JP4212927B2 - Particulate matter removal catalyst in diesel engine exhaust gas - Google Patents

Particulate matter removal catalyst in diesel engine exhaust gas Download PDF

Info

Publication number
JP4212927B2
JP4212927B2 JP2003057875A JP2003057875A JP4212927B2 JP 4212927 B2 JP4212927 B2 JP 4212927B2 JP 2003057875 A JP2003057875 A JP 2003057875A JP 2003057875 A JP2003057875 A JP 2003057875A JP 4212927 B2 JP4212927 B2 JP 4212927B2
Authority
JP
Japan
Prior art keywords
exhaust gas
particles
diesel engine
particulate matter
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003057875A
Other languages
Japanese (ja)
Other versions
JP2004267807A (en
Inventor
惠 三輪
善行 木戸口
アリ モハマンディ
一朗 中林
俊広 森賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okura Kogyo KK
Toda Kogyo Corp
Original Assignee
Okura Kogyo KK
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okura Kogyo KK, Toda Kogyo Corp filed Critical Okura Kogyo KK
Priority to JP2003057875A priority Critical patent/JP4212927B2/en
Publication of JP2004267807A publication Critical patent/JP2004267807A/en
Application granted granted Critical
Publication of JP4212927B2 publication Critical patent/JP4212927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ディーゼルエンジンの排ガス中の粒子状物質(PM)を、効率よく完全燃焼させて除去することが可能な触媒に関するものである。
【0002】
【従来の技術】
近年、ディーゼルエンジンから排出される粒子状物質(カーボン微粒子、SOF(Soluble Organic Fraction[可溶有機成分])、サルフェート等。以下、PM(Particulate Matter)と称す。)が環境衛生上大きな問題となっている。これは、PMの粒子径がほとんど1ミクロン以下であるため、大気中に浮遊しやすく呼吸により人体内に取り込まれやすいことによるものである。このPMを除去する方法としては、フィルターによってPMを捕捉する方法やPMを燃焼除去する方法、或いはそれらを組み合わせた方法があり、最近では、後付でディーゼル自動車に装着可能なDPF(ディーゼルパティキュレートフィルター)も開発されている。そして、DPFが使用可能になったことを受けて東京都の環境確保条例(2000年12月制定)を始め、埼玉県の生活環境保全条例(2001年7月制定)、千葉県のディーゼル自動車から排出される粒子状物質の排出に関する条例(2002年3月制定)等、次々とPMを規制する条例を制定する地方自治体が現れてきている。
【0003】
DPFは、排ガスに含まれるPMをフィルターでろ過して捕集し、燃焼させ、二酸化炭素に変えて排出することによってPMの排出量を低減させるものであり、(1)フィルターでPMを捕集し、自動車が稼動していないときに外部電源等を使用してフィルターを再生する間欠再生式DPF、(2)二つのフィルターで交互にPMを捕集し、電熱線等により焼却してフィルターを再生する交互再生式DPFや、(3)触媒等の作用によってフィルターで捕集したPMを比較的低温で連続的に酸化除去しフィルターを再生する連続再生式DPF、等が実用化されている。
【0004】
しかしながら、間欠再生式DPFの場合は、装置が簡便で安価であるという利点はあるものの、一回の捕集量に限界があるため一度に長距離を走行する自動車には適用できないという問題があった。交互再生式DPFはこのような間欠再生式DPFの欠点を解消したものであるが、この方式ではDPF取付けスペースの確保や高性能発電機への交換が必要となるなど車両構造上の制約があるばかりか、1年程度でセンサー類、3年程度でフィルターの交換が必要になるという問題があった。
【0005】
一方、連続再生式DPFとしては、例えば、ジョンソンマッセイ社(特許文献1等参照)のフィルターの前段に配設された酸化触媒によって排気ガス中のうち一酸化窒素(NO)を酸化して二酸化窒素(NO)を生成し、排ガスの熱とNOによってフィルターに捕集されたPMを連続的に酸化して再生する方式のDPFや、エンゲルハード社のフィルターに担持した触媒の作用でフィルターに捕集したPMを比較的低温で連続的に酸化して再生する方式のDPFが提案されている。しかしながら、低硫黄軽油を燃料として使用する必要があること、及び排気温度が一定となる走行が一定比率以上となる走行条件を満たす必要があることから、ディーゼルエンジン車の全ての使用過程において有効なDPFとは云えないものであった。
【0006】
したがって、硫黄分を含有する通常の軽油であっても燃料として使用できたり、始動時や低速走行時のような低温であってもPMを燃焼除去しうる触媒の開発が各方面で検討されている。例えば、比較的低温下でも高い触媒活性を示すものとして、Pt(NH(OH)水溶液をシリカに含浸、乾燥後、水素で還元し、空気中で焼成してなるシリカに担持させた白金を触媒として使用する方法(特許文献2)や、固体担体と、該固体担体に担持される硝酸銀、アルカリ金属の硝酸塩、アルカリ土類金属の硝酸塩及び希土類元素の硝酸塩から選ばれる少なくとも一種を含む触媒成分からなる溶融塩型触媒(特許文献3)等が提案されている。
また、燃料として使用する軽油中の硫黄分による触媒の被毒や、サルフェートの生成量の増大を抑制するものとして、(a)耐火性無機酸化物、(b)パラジウムおよび白金から選ばれる少なくとも1種の貴金属、ならびに(c)ロジウムを含有する触媒(特許文献4)や、酸化銅(CuO)が担持された担体及び該担体上に浸漬されている貴金属主触媒成分を含む触媒(特許文献5)等が提案されている。
更に、特許文献6−9には酸化鉄、特にα−Feを触媒として使用することが提案されていて、その場合、高温域におけるサルフェートの生成を抑制できる(特許文献6、7)旨の記載がある。しかしながら、どのような酸化鉄触媒を使用することが好ましいかについて充分な検討がなされておらず、未だ満足できるものとは云えなかった。
【0007】
【特許文献1】
特開平10−159552号公報
【特許文献2】
特許第2961249号公報
【特許文献3】
特開2002−210368号公報
【特許文献4】
特許第3061399号公報
【特許文献5】
特開2001−79409号公報
【特許文献6】
特開平6−210172号公報
【特許文献7】
特開2002−1123号公報
【特許文献8】
特開平10−174878号公報
【特許文献9】
特開2001−98925号公報
【0008】
【発明が解決しようとする課題】
本発明は、安価で、しかも白金属触媒に比べて硫黄による被毒の恐れの少ない酸化鉄を使用しているにもかかわらずPMの燃焼に充分な触媒活性を有するPM除去触媒を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者等は鋭意検討した結果、結晶子サイズが150Å以下のヘマタイト(α−Fe)が、従来公知の酸化鉄触媒に比べて極めて酸化触媒活性が高く、PMを効率よく燃焼除去しうることを見いだし本発明に到った。
【0010】
すなわち、本発明によれば
(1) ヘマタイト(α−Fe)粒子からなるディーゼルエンジン排ガス中の粒子状物質除去触媒において、該ヘマタイト粒子のP含有量が0.005重量%以下であって、CuKαでX線回折測定した際の結晶面(104)の結晶子サイズが150Å以下であることを特徴とするディーゼルエンジン排ガス中の粒子状物質除去触媒。
(2) 前記ヘマタイト粒子が紡錘状ゲーサイト(α−FeOOH)粒子を250℃以上の温度で加熱処理して得られたものであることを特徴とする(1)記載のディーゼルエンジン排ガス中の粒子状物質除去触媒。
(3) (1)又は(2)に記載のディーゼルエンジン排ガス中の粒子状物質除去触媒を使用してNOの存在下でPMを燃焼除去することを特徴とするディーゼルエンジン排ガス中の粒子状物質の除去方法が提供される。
【0011】
【実施の形態】
以下に、本発明の実施の形態を詳細に説明する。
本発明のディーゼルエンジン排ガス中のPM除去触媒は、P含有量が0.005重量%以下であって、CuKαでX線回折測定した際の結晶面(104)の結晶子サイズが150Å以下のヘマタイト(α−Fe)粒子からなることを特徴とするものである。
したがって、ヘマタイト(α−Fe)粒子中に不純物としてのリン(P)含有量が0.005重量%を超えて存在している場合、触媒活性が不十分なためディーゼルエンジン排ガス中のPM除去触媒として本発明の目的が達成できないので好ましくない。また、ヘマタイト(α−Fe)粒子のCuKαでX線回折測定した際の結晶面(104)の結晶子サイズが150Åを超えると同様にPMの燃焼に十分な触媒活性がないので好ましくない。
【0012】
本発明において、結晶面(104)の結晶子サイズが150Å以下のヘマタイト(α−Fe)粒子をディーゼルエンジン排ガス中のPM除去触媒として用いるのは以下の理由によるものである。すなわち、ヘマタイト(α−Fe)粒子はX線回折測定によって(012)面、(104)面、(110)面、(113)面、(024)面、(116)面、(214)面及び(300)面の回折ピークが測定されるのであるが、その中でも(104)面、(012)面、(024)面、(214)面、とりわけ(104)面の回折ピークは酸素原子の配列状態を表す回折ピークであって、このピークがブロードになるほど酸素原子の配列が乱れている、つまり活性点ともなるべき面欠陥が多いことを示している。
一方、(110)面、(113)面、(116)面のように一般式(11l)面(l=3n、n=0〜3の整数)で示される結晶面や(300)面は鉄原子の配列状態を表す回折ピークであって、これらの結晶面の結晶子サイズが変化してもPM除去触媒としての活性に大きな変化を生じないので本発明における結晶子サイズの比較として適用されるものではない。
【0013】
このような結晶面(104)の結晶子サイズはX線回折測定の結果得られる結晶面(104)に基づくピークの半価幅から下記Sherrerの式を用いて求めることができる。
D=0.9λ/β・cosθ
D:結晶子サイズ(Å)、λ:X線源の波長(=1.5405Å)、β:回折ピーク半価幅(ラジアン)、θ:結晶面(104)の回折角(=33.151°)
【0014】
そして、本発明のディーゼルエンジン排ガス中のPM除去触媒に使用するヘマタイト粒子は、例えば、以下のようにして製造することができる。
紡錘状ヘマタイト粒子や針状ヘマタイト粒子は、第一鉄塩水溶液と水酸化アルカリ水溶液、炭酸アルカリ水溶液等のアルカリ水溶液との中和反応沈殿物を含む懸濁液中に添加剤の存在下又は不存在下で空気等の酸素含有ガスを通気することによって生成させた紡錘状や針状の含水酸化第二鉄粒子を空気中250℃以上、好ましくは270〜350℃で粒子形状を維持しながら加熱処理して得ることができる。
また、板状ヘマタイト粒子は、第一鉄塩水溶液とアルカリ水溶液との中和反応沈殿物をオートクレーブ中で加熱処理して得ることができる。
更に粒状ヘマタイト粒子は、第一鉄塩水溶液と水酸化アルカリ水溶液、炭酸アルカリ水溶液等のアルカリ水溶液との中和反応沈殿物を含む懸濁液中に空気等の酸素含有ガスを通気して粒状マグネタイト粒子を生成し、次いで当該マグネタイト粒子を空気中200〜500℃で粒子形状を維持しながら加熱処理して得ることができる。
【0015】
本発明においては、上記方法によって得られるヘマタイト粒子のなかから上述した条件を満たすものであれば特に制限なく使用可能であり、粒子形状は紡錘状、針状、板状、そして球形、八面体、多面体、不定形等のほぼ等方形状を呈するいわゆる粒状の何れであっても良いが、紡錘状のヘマタイト粒子が望ましい。また、上記条件を満たすリン(P)含有量とするためには製造時の十分な洗浄や、原材料の選択、および通常加熱焼成時の焼結防止処理に用いられるヘキサメタリン酸ナトリウム等のリン化合物を使用しないことによって達成することができる。
【0016】
また、CuKαでX線回折測定した際の結晶面(104)の結晶子サイズが上記条件を満たすためには、例えば、硫酸や硝酸等で表面を処理してヘマタイト粒子表面を荒らすことや、触媒活性の高い紡錘状含水酸化第二鉄粒子を加熱処理してヘマタイト粒子とする等の方法によって達成することができる。特に、紡錘状ゲータイト(α−FeOOH)粒子は超微細繊維の束からなる微細構造を有していて、表面含水量が大きいことは勿論、250℃以上の温度、好ましくは270〜350℃の温度範囲で加熱処理することによって結晶構造中の水酸基間からも脱水して酸素原子の配列を示す結晶面(104)に面欠陥を生じ、この面の結晶子サイズが小さいヘマタイトが得られやすくなるので最も好ましい。この際に使用する紡錘状ゲータイト粒子としては、長軸径が0.05〜1.5μm、好ましくは0.1〜0.3μm、軸比が1〜18、好ましくは3〜15、BET比表面積が30〜250m/g、好ましくは50〜150m/gであり、得られるヘマタイト粒子としては、長軸径が0.05〜1.5μm、好ましくは0.1〜0.3μm、軸比が1〜18、好ましくは3〜15、BET比表面積が30〜250m/g、好ましくは30〜200m/gである。
【0017】
さて、本発明のディーゼルエンジン排ガス中のPM除去触媒は、上述したヘマタイト粒子を担体に担持させた状態で使用するのであるが、この際に使用する担体としては、例えば、アルミナ、コージェライト、炭化珪素等をハニカム状、或いはフィルター状に一体成形したものを使用するのが一般的である。また、担持方法としてはヘマタイトを懸濁させたスラリー中に担体を浸積し、次いで乾燥させて担体に担持させる方法や、第一鉄塩の水溶液中に担体を浸積したのち、上述したヘマタイト粒子の製造手順に従ってヘマタイト粒子を生成することにより担体に担持させる方法等が挙げられるが特に限定はない。なお、本発明のディーゼルエンジン排ガス中のPM除去触媒は、上記ヘマタイト粒子を使用することを必須要件とするものであるが、必要に応じて他の触媒活性を有する物質と混合して使用することも勿論可能である。
【0018】
本発明のディーゼルエンジン排ガス中のPM除去触媒は、同じヘマタイト粒子を使用しているにもかかわらずこれまでのヘマタイト粒子に比べてPMを完全燃焼させるのに十分な、高い触媒活性を有しているのであるが、特に、特許文献1にも記載されているNOの存在下、すなわち排ガス中に微量のNOを含有させることにより250℃以下の温度ででもPMを燃焼除去することができるという効果を有していて、しかもその際に一酸化炭素を発生させずに完全燃焼させることができる。なお、排ガス中に含有させる好ましいNO含有量は100〜2000ppmである。
【0019】
【実施例】
以下に、本発明を実施例により具体的に説明する。
なお、使用したヘマタイト粒子は以下の通りである。
<ヘマタイト粒子>
A1:紡錘状ヘマタイト粒子(BET比表面積:100m/g、平均粒子径:0.25μm、軸比(長軸/短軸):8、結晶面(104)の結晶子サイズ:61Å、P含有量:0.002%)
P含有量0.002%の紡錘状ゲータイト粒子(BET比表面積:80m/g、平均粒子径:0.25μm、軸比(長軸/短軸):8)を300℃で加熱処理することにより得た。このヘマタイト粒子のX線回折図形を図1に、電子顕微鏡写真を図2に示す。
A2:ヘマタイト粒子(BET比表面積:1.8m/g、平均粒子径:0.50μm、軸比(長軸/短軸):1、結晶面(104)の結晶子サイズ:528.5Å、P含有量:0.004%)
試薬として市販されているヘマタイト粒子をそのまま使用した。
A3:ヘマタイト粒子(BET比表面積:43m/g、平均粒子径:0.25μm、軸比(長軸/短軸):8、結晶面(104)の結晶子サイズ:130Å、P含有量:0.002%)
P含有量0.002%の紡錘状ゲータイト粒子(BET比表面積:80m/g、平均粒子径:0.25μm、軸比(長軸/短軸):8)を500℃、1h加熱処理することにより得た。
A4:ヘマタイト粒子(BET比表面積:110m/g、平均粒子径:0.25μm、軸比(長軸/短軸):8、結晶面(104)の結晶子サイズ:110Å、P含有量:0.1%)
P含有量0.002%の紡錘状ゲータイト粒子(BET比表面積:80m/g、平均粒子径:0.25μm、軸比(長軸/短軸):8)1kgをイオン交換水で邂逅した5%スラリーに、P濃度6.2wt%のヘキサメタリン酸ナトリウム溶液を18g添加混合し、その後イオン交換水にて水洗し、濾過および乾燥した。この乾燥物を500℃、1h加熱処理することにより得た。
【0020】
また、ヘマタイト粒子のディーゼルエンジン排ガス中のPM除去触媒としての性能は図3に示す試験装置1を用いて以下の方法で評価した。
まず、ディーゼルエンジン排ガス中のPMの主成分である煤とほぼ同等なX線回折図を与える活性炭をPMに模して使用し、活性炭とPM除去触媒とを耐熱性ろ紙2上にと擦り込むように担持させて活性炭試験装置1に装着した。次いで適宜組成に調整したガスを試験装置1のガス供給口11から供給し、所定温度におけるガス排出口12がら排出されるガス中の一酸化炭素(CO)及び二酸化炭素(CO)濃度を測定することによって触媒効果を評価した。
【0021】
実施例1、比較例1、2
耐熱性ろ紙2上に活性炭0.1gとヘマタイト粒子(A1)0.5gの混合物を擦り込むように担持させて図3に示す試験装置1内に装着し、1.6vol%の酸素を含有した窒素ガスを1L/分の流量で供給口11から供給し、試験装置1内の温度を15℃/分の昇温速度で加温した場合について、各温度における燃焼の結果発生する排出ガス中の一酸化炭素(CO)及び二酸化炭素(CO)濃度を測定した。結果を図4に示す。また、比較のためにヘマタイト粒子を使用しない以外は実施例1と同様にした場合、及び結晶子サイズが528.5Åである市販のヘマタイト粒子(A2)を使用して試験した結果を同じく図4に示す。
【0022】
図4からも明らかなように、実施例1の本発明にかかるヘマタイト粒子(A1)を触媒として使用した系では一酸化炭素(CO)が発生することなく活性炭が燃焼したのに対して、ヘマタイト粒子を含有していない比較例1の系では不完全燃焼していることを示す一酸化炭素(CO)が大量に発生した。また、結晶子サイズが150Åを遙かに超えるヘマタイト粒子(A2)を使用した比較例2の系では燃焼開始温度が多少低温側に移行したものの活性炭を完全燃焼させる効果は殆ど見られなかった。
【0023】
実施例2、比較例3
供給するガスを1000ppmのNOガスを含有した窒素ガスに代えた以外は実施例1、比較例1と同様にして燃焼の結果発生する排出ガス中の各温度における一酸化炭素(CO)及び二酸化炭素(CO)濃度を測定した。結果を図5に示す。
【0024】
図5からも明らかなように、実施例2の本発明にかかるヘマタイト粒子(A1)を触媒として使用した系では実施例1の場合と同様に一酸化炭素を発生させることなく活性炭を完全燃焼させることができたのみならず、200℃以下の低温(すなわち、アイドリング時やスタート時の排ガスで補助ヒーターを使用することなしに到達しうる温度)ででも燃焼させることができた。
一方、従来知られているように比較例3の系ではNOガスの効果によって低温で燃焼させることは可能であったが、不完全燃焼に伴う一酸化炭素(CO)が多量に発生するなど、実用上は問題があった。
【0025】
実施例3
ヘマタイト粒子(A1)に代えて、ヘマタイト粒子(A3)を使用した以外は実施例1と同様にして燃焼試験を行った。その結果、排ガス中一酸化炭素(CO)濃度が710℃にて最大値400ppm検出され、ほぼ完全燃焼させることができた。
【0026】
比較例4
ヘマタイト粒子(A1)に代えて、ヘマタイト粒子(A4)を使用した以外は実施例1と同様にして燃焼試験を行った。その結果、排ガス中一酸化炭素(CO)濃度が690℃にて最大値3500ppm検出され、活性炭を完全燃焼させる効果は殆ど見られなかった。
【0027】
【効果】
本発明のPM除去触媒は、安価な鉄を原材料として使用しているにもかかわらず極めて良好な触媒活性を示した。しかも、ヘマタイト粒子は硫黄による被毒を受けにくいので低硫黄軽油を使用することなくPMを減少させる方法に道を開くものである。
【図面の簡単な説明】
【図1】本発明のPM除去用触媒の一例を示すヘマタイト粒子(A1)のX線回折図である。
【図2】本発明のPM除去用触媒の一例を示すヘマタイト粒子(A1)の電子顕微鏡写真である。
【図3】触媒作用について検討するための実験装置の模式斜視図である。
【図4】実施例1と比較例1、2の結果を示す一酸化炭素濃度−温度、及び二酸化炭素濃度−温度グラフである。
【図5】実施例2と比較例3の結果を示す一酸化炭素濃度−温度、及び二酸化炭素濃度−温度グラフである。
【符号の説明】
1 実験装置
11 供給口
12 排出口
2 耐熱性ろ紙
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst that can efficiently and completely remove particulate matter (PM) in exhaust gas from a diesel engine.
[0002]
[Prior art]
In recent years, particulate matter discharged from diesel engines (carbon fine particles, SOF (Soluble Organic Fraction), sulfate, etc., hereinafter referred to as PM (Particulate Matter)) has become a major environmental health problem. ing. This is due to the fact that the particle size of PM is almost 1 micron or less, so that it easily floats in the atmosphere and is easily taken into the human body by breathing. As a method for removing PM, there are a method of capturing PM by a filter, a method of burning and removing PM, or a method of combining them. Recently, a DPF (diesel particulates) that can be attached to a diesel vehicle later. Filter) has also been developed. In response to the availability of the DPF, the Tokyo Metropolitan Environmental Security Ordinance (established in December 2000), the Saitama Prefecture Living Environment Conservation Ordinance (established in July 2001), and the Chiba Prefecture Diesel Vehicle Local governments have come up with regulations to regulate PM one after another, such as regulations on the emission of particulate matter (established in March 2002).
[0003]
DPF collects PM contained in exhaust gas by filtering it, burns it, changes it into carbon dioxide, and discharges it. (1) Collects PM with a filter. However, intermittent regeneration type DPF that uses an external power source to regenerate the filter when the vehicle is not in operation, (2) PM is collected alternately by two filters, and incinerated with heating wire, etc. An alternating regeneration type DPF that regenerates, (3) a continuous regeneration type DPF that regenerates a filter by continuously oxidizing and removing PM collected by a filter by the action of a catalyst or the like at a relatively low temperature, and the like have been put into practical use.
[0004]
However, although the intermittent regeneration type DPF has the advantage that the device is simple and inexpensive, there is a problem that it cannot be applied to a vehicle that travels a long distance at a time because the amount of collection at one time is limited. It was. The alternating regeneration type DPF eliminates the disadvantages of the intermittent regeneration type DPF, but this method has restrictions on the vehicle structure such as securing a DPF mounting space and replacement with a high performance generator. In addition, there was a problem that it was necessary to replace the sensor in about one year and the filter in about three years.
[0005]
On the other hand, as the continuous regeneration type DPF, for example, nitric oxide (NO) in the exhaust gas is oxidized by an oxidation catalyst disposed in front of a filter manufactured by Johnson Matthey (see Patent Document 1, etc.) to form nitrogen dioxide. (NO 2 ) is generated, and the PM collected in the filter by the heat of exhaust gas and NO 2 is continuously oxidized to regenerate the DPF, and the catalyst supported on the Engelhard filter is used as a filter. There has been proposed a DPF in which collected PM is continuously oxidized and regenerated at a relatively low temperature. However, it is necessary to use low-sulfur diesel oil as fuel, and because it is necessary to satisfy the driving condition where the driving at which the exhaust temperature is constant exceeds a certain ratio, it is effective in all use processes of diesel engine vehicles. It couldn't be called a DPF.
[0006]
Therefore, the development of a catalyst that can be used as fuel even for ordinary light oil containing sulfur, or that can burn and remove PM even at low temperatures such as when starting or running at low speed, has been studied in various fields. Yes. For example, in order to show high catalytic activity even at relatively low temperatures, silica is impregnated with a Pt (NH 3 ) 4 (OH) 2 aqueous solution, dried, reduced with hydrogen, and baked in air. A method of using platinum as a catalyst (Patent Document 2), a solid support, and at least one selected from silver nitrate, alkali metal nitrate, alkaline earth metal nitrate and rare earth element nitrate supported on the solid support A molten salt type catalyst (Patent Document 3) comprising a catalyst component is proposed.
Moreover, as a thing which suppresses the poisoning of the catalyst by the sulfur content in the light oil used as fuel, and the increase in the production amount of sulfate, at least one selected from (a) refractory inorganic oxide, (b) palladium and platinum. (C) a catalyst containing rhodium (Patent Document 4), a support on which copper oxide (CuO) is supported, and a catalyst containing a noble metal main catalyst component immersed on the support (Patent Document 5) ) Etc. have been proposed.
Further, Patent Document 6-9 proposes the use of iron oxide, particularly α-Fe 2 O 3 as a catalyst, in which case the generation of sulfate in a high temperature range can be suppressed (Patent Documents 6 and 7). There is a statement to that effect. However, sufficient study has not been made on what kind of iron oxide catalyst is preferably used, and it has not been satisfactory.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-159552 [Patent Document 2]
Japanese Patent No. 2961249 [Patent Document 3]
JP 2002-210368 A [Patent Document 4]
Japanese Patent No. 3061399 [Patent Document 5]
JP 2001-79409 A [Patent Document 6]
JP-A-6-210172 [Patent Document 7]
JP 2002-1123 A [Patent Document 8]
Japanese Patent Laid-Open No. 10-174878 [Patent Document 9]
Japanese Patent Laid-Open No. 2001-98925
[Problems to be solved by the invention]
The present invention provides a PM removal catalyst that is inexpensive and has sufficient catalytic activity for PM combustion despite the use of iron oxide that is less likely to be poisoned by sulfur compared to a white metal catalyst. With the goal.
[0009]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that hematite (α-Fe 2 O 3 ) having a crystallite size of 150 mm or less has a very high oxidation catalytic activity compared to a conventionally known iron oxide catalyst, and efficiently removes PM. We have found that this is possible and have arrived at the present invention.
[0010]
That is, according to the present invention, (1) In the particulate matter removal catalyst in diesel engine exhaust gas comprising hematite (α-Fe 2 O 3 ) particles, the P content of the hematite particles is 0.005 wt% or less. A particulate matter removal catalyst in diesel engine exhaust gas, wherein the crystallite size of the crystal plane (104) when X-ray diffraction measurement is performed with CuKα is 150 Å or less.
(2) The particles in diesel engine exhaust gas according to (1), wherein the hematite particles are obtained by heat-treating spindle-shaped goethite (α-FeOOH) particles at a temperature of 250 ° C. or higher. Catalyst for removal of particulate matter.
(3) Particulate matter in diesel engine exhaust gas, characterized in that PM is burned and removed in the presence of NO 2 using the particulate matter removal catalyst in diesel engine exhaust gas as described in (1) or (2). A method for removing material is provided.
[0011]
Embodiment
Hereinafter, embodiments of the present invention will be described in detail.
The PM removal catalyst in the exhaust gas of the diesel engine of the present invention has a hematite having a P content of 0.005% by weight or less and a crystallite size (104) of crystal plane (104) of 150 K or less when measured by X-ray diffraction with CuKα. It consists of (α-Fe 2 O 3 ) particles.
Therefore, when the content of phosphorus (P) as an impurity exceeds 0.005% by weight in the hematite (α-Fe 2 O 3 ) particles, the catalytic activity is insufficient, and thus in the diesel engine exhaust gas. The PM removal catalyst is not preferable because the object of the present invention cannot be achieved. Further, if the crystallite size of the crystal plane (104) when the X-ray diffraction measurement is performed with CuKα of hematite (α-Fe 2 O 3 ) particles exceeds 150 mm, it is preferable because there is not sufficient catalytic activity for PM combustion. Absent.
[0012]
In the present invention, hematite (α-Fe 2 O 3 ) particles having a crystal face (104) crystallite size of 150 104 or less are used as a PM removal catalyst in diesel engine exhaust gas for the following reason. That is, hematite (α-Fe 2 O 3 ) particles were measured by X-ray diffraction measurement using (012) plane, (104) plane, (110) plane, (113) plane, (024) plane, (116) plane, (214 ) And (300) plane diffraction peaks are measured. Among them, the (104) plane, (012) plane, (024) plane, (214) plane, particularly the (104) plane diffraction peaks are oxygen. This is a diffraction peak representing the arrangement state of atoms, and the broader this peak is, the more disordered the arrangement of oxygen atoms is, that is, the more surface defects that should be active sites.
On the other hand, crystal planes represented by the general formula (11l) plane (l = 3n, integers of n = 0 to 3) and (300) plane such as (110) plane, (113) plane, and (116) plane are iron. It is a diffraction peak representing the arrangement state of atoms, and even if the crystallite size of these crystal planes changes, it does not cause a great change in the activity as a PM removal catalyst, so it is applied as a comparison of crystallite size in the present invention. It is not a thing.
[0013]
Such a crystallite size of the crystal plane (104) can be obtained from the half width of the peak based on the crystal plane (104) obtained as a result of the X-ray diffraction measurement, using the following Serrer equation.
D = 0.9λ / β · cos θ
D: crystallite size (Å), λ: wavelength of X-ray source (= 1.5405Å), β: diffraction peak half width (radian), θ: diffraction angle of crystal plane (104) (= 33.151 ° )
[0014]
And the hematite particle | grains used for the PM removal catalyst in the diesel engine exhaust gas of this invention can be manufactured as follows, for example.
Spindle-like hematite particles and needle-like hematite particles are present in a suspension containing a neutralization reaction precipitate between a ferrous salt aqueous solution and an alkali aqueous solution such as an alkali hydroxide aqueous solution or an alkali carbonate aqueous solution in the presence or absence of an additive. Heat spindle-shaped or needle-shaped hydrous ferric oxide particles generated by ventilating oxygen-containing gas such as air in the presence of air at 250 ° C or higher, preferably 270-350 ° C while maintaining the particle shape. It can be obtained by processing.
The plate-like hematite particles can be obtained by heat-treating a neutralization reaction precipitate between a ferrous salt aqueous solution and an alkaline aqueous solution in an autoclave.
Furthermore, granular hematite particles are obtained by aerating an oxygen-containing gas such as air into a suspension containing a neutralization reaction precipitate between a ferrous salt aqueous solution and an alkali aqueous solution such as an alkali hydroxide aqueous solution or an alkali carbonate aqueous solution. Particles can be generated, and then the magnetite particles can be obtained by heat treatment at 200 to 500 ° C. in air while maintaining the particle shape.
[0015]
In the present invention, any of the hematite particles obtained by the above method can be used without particular limitation as long as the above conditions are satisfied, and the particle shape is a spindle shape, a needle shape, a plate shape, and a spherical shape, an octahedron, Although it may be any of so-called granular shapes having a substantially isotropic shape such as a polyhedron and an indeterminate shape, spindle-shaped hematite particles are desirable. Moreover, in order to make the phosphorus (P) content satisfying the above conditions, a phosphorus compound such as sodium hexametaphosphate used for sufficient washing during production, selection of raw materials, and anti-sintering treatment during normal heating and firing is used. This can be achieved by not using it.
[0016]
In addition, in order to satisfy the above condition, the crystallite size of the crystal plane (104) when X-ray diffraction measurement is performed with CuKα, the surface of the hematite particles is roughened by treating the surface with sulfuric acid or nitric acid, This can be achieved by a method of heat-treating highly active spindle-shaped hydrous ferric oxide particles into hematite particles. In particular, the spindle-shaped goethite (α-FeOOH) particles have a fine structure composed of a bundle of ultrafine fibers and have a high surface water content, of course, a temperature of 250 ° C. or higher, preferably a temperature of 270 to 350 ° C. Heat treatment in the range causes dehydration between the hydroxyl groups in the crystal structure to cause surface defects on the crystal plane (104) indicating the arrangement of oxygen atoms, and it is easy to obtain hematite with a small crystallite size on this plane. Most preferred. The spindle-shaped goethite particles used in this case have a major axis diameter of 0.05 to 1.5 μm, preferably 0.1 to 0.3 μm, an axial ratio of 1 to 18, preferably 3 to 15, and a BET specific surface area. Is 30 to 250 m 2 / g, preferably 50 to 150 m 2 / g, and the resulting hematite particles have a major axis diameter of 0.05 to 1.5 μm, preferably 0.1 to 0.3 μm, and an axial ratio. Is 1 to 18, preferably 3 to 15, and a BET specific surface area is 30 to 250 m 2 / g, preferably 30 to 200 m 2 / g.
[0017]
The PM removal catalyst in the exhaust gas of the diesel engine according to the present invention is used in a state where the above-described hematite particles are supported on a carrier. Examples of the carrier used in this case include alumina, cordierite, carbonization, and the like. In general, silicon or the like integrally formed in a honeycomb shape or a filter shape is used. In addition, as a loading method, a method in which the carrier is immersed in a slurry in which hematite is suspended and then dried and supported on the carrier, or after the carrier is immersed in an aqueous solution of ferrous salt, There are no particular restrictions on the method of supporting the carrier by generating hematite particles in accordance with the particle production procedure. In addition, although the PM removal catalyst in the diesel engine exhaust gas of the present invention is an essential requirement to use the above-mentioned hematite particles, it should be used by mixing with other substances having catalytic activity as necessary. Of course it is possible.
[0018]
The PM removal catalyst in the exhaust gas of the diesel engine of the present invention has a high catalytic activity sufficient to completely burn PM as compared with the conventional hematite particles, even though the same hematite particles are used. However, in particular, PM can be burned and removed even at a temperature of 250 ° C. or less in the presence of NO 2 described in Patent Document 1, that is, by containing a trace amount of NO 2 in the exhaust gas. In this case, complete combustion can be achieved without generating carbon monoxide. A preferable NO 2 content to be contained in the exhaust gas is 100 to 2000 ppm.
[0019]
【Example】
Hereinafter, the present invention will be specifically described by way of examples.
The hematite particles used are as follows.
<Hematite particles>
A1: Spindle-shaped hematite particles (BET specific surface area: 100 m 2 / g, average particle size: 0.25 μm, axial ratio (major axis / minor axis): 8, crystallite size of crystal plane (104): 61 mm, P content (Amount: 0.002%)
Heat treatment of spindle-shaped goethite particles having a P content of 0.002% (BET specific surface area: 80 m 2 / g, average particle size: 0.25 μm, axial ratio (major axis / minor axis): 8) at 300 ° C. Obtained. The X-ray diffraction pattern of this hematite particle is shown in FIG. 1, and the electron micrograph is shown in FIG.
A2: hematite particles (BET specific surface area: 1.8 m 2 / g, average particle size: 0.50 μm, axial ratio (major axis / minor axis): 1, crystallite size of crystal plane (104): 528.5 kg, P content: 0.004%)
Commercially available hematite particles were used as they were.
A3: hematite particles (BET specific surface area: 43 m 2 / g, average particle size: 0.25 μm, axial ratio (major axis / minor axis): 8, crystallite size of crystal plane (104): 130Å, P content: 0.002%)
Spindle-shaped goethite particles having a P content of 0.002% (BET specific surface area: 80 m 2 / g, average particle size: 0.25 μm, axial ratio (major axis / minor axis): 8) are heat-treated at 500 ° C. for 1 h. Was obtained.
A4: hematite particles (BET specific surface area: 110 m 2 / g, average particle size: 0.25 μm, axial ratio (major axis / minor axis): 8, crystallite size of crystal plane (104): 110Å, P content: 0.1%)
1 kg of spindle-shaped goethite particles having a P content of 0.002% (BET specific surface area: 80 m 2 / g, average particle size: 0.25 μm, axial ratio (major axis / minor axis): 8) were sprinkled with ion-exchanged water. 18 g of a sodium hexametaphosphate solution having a P concentration of 6.2 wt% was added to and mixed with the 5% slurry, then washed with ion-exchanged water, filtered and dried. This dried product was obtained by heat treatment at 500 ° C. for 1 h.
[0020]
Further, the performance of hematite particles as a PM removal catalyst in diesel engine exhaust gas was evaluated by the following method using the test apparatus 1 shown in FIG.
First, activated carbon that gives an X-ray diffraction pattern almost equivalent to soot, which is the main component of PM in diesel engine exhaust gas, is used to simulate PM, and the activated carbon and the PM removal catalyst are rubbed onto the heat-resistant filter paper 2. The activated carbon test apparatus 1 was mounted. Next, a gas adjusted to an appropriate composition is supplied from the gas supply port 11 of the test apparatus 1, and the concentrations of carbon monoxide (CO) and carbon dioxide (CO 2 ) in the gas discharged from the gas discharge port 12 at a predetermined temperature are measured. Thus, the catalytic effect was evaluated.
[0021]
Example 1, Comparative Examples 1 and 2
A mixture of 0.1 g of activated carbon and 0.5 g of hematite particles (A1) was rubbed on the heat-resistant filter paper 2 and mounted in the test apparatus 1 shown in FIG. 3 and contained 1.6 vol% oxygen. When nitrogen gas is supplied from the supply port 11 at a flow rate of 1 L / min and the temperature in the test apparatus 1 is heated at a rate of temperature increase of 15 ° C./min, the exhaust gas generated as a result of combustion at each temperature Carbon monoxide (CO) and carbon dioxide (CO 2 ) concentrations were measured. The results are shown in FIG. For comparison, the same results as in Example 1 except that hematite particles are not used, and the results of tests using commercially available hematite particles (A2) having a crystallite size of 528.5 mm are also shown in FIG. Shown in
[0022]
As apparent from FIG. 4, in the system using the hematite particles (A1) according to the present invention of Example 1 as a catalyst, activated carbon burned without generating carbon monoxide (CO), whereas hematite In the system of Comparative Example 1 containing no particles, a large amount of carbon monoxide (CO) indicating incomplete combustion was generated. Further, in the system of Comparative Example 2 using hematite particles (A2) having a crystallite size far exceeding 150 mm, although the combustion start temperature slightly shifted to the low temperature side, the effect of completely burning the activated carbon was hardly observed.
[0023]
Example 2 and Comparative Example 3
Carbon monoxide (CO) and carbon dioxide at each temperature in the exhaust gas generated as a result of combustion in the same manner as in Example 1 and Comparative Example 1 except that the gas to be supplied was changed to nitrogen gas containing 1000 ppm of NO 2 gas. The carbon (CO 2 ) concentration was measured. The results are shown in FIG.
[0024]
As is apparent from FIG. 5, in the system using the hematite particles (A1) according to the present invention of Example 2 as a catalyst, the activated carbon is completely burned without generating carbon monoxide as in Example 1. In addition, it could be burned even at a low temperature of 200 ° C. or lower (that is, a temperature that can be reached without using an auxiliary heater with exhaust gas at idling or at the start).
On the other hand, as conventionally known, the system of Comparative Example 3 could be burned at a low temperature due to the effect of NO 2 gas, but a large amount of carbon monoxide (CO) was generated due to incomplete combustion. There was a problem in practical use.
[0025]
Example 3
A combustion test was conducted in the same manner as in Example 1 except that hematite particles (A3) were used instead of hematite particles (A1). As a result, the carbon monoxide (CO) concentration in the exhaust gas was detected at a maximum value of 400 ppm at 710 ° C., and almost complete combustion was possible.
[0026]
Comparative Example 4
A combustion test was conducted in the same manner as in Example 1 except that hematite particles (A4) were used instead of hematite particles (A1). As a result, the carbon monoxide (CO) concentration in the exhaust gas was detected at a maximum value of 3500 ppm at 690 ° C., and the effect of completely burning the activated carbon was hardly observed.
[0027]
【effect】
The PM removal catalyst of the present invention showed very good catalytic activity despite using inexpensive iron as a raw material. In addition, hematite particles are less susceptible to sulfur poisoning, opening the way to reducing PM without using low sulfur gas oil.
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction pattern of hematite particles (A1) showing an example of a PM removal catalyst of the present invention.
FIG. 2 is an electron micrograph of hematite particles (A1) showing an example of a PM removal catalyst of the present invention.
FIG. 3 is a schematic perspective view of an experimental apparatus for examining catalytic action.
4 is a graph of carbon monoxide concentration-temperature and carbon dioxide concentration-temperature showing the results of Example 1 and Comparative Examples 1 and 2. FIG.
5 is a graph of carbon monoxide concentration-temperature and carbon dioxide concentration-temperature showing the results of Example 2 and Comparative Example 3. FIG.
[Explanation of symbols]
1 experimental apparatus 11 supply port 12 discharge port 2 heat resistant filter paper

Claims (3)

ヘマタイト(α−Fe)粒子からなるディーゼルエンジン排ガス中の粒子状物質除去触媒において、該ヘマタイト粒子のP含有量が0.005重量%以下であって、CuKαでX線回折測定した際の結晶面(104)の結晶子サイズが150Å以下であることを特徴とするディーゼルエンジン排ガス中の粒子状物質除去触媒。In the particulate matter removal catalyst in diesel engine exhaust gas composed of hematite (α-Fe 2 O 3 ) particles, when the P content of the hematite particles is 0.005 wt% or less and X-ray diffraction measurement is performed with CuKα A catalyst for removing particulate matter in exhaust gas from a diesel engine, characterized in that the crystallite size of the crystal plane (104) is 150 Å or less. 前記ヘマタイト粒子が紡錘状ゲーサイト(α−FeOOH)粒子を250℃以上の温度で加熱処理して得られたものであることを特徴とする請求項1記載のディーゼルエンジン排ガス中の粒子状物質除去触媒。The particulate matter removal from diesel engine exhaust gas according to claim 1, wherein the hematite particles are obtained by heat-treating spindle-shaped goethite (α-FeOOH) particles at a temperature of 250 ° C or higher. catalyst. 請求項1又は2に記載のディーゼルエンジン排ガス中の粒子状物質除去触媒を使用してNOの存在下で粒子状物質を燃焼除去することを特徴とするディーゼルエンジン排ガス中の粒子状物質の除去方法。Removal of particulate matter in diesel engine exhaust gas, wherein particulate matter removal catalyst in diesel engine exhaust gas according to claim 1 or 2 is used to burn and remove particulate matter in the presence of NO 2 Method.
JP2003057875A 2003-03-05 2003-03-05 Particulate matter removal catalyst in diesel engine exhaust gas Expired - Fee Related JP4212927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003057875A JP4212927B2 (en) 2003-03-05 2003-03-05 Particulate matter removal catalyst in diesel engine exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003057875A JP4212927B2 (en) 2003-03-05 2003-03-05 Particulate matter removal catalyst in diesel engine exhaust gas

Publications (2)

Publication Number Publication Date
JP2004267807A JP2004267807A (en) 2004-09-30
JP4212927B2 true JP4212927B2 (en) 2009-01-21

Family

ID=33121130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003057875A Expired - Fee Related JP4212927B2 (en) 2003-03-05 2003-03-05 Particulate matter removal catalyst in diesel engine exhaust gas

Country Status (1)

Country Link
JP (1) JP4212927B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4730709B2 (en) * 2006-05-18 2011-07-20 株式会社豊田中央研究所 NOx storage reduction catalyst
JP2009208025A (en) * 2008-03-05 2009-09-17 Univ Of Tokushima Diesel engine exhaust gas cleaning filter
US8097554B2 (en) * 2009-02-09 2012-01-17 Airflow Catalyst Systems, Inc. Apparatus for removing soot from diesel engine exhaust streams at temperatures at or below 150° C.
CN102000573B (en) * 2010-09-29 2013-04-24 山西大学 Modified activated carbon and application thereof
DE102019127801A1 (en) * 2019-10-15 2021-04-15 Technische Universität Bergakademie Freiberg Precious metal-free catalyst for exhaust gas cleaning of CO2-neutral biomethane engines by oxidizing HCHO and CH4

Also Published As

Publication number Publication date
JP2004267807A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP4317345B2 (en) Low concentration CO-containing exhaust gas treatment method
US20050239642A1 (en) Catalytic filter for removing soot particulates from diesel engine exhaust and method of preparing the same
US20060270548A1 (en) Particle filter having a catalytically active coating to accelerate burning off accumulated soot particles during a regeneration phase
JP5635410B2 (en) Exhaust gas purification catalyst and purification method using the same
JPH0459049A (en) Catalyst for diesel engine exhaust gas cleanup
JP4012320B2 (en) Exhaust gas purification catalyst for lean combustion engine
EA014127B1 (en) Apparatus for treating diesel exhaust gases
WO2009087852A1 (en) Exhaust gas cleaner
JP2008272659A (en) Exhaust gas purification catalyst for automobile, exhaust gas purification catalyst system and purifying method of exhaust gas
JP2005066559A (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JPH10151348A (en) Oxidation catalyst
JP2008073654A (en) Gas purification process, gas purification apparatus, and gas purification catalyst
WO2008065819A1 (en) Composite oxide for exhaust gas clean-up catalyst, exhaust gas clean-up catalyst, and diesel exhaust gas clean-up filter
US6767526B1 (en) Method for treating by combustion carbon-containing particles in an internal combustion engine exhaust circuit
JP5023969B2 (en) Exhaust gas component purification catalyst material and particulate filter with the catalyst material
CN105727964B (en) Three-dimensional composite oxide catalysts that are a kind of while eliminating NO and soot particulate object and its preparation method and application
JP4212927B2 (en) Particulate matter removal catalyst in diesel engine exhaust gas
JPH0884911A (en) Catalyst for decomposing nitrogen oxide and method for purifying diesel engine exhaust using the same
US10226755B2 (en) NOx storage reduction catalyst for purifying exhaust gas and exhaust gas purification method using said catalyst
EP0722767A1 (en) Catalyst for purifying exhaust gases
JPH0768176A (en) Catalyst for purification of exhaust gas from diesel engine
JP2009208039A (en) Catalyst for removing particulate matter and method for removing particulate matter by using the same
JPH0462778B2 (en)
JP2006043683A (en) Catalyst carrier and its manufacturing method and catalyst for cleaning exhaust gas
JP3251009B2 (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees