号1のシグナル強度である。
【0021】
【表1】

Figure 0004217310
【0022】
〔フィルムの特性〕
フィルムの特性は、耐衝撃性を除き、試料を温度23±2℃、湿度50±10%にて16時間以上状態調節したのち、同じ温度,湿度条件下にて測定を行った。
(1)耐衝撃性(フィルムインパクト)
試料を所定の温度±2℃、湿度50±10%にて16時間以上状態調節したのち、同じ温度,湿度条件下にて、東洋精機製作所製フィルムインパクトテスターにおいて、1/2インチ衝撃ヘッドを用いた衝撃破壊強度により評価した。
(2)透明性(ヘイズ値)
JIS K7105に準拠し、測定した。
(3)引張弾性率
JIS K7127に準拠し、引張試験機により、クロスヘッド速度:500mm/分,測定方向:マシン方向(MD方向),ロードセル:10kgの条件にて測定した。
(4)耐屈曲白化性
フィルムを折り曲げ、目視により確認した。
(5)レトルト処理品のヒートシール強度
実施例1に詳述する。
(6)レトルト処理品の落下破袋強度
実施例1に詳述する。
【0023】
〔実施例1〕
〔ポリプロピレン樹脂組成物の製造〕
(プロピレン−エチレンブロック共重合体の製造)
(1)マグネシウム化合物の調製
内容積500リットルの攪拌機付き反応槽を窒素ガスで充分に置換し、エタノール97.2kg,ヨウ素640g及び金属マグネシウム6.4kgを投入したのち、攪拌しながら、還流条件下で系内から水素ガスの発生がなくなるまで反応させ、体状反応生成物を得た。この固体状反応生成物を含む反応液を減圧乾燥させることにより目的のマグネシウム化合物(固体生成物)を得た。
(2)固体触媒成分の調製
窒素ガスで充分に置換した内容積500リットルの攪拌機付き反応槽に、上記(1)で得られたマグネシウム化合物(粉砕していないもの)30kg,精製ヘプタン150リットル,四塩化ケイ素4.5リットル及びフタル酸ジエチル4.3リットルを仕込んだ。系内を90℃に保ち、攪拌しながら四塩化チタン144リットルを加えて110℃で2時間反応させたのち、固体成分を分離して80℃の精製ヘプタンで洗浄した。さらに、四塩化チタン228リットルを加え、110℃で2時間反応させたのち、精製ヘプタンで充分に洗浄し、固体触媒成分を得た。
(3)重合前処理
内容積500リットルの攪拌機付き反応槽に精製ヘプタン230リットルを投入し、さらに、前記(2)で得られた固体触媒成分25kgを加え、次いで、この固体触媒成分中のTi原子1モルに対し、トリエチルアルミニウムを0.6モル及びシクロヘキシルメチルジメトキシシランを0.4モルの割合で加えたのち、プロピレンをプロピレン分圧で0.3kg/cm2 Gになるまで導入し、25℃で4時間反応させた。反応終了後、固体触媒成分を精製ヘプタンで数回洗浄し、二酸化炭素を供給し24時間攪拌した。
【0024】
(4)重合
前段として、内容積200リットルの攪拌機付き重合装置(R−1)に、上記(3)の処理済の固体触媒成分をTi原子換算で3ミリモル/hrで、トリエチルアルミニウムを413ミリモル/hr(7.5ミリモル/kg−PP)で、シクロヘキシルメチルジメトキシシランを105ミリモル/hr(1.9ミリモル/kg−PP)でそれぞれ供給し、重合温度75℃、全圧30kg/cm2 Gでプロピレンを重合させた。この際、プロピレン及び水素の供給量を、表2に示すガス組成になるように調整した。次いで、R−1から連続的にパウダーを抜き出し、内容積200リットルの攪拌機付き重合装置(R−2)へ移送した。R−2では重合温度50℃、全圧11kg/cm2 Gでプロピレンとエチレンを共重合させた。この際、プロピレン,エチレン及び水素の供給量を、表2に示すガス組成になるように調整した。このようにして得られたポリマーの特性を表3に示す。
【0025】
(ゴム状重合体)
ゴム状重合体としてエチレン−プロピレン共重合体(JSR社製 EP−913Y)を用いた。なお、当該樹脂のメルトフローレート(MFR)は3.6g/10分で、極限粘度〔η〕は1.4dl/gであり、エチレン含有量は76重量%である。
【0026】
(配合)
上記プロピレン−エチレンブロック共重合体を95kg、酸化防止剤イルガノックス1010を700ppm、イルガフォス168を250ppm、中和剤ステアリン酸カルシウムを500ppm、DHT−4Aを500ppm配合し、TEM(二軸混練機)で混練・造粒した。得られたプロピレン−エチレンブロック共重合体ペレット9.5kgにエチレン−プロピレン共重合体ゴム(JSR社製EP−913Y)0.5kgをタンブラーブレンダーにてドライブレンドしてからキャスト成形機にかけた。
【0027】
〔キャスト成形によるフイルムの作成〕
スクリュウ径が40mmである単軸押出機にダイス幅500mmのコートハンガー型Tダイスを取り付けたキャスト成形機を用いて、ダイス出口温度250℃、スクリュウ回転数80rpm、チルロール温度30℃、引取速度7.5m/分で厚さ60μmのフイルムを成形した。なお、フイルムにはコロナ処理を施した(処理密度80W/m2 /分)。得られたフイルムのフイルム物性(フイルムインパクト強度、ヘイズ、耐屈曲白化性)の評価をし、その結果を表4に示す。
【0028】
次いで、このフイルムを外面からPET(12μm)/アルミ箔(7μm)/当該フイルム(60μm)からなる構成で接着剤を介してドライラミネートした。用いた接着剤は武田薬品製A−536/A−50(主剤/硬化剤)を使用し、ラミネート後接着剤の効果のために40℃/5日間エージングを実施した。
ラミネートフイルムは下記条件で製袋を行い、150mm×150mmのサイズの平袋を作成した。シール温度はサイドシールが200℃/210℃(2回シール)で、ボトムシールが190℃であった。シール圧力は3.0kg/cm2 で、シール時間は0.7秒であった。製袋速度は36袋/分であった。
【0029】
この袋に水120ccを充填し、袋の上端をインパルスシーラーにてヒートシールし、120℃、2.0気圧にて30分間レトルト処理を行った。
得られたレトルト処理品の包装品の実用強度として、ヒートシール強度、落下破袋強度を測定し、その結果を表4に示す。なお、ヒートシール強度については、製袋した袋のサイドシール部を引張試験機にてクロスヘッド速度300mm/分、ロードセル10kgの条件にて剥離する強度を測定する。また、落下破袋強度については、レトルト処理後のサンプルを0℃にて24時間状態調節した後、同じサンプルの入った袋を重ねて二段重ねとし、試験する袋を下にして1.0mの高さから金属製の床面に水平に落下させて、袋が破れるまでの平均回数(15回試験した平均)を求めた。
【0030】
〔実施例2〕
実施例1においてエチレン−プロピレン共重合体(JSR社製 EP−913Y)を0.5kgから0.2kgに変えた以外は、同様に実施した。得られたポリマーの特性を表3に示し、また、得られたフイルムの物性およびレトルト処理品の強度を測定し、表4に示す。
【0031】
〔実施例3〕
実施例1においてプロピレン−エチレンブロック共重合体を製造する際に、表2に示すように用いた原料ガス等のガス組成を前段の反応器(R−1)では水素ガスを0.07モル%から0.1モル%に、後段の反応器(R−2)ではプロピレンガスを81.4モル%から78.0モル%に、エチレンガスを14.7モル%から17.1モル%に、水素ガスを4.1モル%から4.9モル%に変えた以外は、同様に製造した。更に樹脂組成物を配合する際に、エチレン−プロピレン共重合体(JSR社製 EP−913Y)を5kgから9kgに変えた以外は同様に実施した。得られたポリマーの特性を表3に示し、また、得られたフイルムの物性およびレトルト処理品の強度を測定し、表4に示す。
【0032】
〔比較例1〕
実施例1においてプロピレン−エチレンブロック共重合体のみを使用してフイルムを成形し、得られたフイルムの物性およびレトルト処理品の強度を測定し、表4に示す。
〔比較例2〕
実施例1においてプロピレン−エチレンブロック共重合体を製造する際に用いた原料ガス等のガス組成を前段の反応器(R−1)では水素ガスを0.07モル%から0.1モル%に、後段の反応器(R−2)ではプロピレンガスを81.4モル%から78.0モル%に、エチレンガスを14.7モル%から17.1モル%に、水素ガスを4.1モル%から4.9モル%に変えた以外は同様に製造した。得られたポリマーの特性を表3に示し、また、更に、当該プロピレン−エチレンブロック共重合体のみを使用してフイルムを成形し、得られたフイルムの物性およびレトルト処理品の強度を測定し、表4に示す。
【0033】
〔比較例3〕
実施例1においてプロピレン−エチレンブロック共重合体を製造する際に、用いた原料ガス等のガス組成を前段の反応器(R−1)では水素ガスを0.07モル%から0.15モル%に、後段の反応器(R−2)ではプロピレンガスを81.4モル%から81.0モル%に、エチレンガスを14.5モル%から15.1モル%に、水素ガスを4.1モル%から3.9モル%に変えた以外は、同様に製造した。得られたポリマーの特性を表3に示し、また、更に、当該プロピレン−エチレンブロック共重合体のみを使用してフイルムを成形し、得られたフイルムの物性およびレトルト処理品の強度を測定し、表4に示す。
〔比較例4〕
実施例1においてプロピレン−エチレンブロック共重合体としてIDEMITSU PP(F-454NP)を使用し、更に、当該プロピレン−エチレンブロック共重合体のみを使用してフイルムを成形し、得られたフイルムの物性およびレトルト処理品の強度を測定し、表4に示す。
【0034】
〔比較例5〕
実施例1においてプロピレン−エチレンブロック共重合体を製造する際に、用いた原料ガス等のガス組成を前段の反応器(R−1)では水素ガスを0.07モル%から0.15モル%に、後段の反応器(R−2)ではプロピレンガスを81.4モル%から81.0モル%に、エチレンガスを14.5モル%から15.1モル%に、水素ガスを4.1モル%から3.9モル%に変えた以外は、同様に製造した。更に樹脂組成物を配合する際に、エチレン−プロピレン共重合体(JSR社製 EP−913Y)を5kgから15kgに変えた以外は同様に実施した。得られたポリマーの特性を表3に示し、また、得られたフイルムの物性およびレトルト処理品の強度を測定し、表4に示す。
〔比較例6〕
実施例1においてプロピレン−エチレンブロック共重合体としてIDEMITSU PP(F-454NP)を使用し、更に、実施例1と同様に樹脂組成物を配合し、得られたポリマーの特性を表3に示し、また、得られたフイルムの物性およびレトルト処理品の強度を測定し、表4に示す。
【0035】
【表2】
Figure 0004217310
【0036】
【表3】
Figure 0004217310
【0037】
【表4】
Figure 0004217310
【0038】
【発明の効果】
本発明によれば低温での耐衝撃性、ヒートシール強度、透明性、耐屈曲白化性、耐熱等のフイルム物性がバランスしており、また本発明のキャストフイルムを使ったラミネートフイルムで包装したレトルト処理品での実用強度においても優れた性能を有している。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polypropylene resin composition and a film thereof. Specifically, a resin composition comprising a propylene-ethylene block copolymer and an ethylene-α-olefin copolymer rubber and having excellent film properties such as low temperature impact resistance, heat seal strength, transparency, bending whitening resistance, and heat resistance. The present invention relates to a product and a retort food packaging film formed using the product.
[0002]
[Prior art]
As a film for retort food packaging, a laminated film is usually used, and typical specifications thereof are PET (outside) / aluminum foil (intermediate) / cast PP (inside), PET / NY / aluminum foil / Cast PP, PET / aluminum foil / NY / cast PP, NY / cast PP, and the like. The cast PP that constitutes the innermost surface is a cast-molded film that comes in contact with food and undergoes a process of pressurization and sterilization at 120-135 ° C in a retort kettle. (1) Food hygiene, (2) Film physical properties such as seal strength, (3) heat resistance, and (4) impact resistance are required.
[0003]
Many proposals have been made so far as a resin suitable for cast PP used as a film for retort food packaging. For example, in JP-A-6-93062, an ethylene-propylene copolymer part and a propylene homopolymer part are present at a certain ratio, and the ratio of the former intrinsic viscosity to the latter intrinsic viscosity is not more than a specific value. Specific propylene-ethylene block copolymers characterized by the above have been proposed.
[0004]
However, the propylene-ethylene block copolymer has a good balance as a whole of the film physical properties and is excellent in impact resistance particularly at a low temperature. It is not yet sufficient, such as limited use due to its poor performance.
[0005]
[Problems to be solved by the invention]
The present invention provides a propylene resin composition that balances main physical properties such as low-temperature impact resistance, heat seal strength, transparency, resistance to bending whitening, and heat resistance, and a retort food packaging film molded using the same. It is for the purpose.
[0006]
[Means for Solving the Problems]
As a result of intensive studies on the above problems, the present inventor has completed the present invention described below.
[1] (A) 90-99% by weight of a propylene-ethylene block copolymer having the following properties (a1) to (a3), (B) an ethylene-α olefin having the following properties (b1) and (b2) A polypropylene resin composition comprising 1 to 10% by weight of copolymer rubber.
(A1) The melt flow rate (MFR) is 0.5 to 20 g / 10 minutes,
(A2) After dissolving in boiling paraxylene, the proportion of the paraxylene insoluble part after cooling to 25 ° C. is 60 to 90% by weight, and the intrinsic viscosity ([η] H ) of the insoluble part is 1.5 to 2 .8 dl / g, and (a3) After dissolving in boiling paraxylene and then allowed to cool to 25 ° C., the proportion of the paraxylene soluble part was 10 to 40% by weight, and the intrinsic viscosity of the soluble part ([ η] EP ) is 1.5 to 2.8 dl / g, and [η] EP ≦ [η] H + 0.5, and the ethylene content of the soluble part is 10 to 50% by weight ( b1) Melt flow rate (MFR) is 0.5-20 g / 10 min,
(B2) the intrinsic viscosity ([η] EPR ) is 2.8 dl / g or less and [η] EPR ≦ [η] H +0.5; and
(b3) An ethylene content of 30 to 90% by weight [2] A retort food packaging film obtained by extruding the polypropylene resin composition according to the above [1].
[0007]
DETAILED DESCRIPTION OF THE INVENTION
[Polypropylene resin composition]
(A) Propylene-ethylene block copolymer The propylene-ethylene block copolymer used in the present invention is a propylene-ethylene block copolymer having the following properties (a1) to (a3).
(A1) The melt flow rate (MFR) is 0.5 to 20 g / 10 minutes,
(A2) The ratio of the paraxylene insoluble part after dissolution in boiling paraxylene and after cooling to 25 ° C. is 60 to 90% by weight, preferably 70 to 90% by weight, and the intrinsic viscosity of the insoluble part ([η] H ) is 1.5 to 2.8 dl / g, and (a3) the proportion of the paraxylene soluble part after being dissolved in boiling paraxylene and then allowed to cool to 25 ° C. is preferably 10 to 40% by weight, preferably 10 to 30% by weight, the intrinsic viscosity ([η] EP ) of the soluble part is 1.5 to 2.8 dl / g, and [η] EP ≦ [η] H + 0.5. The ethylene content of the soluble part is 10 to 50% by weight, preferably 15 to 40% by weight. That is, if the melt flow rate (MFR) is less than 0.5 g / 10 minutes, cast molding is difficult, and 20 g / 10 min. If it is larger than 10 minutes, there is a concern of reduced impact resistance, gel and fish eye. That.
[0008]
If the intrinsic viscosity ([η] H ) of the boiling paraxylene insoluble part is less than 1.5 dl / g, the impact resistance, transparency and bending whitening resistance are insufficient, and if it is greater than 2.8 dl / g, cast moldability is obtained. Becomes difficult.
Further, if the intrinsic viscosity ([η] EP ) of the boiling paraxylene soluble part is smaller than 1.5 dl / g, the blocking resistance is deteriorated such as stickiness of the film, and if it is larger than 2.8 dl / g, the transparency is deteriorated. At the same time, there is a concern that gels, fish eyes and the like are generated. Furthermore, if the intrinsic viscosity ([η] EP ) of the boiling paraxylene-soluble part is larger than the intrinsic viscosity [η] H +0.5 of the insoluble part, the transparency is insufficient.
[0009]
Further, if the ethylene content of the boiling paraxylene-soluble part is less than 10% by weight, the impact resistance is insufficient, and if it is more than 50% by weight, the transparency deteriorates and the bending whitening resistance becomes insufficient.
If the ratio of the boiling paraxylene insoluble part to the boiling paraxylene soluble part is less than 60% by weight, the blocking resistance, heat resistance, rigidity, transparency and bending whitening resistance are lowered, and the former is 90% by weight. If it is larger, the impact resistance is insufficient.
[0010]
In addition, the propylene-ethylene block copolymer used for this invention can be manufactured by a normal method. That is, for example, a raw material propylene gas together with a Ziegler solid catalyst and a molecular weight adjusting agent hydrogen gas is charged into the first stage reactor, the reaction proceeds in a gas phase, and further, the raw material propylene, ethylene gas and molecular weight control are added to the product. The preparation hydrogen gas can be additionally supplied to the second-stage reactor.
[0011]
(B) Ethylene-α Olefin Copolymer The ethylene-α olefin copolymer used in the present invention is an ethylene-α olefin copolymer having the following properties (b1) to (b3).
(B1) the melt flow rate (MFR) is 0.5 to 20 g / 10 minutes, preferably 1 to 5 g / 10 minutes, and (b2) the intrinsic viscosity ([η] EPR ) is 2.8 dl / g or less, Preferably not more than 2.0 dl / g and [η] EPR ≦ [η] H +0.5, and
(b3) The ethylene content is 30 to 90% by weight, preferably 50 to 85% by weight, that is, a low crystalline rubber-like component, and a random copolymer of ethylene as a main component and an α-olefin of a copolymerization monomer. Although it is a polymer and can typically be manufactured with a Ziegler-based catalyst, it is not limited thereto, and may be manufactured with a metallocene-based catalyst. As the α-olefin, those having 3 to 10 carbon atoms can be used. Specifically, ethylene-propylene copolymer, ethylene-butene-1 copolymer, ethylene-octene-1 copolymer, etc. Among them, ethylene-propylene rubber (EPR) and ethylene-butene rubber can be preferably used.
[0012]
If the melt flow rate (MFR) is less than 0.5 g / 10 minutes, the dispersion in polypropylene is poor, and the transparency and bending whitening property are deteriorated. If it is greater than 20 g / 10 minutes, the impact resistance is insufficient. Further, if the intrinsic viscosity ([η] EPR ) is greater than 2.8 dl / g, the transparency and the bending whitening property deteriorate, and the intrinsic viscosity [η] H +0.5 of the boiling paraxylene insoluble part of the component (A) If it is large, the impact resistance is insufficient. Further, if the ethylene content is less than 30% by weight, the resin becomes a crystalline resin, so that the impact resistance is lowered. If it exceeds 90% by weight, the impact resistance is lowered and the appearance is deteriorated.
[0013]
The manufacturing method of the ethylene-alpha olefin copolymer used for this invention is not specifically limited. It may be a continuous method or a batch method, and may be a solution method, a slurry method, a gas phase method, or a combination thereof. The catalyst system is not particularly limited, but it is preferable that ethylene and α-olefin are uniformly copolymerized. If the copolymerization is heterogeneous, a copolymer having a high ethylene concentration and a copolymer having a low ethylene concentration are mixed, resulting in a decrease in transparency. Accordingly, it is preferable to use a homogeneous catalyst such as a vanadium catalyst or a metallocene catalyst.
[0014]
The metallocene-based catalyst generally reacts with a transition metal compound of Group 4 of the periodic table having a cyclopentadienyl ring and methylaluminoxane or a transition metal compound of Group 4 of the periodic table, so that it is ionic. A catalyst composed of a complex forming compound and an organoaluminum compound.
Further, regarding the polymerization conditions, the polymerization temperature is usually in the range of −50 to 250 ° C., preferably in the range of 0 to 200 ° C., the polymerization time is usually in the range of 1 minute to 10 hours, and the pressure is usually normal. The pressure is in the range of 300 kg / cm 2 -G.
[0015]
[Combination]
A polypropylene resin composition is produced by blending 90 to 99% by weight of the (A) propylene-ethylene block copolymer and 1 to 10% by weight of the (B) ethylene-α olefin copolymer. If the (A) propylene-ethylene block copolymer is less than 90% by weight, the heat seal strength is lowered, and if it is more than 99% by weight, the impact resistance is lowered.
The blending of each component necessary for obtaining the resin composition of the present invention includes various fillers, additives and the like within the range not impairing the physical property balance effect of the resin composition of the present invention in addition to the above-described components. Alternatively, a method in which these are simultaneously mixed in a kneader, or a method in which a part is mixed in advance and then the remaining components are added and kneaded may be used. Specifically, after each component is dry blended using a Henschel mixer, the mixture is kneaded with a twin screw extruder at a temperature of 200 ° C. to 280 ° C. to produce pellets.
Additives include phenolic antioxidants, phosphorus antioxidants, ultraviolet absorbers, lubricants such as fatty acid amides, and antistatic agents.
[0016]
[Retort food film]
The polypropylene resin composition described above balances the main physical properties of the film such as impact resistance at low temperatures, heat seal strength, transparency, resistance to bending whitening, and heat resistance, and is formed into a film by melt extrusion molding. Is done. In particular, a T-die cast molding method capable of high-speed molding with a large film molding machine is preferable. The film thus obtained is suitable as a sealant film for retort, and the thickness thereof is preferably 30 μm or more in order to maintain impact resistance, and is usually used at about 30 to 200 μm.
[0017]
【Example】
The present invention will be further described in detail using examples.
Note that the test methods used in Examples and the like are as follows.
[Resin characteristics]
(1) Measurement of melt flow index (MFR) This is a value measured under conditions of a temperature of 230 ° C. and a load of 2160 g in accordance with JIS K7210.
(2) Boiling paraxylene dissolution test The proportion of paraxylene insoluble part was determined by adding 5 g of sample and 700 g of paraxylene to 1 g of 2,6-di-tert-butyl-4-methylphenol (BHT) as an antioxidant. Stir while heating, raise the temperature to the boiling temperature, dissolve completely, then allow to cool to 25 ° C. with stirring for 8 hours or more, filter the precipitated components with filter paper, and find it as an insoluble part The ratio of the para-xylene soluble part, which was a value, was a value obtained by removing the value of the insoluble part from the total amount of the sample.
[0018]
(3) Measurement of intrinsic viscosity [η] The intrinsic viscosity [η] of the paraxylene-insoluble part is measured by thoroughly drying the powder collected in the measurement of the insoluble part amount, and then in 135 ° C decalin, the intrinsic viscosity [η ] Is measured.
The intrinsic viscosity [η] of the soluble part is a value measured by the following method.
That is, 5 g of a sample and 700 g of 2,6-di-tert-butyl-4-methylphenol (BHT) as an antioxidant were added to 700 ml of paraxylene, and the mixture was stirred while heating and heated to the boiling temperature. After completely dissolving, the mixture is allowed to cool for 8 hours or more with stirring until the temperature reaches 25 ° C., and the precipitated components are filtered off with a filter paper. The obtained filtrate is poured into a large excess of methanol to precipitate it, and is filtered off with a filter paper to make it a paraxylene-soluble part. Next, after drying well, the intrinsic viscosity [η] is measured in 135 ° C. decalin.
[0019]
(4) Measurement of ethylene content in copolymer The ethylene content in propylene-ethylene random copolymer and propylene-ethylene block copolymer was measured by measuring 13 C-NMR spectrum.
Using a JNM-EX400 NMR apparatus manufactured by JEOL Ltd., the measurement was performed under the following measurement conditions.
(NMR measurement conditions)
Sample concentration: 220 mg / NMR solvent 3 ml
NMR solvent: 90/10 (volume ratio) of 1,2,4-trichlorobenzene / benzene-d6
Measurement temperature: 130 ° C
Pulse width: 45 °
Pulse repetition time: 4 seconds Integration count: 4000 times (measurement)
The ethylene unit content (γ (wt%)) in the copolymer was calculated from each signal intensity of the 13 C-NMR spectrum according to the following formula. The assignment of each signal is shown in Table 1.
[0020]
γ = {2X / (300−X)} × 100
X = Et / S × 100
Et = IEEE + 2/3 (IPEE + IEPE) +1/3 (IPPE + IPEP)
S = IEPE + IPPE + IEEE + IPPP + IPEE + IPEP
IEPE = I (4) IPPP = I (8)
IPPE = I (5) IPEE = I (9)
IEEE = I (7) / 2 + I (6) / 4 IPEP = I (10)
Where I (1) is the signal intensity of signal number 1 in Table 1.
[0021]
[Table 1]
Figure 0004217310
[0022]
[Characteristics of film]
The characteristics of the film were measured under the same temperature and humidity conditions after conditioning the sample at a temperature of 23 ± 2 ° C. and a humidity of 50 ± 10% for 16 hours or more except for impact resistance.
(1) Impact resistance (film impact)
After conditioning the sample for 16 hours or more at a predetermined temperature of ± 2 ° C and humidity of 50 ± 10%, use a 1/2 inch impact head in a film impact tester manufactured by Toyo Seiki Seisakusho under the same temperature and humidity conditions. The impact fracture strength was evaluated.
(2) Transparency (haze value)
Measured according to JIS K7105.
(3) Tensile elastic modulus Based on JIS K7127, it was measured with a tensile tester under the conditions of crosshead speed: 500 mm / min, measurement direction: machine direction (MD direction), load cell: 10 kg.
(4) The bending whitening resistant film was bent and visually confirmed.
(5) Heat seal strength of retort-treated product.
(6) Drop bag breaking strength of the retort-treated product is described in detail in Example 1.
[0023]
[Example 1]
[Production of polypropylene resin composition]
(Production of propylene-ethylene block copolymer)
(1) Preparation of magnesium compound The reaction tank with a stirrer with an internal volume of 500 liters was sufficiently replaced with nitrogen gas, and after introducing 97.2 kg of ethanol, 640 g of iodine and 6.4 kg of metal magnesium, the mixture was stirred under reflux conditions. The reaction was continued until no hydrogen gas was generated from the system, and a body-like reaction product was obtained. The target magnesium compound (solid product) was obtained by drying the reaction solution containing the solid reaction product under reduced pressure.
(2) Preparation of solid catalyst component In a reaction tank equipped with a stirrer with an internal volume of 500 liters sufficiently substituted with nitrogen gas, 30 kg of the magnesium compound obtained in (1) above (unground), 150 liters of purified heptane, 4.5 liters of silicon tetrachloride and 4.3 liters of diethyl phthalate were charged. The system was kept at 90 ° C., 144 liters of titanium tetrachloride was added with stirring and reacted at 110 ° C. for 2 hours, and then the solid components were separated and washed with purified heptane at 80 ° C. Further, 228 liters of titanium tetrachloride was added and reacted at 110 ° C. for 2 hours, and then thoroughly washed with purified heptane to obtain a solid catalyst component.
(3) Purified heptane (230 liters) is charged into a reaction vessel equipped with a stirrer having an internal volume of 500 liters before the polymerization, and 25 kg of the solid catalyst component obtained in (2) above is added, and then Ti in the solid catalyst component is added. After adding 0.6 mol of triethylaluminum and 0.4 mol of cyclohexylmethyldimethoxysilane to 1 mol of atoms, propylene is introduced until the propylene partial pressure reaches 0.3 kg / cm 2 G, and 25 The reaction was carried out at 4 ° C for 4 hours. After completion of the reaction, the solid catalyst component was washed several times with purified heptane, carbon dioxide was supplied and stirred for 24 hours.
[0024]
(4) As a pre-polymerization stage, in the polymerization apparatus (R-1) with a stirrer having an internal volume of 200 liters, the treated solid catalyst component of (3) above was 3 mmol / hr in terms of Ti atoms and 413 mmol of triethylaluminum. / Hr (7.5 mmol / kg-PP) and cyclohexylmethyldimethoxysilane were supplied at 105 mmol / hr (1.9 mmol / kg-PP), polymerization temperature 75 ° C., total pressure 30 kg / cm 2 G Propylene was polymerized. At this time, the supply amounts of propylene and hydrogen were adjusted so that the gas composition shown in Table 2 was obtained. Subsequently, powder was continuously extracted from R-1 and transferred to a polymerization apparatus (R-2) with an internal volume of 200 liters equipped with a stirrer. In R-2, propylene and ethylene were copolymerized at a polymerization temperature of 50 ° C. and a total pressure of 11 kg / cm 2 G. At this time, the supply amounts of propylene, ethylene and hydrogen were adjusted so as to have the gas composition shown in Table 2. The properties of the polymer thus obtained are shown in Table 3.
[0025]
(Rubber polymer)
An ethylene-propylene copolymer (EP-913Y manufactured by JSR) was used as the rubbery polymer. The resin has a melt flow rate (MFR) of 3.6 g / 10 minutes, an intrinsic viscosity [η] of 1.4 dl / g, and an ethylene content of 76% by weight.
[0026]
(Combination)
95 kg of the propylene-ethylene block copolymer, 700 ppm of the antioxidant Irganox 1010, 250 ppm of Irgaphos 168, 500 ppm of neutralizing agent calcium stearate, 500 ppm of DHT-4A, and kneaded with a TEM (biaxial kneader)・ Granulated. 0.5 kg of ethylene-propylene copolymer rubber (EP-913Y manufactured by JSR) was dry blended in 9.5 kg of the obtained propylene-ethylene block copolymer pellets with a tumbler blender, and then subjected to a cast molding machine.
[0027]
[Creating a film by casting]
Using a cast molding machine in which a coat hanger type T die having a die width of 500 mm is attached to a single screw extruder having a screw diameter of 40 mm, a die outlet temperature of 250 ° C., a screw rotation speed of 80 rpm, a chill roll temperature of 30 ° C., a take-up speed of 7. A film having a thickness of 60 μm was formed at 5 m / min. The film was subjected to corona treatment (treatment density 80 W / m 2 / min). The film properties (film impact strength, haze, and bending whitening resistance) of the obtained film were evaluated, and the results are shown in Table 4.
[0028]
Next, this film was dry-laminated from the outer surface through an adhesive with a constitution of PET (12 μm) / aluminum foil (7 μm) / the film (60 μm). The adhesive used was A-536 / A-50 (main agent / curing agent) manufactured by Takeda Pharmaceutical, and aging was performed at 40 ° C. for 5 days for the effect of the adhesive after lamination.
The laminated film was made into a bag under the following conditions to produce a flat bag having a size of 150 mm × 150 mm. The seal temperature was 200 ° C / 210 ° C (twice seal) for the side seal and 190 ° C for the bottom seal. The sealing pressure was 3.0 kg / cm 2 and the sealing time was 0.7 seconds. The bag making speed was 36 bags / min.
[0029]
This bag was filled with 120 cc of water, the top end of the bag was heat sealed with an impulse sealer, and retort treatment was performed at 120 ° C. and 2.0 atm for 30 minutes.
As the practical strength of the obtained packaged product of retort treatment, heat seal strength and drop bag breaking strength were measured, and the results are shown in Table 4. In addition, about the heat seal intensity | strength, the intensity | strength which peels the side seal part of the bag made bag on the conditions of a crosshead speed of 300 mm / min and a load cell of 10 kg with a tensile tester is measured. For drop bag breaking strength, after conditioning the sample after retort treatment at 0 ° C. for 24 hours, the bags containing the same sample are stacked to form a two-tiered stack, and the bag to be tested is 1.0 m below. The average number of times until the bag was broken (average of 15 tests) was obtained by dropping it horizontally from the height of the metal onto the metal floor.
[0030]
[Example 2]
The same procedure as in Example 1 was performed except that the ethylene-propylene copolymer (EP-913Y manufactured by JSR) was changed from 0.5 kg to 0.2 kg. The properties of the obtained polymer are shown in Table 3, and the physical properties of the obtained film and the strength of the retort-treated product are measured and shown in Table 4.
[0031]
Example 3
When the propylene-ethylene block copolymer was produced in Example 1, the gas composition such as the raw material gas used as shown in Table 2 was changed to 0.07 mol% of hydrogen gas in the former reactor (R-1). To 0.1 mol%, and in the latter reactor (R-2), propylene gas is changed from 81.4 mol% to 78.0 mol%, ethylene gas is changed from 14.7 mol% to 17.1 mol%, The same production was carried out except that the hydrogen gas was changed from 4.1 mol% to 4.9 mol%. Furthermore, when blending the resin composition, the same procedure was carried out except that the ethylene-propylene copolymer (EP-913Y manufactured by JSR) was changed from 5 kg to 9 kg. The properties of the obtained polymer are shown in Table 3, and the physical properties of the obtained film and the strength of the retort-treated product are measured and shown in Table 4.
[0032]
[Comparative Example 1]
In Example 1, a film was formed using only the propylene-ethylene block copolymer, and the physical properties of the obtained film and the strength of the retort-treated product were measured.
[Comparative Example 2]
In Example 1, the gas composition such as the raw material gas used for producing the propylene-ethylene block copolymer was changed from 0.07 mol% to 0.1 mol% in the former reactor (R-1). In the latter reactor (R-2), propylene gas is changed from 81.4 mol% to 78.0 mol%, ethylene gas is changed from 14.7 mol% to 17.1 mol%, and hydrogen gas is 4.1 mol. The same production was carried out except that the content was changed from% to 4.9 mol%. The properties of the obtained polymer are shown in Table 3, and further, a film is formed using only the propylene-ethylene block copolymer, and the physical properties of the obtained film and the strength of the retorted product are measured, Table 4 shows.
[0033]
[Comparative Example 3]
When the propylene-ethylene block copolymer was produced in Example 1, the gas composition such as the raw material gas used was changed from 0.07 mol% to 0.15 mol% in the reactor (R-1) in the previous stage. In the latter reactor (R-2), propylene gas is changed from 81.4 mol% to 81.0 mol%, ethylene gas is changed from 14.5 mol% to 15.1 mol%, and hydrogen gas is changed to 4.1. The same production was carried out except that the mol% was changed to 3.9 mol%. The properties of the obtained polymer are shown in Table 3, and further, a film is formed using only the propylene-ethylene block copolymer, and the physical properties of the obtained film and the strength of the retorted product are measured, Table 4 shows.
[Comparative Example 4]
In Example 1, IDEMITSU PP (F-454NP) was used as the propylene-ethylene block copolymer, and the film was molded using only the propylene-ethylene block copolymer. The physical properties of the obtained film and The strength of the retort-treated product was measured and shown in Table 4.
[0034]
[Comparative Example 5]
When the propylene-ethylene block copolymer was produced in Example 1, the gas composition such as the raw material gas used was changed from 0.07 mol% to 0.15 mol% in the reactor (R-1) in the previous stage. In the latter reactor (R-2), propylene gas is changed from 81.4 mol% to 81.0 mol%, ethylene gas is changed from 14.5 mol% to 15.1 mol%, and hydrogen gas is changed to 4.1. The same production was carried out except that the mol% was changed to 3.9 mol%. Furthermore, when blending the resin composition, the same procedure was carried out except that the ethylene-propylene copolymer (EP-913Y manufactured by JSR) was changed from 5 kg to 15 kg. The properties of the obtained polymer are shown in Table 3, and the physical properties of the obtained film and the strength of the retort-treated product are measured and shown in Table 4.
[Comparative Example 6]
In Example 1, IDEMITSU PP (F-454NP) was used as a propylene-ethylene block copolymer, and a resin composition was further blended in the same manner as in Example 1. Table 3 shows the characteristics of the obtained polymer. Further, the physical properties of the obtained film and the strength of the retort-treated product were measured and shown in Table 4.
[0035]
[Table 2]
Figure 0004217310
[0036]
[Table 3]
Figure 0004217310
[0037]
[Table 4]
Figure 0004217310
[0038]
【The invention's effect】
According to the present invention, the film physical properties such as low temperature impact resistance, heat seal strength, transparency, bending whitening resistance, heat resistance and the like are balanced, and the retort packaged with the laminate film using the cast film of the present invention. It has excellent performance in terms of practical strength in processed products.

Claims (1)

(A)下記(a1)〜(a3)の性状を有するプロピレン−エチレンブロック共重合体90〜99重量%、(B)下記(b1)〜(b3)の性状を有するエチレン−炭素数3〜10のαオレフィン共重合体ゴム1〜10重量%からなるポリプロピレン樹脂組成物を押出成形したレトルト食品包装フイルム。
(a1) メルトフローレート(MFR)が0.5〜20g/10分であり、
(a2) 沸騰パラキシレンに溶解後、25℃まで放冷した後のパラキシレン不溶部の割合が60〜90重量%で、その不溶部の極限粘度([η])が1.5〜2.8dl/gであり、及び
(a3) 沸騰パラキシレンに溶解後、25℃まで放冷した後のパラキシレン可溶部の割合が10〜40重量%で、その可溶部の極限粘度([η]EP)が1.5〜2.8dl/gであり、且つ[η]EP≦[η]+0.5であり、同可溶部のエチレン含有率が10〜50重量%である
(b1) メルトフローレート(MFR)が0.5〜20g/10分であり、
(b2) 極限粘度([η]EPR)が2.8dl/g以下であり、且つ[η]EPR≦[η]+0.5であり、及び
(b3) エチレン含有率が50〜85重量%である
(A) Propylene-ethylene block copolymer having the following properties (a1) to (a3) 90 to 99% by weight, (B) Ethylene- carbon number 3 to 10 having the properties (b1) to (b3) below A retort food packaging film obtained by extruding a polypropylene resin composition comprising 1 to 10% by weight of an α-olefin copolymer rubber.
(a1) The melt flow rate (MFR) is 0.5 to 20 g / 10 minutes,
(a2) After dissolving in boiling paraxylene, after cooling to 25 ° C., the proportion of paraxylene insoluble part is 60 to 90% by weight, and the intrinsic viscosity ([η] H ) of the insoluble part is 1.5 to 2 .8 dl / g, and
(a3) The proportion of the paraxylene soluble part after being dissolved in boiling paraxylene and allowed to cool to 25 ° C. is 10 to 40% by weight, and the intrinsic viscosity ([η] EP ) of the soluble part is 1.5 ˜2.8 dl / g, and [η] EP ≦ [η] H +0.5, and the ethylene content of the soluble part is 10 to 50% by weight.
(b1) The melt flow rate (MFR) is 0.5 to 20 g / 10 minutes,
(b2) the intrinsic viscosity ([η] EPR ) is 2.8 dl / g or less and [η] EPR ≦ [η] H +0.5; and
(b3) The ethylene content is 50 to 85 % by weight
JP29379098A 1998-10-15 1998-10-15 Polypropylene resin composition and film thereof Expired - Fee Related JP4217310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29379098A JP4217310B2 (en) 1998-10-15 1998-10-15 Polypropylene resin composition and film thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29379098A JP4217310B2 (en) 1998-10-15 1998-10-15 Polypropylene resin composition and film thereof

Publications (2)

Publication Number Publication Date
JP2000119480A JP2000119480A (en) 2000-04-25
JP4217310B2 true JP4217310B2 (en) 2009-01-28

Family

ID=17799207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29379098A Expired - Fee Related JP4217310B2 (en) 1998-10-15 1998-10-15 Polypropylene resin composition and film thereof

Country Status (1)

Country Link
JP (1) JP4217310B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW593374B (en) 1999-12-17 2004-06-21 Idemitsu Petrochemical Co Propylene-ethylene block copolymer, resin composition, and blow-molded article
JP2003055510A (en) * 2001-06-06 2003-02-26 Grand Polymer Co Ltd Polypropylene resin composition, film and use thereof
JP5593012B2 (en) * 2001-08-29 2014-09-17 出光ユニテック株式会社 Retort food packaging resin composition
JP2003096251A (en) * 2001-09-20 2003-04-03 Grand Polymer Co Ltd Propylene polymer composition, film and application thereof
JP5395337B2 (en) 2007-07-06 2014-01-22 住友化学株式会社 Polypropylene resin composition and film comprising the same
JP5750940B2 (en) * 2011-03-04 2015-07-22 住友化学株式会社 Propylene resin composition and film thereof
JP6331074B2 (en) * 2014-03-07 2018-05-30 東レフィルム加工株式会社 Polypropylene composite film and laminate using the same
JP6292441B2 (en) * 2014-03-07 2018-03-14 東レフィルム加工株式会社 Polypropylene composite film and laminate using the same
JP6292442B2 (en) * 2014-03-12 2018-03-14 東レフィルム加工株式会社 Polypropylene composite film and laminate using the same
JP6694613B2 (en) 2015-08-31 2020-05-20 東レフィルム加工株式会社 Polypropylene sealant film for retort packaging and laminate using the same
WO2019139125A1 (en) * 2018-01-12 2019-07-18 株式会社プライムポリマー Propylene resin composition, molded body, and container
JP7305494B2 (en) * 2019-09-17 2023-07-10 住友化学株式会社 FILM AND METHOD FOR MANUFACTURING FILM
WO2024009724A1 (en) * 2022-07-08 2024-01-11 東レフィルム加工株式会社 Polypropylene-based film for retort packaging, and layered body

Also Published As

Publication number Publication date
JP2000119480A (en) 2000-04-25

Similar Documents

Publication Publication Date Title
JP5309377B2 (en) Polypropylene resin composition
JP4217310B2 (en) Polypropylene resin composition and film thereof
JPS60139731A (en) Crystalline polypropylene composition
JP2006528726A5 (en)
JP2010500428A (en) Butene-1 copolymer
DE60009012T2 (en) Copolymer composition based on propene
JP4033947B2 (en) Propylene polymer composition and film comprising the same
US5521251A (en) Propylene random copolymer composition
JPH0693062A (en) Polypropylene block copolymer and film therefrom
JPH0693061A (en) Polypropylene block copolymer and film therefrom
JP4401706B2 (en) Laminated body and medical bag using the same
JP2005111874A (en) Laminate and medical bag using laminate
WO2003095533A1 (en) Cast film, process for production thereof, and bags made of the film
JP5027961B2 (en) Polypropylene resin composition and retort food packaging film
JPH0673132A (en) Polypropylene random copolymer and film therefrom
JP3228106B2 (en) Polypropylene composition for laminated stretched film and laminated stretched film
EP0299478B1 (en) Butene-1 copolymer composition
JP3290293B2 (en) Polypropylene resin and stretched film
JP3397095B2 (en) Highly transparent film and method for producing the same
JP2005029681A (en) Sparingly whitening polypropylene-based resin composition
JPH0428727B2 (en)
JPH034371B2 (en)
JPH08283491A (en) Flexible polyolefin composition
JPH107848A (en) Resin composition for blow molding and medical container composed thereof
JP2010053341A (en) Polypropylene based resin composition, and film comprising it

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040830

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080813

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees