JP4216610B2 - Hot metal heating method using a grooved induction heating device - Google Patents

Hot metal heating method using a grooved induction heating device Download PDF

Info

Publication number
JP4216610B2
JP4216610B2 JP2003009348A JP2003009348A JP4216610B2 JP 4216610 B2 JP4216610 B2 JP 4216610B2 JP 2003009348 A JP2003009348 A JP 2003009348A JP 2003009348 A JP2003009348 A JP 2003009348A JP 4216610 B2 JP4216610 B2 JP 4216610B2
Authority
JP
Japan
Prior art keywords
hot metal
induction heating
flow path
energization
heating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003009348A
Other languages
Japanese (ja)
Other versions
JP2004218038A (en
Inventor
安弘 岡田
直樹 平嶋
幸一 切敷
公久 岸上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003009348A priority Critical patent/JP4216610B2/en
Publication of JP2004218038A publication Critical patent/JP2004218038A/en
Application granted granted Critical
Publication of JP4216610B2 publication Critical patent/JP4216610B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Furnace Details (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、予備処理された溶銑を受銑し、この溶銑を精錬炉(例えば転炉等)に供給する貯銑炉に備えられる溝型の流路を有する溝型誘導加熱装置を用いた溶銑の昇熱方法に関する。
【0002】
【従来の技術】
従来、高炉から出銑した溶銑をトピードカー(混銑車)や溶銑鍋等に一旦受け、この溶銑に脱硫や脱燐等の予備処理を施した後、転炉(精錬炉)へ供給している。このとき、高炉から出銑される溶銑量や転炉での溶鋼生産量の変動により、溶銑の転炉への供給条件(例えば、配合量)が変動するため、予備処理後の溶銑を貯銑炉に一旦貯蔵している。この貯銑炉は、複数のトピードカーや溶銑鍋等からの溶銑を受銑可能な容積を備えており、作業工程の調整を行うだけでなく、溶銑成分と温度の均一化等を行うこともできる。なお、貯銑炉内の溶銑の加熱は、貯銑炉に設けられた溝型の流路を有する誘導加熱装置(溝型誘導加熱装置とも言う)によって行われている。
【0003】
この誘導加熱装置の加熱原理は、図6に示すように、鉄心80の誘導コイル81を一次回路とし、流路内を満たす溶銑により形成される1ターンの溶銑電路82を二次回路とする変圧器回路83により説明できる。
つまり、誘導コイル81に電源装置84から通電することにより、鉄心80に磁束Fが発生し、この磁束Fが溶銑電路82と鎖交することにより誘導電流Iが発生し、溶銑がこの誘導電流Iによるジュール発熱によって加熱される。
一般に、流路内の溶銑により形成される1ターンの溶銑電路82に発生する誘導電流Iは大電流であるため、流路内では電流と電流が互いに引き付け合う作用を生じ、流路内の溶銑には流路の断面を収縮させる方向の力が働く。
この作用は、一般にはピンチ作用(ピンチ効果、ピンチング作用)と称され、このピンチ作用により流路内の溶銑が収縮し始め、ついには流路内の溶銑が切断される状態となる。このように、ピンチ作用によって流路内の溶銑が収縮したり、更に収縮によって流路内の溶銑が切断される現象をピンチング現象(ピンチ現象)と呼ぶ。
このようなピンチング現象の発生は、大容量負荷の電源投入と遮断とを断続的に行う状態と同じであり、これによる突入電流によって電源装置84の異常停止が発生し、操業中断や機器損傷を招く等の問題が発生する。
【0004】
この対策として、以下のような方法が提案されている。
例えば、特許文献1には、溶鋼を鋳型に鋳造するタンディッシュに誘導加熱装置を配置し、この溶鋼を加熱する際に、加熱する主流路(主通路)の他に迂回流路(迂回通路)を形成しておき、迂回流路でのピンチング作用を検出し、この検出値に基づいてピンチング作用による溶鋼の離断が生じないように投入電力を制御する装置が記載されている。この装置を用い、投入電力を制御することで、ピンチング作用による溶鋼の離断が生じないようにできる。
また、特許文献2には、タンディッシュに配置された誘導加熱装置の変動する電流相の少なくとも1相の電流値を検出し、電源投入毎に稼動時の測定電流値に一時遅れ要素を持たせ、得られた平均電流値を基にピンチ許容値を設定し、このピンチ許容値と実際の稼動時の電流値を比較しながら操業する方法が記載されている。これにより、ピンチング現象の予兆を把握でき、ピンチング現象そのものの発生を抑制できる。
そして、特許文献3には、誘導加熱装置の誘導コイルへの投入電圧及び電流を検出し、ピンチング現象の発生しない低出力時のインピーダンス値を基準値として記憶し、操業中におけるインピーダンスの変化量を判定する方法が記載されている。これにより、ピンチング現象の予兆並びに検出を行うことができる。
【0005】
【特許文献1】
実開昭59−190455号公報
【特許文献2】
特開平6−262315号公報
【特許文献3】
特開平7−236952号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記した方法には、以下の問題がある。
まず、特許文献1では、誘導加熱装置を用いた溶鋼の加熱を行う際に発生するピンチング作用、あるいはピンチング作用による溶鋼の離断が生じないように投入電力を制御することはできるが、主流路の内側に発生する付着物や析出物を除去できないため、これに起因するピンチング現象の発生頻度の増加を解消することができない。
また、特許文献2に記載された方法も前記した特許文献1と同様に、流路の内側に発生する付着物や析出物を除去できないため、これに起因するピンチング現象の発生頻度の増加を解消することができない。
そして、特許文献3に記載された方法は、ピンチング現象が発生しない限界の投入電圧、電流値で操業するものであり、印加する投入電力を大幅に可変するものでなく、更に、流路の内側に発生する付着物や析出物を除去できないため、やはりこれに起因するピンチング現象の発生頻度の増加を解消することができない。
【0007】
以上のように、いずれの方法においても、流路の内側に発生する付着物や析出物に起因するピンチング現象の発生頻度が増加する問題がある。しかも、付着物や析出物によって流路の内径が小さくなった場合、流路に異物が詰まり易くなって生じる流路の閉塞(キッキング)の抑制、更には防止を図ることも困難になる。そして、例えば、誘導加熱装置を有する貯銑炉に溶銑を装入し、この溶銑の昇熱と溶銑へのスクラップの溶解を行って擬似溶銑を溶製する際には、溶銑へのピンチ作用により、溶銑流の離断による電圧値や電流値の変動を招いて溶銑の昇熱効率が低下したり、また溶銑の加熱を行う流路の内側に付着物や堆積物が形成されピンチング現象が発生し易くなって安定した昇熱が阻害されたりするため、加熱電力効率が低下する。
本発明はかかる事情に鑑みてなされたもので、流路の内側を正常な状態に維持して、ピンチング現象の抑制、昇熱操業の安定化、加熱電力効率の向上を図ることができ、しかも異物による流路の閉塞を抑制、更には防止することが可能な溝型誘導加熱装置を用いた溶銑の昇熱方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
前記目的に沿う本発明に係る溝型誘導加熱装置を用いた溶銑の昇熱方法は、高炉から出銑した溶銑を貯蔵する貯銑炉に設けられた溝型の溶銑の流路を有する溝型誘導加熱装置を用い、前記貯銑炉の溶銑中に屑鉄からなるスクラップも投入された溶銑の昇熱方法であって、投入した前記スクラップを、前記貯銑炉中の温度が1250〜1400度の溶銑で溶解し、前記流路を加熱する誘導加熱手段に、高出力の通電と低出力の通電とを交互に行い、しかも、前記高出力の通電は前記貯銑炉内の溶銑を加熱するものであって、前記低出力の通電は前記誘導加熱手段に通電可能な最大出力の5〜15%の範囲で行う。
このように、誘導加熱手段に高出力の通電(高投入電力)を行って溶銑を昇熱する積極的昇熱操業と、誘導加熱手段に低出力の通電(低投入電力)を行って流路に穏やかな流れを形成しながら流路を通過する溶銑を昇熱する操業とを交互に行うことで、流路を正常な状態に維持でき、ピンチング現象を抑制し、溶銑の流れの離断を防止し、流路の閉塞を回避する操業が可能になり、安定した昇熱操業を実現できる。
【0009】
ここで、本発明に係る溝型誘導加熱装置を用いた溶銑の昇熱方法において、流路は溶銑が装入される貯銑炉に連通し、誘導加熱手段は流路を挟んで又は囲んで配置されており、高出力と低出力の各通電を連続的に行って、貯銑炉内に装入された溶銑を、流路内で加熱し昇熱して貯銑炉内に戻すことが好ましい。流路を備えた溝型誘導加熱装置を用いて溶銑を昇熱する際、貯銑炉内に装入された溶銑は、連続的に流路へ流れ込むと共に、流路から貯銑炉内へ放出される。このとき、流路を流れる溶銑は、誘導加熱手段のジュール熱によって加熱し昇熱されるので、この状態を繰り返すことで貯銑炉内の溶銑全体の昇熱が行われる。ここで、溶銑の絶対量を増やすため、溶銑中に例えばスクラップ等の屑鉄を添加して擬似溶銑を製造する場合、溶銑中の炭素の屑鉄への浸炭作用により、低温に加熱された溶銑で屑鉄を溶解することができる。しかし、流路の内部には、例えば、貯銑炉への屑鉄装入や溶銑装入の際、溶銑の上方に存在する炉内スラグの巻き込み、また炉内での酸化物生成による付着物や堆積物の形成、更には異物の詰まり等による閉塞が発生する。これにより、流路の断面積が狭くなるため、断面積あたりの溶銑に流れる電力が増加し、ピンチング現象が発生し易くなり、溶銑の離断が生じてハンチング状態を招き、安定した溶銑の昇熱が困難になる。従って、誘導加熱手段に高出力の通電を行って溶銑を昇熱する積極的昇熱操業と、誘導加熱手段に低出力の通電を行って流路に穏やかな流れを形成しながら流路を通過する溶銑を昇熱する操業とを交互に連続的に切り替えて行い、貯銑炉内の溶銑を昇熱することにより、ピンチング現象を抑制し、溶銑の流れの離断を防止した安定操業が可能になる。また、流路を形成する例えば耐火物の異常温度上昇による損耗も防止でき、溝型誘導加熱装置の長寿命化が図れる。
【0010】
本発明に係る溝型誘導加熱装置を用いた溶銑の昇熱方法において、高出力と低出力の各通電を、低出力の通電以上で且つ誘導加熱手段に通電可能な最大出力の範囲内で行うことが好ましい。これにより、加熱による溶銑の昇熱を効率良く行うことができる。
本発明に係る溝型誘導加熱装置を用いた溶銑の昇熱方法において、低出力の通電は、誘導加熱手段に通電可能な最大出力の5〜15%の範囲で行う。このように、誘導加熱手段への低出力の通電を、最大出力の5〜15%の範囲で行うので、加熱による溶銑の昇熱を更に効率良く行うことができる。ここで、低出力の通電が最大出力の5%未満になると、流路内を流れる溶銑に付与する熱が不足し、流路の内側への付着物や堆積物が増加して溶銑の昇熱効率が低下する。一方、低出力の通電が最大出力の15%を超えると、流路内を通過する溶銑の整流化が不十分となり、流路の内側の付着物や堆積物を溶解して洗い落とす効果が抑制され、流路が正常な大きさの有効断面を維持することができない。このため、流路の断面積の縮小に起因するピンチング現象などが生じ易くなり、更に、流路に流入した異物に起因する流路の閉塞も発生する恐れがある。従って、流路の内側への付着物や堆積物の形成を抑制し、ピンチング現象の抑制や溶銑の流れの離断を防止して、溶銑の昇熱効率を高めるには、低出力の通電を最大出力の5〜12%とすることが好ましく、更には5〜10%とすることが好ましい。
本発明に係る溝型誘導加熱装置を用いた溶銑の昇熱方法において、高出力の通電と低出力の通電の各通電時間を実質的に同じ時間にすることが好ましい。これにより、高出力の通電と低出力の通電とを所定の周期で行うことができ、通電作業を単純化できる。
【0011】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここに、図1は本発明の一実施の形態に係る溝型誘導加熱装置を用いた溶銑の昇熱方法に使用される加熱式貯銑炉の平面図、図2は図1のA−A矢視断面図、図3は同加熱式貯銑炉に使用される誘導加熱装置の断面図、図4はピンチ作用の発生状況を示す説明図、図5は実施例に係る溝型誘導加熱装置を用いた溶銑の昇熱方法を適用したときのコンダクタンスレシオの説明図である。
【0012】
図1、図2に示すように、本発明の一実施の形態に係る溝型誘導加熱装置を用いた溶銑の昇熱方法に使用される加熱式貯銑炉(貯銑炉の一例)10は、円筒状の鉄皮11に耐火物12が内張りされ、支持台13に対して回動可能な貯銑炉本体14と、この貯銑炉本体14の下側に長手方向に渡ってそれぞれ均等に配置された6基の誘導加熱を行う溝型誘導加熱装置(以下、単に誘導加熱装置とも言う)15とを有している。貯銑炉本体14の上方には、クレーン等の搬送手段(図示しない)により予備処理後の溶銑16を貯銑炉本体14内に装入するための開閉蓋17が配置された受銑口18と、屑鉄の一例であるスクラップを装入するための開閉蓋19がそれぞれ配置された6個の装入口20と、内部の溶銑16を溶銑鍋等に出銑するための出銑口21とが設けられている。なお、溶銑16の上方には、溶銑16と共に貯銑炉本体14内に混入したスラグ22がある。
【0013】
各誘導加熱装置15は、図3に示すように、鉄製の箱体23の内部に耐火物24が配置されたものであり、この耐火物24には、貯銑炉本体14と連通する中央溝路25と、この中央溝路25から2つに分岐した底部溝路26、27と、各底部溝路26、27からそれぞれ貯銑炉本体14に連通する端部溝路28、29とで構成される断面円形の流路30が形成されている。このように、各誘導加熱装置15には、溝型の流路30が設けられている。これにより、貯銑炉本体14、中央溝路25、底部溝路26、及び端部溝路28で1つの環状路31が構成され、また貯銑炉本体14、中央溝路25、底部溝路27、及び端部溝路29でもう1つの環状路32が構成される。ここで、2つの底部溝路26、27の形状及び断面積は実質的に同一であり、しかも各底部溝路26、27の断面積の和は中央溝路25の断面積と実質的に同一となっている。また、2つの端部溝路28、29の形状及び断面積は実質的に同一であり、しかも各端部溝路28、29の断面積の和は中央溝路25の断面積と実質的に同一となっている。このため、貯銑炉本体14内から中央溝路25への溶銑16の流入速度、及び各端部溝路28、29から貯銑炉本体14内への溶銑16の流出速度は略等しくなっている。
【0014】
各誘導加熱装置15には、2つの誘導コイル33、34によって構成される誘導加熱手段35がそれぞれ設けられている。各誘導コイル33、34は、鉄心にコイルが巻付けられたものであり、各環状路31、32の中央部にそれぞれ配置されているため、各誘導コイル33、34で溶銑16の流路30の一部、即ち中央溝路25を挟んだ状態になっている。
これにより、加熱に際しては、電源装置(図示しない)から各誘導コイル33、34に交流電流の通電を行うことで、貯銑炉本体14内の溶銑16が中央溝路25から流入し、2つの底部溝路26、27へ分岐して、その後各端部溝路28、29を経て貯銑炉本体14内に還流する2つの循環流が形成されると共に、溶銑16は循環中に加熱し昇熱される。ここで、通電の制御は、電源装置の出側に電圧検出器及び電流検出器を設け、この各検出器の指示値に基づいて電源装置の出力電流を制御する制御部により行う。
なお、流路30の中央溝路25は、前記したように2つの誘導コイル33、34に挟まれた状態となっているため、前記したピンチング現象が生じ易い場所となっている。
【0015】
次に、本発明の一実施の形態に係る溝型誘導加熱装置を用いた溶銑の昇熱方法について、上記した加熱式貯銑炉10を参照しながら説明する。
予備処理後の溶銑を、トピードカーで加熱式貯銑炉10まで搬送した後、クレーン(図示しない)で開閉蓋17を吊上げ、トピードカー内の溶銑を溶銑鍋を介して受銑口18から貯銑炉本体14(例えば、容量が2000トン)内に装入する。そして、1基当りの最大出力が4.5MWである6基の誘導加熱手段35にそれぞれ通電し、溶銑16を加熱して昇熱した。なお、溶銑16の昇熱中、開閉蓋19を開けて装入口20から例えば市中の回収屑であるスクラップ(屑鉄の一例)を添加することにより、溶銑16中の炭素がスクラップの表面から浸炭して、スクラップを溶銑温度が1250〜1400℃の低温域で溶解することができる。なお、スクラップの溶解により、溶銑16の炭素濃度が低下するので、新しい溶銑を開閉蓋17を開けて受銑口18から装入し、擬似溶銑の炭素濃度の低下を抑制する。
このように、スクラップの添加と新しい溶銑の添加を繰返し行うことで、スクラップの多量溶解による擬似溶銑の増産ができ、転炉への擬似溶銑の配合量を転炉の必要量に見合う量だけ供給することができる。
【0016】
この状態において、誘導加熱手段35の2つの誘導コイル33、34に挟まれた中央溝路25を流れる溶銑は、磁束の作用(ピンチ作用)でその流れが中央溝路25の中央部に絞られる。これが進行すると、溶銑の流れが小さくなったり、遮断するピンチング現象が発生し、投入電力が大きく変動(ハンチング)する。ここで、投入電力が大きく変動することで、流路30の中央溝路25に付着物や堆積物が生成し易くなり、この付着物や堆積物の生成量が多くなる程にピンチング現象が顕著になる。また、付着物や堆積物が形成されて流路30の内径が小さくなっている状態の場合、流路30に異物が詰まり易くなって流路30の閉塞、即ちキッキングを生じる。
このようないずれの場合においても、例えば、電源装置からの投入電力のハンチングや過剰電流値による電源遮断及び電源回路の損耗、誘導加熱装置15の耐火物24の異常温度上昇による損耗、操業の不安定化等、種々の問題が発生する。
【0017】
従って、電源装置の出側に設置された電圧検出器の電圧値及び電流検出器の電流値に基づいて求められたコンダクタンスレシオを考慮しながら、各誘導コイル33、34に高出力の通電と低出力の通電とを交互に連続的に行って、流路30内を流れる溶銑の昇熱を行う。なお、この高出力と低出力の各通電の切替えは、低出力の通電以上で且つ前記した最大出力の範囲内で行われ、しかも、この低出力の通電は最大出力の5〜15%の範囲で行われる。ここで、コンダクタンスレシオとは、抵抗の逆数であり、流路30の閉塞状態を推測する指標であるため、数値が高いほど流路30に生成する付着物や堆積物の生成量が少なく、流路30の形状が正常な状態を維持していることを示している。
【0018】
この昇熱により、極端なピンチ作用によって溶銑の流れが絞られたり、遮断することを抑制でき、流路30内への付着物や堆積物の生成を抑制できる。更に、流路30内の付着物や堆積物の形成を防止できるので、流路30内に異物が混入して生じるキッキングも防止できる。その結果、投入電力の変動を小さくでき、溶銑の加熱効率の向上と操業の安定化が達成できる。また、電源装置からの投入電力のハンチングや過剰電流値による電源遮断及び電源回路の損耗、誘導加熱装置15の耐火物24の異常温度上昇による損耗等の問題を解消でき、溶銑の昇熱とスクラップの多量の溶解が可能になり、出銑口21を介して擬似溶銑を精錬炉に安定供給することができる。
【0019】
【実施例】
本発明に係る溝型誘導加熱装置を用いた溶銑の昇熱方法を適用し、試験を行った結果について説明する。
まず、ピンチ作用の発生状況例として、図4を参照して説明する。
貯銑炉本体14内の溶銑16を効率的に加熱するため、誘導加熱手段35への通電(投入電力)を最大出力の100%とした場合、コンダクタンスレシオが93%以下でピンチ作用が発生している(図4中の「ピンチ発生」)。また、流路30内の付着物や堆積物の形成によってコンダクタンスレシオが低下するほど、低い投入電力でもピンチ作用が発生している。
このため、貯銑炉本体14内の溶銑16を安定した温度に維持し、しかも溶銑16にスクラップを溶解させた場合に低下する温度を元の温度に戻すために必要な通電を行う場合、流路30内の付着物や堆積物の形成によりコンダクタンスレシオが低下し、ピンチ作用が発生して、電流のハンチングや電源遮断に至っている。
【0020】
そこで、図5に示すように、高出力の通電を最大出力の70%、低出力の通電を最大出力の5%とし、各出力の通電時間を同じ30分として、高出力の通電と低出力の通電とを30分毎に交互に連続的に合計240分間行った。ここで、高出力の通電は、溶銑を昇熱するために必要な投入電力であり、低出力の通電は、流路30に穏やかな流れを形成しながら流路30を通過する溶銑を昇熱するために必要な投入電力である。
これにより、コンダクタンスレシオが90%から95%(図4中の「ピンチ発生なし」)まで上昇し、流路30内に生成した付着物や堆積物を除去でき、その後は付着物や堆積物の生成を抑制し、更には防止して、ピンチ作用が発生しない安定した加熱が可能となるので、スクラップの溶解を安定に行うことが可能となった。
【0021】
以上、本発明を、一実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の溝型誘導加熱装置を用いた溶銑の昇熱方法を構成する場合も本発明の権利範囲に含まれる。
また、前記実施の形態においては、流路を挟んで配置された誘導加熱手段により溶銑を加熱した場合について説明したが、流路を囲んで配置された誘導加熱手段により溶銑を加熱することも可能である。
【0022】
そして、前記実施の形態においては、コンダクタンスレシオが低下した後、高出力の通電と低出力の通電を交互に連続的に行った場合について説明したが、コンダクタンスレシオが低下する前から、高出力の通電と低出力の通電を交互に連続的に行うことも可能である。これにより、貯銑炉においては、溶銑を安定して昇熱させることができる。
更に、前記実施の形態においては、高出力の通電と低出力の通電の各通電時間を実質的に同じ時間にした場合について説明したが、例えばコンダクタンスレシオの数値に応じて、高出力の通電時間を低出力の通電時間よりも長く又は短くすることも可能であり、この場合は高出力の通電時間と低出力の通電時間とを1つの周期として、これを繰返し実施することも可能である。
【0023】
【発明の効果】
請求項1〜記載の溝型誘導加熱装置を用いた溶銑の昇熱方法においては、誘導加熱手段に高出力の通電を行って溶銑を昇熱する積極的昇熱操業と、誘導加熱手段に低出力の通電を行って流路に穏やかな流れを形成しながら流路を通過する溶銑を昇熱する操業とを交互に行うことで、流路を正常な状態に維持でき、ピンチング現象を抑制し、溶銑の流れの離断を防止し、流路の閉塞を回避する操業が可能になり、安定した昇熱操業が実現できる。これにより、電流のハンチングに起因する電源設備のトラブルを回避することができ、操業中断や機器損傷を招く等の問題を防止できる。また、流路の内面への付着物や堆積物の生成を抑制でき、またそれらの除去ができるので、溶銑の加熱効率を上昇させることができ経済的である。
特に、請求項2記載の溝型誘導加熱装置を用いた溶銑の昇熱方法においては、高出力と低出力の各通電を交互に連続的に切り替えて行い、貯銑炉内の溶銑を昇熱することにより、ピンチング現象を抑制し、溶銑の流れの離断を防止した安定操業が可能になる。これにより、流路を形成する例えば耐火物の異常温度上昇による損耗も防止でき、溝型誘導加熱装置の長寿命化が図れ経済的である。また、昇熱操業の安定化と、例えば屑鉄の安定溶解が実現でき、後工程の精錬炉の操業を安定に行うことができる。
【0024】
請求項記載の溝型誘導加熱装置を用いた溶銑の昇熱方法においては、低出力の通電を誘導加熱手段に通電可能な最大出力の5〜15%の範囲で行うので、加熱による溶銑の昇熱を更に効率良く行うことができ、経済的である。
請求項記載の溝型誘導加熱装置を用いた溶銑の昇熱方法においては、高出力の通電と低出力の通電の各通電時間を同じ時間にするので、高出力の通電と低出力の通電とを所定の周期で行うことができ、通電作業を単純化でき、作業効率を向上できる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る溝型誘導加熱装置を用いた溶銑の昇熱方法に使用される加熱式貯銑炉の平面図である。
【図2】図1のA−A矢視断面図である。
【図3】同加熱式貯銑炉に使用される誘導加熱装置の断面図である。
【図4】ピンチ作用の発生状況を示す説明図である。
【図5】実施例に係る溝型誘導加熱装置を用いた溶銑の昇熱方法を適用したときのコンダクタンスレシオの説明図である。
【図6】誘導加熱装置の加熱原理を説明するための変圧器回路の説明図である。
【符号の説明】
10:加熱式貯銑炉(貯銑炉)、11:鉄皮、12:耐火物、13:支持台、14:貯銑炉本体、15:溝型誘導加熱装置、16:溶銑、17:開閉蓋、18:受銑口、19:開閉蓋、20:装入口、21:出銑口、22:スラグ、23:箱体、24:耐火物、25:中央溝路、26、27:底部溝路、28、29:端部溝路、30:流路、31、32:環状路、33、34:誘導コイル、35:誘導加熱手段
[0001]
BACKGROUND OF THE INVENTION
The present invention uses, for example, a groove-type induction heating apparatus having a groove-type flow path provided in a storage furnace that receives pre-treated hot metal and supplies the hot metal to a refining furnace (for example, a converter). The present invention relates to a hot metal heating method.
[0002]
[Prior art]
Conventionally, hot metal discharged from a blast furnace is once received by a topped car (mixing wheel), a hot metal ladle, etc., and after the pretreatment such as desulfurization and dephosphorization is performed on this hot metal, it is supplied to a converter (smelting furnace). At this time, the supply conditions (for example, blending amount) of hot metal to the converter fluctuate due to fluctuations in the amount of hot metal discharged from the blast furnace and the amount of molten steel produced in the converter. Once stored in the furnace. This storage furnace has a volume capable of receiving hot metal from a plurality of topped cars, hot metal ladles, etc., and can not only adjust the work process but also make the hot metal components and temperature uniform, etc. . The hot metal in the storage furnace is heated by an induction heating device (also referred to as a groove type induction heating device) having a groove-type flow path provided in the storage furnace.
[0003]
As shown in FIG. 6, the heating principle of this induction heating apparatus is a transformation using an induction coil 81 of the iron core 80 as a primary circuit and a one-turn hot metal circuit 82 formed by hot metal filling the flow path as a secondary circuit. The circuit 83 can be explained.
That is, when the induction coil 81 is energized from the power supply device 84, a magnetic flux F is generated in the iron core 80, and this magnetic flux F is linked to the hot metal circuit 82 to generate an induced current I. It is heated by Joule heat generation.
In general, since the induced current I generated in the one-turn hot metal circuit 82 formed by the hot metal in the flow path is a large current, the current and the current attract each other in the flow path, and the hot metal in the flow path is generated. A force acts in the direction of contracting the cross section of the flow path.
This action is generally referred to as a pinch action (pinch effect, pinching action), and the hot metal in the flow path starts to shrink due to this pinch action, and finally the hot metal in the flow path is cut. In this way, a phenomenon in which the hot metal in the flow path contracts due to the pinch action or the hot metal in the flow path is cut by the contraction is called a pinching phenomenon (pinch phenomenon).
The occurrence of such a pinching phenomenon is the same as the state in which the large-capacity load is turned on and off intermittently, and the inrush current caused by this causes an abnormal stop of the power supply device 84, resulting in operation interruption and equipment damage. Inconvenience occurs.
[0004]
As a countermeasure, the following methods have been proposed.
For example, in Patent Document 1, an induction heating device is arranged in a tundish that casts molten steel into a mold, and when this molten steel is heated, in addition to the main channel (main channel) to be heated, a bypass channel (bypass channel) , A device that detects the pinching action in the bypass channel and controls the input power so that the molten steel is not disconnected by the pinching action based on the detected value is described. By using this device and controlling the input power, it is possible to prevent the molten steel from being separated by the pinching action.
In Patent Document 2, the current value of at least one of the fluctuating current phases of the induction heating device arranged in the tundish is detected, and a temporary delay element is added to the measured current value during operation every time the power is turned on. A method is described in which a pinch allowable value is set based on the obtained average current value, and the operation is performed while comparing this pinch allowable value with the current value during actual operation. Thereby, a sign of the pinching phenomenon can be grasped, and the occurrence of the pinching phenomenon itself can be suppressed.
Patent Document 3 detects the voltage and current applied to the induction coil of the induction heating device, stores the impedance value at the time of low output at which no pinching phenomenon occurs as a reference value, and indicates the amount of change in impedance during operation. A method of determination is described. Thereby, a sign and detection of the pinching phenomenon can be performed.
[0005]
[Patent Document 1]
Japanese Utility Model Publication No. 59-190455 [Patent Document 2]
JP-A-6-262315 [Patent Document 3]
Japanese Patent Laid-Open No. 7-236952 [0006]
[Problems to be solved by the invention]
However, the above method has the following problems.
First, in Patent Document 1, it is possible to control the input power so as not to cause a pinching action generated when heating molten steel using an induction heating device, or to disconnect the molten steel due to the pinching action. Since the deposits and precipitates generated inside can not be removed, the increase in the occurrence frequency of the pinching phenomenon due to this cannot be solved.
In addition, the method described in Patent Document 2, as in Patent Document 1, cannot remove the deposits and precipitates generated inside the flow path, thereby eliminating the increase in the occurrence frequency of the pinching phenomenon due to this. Can not do it.
The method described in Patent Document 3 operates at a limit input voltage and current value at which no pinching phenomenon occurs, and does not significantly change the input power to be applied. Therefore, it is impossible to eliminate the increase in the occurrence frequency of the pinching phenomenon due to this.
[0007]
As described above, in any of the methods, there is a problem that the occurrence frequency of the pinching phenomenon due to the deposits and precipitates generated inside the flow path increases. In addition, when the inner diameter of the flow path becomes small due to deposits or precipitates, it becomes difficult to suppress and further prevent the flow path from being blocked due to foreign substances easily clogging the flow path. And, for example, when hot metal is charged into a storage furnace having an induction heating device and the hot metal is heated and the scrap is melted into the hot metal to produce the pseudo hot metal, the pinch action on the hot metal is used. In addition, fluctuations in the voltage value and current value due to the disconnection of the hot metal flow will cause the hot metal heating efficiency to drop, and deposits and deposits will form inside the flow path for hot metal heating, resulting in pinching. Since it becomes easy and the stable heat-up is inhibited, heating power efficiency falls.
The present invention has been made in view of such circumstances, and can maintain the inside of the flow path in a normal state to suppress the pinching phenomenon, stabilize the heating operation, and improve the heating power efficiency. It is an object of the present invention to provide a hot metal heating method using a grooved induction heating device capable of suppressing and further preventing clogging of a flow path due to foreign substances.
[0008]
[Means for Solving the Problems]
The hot metal heating method using the groove type induction heating device according to the present invention in accordance with the above object is a groove type having a groove type hot metal flow path provided in a storage furnace for storing hot metal discharged from a blast furnace. A hot metal heating method in which scrap made of scrap iron is also introduced into the hot metal of the storage furnace using an induction heating device, and the temperature in the storage furnace is 1250 to 1400 degrees Celsius. High-power energization and low-power energization are alternately performed on induction heating means for melting the hot metal and heating the flow path, and the high power energization heats the hot metal in the storage furnace. The low-power energization is performed in the range of 5 to 15% of the maximum output capable of energizing the induction heating means.
In this way, a positive heating operation in which the induction heating means is energized with high output (high input power) to raise the temperature of the molten iron, and a low output energization (low input power) is applied to the induction heating means in the flow path. By alternately performing the operation of heating the hot metal passing through the flow path while forming a gentle flow, the flow path can be maintained in a normal state, pinching phenomenon can be suppressed, and the hot metal flow can be separated. The operation which prevents the blockage of the flow path can be realized, and the stable heat-up operation can be realized.
[0009]
Here, in the hot metal heating method using the grooved induction heating device according to the present invention, the flow path communicates with a storage furnace in which the hot metal is charged, and the induction heating means sandwiches or surrounds the flow path. It is preferable that the high-power and low-power energization is continuously performed, and the hot metal charged in the storage furnace is heated in the flow path and heated to return to the storage furnace. . When the hot metal is heated using a grooved induction heating device with a flow path, the hot metal charged into the storage furnace flows continuously into the flow path and is released from the flow path into the storage furnace. Is done. At this time, the hot metal flowing through the flow path is heated and heated by the Joule heat of the induction heating means, and by repeating this state, the entire hot metal in the storage furnace is heated. Here, in order to increase the absolute amount of hot metal, when scrap iron such as scrap is added to the hot metal to produce simulated hot metal, scrap iron is heated at a low temperature by carburizing action of carbon in the hot metal to scrap iron. Can be dissolved. However, in the inside of the flow path, for example, when scrap iron or hot metal is charged into the storage furnace, slag in the furnace existing above the hot metal is entrained, and deposits due to oxide generation in the furnace Blockage occurs due to the formation of deposits and clogging of foreign matters. As a result, the cross-sectional area of the flow path becomes narrower, so that the electric power flowing in the hot metal per cross-sectional area increases, the pinching phenomenon is likely to occur, the hot metal breaks off, leading to a hunting state, and stable hot metal rise. Heat becomes difficult. Therefore, the induction heating means is energized with high power to heat up the hot metal and the induction heating means is energized with low power to pass through the flow path while forming a gentle flow in the flow path. It is possible to perform stable operation by suppressing the pinching phenomenon and preventing the flow of molten iron by continuously switching the operation to heat up the molten iron alternately and heating the molten iron in the storage furnace. become. In addition, wear due to, for example, an abnormal temperature rise of the refractory forming the flow path can be prevented, and the life of the grooved induction heating device can be extended.
[0010]
In the hot metal heating method using the grooved induction heating apparatus according to the present invention, each of the high-power and low-power energizations is performed within the range of the maximum output that is more than the low-power energization and that can energize the induction heating means. It is preferable. Thereby, the hot metal heating by heating can be efficiently performed.
In the hot metal heating method using the grooved induction heating apparatus according to the present invention, the low-power energization is performed in the range of 5 to 15% of the maximum output capable of energizing the induction heating means. Thus, since the low-output energization to the induction heating means is performed in the range of 5 to 15% of the maximum output, the hot metal heating by heating can be performed more efficiently. Here, when the low output current is less than 5% of the maximum output, the heat imparted to the hot metal flowing in the flow path is insufficient, and the amount of deposits and deposits on the inner side of the flow path increases and the hot metal heating efficiency is increased. Decreases. On the other hand, when the low-power energization exceeds 15% of the maximum output, the rectification of the hot metal passing through the flow path becomes insufficient, and the effect of dissolving and washing away the deposits and deposits inside the flow path is suppressed. The flow path cannot maintain a normal size effective cross section. For this reason, a pinching phenomenon or the like due to a reduction in the cross-sectional area of the flow path is likely to occur, and there is a risk that the flow path may be blocked due to foreign matter flowing into the flow path. Therefore, to suppress the formation of deposits and deposits on the inside of the flow path, to prevent pinching phenomenon and to prevent the flow of hot metal from flowing, and to increase the heat transfer efficiency of the hot metal, it is necessary to maximize the power supply at low output. It is preferably 5 to 12% of the output, and more preferably 5 to 10%.
In the hot metal heating method using the grooved induction heating apparatus according to the present invention, it is preferable that the energization times of the high-output energization and the low-output energization are substantially the same time. Thereby, it is possible to perform energization with high output and energization with low output at a predetermined cycle, and the energization work can be simplified.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
FIG. 1 is a plan view of a heating storage furnace used in a hot metal heating method using a grooved induction heating apparatus according to an embodiment of the present invention, and FIG. FIG. 3 is a sectional view of an induction heating device used in the heating-type storage furnace, FIG. 4 is an explanatory view showing the occurrence of a pinch action, and FIG. 5 is a grooved induction heating device according to the embodiment. It is explanatory drawing of a conductance ratio when the hot metal heating method using hot metal is applied.
[0012]
As shown in FIGS. 1 and 2, a heating storage furnace (an example of a storage furnace) 10 used in a hot metal heating method using a grooved induction heating apparatus according to an embodiment of the present invention is as follows. The refractory 12 is lined on the cylindrical iron shell 11 and can be rotated with respect to the support base 13. The storage furnace body 14 can be evenly distributed in the longitudinal direction below the storage furnace body 14. It has a grooved induction heating device (hereinafter also simply referred to as induction heating device) 15 that performs six induction heatings. Above the storage furnace main body 14, a receiving port 18 is provided with an open / close lid 17 for charging the hot metal 16 after the preliminary treatment into the storage furnace main body 14 by a conveying means (not shown) such as a crane. And six loading / unloading ports 20 each provided with an open / close lid 19 for loading scrap, which is an example of scrap iron, and a spout 21 for serving the hot metal 16 inside the hot metal pan or the like. Is provided. Above the molten iron 16, there is a slag 22 mixed in the storage furnace main body 14 together with the molten iron 16.
[0013]
As shown in FIG. 3, each induction heating device 15 has a refractory 24 arranged inside an iron box 23, and the refractory 24 has a central groove communicating with the storage furnace body 14. It comprises a channel 25, bottom groove channels 26, 27 branched into two from this central channel 25, and end groove channels 28, 29 communicating from the bottom groove channels 26, 27 to the storage furnace main body 14, respectively. A flow path 30 having a circular cross section is formed. Thus, each induction heating device 15 is provided with a groove-type flow path 30. As a result, the storage furnace main body 14, the central groove 25, the bottom groove 26, and the end groove 28 form one annular path 31, and the storage furnace main body 14, the central groove 25, the bottom groove 27 and the end groove 29 constitute another annular path 32. Here, the shape and cross-sectional area of the two bottom grooves 26 and 27 are substantially the same, and the sum of the cross-sectional areas of the bottom grooves 26 and 27 is substantially the same as the cross-sectional area of the central groove 25. It has become. The shape and cross-sectional area of the two end grooves 28 and 29 are substantially the same, and the sum of the cross-sectional areas of the end groove 28 and 29 is substantially the same as the cross-sectional area of the central groove 25. It is the same. For this reason, the inflow speed of the hot metal 16 from the inside of the storage furnace body 14 to the central groove 25 and the outflow speed of the hot metal 16 from each end groove 28, 29 into the storage furnace body 14 are substantially equal. Yes.
[0014]
Each induction heating device 15 is provided with induction heating means 35 constituted by two induction coils 33 and 34, respectively. Each induction coil 33, 34 is formed by winding a coil around an iron core, and is disposed at the center of each annular path 31, 32, so that each induction coil 33, 34 uses a flow path 30 of hot metal 16. It is in the state which pinched | interposed part, ie, the center groove 25 ,.
As a result, when heating, an alternating current is applied to each induction coil 33, 34 from a power supply device (not shown), so that the hot metal 16 in the storage furnace body 14 flows from the central groove 25, and the two Two circulation flows are formed which branch into the bottom grooves 26 and 27 and then return to the storage furnace main body 14 through the end grooves 28 and 29, and the hot metal 16 is heated and raised during the circulation. Be heated. Here, the energization is controlled by a control unit that provides a voltage detector and a current detector on the outlet side of the power supply device and controls the output current of the power supply device based on the indicated value of each detector.
In addition, since the center groove 25 of the flow path 30 is sandwiched between the two induction coils 33 and 34 as described above, it is a place where the pinching phenomenon described above is likely to occur.
[0015]
Next, a hot metal heating method using the grooved induction heating apparatus according to an embodiment of the present invention will be described with reference to the heating storage furnace 10 described above.
The hot metal after the pretreatment is transported to the heating storage furnace 10 by a topped car, and then the open / close lid 17 is lifted by a crane (not shown), and the hot metal in the topped car is transferred from the receiving port 18 through the hot metal pan to the storage furnace. The main body 14 (for example, the capacity is 2000 tons) is charged. Then, each of the six induction heating means 35 having a maximum output per unit of 4.5 MW was energized, and the hot metal 16 was heated and heated. In addition, when the hot metal 16 is heated, the open / close lid 19 is opened and, for example, scrap (an example of scrap iron) collected in the city is added from the loading port 20 so that carbon in the hot metal 16 is carburized from the surface of the scrap. Thus, the scrap can be melted in a low temperature range where the hot metal temperature is 1250 to 1400 ° C. In addition, since the carbon concentration of the hot metal 16 decreases due to the melting of the scrap, a new hot metal is opened from the open / close lid 17 and is inserted through the receiving port 18 to suppress the decrease in the carbon concentration of the pseudo hot metal.
In this way, by repeatedly adding scrap and adding new hot metal, it is possible to increase production of simulated hot metal by melting large amounts of scrap, and supply the amount of simulated hot metal to the converter in an amount that matches the required amount of the converter. can do.
[0016]
In this state, the hot metal flowing through the central groove 25 sandwiched between the two induction coils 33 and 34 of the induction heating means 35 is narrowed to the central portion of the central groove 25 by the action of magnetic flux (pinch action). . As this progresses, the hot metal flow becomes smaller or a pinching phenomenon occurs, which causes the input power to fluctuate greatly (hunting). Here, when the input power fluctuates greatly, deposits and deposits are likely to be generated in the central groove 25 of the flow path 30, and the pinching phenomenon becomes more prominent as the amount of deposits and deposits increases. become. Further, in the state where the deposits and deposits are formed and the inner diameter of the flow path 30 is small, the flow path 30 is easily clogged with foreign matter, and the flow path 30 is blocked, that is, kicked.
In any of these cases, for example, hunting of input power from the power supply device, power interruption due to an excessive current value, wear of the power supply circuit, wear due to abnormal temperature rise of the refractory 24 of the induction heating device 15, inoperability. Various problems such as stabilization occur.
[0017]
Accordingly, the high-power energization and low-power are applied to the induction coils 33 and 34 in consideration of the conductance ratio obtained based on the voltage value of the voltage detector installed on the output side of the power supply device and the current value of the current detector. The energization of the output is continuously performed alternately, and the hot metal flowing in the flow path 30 is heated. It should be noted that the switching between the high output and the low output energization is performed within the range of the maximum output more than the low output energization, and the low output energization is in the range of 5 to 15% of the maximum output. Done in Here, the conductance ratio is the reciprocal of resistance and is an index for estimating the blockage state of the flow path 30. Therefore, the higher the value, the smaller the amount of deposits and deposits generated in the flow path 30, and It shows that the shape of the path 30 is maintained in a normal state.
[0018]
With this heat increase, the hot metal flow can be prevented from being restricted or blocked by an extreme pinch action, and the generation of deposits and deposits in the flow path 30 can be suppressed. Furthermore, since the formation of deposits and deposits in the flow path 30 can be prevented, it is possible to prevent kicking caused by foreign matters mixed in the flow path 30. As a result, fluctuations in the input power can be reduced, and the heating efficiency of the hot metal can be improved and the operation can be stabilized. Moreover, problems such as hunting of input power from the power supply device, power interruption due to excessive current value, wear of the power circuit, wear due to abnormal temperature rise of the refractory 24 of the induction heating device 15 can be solved, and hot metal heating and scrap A large amount of the molten iron can be melted, and the simulated molten iron can be stably supplied to the smelting furnace through the outlet 21.
[0019]
【Example】
The result of applying the hot metal heating method using the grooved induction heating apparatus according to the present invention and performing the test will be described.
First, an example of the occurrence of a pinch action will be described with reference to FIG.
In order to efficiently heat the hot metal 16 in the storage furnace main body 14, when the energization (input power) to the induction heating means 35 is 100% of the maximum output, a pinch action occurs when the conductance ratio is 93% or less. ("Pinch occurrence" in FIG. 4). Further, as the conductance ratio decreases due to the formation of deposits and deposits in the flow path 30, the pinch action occurs even at a low input power.
For this reason, when energizing necessary to maintain the hot metal 16 in the storage furnace main body 14 at a stable temperature and to return the temperature, which is lowered when scrap is melted in the hot metal 16, to the original temperature, The conductance ratio decreases due to the formation of deposits and deposits in the path 30, and a pinch action occurs, leading to current hunting and power interruption.
[0020]
Therefore, as shown in FIG. 5, the high output energization is set to 70% of the maximum output, the low output energization is set to 5% of the maximum output, and the energization time of each output is set to the same 30 minutes. Were continuously and alternately every 30 minutes for a total of 240 minutes. Here, the high-power energization is input power necessary for heating the hot metal, and the low-power energization heats the hot metal passing through the flow path 30 while forming a gentle flow in the flow path 30. This is the input power required to
As a result, the conductance ratio increases from 90% to 95% (“no pinch generation” in FIG. 4), and the deposits and deposits generated in the flow path 30 can be removed, and thereafter the deposits and deposits are removed. Since the generation can be suppressed and further prevented, and stable heating without generating a pinch action is possible, the scrap can be stably melted.
[0021]
As described above, the present invention has been described with reference to one embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and is described in the claims. Other embodiments and modifications conceivable within the scope of the above are also included. For example, the case where the hot metal heating method using the groove type induction heating apparatus of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the present invention.
In the above embodiment, the hot metal is heated by the induction heating means arranged with the flow channel interposed therebetween. However, the hot metal can be heated by the induction heating means arranged around the flow channel. It is.
[0022]
And in the said embodiment, after the conductance ratio fell, although the case where the high output electricity supply and the low output electricity supply were performed alternately continuously was demonstrated, before the conductance ratio fell, It is also possible to carry out energization and low-power energization alternately and continuously. Thereby, in the storage furnace, the hot metal can be stably heated.
Furthermore, in the above-described embodiment, the case where the energization times of the high output energization and the low output energization are set to substantially the same time has been described. However, for example, according to the conductance ratio value, the high output energization time Can be made longer or shorter than the low-power energization time. In this case, the high-power energization time and the low-power energization time are set as one cycle, and this can be repeated.
[0023]
【The invention's effect】
In the hot metal heating method using the groove type induction heating device according to claims 1 to 3, the hot heating operation for heating the hot metal by energizing the induction heating means with high power and the induction heating means. By alternately conducting low-power energization to form a gentle flow in the flow path and heating the hot metal passing through the flow path, the flow path can be maintained in a normal state and pinching phenomenon can be suppressed. In addition, the operation of preventing the flow of the hot metal from flowing and avoiding the blockage of the flow path becomes possible, and a stable heat-up operation can be realized. Thereby, the trouble of the power supply equipment resulting from current hunting can be avoided, and problems such as operation interruption and equipment damage can be prevented. Moreover, since the production | generation of the deposit | attachment and deposit on the inner surface of a flow path can be suppressed and they can be removed, the heating efficiency of hot metal can be raised and it is economical.
In particular, in the hot metal heating method using the grooved induction heating device according to claim 2, the high power and the low power are energized alternately and continuously to heat the hot metal in the storage furnace. By doing so, it is possible to suppress the pinching phenomenon and to perform a stable operation that prevents the hot metal flow from being separated. As a result, it is possible to prevent wear due to, for example, an abnormal temperature rise of the refractory forming the flow path, and it is economical to extend the life of the grooved induction heating device. In addition, stabilization of the heat-up operation and stable melting of scrap iron, for example, can be realized, and the operation of the smelting furnace in the subsequent process can be performed stably.
[0024]
In the hot metal heating method using the groove-type induction heating device according to claim 1 , since the low output energization is performed in the range of 5 to 15% of the maximum output capable of energizing the induction heating means, The temperature can be increased more efficiently, which is economical.
In the hot metal heating method using the grooved induction heating device according to claim 3, the energization time of the high output energization and the low output energization are set to the same time, so that the high output energization and the low output energization are performed. Can be performed in a predetermined cycle, the energization work can be simplified, and the work efficiency can be improved.
[Brief description of the drawings]
FIG. 1 is a plan view of a heating type storage furnace used in a hot metal heating method using a grooved induction heating apparatus according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along the line AA in FIG.
FIG. 3 is a cross-sectional view of an induction heating device used in the heating type storage furnace.
FIG. 4 is an explanatory diagram showing the occurrence of a pinch action.
FIG. 5 is an explanatory diagram of a conductance ratio when a hot metal heating method using a grooved induction heating apparatus according to an example is applied.
FIG. 6 is an explanatory diagram of a transformer circuit for explaining the heating principle of the induction heating device.
[Explanation of symbols]
10: Heated storage furnace (storage furnace), 11: Iron skin, 12: Refractory, 13: Support base, 14: Storage furnace body, 15: Groove type induction heating device, 16: Hot metal, 17: Opening and closing Lid, 18: Receiving port, 19: Opening / closing lid, 20: Loading port, 21: Outlet, 22: Slag, 23: Box, 24: Refractory, 25: Central groove, 26, 27: Bottom groove Path, 28, 29: end groove path, 30: flow path, 31, 32: annular path, 33, 34: induction coil, 35: induction heating means

Claims (3)

高炉から出銑した溶銑を貯蔵する貯銑炉に設けられた溝型の溶銑の流路を有する溝型誘導加熱装置を用い、前記貯銑炉の溶銑中に屑鉄からなるスクラップも投入された溶銑の昇熱方法であって、
投入した前記スクラップを、前記貯銑炉中の温度が1250〜1400度の溶銑で溶解し、
前記流路を加熱する誘導加熱手段に、高出力の通電と低出力の通電とを交互に行い、しかも、前記高出力の通電は前記貯銑炉内の溶銑を加熱するものであって、前記低出力の通電は前記誘導加熱手段に通電可能な最大出力の5〜15%の範囲で行うことを特徴とする溝型誘導加熱装置を用いた溶銑の昇熱方法。
Using a groove type induction heating device having a channel of a groove type hot metal provided in a storage furnace for storing the hot metal discharged from a blast furnace , and scrap made of scrap iron in the hot metal of the storage furnace The method of heating
The introduced scrap is melted with hot metal having a temperature of 1250 to 1400 degrees in the storage furnace,
The induction heating means for heating the flow path alternately performs high-power energization and low-power energization, and the high-power energization heats the hot metal in the storage furnace, The hot metal heating method using a grooved induction heating device, wherein the low power supply is performed in a range of 5 to 15% of the maximum output capable of supplying the induction heating means.
請求項1記載の溝型誘導加熱装置を用いた溶銑の昇熱方法において、前記流路は溶銑が装入される前記貯銑炉に連通し、前記誘導加熱手段は前記流路を挟んで又は囲んで配置されており、前記高出力と前記低出力の各通電を連続的に行って、前記貯銑炉内に装入された溶銑を、前記流路内で加熱し昇熱して前記貯銑炉内に戻すことを特徴とする溝型誘導加熱装置を用いた溶銑の昇熱方法。  The hot metal heating method using the grooved induction heating device according to claim 1, wherein the flow path communicates with the storage furnace in which hot metal is charged, and the induction heating means sandwiches the flow path or The high-power and the low-power energization is continuously performed, and the hot metal charged in the storage furnace is heated and heated in the flow path to raise the storage temperature. A hot metal heating method using a grooved induction heating device, wherein the hot metal is returned to the furnace. 請求項1及び2のいずれか1項に記載の溝型誘導加熱装置を用いた溶銑の昇熱方法において、前記高出力の通電と前記低出力の通電の各通電時間を同じ時間にすることを特徴とする溝型誘導加熱装置を用いた溶銑の昇熱方法。  In the hot metal heating method using the grooved induction heating device according to any one of claims 1 and 2, each energizing time of the high-output energization and the low-output energization is set to the same time. A hot metal heating method using a groove type induction heating device.
JP2003009348A 2003-01-17 2003-01-17 Hot metal heating method using a grooved induction heating device Expired - Fee Related JP4216610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003009348A JP4216610B2 (en) 2003-01-17 2003-01-17 Hot metal heating method using a grooved induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003009348A JP4216610B2 (en) 2003-01-17 2003-01-17 Hot metal heating method using a grooved induction heating device

Publications (2)

Publication Number Publication Date
JP2004218038A JP2004218038A (en) 2004-08-05
JP4216610B2 true JP4216610B2 (en) 2009-01-28

Family

ID=32898878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003009348A Expired - Fee Related JP4216610B2 (en) 2003-01-17 2003-01-17 Hot metal heating method using a grooved induction heating device

Country Status (1)

Country Link
JP (1) JP4216610B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8855168B2 (en) * 2007-04-16 2014-10-07 Inductotherm Corp. Channel electric inductor assembly
JP5526548B2 (en) * 2009-01-06 2014-06-18 新日鐵住金株式会社 Runway inner diameter control method of groove type induction heating device
JP5526549B2 (en) * 2009-01-19 2014-06-18 新日鐵住金株式会社 Runway inner diameter control method of groove type induction heating device
JP5549385B2 (en) * 2010-06-03 2014-07-16 Jfeスチール株式会社 Refractory lining structure of induction heating device placed in storage furnace
JP5578111B2 (en) * 2011-03-02 2014-08-27 新日鐵住金株式会社 Induction heating temperature raising method for molten metal

Also Published As

Publication number Publication date
JP2004218038A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
JP4216610B2 (en) Hot metal heating method using a grooved induction heating device
CN107520437A (en) A kind of temperature compensation means and its method of ladle long nozzle low overheat
TWI413455B (en) Electronic circuit and a method for feeding electrical energy into an alternating current electric furnace
CN101833288B (en) Material melting model-based power supply control method for arc furnace
JP5455193B2 (en) Stainless steel manufacturing method
FI74168C (en) FOERFARANDE OCH ANORDNING FOER GJUTNING AV ELEKTRODGALLER FOER ELEKTRISKA ACKUMULATORER.
JP2018034180A (en) In-tundish molten steel heating method and tundish plasma heating device
CN106001339A (en) Special steel manufacturing system adaptive to special smelting and forging new process and special smelting and forging new process
US20080192796A1 (en) Method and Device for Operating an Electric-Arc Furnace
US20180180358A1 (en) Systems and methods to preheat ferromagnetic scrap
JP3858788B2 (en) Heating furnace layout and operating method of hot rolling equipment
JP2012183958A (en) Method and system for heating interior of electric vehicle
KR20000060792A (en) Ladle for Aluminum Molten Metal
CN209068981U (en) A kind of device of heating and cooling heating container
KR20160048409A (en) Method for supplying the oxygen and carbon material in electric furnace
KR101159975B1 (en) guide hole for supplying sand of electric furnace
JP2009024941A (en) Power source damage preventive method for groove type induction heating device
JPS59159255A (en) Controlling method of heating molten metal in tundish
JP6150972B2 (en) Method for melting cold iron source using hot metal in storage furnace equipped with heating device
JP6221707B2 (en) Slag processing method and slag processing apparatus
KR20110130720A (en) Apparatus and method for providing oxgen of electric furnace
JP2007046075A (en) Method for preventing clogging of flowing passage in groove type induction heating apparatus
JPH06246409A (en) Heating type immersion nozzle device for discharging half-soldified metal
JP2006207031A (en) Method for operating converter equipped with heating type storage furnace for storing molten iron
JP2013231210A (en) Method for preventing blockage of flow passage in induction heating device and heating-type molten pig iron storing furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081106

R151 Written notification of patent or utility model registration

Ref document number: 4216610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees