JP4213996B2 - Manufacturing method of solid electrolytic capacitor - Google Patents

Manufacturing method of solid electrolytic capacitor Download PDF

Info

Publication number
JP4213996B2
JP4213996B2 JP2003152721A JP2003152721A JP4213996B2 JP 4213996 B2 JP4213996 B2 JP 4213996B2 JP 2003152721 A JP2003152721 A JP 2003152721A JP 2003152721 A JP2003152721 A JP 2003152721A JP 4213996 B2 JP4213996 B2 JP 4213996B2
Authority
JP
Japan
Prior art keywords
manganese dioxide
sintered body
electrolytic capacitor
solid electrolytic
dioxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003152721A
Other languages
Japanese (ja)
Other versions
JP2004356417A (en
Inventor
邦幸 湯原
祐一 井川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP2003152721A priority Critical patent/JP4213996B2/en
Publication of JP2004356417A publication Critical patent/JP2004356417A/en
Application granted granted Critical
Publication of JP4213996B2 publication Critical patent/JP4213996B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は固体電解コンデンサの製造方法に関するものであり、特に、半導体層に二酸化マンガンを用いる固体電解コンデンサの製造方法に関するものである。
【0002】
【従来の技術】
従来、固体電解コンデンサの製造方法としては、一般に、タンタル、ニオブ、アルミニウム等の弁作用金属の焼結体表面に、陽極酸化により酸化皮膜層を形成し、硝酸マンガン溶液を含浸後、熱分解して上記陽極酸化皮膜層上に電解質となる二酸化マンガン層を形成する。そして最後に、二酸化マンガン層上に陰極引出し用のグラファイト層および銀層を形成後、外部電極を取り付け、外装樹脂で被覆して固体電解コンデンサとしている。
【0003】
しかし、酸化皮膜上への二酸化マンガンの被覆率が低いと経時的に静電容量が増大するという問題がある。
そこで、酸化皮膜上への二酸化マンガンの被覆率を向上させるため、低比重の硝酸マンガン溶液を用いて、含浸液の表面張力を低下させ、焼結体のより内部にまで硝酸マンガン溶液を含浸し、熱分解を行っている。このとき、硝酸マンガンの溶液濃度が低いので、所定の電気特性を得るため、含浸、熱分解を十数回繰り返している(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開平7−22285号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記製造方法では、含浸・熱分解の繰り返し回数が多くなるため、酸化皮膜が劣化しやすいという問題があった。
【0006】
一方、硝酸マンガンの含浸量を増加させ、含浸・熱分解の繰り返し回数を減らすために、高比重の硝酸マンガン溶液を使用すると、含浸1回当たりのマンガン析出量は増加するが、表面張力も増大するため、焼結体内部まで含浸されずに未含浸部分が残るという問題があった。
加えて、焼結体表面での二酸化マンガンの析出量が増加するため、表面の細孔径が小さくなり、次の含浸、熱分解時に硝酸マンガン溶液が焼結体内部へ含浸する際の障害となり、極端な場合は、焼結体内部の酸化皮膜が二酸化マンガンに被覆されないまま、表面の細孔がふさがってしまうという問題があった。
【0007】
本発明は、上記課題を解決するもので、硝酸マンガン溶液の含浸、熱分解の繰り返し回数を増加させることなく、酸化皮膜上への二酸化マンガン層の被覆率を向上させ、静電容量値ばらつきの小さい固体電解コンデンサの製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
すなわち、弁作用金属焼結体の表面に陽極酸化皮膜層を形成した後、硝酸マンガン溶液を含浸し、熱分解して上記陽極酸化皮膜層上に二酸化マンガン層を形成する固体電解コンデンサの製造方法において、
二酸化マンガン層の形成工程で、上記焼結体の表面または表面近傍に析出した二酸化マンガン層を3.0〜15.0wt%の硝酸と3.0〜15.0wt%の過酸化水素水との混合溶液により除去する工程を含むことを特徴とする固体電解コンデンサの製造方法である。
【0010】
【発明の実施の形態】
弁作用金属焼結体の表面に陽極酸化皮膜層を形成した後、硝酸マンガン溶液を含浸し、熱分解して上記陽極酸化皮膜層上に二酸化マンガン層を形成する工程で、上記焼結体の表面または表面近傍に析出した二酸化マンガン層を、濃度3.0〜15.0wt%の硝酸と3.0〜15.0wt%の過酸化水素水との混合溶液により除去する。
【0011】
【実施例】
〔実施例1〜7〕
以下、本発明の実施例を図面に基づいて説明する。図1は本発明の一実施例である固体電解コンデンサの製造工程フローを示している。まず、6.3V−220μF用のタンタル多孔質焼結体を形成し、陽極酸化を行うことにより表面にタンタル酸化皮膜層を形成した。
【0012】
次に、この陽極酸化した焼結体を比重が1.0から1.4の硝酸マンガン溶液に含浸させた。これらを引き上げ250℃で10分間熱分解した。この含浸−熱分解の操作を2回実施した。図3(a)で示すように焼結体内部と外部(表面)に二酸化マンガンが析出している。
【0013】
図3(a)に示す焼結体を表1に示す実施例1〜7の、濃度3.0〜15.0%の過酸化水素水と3.0〜15.0wt%の硝酸が混合してある水溶液(以下、処理液と示す)に5秒間含浸させ、200℃で30分間乾燥させた。その後、比重1.5〜1.9の硝酸マンガン溶液を用い含浸−熱分解を7回繰り返して、さらに二酸化マンガン層を形成させた。
【0014】
最後に、グラファイトの液に浸漬塗布してグラファイト層を形成し、銀ペーストを塗布して銀層を形成し固体電解コンデンサ用素子を作製した。これらの外装の金属層の形成は、従来より固体電解質コンデンサの製造方法として知られている方法に従って行った。
【0015】
〔比較例1〜4〕
比較例として、実施例1〜7と同様のタンタル多孔質焼結体を使用し、同様の方法で、焼結体の表面にタンタル酸化皮膜層を形成した。図1に示す製造工程フローに従って、処理液の過酸化水素水の濃度を1.0wt%と20.0wt%(硝酸10.0wt%)、過酸化水素水の濃度10.0wt%(硝酸1.0wt%と20.0wt%)でコンデンサを作製した。
【0016】
(従来例)
実施例1〜7と同様のタンタル多孔質焼結体を使用し、同様の方法で、焼結体の表面にタンタル酸化皮膜層を形成した。図2に示す製造工程フローのとおり、二酸化マンガン形成過程中での処理液による処理を行わず、二酸化マンガン層、グラファイト層、銀層を形成した。
【0017】
上記実施例1〜7、従来例、および比較例1〜4におけるコンデンサの120Hzでの静電容量値(μF)と二酸化マンガン層の被覆率((測定静電容量/陽極酸化後静電容量:220μF)×100)を比較した。その結果を表1に示す。
【0018】
【表1】

Figure 0004213996
【0019】
表1に示すとおり、二酸化マンガン層形成過程に処理を行った実施例1〜7は従来例より静電容量値が大きく、二酸化マンガン層の被覆率が高いことが分かる。
【0020】
本発明の実施例による、二酸化マンガン層形成工程における焼結体内部の構造変化の断面観察結果模式図を図3に示す。
図3(a)は、二酸化マンガン層形成時のもので、多孔質焼結体内部の酸化皮膜がすべて二酸化マンガン層に被覆される前に、焼結体の表面あるいは表面近傍に析出した二酸化マンガンが表面の細孔をふさいだり、細孔径を小さくする状態が発生している。
そこで、処理液により焼結体表面あるいは表面近傍の細孔をふさいでいる二酸化マンガンのみを除去すると、図3(b)に示すような状態となり、次段の二酸化マンガン層形成工程において硝酸マンガン溶液が含浸、浸透しやすくなる。その結果、図3(c)に示すように、二酸化マンガン層が焼結体表面をムラなく覆い、被覆率が向上する。
【0021】
さらに、二酸化マンガン層の被覆率が向上したことにより、実施例5では図4に示すとおり、高湿雰囲気中での静電容量値の経時変化(85℃85%RH、24h後)も低減でき、信頼性が向上する。
【0022】
一方、上記の二酸化マンガン除去工程を含まない従来例では、焼結体表面あるいは表面近傍の細孔をふさいでいる二酸化マンガンを処理液により除去することができず、図3(a)の状態のままであり、二酸化マンガン層の被覆率が小さく、静電容量の向上を図れず、また、高湿雰囲気中での静電容量値の経時的変化が大きくなる。
【0023】
また、実施例1〜7に比べると、過酸化水素水20.0wt%の比較例4または硝酸20.0wt%の比較例3は静電容量が小さく、二酸化マンガン層の被覆率が低い結果となった。
これより、過酸化水素水または硝酸の濃度を上げ過ぎると、焼結体表面に析出した過剰な二酸化マンガンだけにとどまらず、焼結体内部に析出した二酸化マンガンまで除去してしまい、静電容量低下につながることが分かる。
【0024】
さらに、過酸化水素水1.0wt%の比較例1または硝酸1.0wt%の比較例2は、静電容量が小さく、二酸化マンガン層の被覆率も低くなり、従来例と同等の結果となった。
これより、過酸化水素水または硝酸の濃度を下げ過ぎると、焼結体表面に析出した過剰な二酸化マンガンを除去しきれず、充分な効果が得られないことが分かる。
【0025】
上記したように、過酸化水素水または硝酸の濃度を上げ過ぎると、焼結体表面に析出した過剰な二酸化マンガンだけにとどまらず、焼結体内部に析出した二酸化マンガンまで除去してしまい、好ましくない。逆に、濃度を下げ過ぎると、焼結体表面に析出した過剰な二酸化マンガンを除去しきれないという問題が生じる。よって、処理液として使用する過酸化水素水または硝酸の濃度は3.0〜15.0wt%が望ましい。
【0026】
なお、本実施例では、二酸化マンガン除去工程を1回としたが、本発明はこれに限定されるものではなく、複数回実施してもよい。
【0027】
【発明の効果】
以上のように、本発明の固体電解質コンデンサの製造方法によれば、二酸化マンガン層形成途中で処理液により焼結体表面あるいは表面近傍の細孔をふさいでいる二酸化マンガンのみ除去することができ、次段の硝酸マンガン溶液の含浸、浸透がしやすくなり、二酸化マンガン層の被覆率が向上する。
よって、外部からの水分侵入による静電容量値の経時変化も小さく、静電容量値のばらつきを抑えた固体電解コンデンサを得ることができる。
【図面の簡単な説明】
【図1】本発明の実施例による固体電解コンデンサの製造工程フロー図である。
【図2】従来例による固体電解コンデンサの製造工程フロー図である。
【図3】本発明の実施例による二酸化マンガン層形成工程における焼結体内部の構造変化の断面観察結果模式図であり、(a)は、初段の二酸化マンガン層形成時の状態、(b)は、処理液により焼結体表面あるいは表面近傍の細孔をふさいでいる二酸化マンガンを除去した状態、(c)は、次段の二酸化マンガン層形成工程後の、二酸化マンガン層が焼結体表面を被覆した状態を示す図である。
【図4】本発明の実施例2と従来例による固体電解コンデンサの高湿雰囲気中での静電容量値の経時変化を比較した図である。
【符号の説明】
1 弁作用金属(タンタル)焼結体
2 陽極導出リード
3 二酸化マンガン層
4 二酸化マンガンで被覆されていない部分
5 二酸化マンガンによりふさがれた細孔部分
6 二酸化マンガンにより孔径が小さくなった細孔部分
7 処理液により二酸化マンガンが除去された部分[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more particularly to a method for manufacturing a solid electrolytic capacitor using manganese dioxide for a semiconductor layer.
[0002]
[Prior art]
Conventionally, as a method for producing a solid electrolytic capacitor, generally, an oxide film layer is formed by anodic oxidation on the surface of a sintered body of a valve action metal such as tantalum, niobium, and aluminum, impregnated with a manganese nitrate solution, and then thermally decomposed. A manganese dioxide layer serving as an electrolyte is formed on the anodized film layer. Finally, after forming a graphite layer and a silver layer for cathode extraction on the manganese dioxide layer, an external electrode is attached and covered with an exterior resin to form a solid electrolytic capacitor.
[0003]
However, if the coverage of manganese dioxide on the oxide film is low, there is a problem that the capacitance increases with time.
Therefore, in order to improve the coverage of manganese dioxide on the oxide film, the surface tension of the impregnating solution is reduced using a low specific gravity manganese nitrate solution, and the manganese nitrate solution is impregnated further into the sintered body. Is undergoing thermal decomposition. At this time, since the solution concentration of manganese nitrate is low, impregnation and thermal decomposition are repeated ten times or more in order to obtain predetermined electrical characteristics (see, for example, Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 7-22285
[Problems to be solved by the invention]
However, the above production method has a problem that the number of repetitions of impregnation and thermal decomposition increases, so that the oxide film tends to deteriorate.
[0006]
On the other hand, if a high specific gravity manganese nitrate solution is used to increase the amount of impregnation of manganese nitrate and reduce the number of repetitions of impregnation and thermal decomposition, the amount of manganese precipitation per impregnation increases but the surface tension also increases. For this reason, there is a problem that an unimpregnated portion remains without being impregnated into the sintered body.
In addition, since the amount of manganese dioxide deposited on the surface of the sintered body increases, the pore diameter of the surface becomes smaller, which becomes an obstacle when the manganese nitrate solution is impregnated inside the sintered body during the subsequent impregnation and thermal decomposition, In an extreme case, there was a problem that the pores on the surface were blocked while the oxide film inside the sintered body was not covered with manganese dioxide.
[0007]
The present invention solves the above-mentioned problems, and without increasing the number of repetitions of impregnation and thermal decomposition of a manganese nitrate solution, improves the coverage of the manganese dioxide layer on the oxide film, and varies the capacitance value variation. An object of the present invention is to provide a method for manufacturing a small solid electrolytic capacitor.
[0008]
[Means for Solving the Problems]
That is, after forming an anodized film layer on the surface of the valve action metal sintered body, a method for producing a solid electrolytic capacitor in which a manganese nitrate solution is impregnated and thermally decomposed to form a manganese dioxide layer on the anodized film layer In
In the step of forming the manganese dioxide layer, the manganese dioxide layer deposited on the surface of the sintered body or in the vicinity of the surface is mixed with 3.0 to 15.0 wt% nitric acid and 3.0 to 15.0 wt% hydrogen peroxide solution. It is a manufacturing method of the solid electrolytic capacitor characterized by including the process removed by a mixed solution.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
After forming an anodized film layer on the surface of the valve action metal sintered body, impregnating with a manganese nitrate solution and thermally decomposing it to form a manganese dioxide layer on the anodized film layer, The manganese dioxide layer deposited on or near the surface is removed with a mixed solution of nitric acid having a concentration of 3.0 to 15.0 wt% and hydrogen peroxide water of 3.0 to 15.0 wt%.
[0011]
【Example】
[Examples 1-7]
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a manufacturing process flow of a solid electrolytic capacitor according to an embodiment of the present invention. First, a tantalum porous sintered body for 6.3 V-220 μF was formed and anodized to form a tantalum oxide film layer on the surface.
[0012]
Next, this anodized sintered body was impregnated with a manganese nitrate solution having a specific gravity of 1.0 to 1.4. These were pulled up and thermally decomposed at 250 ° C. for 10 minutes. This impregnation-pyrolysis operation was carried out twice. As shown in FIG. 3A, manganese dioxide is precipitated inside and outside (surface) of the sintered body.
[0013]
The sintered compact shown in FIG. 3A was mixed with a hydrogen peroxide solution having a concentration of 3.0 to 15.0% and nitric acid of 3.0 to 15.0 wt% in Examples 1 to 7 shown in Table 1. The resulting aqueous solution (hereinafter referred to as “treatment solution”) was impregnated for 5 seconds and dried at 200 ° C. for 30 minutes. Thereafter, impregnation-pyrolysis was repeated 7 times using a manganese nitrate solution having a specific gravity of 1.5 to 1.9 to further form a manganese dioxide layer.
[0014]
Finally, a graphite layer was formed by dip coating in a graphite solution, and a silver layer was formed by applying a silver paste to produce a solid electrolytic capacitor element. These outer metal layers were formed according to a method conventionally known as a method for producing a solid electrolyte capacitor.
[0015]
[Comparative Examples 1-4]
As a comparative example, the same tantalum porous sintered body as in Examples 1 to 7 was used, and a tantalum oxide film layer was formed on the surface of the sintered body by the same method. According to the manufacturing process flow shown in FIG. 1, the concentration of hydrogen peroxide water in the treatment liquid is 1.0 wt% and 20.0 wt% (nitric acid 10.0 wt%), and the concentration of hydrogen peroxide water is 10.0 wt% (nitric acid 1. wt. Capacitors were manufactured at 0 wt% and 20.0 wt%.
[0016]
(Conventional example)
The same tantalum porous sintered body as in Examples 1 to 7 was used, and a tantalum oxide film layer was formed on the surface of the sintered body by the same method. As shown in the manufacturing process flow shown in FIG. 2, the manganese dioxide layer, the graphite layer, and the silver layer were formed without performing the treatment with the treatment liquid during the manganese dioxide formation process.
[0017]
Capacitance value (μF) at 120 Hz of the capacitors in Examples 1 to 7, the conventional examples, and Comparative Examples 1 to 4 and the coverage of the manganese dioxide layer (measured capacitance / capacitance after anodization: 220 μF) × 100). The results are shown in Table 1.
[0018]
[Table 1]
Figure 0004213996
[0019]
As shown in Table 1, it can be seen that Examples 1 to 7 that were processed in the process of forming the manganese dioxide layer had a larger capacitance value than the conventional example and a higher coverage of the manganese dioxide layer.
[0020]
FIG. 3 shows a schematic diagram of the cross-sectional observation result of the structural change inside the sintered body in the manganese dioxide layer forming step according to the embodiment of the present invention.
FIG. 3 (a) shows a manganese dioxide layer formed. Manganese dioxide deposited on or near the surface of the sintered body before the oxide film inside the porous sintered body is entirely covered with the manganese dioxide layer. However, there is a state where the surface pores are blocked or the pore diameter is reduced.
Therefore, when only the manganese dioxide covering the surface of the sintered body or the pores in the vicinity of the surface is removed by the treatment liquid, the state shown in FIG. 3B is obtained, and the manganese nitrate solution is formed in the subsequent step of forming the manganese dioxide layer. Becomes easy to impregnate and penetrate. As a result, as shown in FIG. 3C, the manganese dioxide layer covers the surface of the sintered body evenly, and the coverage is improved.
[0021]
Furthermore, with the improved coverage of the manganese dioxide layer, in Example 5, as shown in FIG. 4, it is possible to reduce the time-dependent change in the capacitance value in a high humidity atmosphere (after 85 ° C. and 85% RH, 24 hours). , Improve reliability.
[0022]
On the other hand, in the conventional example not including the above-described manganese dioxide removal step, manganese dioxide covering the surface of the sintered body or the pores in the vicinity of the surface cannot be removed by the treatment liquid, and the state of FIG. As a result, the coverage of the manganese dioxide layer is small, the capacitance cannot be improved, and the capacitance change with time in a high humidity atmosphere becomes large.
[0023]
Moreover, compared with Examples 1-7, the comparative example 4 of 20.0 wt% of hydrogen peroxide water, or the comparative example 3 of nitric acid 20.0 wt% has a small electrostatic capacity, and the result that the coverage of a manganese dioxide layer is low. became.
From this, if the concentration of hydrogen peroxide solution or nitric acid is increased too much, not only the excess manganese dioxide deposited on the surface of the sintered body but also the manganese dioxide deposited inside the sintered body is removed, resulting in a capacitance. It turns out that it leads to decline.
[0024]
Furthermore, Comparative Example 1 with 1.0 wt% of hydrogen peroxide or Comparative Example 2 with 1.0 wt% of nitric acid has a small electrostatic capacity and a low coverage of the manganese dioxide layer, which is equivalent to the conventional example. It was.
From this, it can be seen that if the concentration of the hydrogen peroxide solution or nitric acid is lowered too much, excess manganese dioxide deposited on the surface of the sintered body cannot be removed, and a sufficient effect cannot be obtained.
[0025]
As described above, if the concentration of the hydrogen peroxide solution or nitric acid is excessively increased, not only the excess manganese dioxide deposited on the surface of the sintered body but also the manganese dioxide deposited inside the sintered body is removed. Absent. Conversely, if the concentration is lowered too much, there arises a problem that excess manganese dioxide deposited on the surface of the sintered body cannot be removed. Therefore, the concentration of the hydrogen peroxide solution or nitric acid used as the treatment liquid is preferably 3.0 to 15.0 wt%.
[0026]
In this embodiment, the manganese dioxide removing step is performed once, but the present invention is not limited to this and may be performed a plurality of times.
[0027]
【The invention's effect】
As described above, according to the method for producing a solid electrolyte capacitor of the present invention, only manganese dioxide covering the surface of the sintered body or the pores in the vicinity of the surface can be removed by the treatment liquid during the formation of the manganese dioxide layer. Impregnation and infiltration of the manganese nitrate solution in the next stage is facilitated, and the coverage of the manganese dioxide layer is improved.
Therefore, a change with time of the capacitance value due to moisture intrusion from the outside is small, and a solid electrolytic capacitor in which variation in the capacitance value is suppressed can be obtained.
[Brief description of the drawings]
FIG. 1 is a manufacturing process flow diagram of a solid electrolytic capacitor according to an embodiment of the present invention.
FIG. 2 is a manufacturing process flow diagram of a solid electrolytic capacitor according to a conventional example.
FIG. 3 is a schematic diagram of a cross-sectional observation result of a structural change inside a sintered body in a manganese dioxide layer forming step according to an embodiment of the present invention, (a) is a state at the time of forming a first-stage manganese dioxide layer, (b) Is the state in which manganese dioxide covering the surface of the sintered body or the pores in the vicinity of the surface is removed by the treatment liquid, (c) is the surface of the sintered body after the next step of forming the manganese dioxide layer It is a figure which shows the state which coat | covered.
FIG. 4 is a graph comparing changes in capacitance value with time in a high humidity atmosphere of a solid electrolytic capacitor according to Example 2 of the present invention and a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Valve action metal (tantalum) sintered body 2 Anode lead | read | reed 3 Manganese dioxide layer 4 The part which is not coat | covered with manganese dioxide 5 The pore part 6 blocked by manganese dioxide Portions where manganese dioxide has been removed by the treatment solution

Claims (1)

弁作用金属焼結体の表面に陽極酸化皮膜層を形成した後、硝酸マンガン溶液を含浸し、熱分解して上記陽極酸化皮膜層上に二酸化マンガン層を形成する固体電解コンデンサの製造方法において、
二酸化マンガン層の形成工程で、上記焼結体の表面または表面近傍に析出した二酸化マンガン層を3.0〜15.0wt%の硝酸と3.0〜15.0wt%の過酸化水素水との混合溶液により除去する工程を含むことを特徴とする固体電解コンデンサの製造方法。
In the method for producing a solid electrolytic capacitor in which an anodized film layer is formed on the surface of the valve action metal sintered body, then impregnated with a manganese nitrate solution, and thermally decomposed to form a manganese dioxide layer on the anodized film layer.
In the step of forming the manganese dioxide layer, the manganese dioxide layer deposited on the surface of the sintered body or in the vicinity of the surface is mixed with 3.0 to 15.0 wt% nitric acid and 3.0 to 15.0 wt% hydrogen peroxide solution. A method for producing a solid electrolytic capacitor comprising a step of removing with a mixed solution.
JP2003152721A 2003-05-29 2003-05-29 Manufacturing method of solid electrolytic capacitor Expired - Fee Related JP4213996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003152721A JP4213996B2 (en) 2003-05-29 2003-05-29 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003152721A JP4213996B2 (en) 2003-05-29 2003-05-29 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2004356417A JP2004356417A (en) 2004-12-16
JP4213996B2 true JP4213996B2 (en) 2009-01-28

Family

ID=34047865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003152721A Expired - Fee Related JP4213996B2 (en) 2003-05-29 2003-05-29 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4213996B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4555190B2 (en) * 2005-08-10 2010-09-29 ニチコン株式会社 Manufacturing method of solid electrolytic capacitor
JP2007214310A (en) * 2006-02-09 2007-08-23 Nichicon Corp Method for manufacturing solid electrolytic capacitor
JP4850127B2 (en) * 2007-05-30 2012-01-11 三洋電機株式会社 Solid electrolytic capacitor and manufacturing method thereof

Also Published As

Publication number Publication date
JP2004356417A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
JP4703400B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5987169B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH0992581A (en) Anodic oxidation of capacitor anode
JPH05121274A (en) Solid electrolytic capacitor and its manufacture
JP4553770B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2006278790A (en) Solid electrolytic capacitor and its fabrication process
JP4213996B2 (en) Manufacturing method of solid electrolytic capacitor
JPWO2011013375A1 (en) Manufacturing method of solid electrolytic capacitor
JP4555190B2 (en) Manufacturing method of solid electrolytic capacitor
JP3070443B2 (en) Method for manufacturing solid electrolytic capacitor
JP4589187B2 (en) Manufacturing method of solid electrolytic capacitor
JP4548730B2 (en) Manufacturing method of solid electrolytic capacitor
JP4088849B2 (en) Manufacturing method of solid electrolytic capacitor
JP4401218B2 (en) Solid electrolytic capacitor
JPH02267915A (en) Manufacture of solid-state electrolytic capacitor
JP2008205190A (en) Solid electrolytic capacitor and its manufacturing method
JP2847001B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0777180B2 (en) Method for manufacturing solid electrolytic capacitor
JPH06132167A (en) Manufacture of solid electrolytic capacitor
JP2772154B2 (en) Method for manufacturing solid electrolytic capacitor
JP2010141180A (en) Solid-state electrolytic capacitor, and method of manufacturing the same
JP2513369B2 (en) Method for manufacturing solid electrolytic capacitor
JP2001155965A (en) Manufacturing method of solid electrolytic capacitor
JP3315714B2 (en) Method for manufacturing solid electrolytic capacitor
JPH06252001A (en) Solid electrolytic capacitor and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4213996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees