JP4210495B2 - High-strength soft magnetic stainless steel and manufacturing method thereof - Google Patents

High-strength soft magnetic stainless steel and manufacturing method thereof Download PDF

Info

Publication number
JP4210495B2
JP4210495B2 JP2002260038A JP2002260038A JP4210495B2 JP 4210495 B2 JP4210495 B2 JP 4210495B2 JP 2002260038 A JP2002260038 A JP 2002260038A JP 2002260038 A JP2002260038 A JP 2002260038A JP 4210495 B2 JP4210495 B2 JP 4210495B2
Authority
JP
Japan
Prior art keywords
less
flux density
magnetic flux
stainless steel
aging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002260038A
Other languages
Japanese (ja)
Other versions
JP2004099926A (en
Inventor
広 森川
輝彦 末次
龍二 広田
定幸 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2002260038A priority Critical patent/JP4210495B2/en
Publication of JP2004099926A publication Critical patent/JP2004099926A/en
Application granted granted Critical
Publication of JP4210495B2 publication Critical patent/JP4210495B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、高強度,高磁束密度および高耐食性が要求される電動機の回転子等に用いられる、高強度軟磁性ステンレス鋼およびその製造方法に関する。
【0002】
【従来の技術】
従来の電動機の回転子には電磁鋼板等の鉄系材料が用いられている。昨近、省エネルギーを狙いとして、周波数を変えることによって電動機の回転数を最適の回転数に変えるインバーター制御の電動機がエアコン等の家電製品に用いられている。最近、さらに効率を上げるためにこの電動機の回転数をさらに上げようとのニーズが顕在化してきている。
しかしながら、電動機の回転数を上げると回転子にかかる遠心力が増大し、従来の軟磁性材料の強度ではHv200以下と強度が低いため、回転数を上げることには限界があった。また使用される環境によっては銹が発生するためめっき等の処理が必要であった。
【0003】
鉄鋼材料の強度を増大させる方法として、加工強化,マルテンサイト変態強化,固溶強化,析出強化,結晶粒微細強化がある。ステンレス系軟磁性材料の軟磁性特性を低下させずに高強度化する技術として以下の技術が開示されている。
固溶強化を利用した技術として、特開昭49−73322号公報には、フェライト系ステンレス鋼成分にPを0.1〜0.4%含有させた材料が開示されているが、Pを0.1%以上含有させると耐食性が劣化するとともに熱間加工で耳割れが発生しやすくなる。またこのステンレス鋼は固溶により強化しようとするものであるため、最高硬さでもHv210と大きな高強度化は望めなかった。また、特開昭61−272352号公報あるいは特開昭63−109143号公報には、Siを1.5〜3.5%添加して固溶強化する方法が開示されているが、固溶強化のみでは最高硬さでもHv220までである。固溶強化でこれ以上硬度を上げようとすると、冷間加工性が著しく低下するという問題点があった。
【0004】
析出強化を利用した技術として、特開昭54−124818号公報には、Fe−Cr系のフェライト系ステンレス鋼にNi,Al,Tiを含有させ、時効処理を施して析出硬化により高強度化させた材料が開示されている。この技術によれば、析出硬化によりHv450以上の高硬度が得られるものの、Tiを多量に含有するためTi系介在部に起因した表面キズが発生しやすいこと、製造工程で著しく靭性が低下し板切れ等の製造上の問題があった。さらに、析出硬化のために高価なNiを多量に添加する必要があり、コストが高くなるという問題も抱えていた。
【0005】
【発明が解決しようとする課題】
このように、従来技術では析出強化により強度が高く、高磁場での磁束密度が比較的高い技術が開示されている。しかしながら、フェライト単相にするためにCr含有量を多くせざるを得ずその結果、磁束密度が小さくなり、また、析出強化のため表面キズを生じやすい合金元素を多量に添加する必要があったり、あるいは高価な合金元素を多量に含有させなければならないという問題がった。
そこで、本発明は、このような問題を解消すべく案出されたものであり、製造が容易で、表面キズ等の問題がなく、大きなコストアップを招くこともなく、ビッカース硬度でHv250(引張強度で800N/mm)以上、かつ磁場10 Oe(796A/m)のときの磁束密度B10で1.0Tを超える磁束密度が得られる高強度軟磁性ステンレス鋼を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の高強度軟磁性ステンレス鋼は、その目的を達成するため、質量%で、C:0.03%以下,Si:0.2〜3.5%,Mn:1.0%以下,Ni:0.5%以下,P:0.04%以下,S:0.03%以下,Al:0.05〜5.0%,N:0.03%以下,Cr:9.0〜20.0質量%,Cu:1.0〜4.0%を含み、さらに必要に応じてNb,Tiのうちから選ばれるいずれか少なくとも1種単独では、Nb:1.0%以下,Ti:0.5%以下,あるいはNbとTiの複合で1.0%以下を含み、残部F及び不可避不純物からなる組成をもち、式(2)で定義されるA値が13を超え、溶体化時効処理によるCuリッチ相が分散・析出したフェライト単相からなる組織を有することを特徴とする。
A=(%Cr)+2.0×(%Si)+5.5×(%Al)+1.8×(%Nb)+1.5×(%Ti)-[2.7×(%Ni)
+1.4×(%Mn)+0.8×(%Cu)+68.7×(%N)+82.4×(%C)] ・・・・(2)
また、このような高強度軟磁性ステンレス鋼は、上記成分を有する鋼板を、1000〜1200℃で溶体化後、平均冷却速度が100℃/秒以下となるように冷却し、その後400〜700℃の温度範囲内で時効処理することにより得られる。
【0007】
【実施の態様】
本発明者等は、製造性,製造コストを考慮しつつ磁束密度を低下させずに、かつ高強度化するステンレス鋼について検討した。
SUS410系ステンレス鋼を圧延により加工硬化させて強度を高めたもの、フェライトとオーステナイトの2相域から焼き入れてマルテンサイト相を生成させたもの、SUS410系ステンレスをベースにSiを添加して固溶強化したもの、並びにFe−12Cr−0.6Si−1.5AlをベースにCuを0〜2%の範囲で添加した冷延板を、溶体化処理(1000℃×1分、空冷)後、550℃で20分時効析出処理したものについて、硬度アップΔHvと磁場10 Oeでの磁束密度B10の関係を調査した。
【0008】
外径45mm,内径33mmのリング状の試験片に加工後、磁束密度の測定は直流磁化BH特性自動記録装置により行った。なお、時効処理については、リング状試験片に加工後、溶体化処理,時効処理を行った。各サンプルの初期の磁束密度は、マルテンサイト強化材,固溶強化材および加工強化材については焼鈍まま材で、時効処理材については溶体化処理後に測定した。
各サンプルの初期状態での磁束密度B10の値は1.2〜1.4Tであり、いずれも1.0T以上であった。
各強度向上策を施した後の硬度の増加と磁束密度B10の関係を図1に示す。加工強化あるいはマルテンサイト強化では強度の上昇とともに磁束密度B10も著しく低下している。Si添加による固溶強化およびCu析出によるものについては磁束密度B10をほとんど低下させることなく硬さを上げることが可能であることがわかる。
【0009】
CuおよびSiの添加量を変えた0.8mm厚の冷延板を作製し、Cu添加材については1000℃で溶体化処理後、550℃×20分の時効処理したときの硬さ、Si添加材については得られた冷延板を1000℃で焼鈍した後の硬さを測定した。その結果を図2に示す。なお、Cu添加量が4.0%を超えたものでは熱間圧延時に耳割れが生じた。また、Si添加量が3.5%を超えたものは冷間圧延が困難であった。
圧延時の割れ等、製造上問題のない範囲でSiを添加したものの最高硬さはHv220程度であるのに対して、Cu添加材はHv300まで到達する。
【0010】
以上のことから、コストを上昇させることなく製造が容易で、磁束密度を落とさず磁束密度B10で1.0T以上の磁束密度が得られ、かつ250Hv以上の硬さが得られる方策としては、Cuを添加し時効によりCuリッチ相を分散させることが有効であることがわかった。
磁束密度を高い状態で維持するために、組織をフェライト単相にする必要があることはいうまでもない。本発明では、時効析出によりフェライト中にCuリッチ相を分散させて、磁束密度を低下させることなく、強度を高くすることができたものである。
加工硬化,マルテンサイト相による硬化ともその強化の機構として共通するところは転位密度の増大による強化である。すなわち、加工硬化は圧延等による加工により導入される金属組織中の転位の増大に伴って、またマルテンサイト相による強化は高転位密度のマルテンサイト相が増すに従い、強度は向上するがそれに反比例して磁束密度は低下する。したがって転位により著しく磁区の移動が制限されるため、転位密度が増大するほど磁束密度は低下すると推測される。一方、固溶強化や本発明のような時効析出では金属組織中の転位密度を増大させることなしに強化可能であるため、磁束密度の低下は殆どなかったと推察される。
【0011】
本発明が対象とするステンレス鋼では、合金成分および含有量を次のように定める。なお「%」表示はいずれも「質量%」である。
【0012】
C:0.03%以下
Cは、強力なオーステナイト生成元素であり、マルテンサイトの生成を促進させるとともにCrとの炭化物を生成して耐食性や磁気特性を劣化させる有害元素である。このような影響を抑制するため、C含有量の上限を0.03%に設定した。
Si:0.2〜3.5%
Siは脱酸剤として添加される。またフェライト生成元素であり、また電気抵抗を高めるため、高周波磁場での渦電流損を小さくするのに有効である。このため積極的に添加される。しかし、過剰に添加すると硬質になり、冷間圧延時に割れが発生しやすくなるので、Si含有量の上限は3.5%に設定した。
プレス等の加工が加わる場合は2.0%以下にすることが好ましい。
【0013】
Mn:1.0%以下
Mnは脱酸剤であるが、オーステナイト生成元素であり、マルテンサイトの生成を促進させる作用を呈する。そのため、Mn含有量は1.0%以下に限定した。
Ni:0.5%以下
Niは強力なオーステナイト生成元素であり、マルテンサイトの生成を促進させる作用を呈する。マルテンサイトの生成を抑制するため、Ni含有量は0.5%以下に限定した。
【0014】
P:0.04%以下
Pは固溶強化に有効であるが、耐食性を低下させる。そのため、P含有量は0.04%以下に限定した。
S:0.03%以下
Sは耐食性、磁気特性を低下させるので0.03%以下に限定した。
Al:0.05〜5.0%以下
Alはフェライト生成元素で、かつ電気抵抗を高めるため高周波磁場での渦電流損を小さくするのに有効である。このため積極的に添加されるが、5.0%を超えると靭性が低下するとともにAl系介在物に起因した表面キズが発生しやすくなる。このため、Al含有量の上限を5.0%に設定した。好ましくは3.0%以下である。
【0015】
N:0.03%以下
NはCと同様に強力なオーステナイト生成元素で、マルテンサイトの生成を促進させる。そのため、N含有量は0.03%以下とした。
Cr:9.0〜20.0%
Crは耐食性を良くし、かつ電気抵抗を上げる。このような作用・効果は、9.0%以上のCr含有量で顕著になる。しかし、20.0%を超えるCrの過剰添加は、材質を硬質化しプレス加工性を劣化させる。したがって、Cr含有量は9.0〜20.0%とする。好ましい範囲は14.0%以下である。
【0016】
Cu:1.0〜4.0%
Cuは、本発明で最も重要な合金成分である。前条のように時効強化作用を有する。Cuは、本来オーステナイト生成元素であるが、Niに比べオーステナイト化傾向は弱い。したがってマルテンサイト生成に関してCuの含有をさほど心配する必要はない。また、Niに比べ飽和磁束密度の低下が小さい。
時効強化を発現させるためには1.0%以上の含有が必要である。しかし、4.0%を超えて過剰に含有すると熱間加工性が著しく低下し、熱間圧延中に耳割れが発生する。したがって、Cu含有量は1.0〜4.0%の範囲とする。好ましくは1.5〜3.5%である。
【0017】
Nb:0.00〜1.0%
NbはCおよびNを固定するとともに、それ自身がフェライト生成元素である。しかしながら、1.0%を超える過剰なNb添加は、材料の靭性低下をもたらす。したがって、Nb含有量の上限は1.0%とする。
Ti:0.00〜0.5%
Nbと同様にCおよびNを固定するとともに、それ自身がフェライト生成元素である。しかしながら、0.5%を超えるTiを添加すると、Alと同様にTi系介在物を生成して表面キズが発生しやすくなる。したがって、Ti含有量の上限は0.5%とする。
なお、TiとNbは複合して添加しても良い。ただし、その合計量が1.0%を超えると靭性が低下し、製造性が悪化するため、上限は1.0%とする。
【0018】
前述したように、高い磁束密度を得るためには、溶体化熱処理後の金属組織をフェライト単層にする必要がある。そこで、本発明の成分範囲でフェライト単相になるための条件について検討した。
種々の成分からなる鋼を実験室的に溶製し、得られたそれぞれの小鋼塊を鍛造・熱延し、焼鈍・脱スケール後、冷延して1mm厚の板を得た。この冷延板を1000℃で溶体化後、金属組織を顕微鏡観察しマルテンサイト量を測定した。各成分のマルテンサイト生成に対する寄与度を求め、下記(2)式を求めた。
A=(%Cr)+2.0×(%Si)+5.5×(%Al)+1.8×(%Nb)+1.5×(%Ti)‐[2.7×(%Ni)+1.4×(%Mn)+0.8×(%Cu)+68.7×(%N)+82.4×(%C)] ・・・・(2)
(2)式で求めたA値とマルテンサイト生成量との関係を整理すると、図3に示すようになる。この結果から、A値が13以下ではマルテンサイトが生成することがわかる。したがって、溶体化後の組織をフェライト単相にするためには、A値が13を超えるように成分調整する必要がある。
【0019】
本発明者等は、さらに適正熱処理条件を把握すべく、Fe−12Cr−1.5Si−1.5Al鋼をベースに、Cuを1.5〜3.0%の範囲で変えて添加した各種サンプルを用いて検討を行った。種々の温度で保持したサンプルを室温まで冷却後、550℃で30分時効処理し、時効前後の硬さの差分を調査した。その結果、溶体化処理温度が高いほど、時効後の硬度増分が大きくなり、1000℃以上で飽和した。また、1000℃に満たないとCuの固溶が十分でない。したがって、溶体化処理温度の下限は1000℃とした。しかし、過度に高い溶体化温度では酸化スケールが多量に生成するため、上限は1200℃にする。
時効温度については、400℃に満たないと時効時間が長くなりすぎて効率的でない。また、700℃を超えるとCuリッチ相であるε−Cu相が短時間で粗大化して硬化しなくなる。そこで時効処理は400〜700℃の温度範囲内で施す必要がある。
【0020】
溶体化処理後の冷却速度と時効処理後の磁束密度との関係をFe−12Cr−1.5Si−1.5Al−2Cu鋼を用いて調査した。
1000℃×0sの溶体化処理後、種々の冷却速度で冷却した各サンプルに、650℃×10sの時効処理を施した。そして、各サンプルの磁束密度を測定した。その結果を図4に示している。1000℃から200℃までの平均冷却速度で100℃/秒を超える速い速度で冷却すると、磁束密度は著しく低下する。冷却速度が速い場合、室温まで冷却した鋼板に熱歪が生じ、この残留歪が時効処理でも消失せず、磁気特性を低下させていると推察される。
したがって、溶体化後の平均冷却速度は100℃/秒以下にする必要がある。
ただし、1℃/秒よりも遅くするとCuが冷却途中で析出する。空冷よりも少し早い程度とすることが好ましい。
【0021】
【実施例】
表1に示す組成を有する鋼を30kg高周波真空溶解炉で溶製し、粗熱延,仕上げ圧延により3mm厚の熱延板を作製し、その後、焼鈍・酸洗,冷延を行い、0.8mm厚の冷延板を作製した。
ただし、鋼No.10は、Cu含有量が多かったため熱延の段階で著しい耳割れが発生し、鋼No.13は、Si含有量が多すぎたため冷延で割れが発生した。このため、この2つの鋼については以降の工程を省略した。
その他の鋼サンプルのうち、時効析出により強化するものに対しては、0.8mm厚の冷延板に溶体化処理と時効処理を施した。溶体化処理温度は1000℃で1分保持した後、空冷した。空冷の際の室温までの平均冷却速度は約5℃/秒であった。時効処理は550℃で均熱30分で行った。
固溶強化材は0.8mm厚の冷延板を1000℃で焼鈍した。加工強化材は冷延で耳切れが生じない圧延率で圧延ままとした。
【0022】
時効強化材の磁束密度は外径45mm,内径33mmのリング状試験片に加工後、溶体化・時効処理を行い、その後直流磁化BH特性自動記録装置にて10 Oeの磁場をかけたときの磁束密度B10を測定した。固溶強化材の磁束密度は、同じサイズの試験片に加工,焼鈍後に、また、加工強化材の磁束密度は、加工後同じサイズに切り出した試験片を用いて同じ方法で測定した。
硬さは、ビッカース硬度試験機により荷重10kgfで測定した。
それらの測定結果を表2に示す。
【0023】
本発明にしたがった鋼No.1〜8では、熱延,冷延とも割れは発生しなかった。また磁束密度B10は1.0T以上であり、硬さもHv250以上で、所期の目的に沿うものであった。
しかしながら、4.0%を超えるCuを添加した鋼No.10は、熱延の段階で、また、3.5%を超えるSiを添加した鋼No.13は、所定厚みに冷延する前に著しい割れが生じた。
Siを2.5%のみ添加し固溶強化した鋼No.9は、磁束密度B10は1.0T以上であったが、硬さはHv200以下であった。固溶強化のみでは所望の硬さが得られないことがわかる。
鋼No.11は、A値が13以下であったために冷却中にマルテンサイトが生じ、磁束密度B10が著しく小さい値となった。鋼No.12は、Cr含有量が20.0%を超えていたため、磁束密度B10が1.0T未満になった。さらに鋼No.14は、加工強化させているため磁束密度B10,硬さとも低かった。
【0024】

Figure 0004210495
【0025】
Figure 0004210495
【0026】
鋼No.7を用いて、条件を変えて溶体化・時効処理したときの磁束密度B10と硬さの変化について調べた。その結果を表3に示す。
本発明にしたがった実験No.E1〜E3は、いずれも磁束密度B10が1.0T以上であり、また硬さはHv250以上であった。
しかしながら、溶体化処理温度が低かった実験No.E4は、Cuの固溶・析出が不十分で、時効後の硬さの増加が小さくHv250に満たなかった。溶体化温度保持後の冷却を水冷で行ったため、冷却速度が早すぎた実験No.E5は、時効後の磁束密度B10の値が著しく低い値となった。時効温度が高すぎた実験No.E6は、過時効となりHv250以上の硬さは得られなかった。逆に時効温度が低すぎた実験No.E7は、長時間に時効を行ってもHv250以上の硬さは得られなかった。
【0027】
Figure 0004210495
【0028】
【発明の効果】
以上に説明したように、本発明によれば、熱延,冷延時に割れ発生等の問題はなく、高価なNiや、表面キズの原因となるTiを多量に添加することなく、優れた耐食性を有し、1.0Tを超える高い磁束密度B10およびHv250以上の硬さをもつ軟磁性のステンレス鋼を容易に得ることができる。
なお、説明を省略したが本発明ステンレス鋼の電気抵抗は60μΩcm以上であるため交流磁場での渦電流損が小さいため、本発明による鋼板は高周波数での磁束密度の低下が小さい。また本発明の強化機構が時効強化であるため、溶体化・時効処理前は比較的軟質であり、加工が容易である。したがって、電動機のコア,ヨーク等、種々の複雑な形状品の成形加工も容易に行える。
【図面の簡単な説明】
【図1】 硬さの増加と磁束密度B10の低下との関係を示す図
【図2】 Cu,Siの添加量と硬さとの関係を示す図
【図3】 A値とマルテンサイト相との関係を説明する図
【図4】 溶体化後の平均冷却速度と時効後の磁束密度との関係を示す図[0001]
[Industrial application fields]
The present invention relates to a high-strength soft magnetic stainless steel used for a rotor of an electric motor that requires high strength, high magnetic flux density, and high corrosion resistance, and a method for manufacturing the same.
[0002]
[Prior art]
Iron-based materials such as electromagnetic steel sheets are used for conventional motor rotors. Recently, with the aim of energy saving, inverter-controlled motors that change the rotational speed of an electric motor to an optimal rotational speed by changing the frequency are used in home appliances such as air conditioners. Recently, the need to further increase the number of revolutions of this electric motor for increasing the efficiency has become apparent.
However, increasing the rotational speed of the electric motor increases the centrifugal force applied to the rotor, and the strength of conventional soft magnetic materials is as low as Hv200 or less, so there is a limit to increasing the rotational speed. In addition, depending on the environment used, wrinkles are generated, so that treatment such as plating is necessary.
[0003]
Methods for increasing the strength of steel materials include work strengthening, martensitic transformation strengthening, solid solution strengthening, precipitation strengthening, and crystal grain fine strengthening. The following techniques have been disclosed as techniques for increasing the strength without degrading the soft magnetic properties of stainless-based soft magnetic materials.
As a technique utilizing solid solution strengthening, JP-A-49-73322 discloses a material containing 0.1 to 0.4% of P in a ferritic stainless steel component. When it is contained in an amount of 1% or more, the corrosion resistance deteriorates and ear cracks are likely to occur during hot working. Further, since this stainless steel is intended to be strengthened by solid solution, Hv210 and a large increase in strength could not be expected even at the highest hardness. JP-A-61-272352 or JP-A-63-109143 discloses a method for solid solution strengthening by adding Si to 1.5 to 3.5%. Only the maximum hardness is up to Hv220. When trying to increase the hardness further by solid solution strengthening, there is a problem that the cold workability is remarkably lowered.
[0004]
As a technique using precipitation strengthening, Japanese Patent Laid-Open No. 54-124818 discloses that Fe—Cr ferritic stainless steel contains Ni, Al, Ti and is subjected to aging treatment to increase the strength by precipitation hardening. Materials are disclosed. According to this technique, although high hardness of Hv450 or more can be obtained by precipitation hardening, since it contains a large amount of Ti, surface scratches due to Ti-based intervening portions are likely to occur, and the toughness is remarkably lowered in the manufacturing process. There were manufacturing problems such as cutting. Furthermore, it is necessary to add a large amount of expensive Ni for precipitation hardening, and there is a problem that the cost is increased.
[0005]
[Problems to be solved by the invention]
Thus, the prior art discloses a technique that has a high strength by precipitation strengthening and a relatively high magnetic flux density in a high magnetic field. However, in order to make the ferrite single phase, the Cr content has to be increased. As a result, the magnetic flux density is reduced, and it is necessary to add a large amount of alloy elements that are liable to cause surface scratches due to precipitation strengthening. , or a problem that be must to a large amount of containing an expensive alloy element is Tsu Oh.
Therefore, the present invention has been devised to solve such a problem, and is easy to manufacture, has no problems such as surface scratches, does not cause a large increase in cost, and has a Vickers hardness of Hv250 (tensile). strength 800 N / mm 2) or more, and an object of the invention to provide a magnetic field 10 Oe (high strength soft magnetic stainless steel flux density greater than 1.0T magnetic flux density B 10 in the case of 796 a / m) is obtained .
[0006]
[Means for Solving the Problems]
In order to achieve the object, the high-strength soft magnetic stainless steel of the present invention is, in mass%, C: 0.03% or less, Si: 0.2-3.5%, Mn: 1.0% or less, Ni : 0.5% or less, P: 0.04% or less, S: 0.03% or less, Al: 0.05-5.0%, N: 0.03% or less, Cr: 9.0-20. 0% by mass, Cu: 1.0 to 4.0%, and, if necessary, at least one selected from Nb and Ti alone, Nb: 1.0% or less, Ti: 0.0. 5%, or contains 1.0% or less in the composite of Nb and Ti, we have a composition consisting of the remaining portion F e and inevitable impurities, a value defined by equation (2) exceeds 13, solution age It is characterized by having a structure composed of a ferrite single phase in which a Cu-rich phase by treatment is dispersed and precipitated.
A = (% Cr) + 2.0 × (% Si) + 5.5 × (% Al) + 1.8 × (% Nb) + 1.5 × (% Ti)-[2.7 × (% Ni)
+ 1.4 × (% Mn) + 0.8 × (% Cu) + 68.7 × (% N) + 82.4 × (% C)] (2)
Further, such a high-strength soft magnetic stainless steel is obtained by cooling a steel plate having the above components at 1000 to 1200 ° C., and cooling so that the average cooling rate is 100 ° C./second or less, and then 400 to 700 ° C. It can be obtained by aging treatment within the temperature range.
[0007]
Embodiment
The inventors of the present invention have studied stainless steel that can be strengthened without lowering the magnetic flux density in consideration of manufacturability and manufacturing cost.
SUS410 stainless steel that has been work hardened by rolling to increase its strength, one that has been quenched from the two-phase region of ferrite and austenite to produce a martensite phase, and SUS410 stainless steel is added to the base to add Si to form a solid solution After the solution treatment (1000 ° C. × 1 minute, air cooling), 550 after strengthening and the cold-rolled sheet to which Cu is added in the range of 0 to 2% based on Fe-12Cr-0.6Si-1.5Al The relationship between the hardness increase ΔHv and the magnetic flux density B 10 at a magnetic field of 10 Oe was investigated for those subjected to aging precipitation treatment at 20 ° C. for 20 minutes.
[0008]
After processing into a ring-shaped test piece having an outer diameter of 45 mm and an inner diameter of 33 mm, the magnetic flux density was measured by a DC magnetization BH characteristic automatic recording device. In addition, about the aging treatment, the solution treatment and the aging treatment were performed after processing into the ring-shaped test piece. The initial magnetic flux density of each sample was measured for the martensite reinforcing material, the solid solution reinforcing material, and the processing reinforcing material as they were annealed, and for the aging treatment material, it was measured after the solution treatment.
The value of the magnetic flux density B 10 in the initial state of each sample was 1.2~1.4T, were all 1.0T or more.
The relationship between the hardness increase and the magnetic flux density B 10 of the after performing the strength improvement measures shown in FIG. The working reinforcement or martensite strengthening severely degraded even flux density B 10 with increasing intensity. For by solid solution strengthening and Cu deposition by addition of Si it is found to be possible to increase the hardness without decreasing the magnetic flux density B 10.
[0009]
Cold-rolled sheets with a thickness of 0.8 mm with varying amounts of Cu and Si were prepared, and the Cu additive was subjected to a solution treatment at 1000 ° C. and then subjected to aging treatment at 550 ° C. for 20 minutes, Si addition About the material, the hardness after annealing the obtained cold rolled sheet at 1000 degreeC was measured. The result is shown in FIG. When the amount of Cu added exceeded 4.0%, ear cracks occurred during hot rolling. Also, cold rolling was difficult when the Si addition amount exceeded 3.5%.
The maximum hardness of Si added in a range where there is no problem in manufacturing, such as cracking during rolling, is about Hv220, whereas the Cu additive reaches Hv300.
[0010]
From the above, as a measure that can be easily manufactured without increasing the cost, a magnetic flux density of 1.0 T or higher can be obtained with a magnetic flux density B 10 without lowering the magnetic flux density, and a hardness of 250 Hv or higher can be obtained. It was found effective to add Cu and disperse the Cu rich phase by aging.
Needless to say, in order to maintain the magnetic flux density in a high state, the structure needs to be a ferrite single phase. In the present invention, the Cu-rich phase is dispersed in the ferrite by aging precipitation, and the strength can be increased without reducing the magnetic flux density.
A common mechanism for strengthening both work hardening and hardening by martensite phase is strengthening by increasing the dislocation density. That is, work hardening is accompanied by an increase in dislocations in the metal structure introduced by processing such as rolling, and strengthening by the martensite phase increases as the martensite phase with a high dislocation density increases, but increases in inverse proportion. As a result, the magnetic flux density decreases. Therefore, since the movement of the magnetic domain is remarkably restricted by the dislocation, it is estimated that the magnetic flux density decreases as the dislocation density increases. On the other hand, in solid solution strengthening and aging precipitation as in the present invention, it is possible to strengthen without increasing the dislocation density in the metal structure, and it is assumed that there was almost no decrease in magnetic flux density.
[0011]
In the stainless steel targeted by the present invention, the alloy components and the content are determined as follows. In addition, all “%” displays are “mass%”.
[0012]
C: 0.03% or less C is a strong austenite-generating element, and is a harmful element that promotes the formation of martensite and generates carbides with Cr to deteriorate the corrosion resistance and magnetic properties. In order to suppress such influence, the upper limit of the C content was set to 0.03%.
Si: 0.2-3.5%
Si is added as a deoxidizer. Further, it is a ferrite-forming element, and is effective in reducing eddy current loss in a high-frequency magnetic field because it increases electrical resistance. For this reason, it is added positively. However, if added excessively, it becomes hard and cracks are likely to occur during cold rolling, so the upper limit of the Si content was set to 3.5%.
When processing such as pressing is applied, the content is preferably set to 2.0% or less.
[0013]
Mn: 1.0% or less Although Mn is a deoxidizer, it is an austenite-generating element and exhibits the action of promoting the formation of martensite. Therefore, the Mn content is limited to 1.0% or less.
Ni: 0.5% or less Ni is a strong austenite-forming element and exhibits the action of promoting the formation of martensite. In order to suppress the formation of martensite, the Ni content is limited to 0.5% or less.
[0014]
P: 0.04% or less P is effective for strengthening solid solution, but reduces corrosion resistance. Therefore, the P content is limited to 0.04% or less.
S: 0.03% or less S is limited to 0.03% or less because it lowers corrosion resistance and magnetic properties.
Al: 0.05 to 5.0% or less Al is a ferrite-forming element and is effective in reducing eddy current loss in a high-frequency magnetic field in order to increase electric resistance. For this reason, it is added positively, but if it exceeds 5.0%, the toughness is lowered and surface scratches due to Al-based inclusions are likely to occur. For this reason, the upper limit of Al content was set to 5.0%. Preferably it is 3.0% or less.
[0015]
N: 0.03% or less N is a strong austenite-forming element like C, and promotes the formation of martensite. Therefore, the N content is set to 0.03% or less.
Cr: 9.0 to 20.0%
Cr improves corrosion resistance and increases electrical resistance. Such actions and effects become remarkable when the Cr content is 9.0% or more. However, excessive addition of Cr exceeding 20.0% hardens the material and deteriorates press workability. Therefore, the Cr content is 9.0 to 20.0%. A preferable range is 14.0% or less.
[0016]
Cu: 1.0-4.0%
Cu is the most important alloy component in the present invention. Has the effect of strengthening aging as in the previous article. Cu is originally an austenite-forming element, but has a lower tendency to austenite than Ni. Therefore, there is no need to worry about the Cu content with respect to martensite formation. Moreover, the fall of saturation magnetic flux density is small compared with Ni.
In order to develop aging enhancement, the content of 1.0% or more is necessary. However, if it exceeds 4.0% and contains excessively, hot workability will fall remarkably and an ear crack will generate | occur | produce during hot rolling. Therefore, the Cu content is in the range of 1.0 to 4.0%. Preferably it is 1.5 to 3.5%.
[0017]
Nb: 0.00 to 1.0%
Nb fixes C and N and itself is a ferrite-forming element. However, excessive Nb addition exceeding 1.0% leads to a reduction in the toughness of the material. Therefore, the upper limit of Nb content is 1.0%.
Ti: 0.00 to 0.5%
Like Nb, it fixes C and N and is itself a ferrite-forming element. However, when Ti exceeding 0.5% is added, Ti-based inclusions are generated as in the case of Al, and surface scratches are likely to occur. Therefore, the upper limit of the Ti content is 0.5%.
Ti and Nb may be added in combination. However, if the total amount exceeds 1.0%, toughness decreases and manufacturability deteriorates, so the upper limit is made 1.0%.
[0018]
As described above, in order to obtain a high magnetic flux density, the metal structure after solution heat treatment needs to be a ferrite single layer. Therefore, the conditions for becoming a ferrite single phase in the component range of the present invention were examined.
Steels composed of various components were melted in the laboratory, and the resulting small steel ingots were forged and hot-rolled, annealed and descaled, and then cold-rolled to obtain 1 mm thick plates. After this cold-rolled sheet was made into a solution at 1000 ° C., the metal structure was observed with a microscope and the amount of martensite was measured. The degree of contribution of each component to martensite generation was determined, and the following equation (2) was determined.
A = (% Cr) + 2.0 × (% Si) + 5.5 × (% Al) + 1.8 × (% Nb) + 1.5 × (% Ti) − [2.7 × (% Ni) + 1.4 × (% Mn) + 0.8 × (% Cu) + 68.7 × (% N) + 82.4 × (% C)] (2)
FIG. 3 shows the relationship between the A value obtained by the equation (2) and the martensite generation amount. From this result, it is understood that martensite is generated when the A value is 13 or less. Therefore, in order to make the structure after solution forming a ferrite single phase, it is necessary to adjust the components so that the A value exceeds 13.
[0019]
In order to further grasp the proper heat treatment conditions, the present inventors further added various samples based on Fe-12Cr-1.5Si-1.5Al steel with Cu changed in a range of 1.5 to 3.0%. We examined using. Samples held at various temperatures were cooled to room temperature and then subjected to aging treatment at 550 ° C. for 30 minutes, and the difference in hardness before and after aging was investigated. As a result, the higher the solution treatment temperature, the greater the increase in hardness after aging, and saturation was achieved at 1000 ° C. or higher. Moreover, if it is less than 1000 degreeC, the solid solution of Cu is not enough. Therefore, the lower limit of the solution treatment temperature was set to 1000 ° C. However, since an excessive amount of oxide scale is generated at an excessively high solution temperature, the upper limit is set to 1200 ° C.
As for the aging temperature, if the temperature is less than 400 ° C., the aging time becomes too long, which is not efficient. Moreover, when it exceeds 700 degreeC, the epsilon-Cu phase which is a Cu rich phase will coarsen in a short time, and will not harden | cure. Therefore, the aging treatment needs to be performed within a temperature range of 400 to 700 ° C.
[0020]
The relationship between the cooling rate after solution treatment and the magnetic flux density after aging treatment was investigated using Fe-12Cr-1.5Si-1.5Al-2Cu steel.
After solution treatment at 1000 ° C. × 0 s, each sample cooled at various cooling rates was subjected to aging treatment at 650 ° C. × 10 s. And the magnetic flux density of each sample was measured. The result is shown in FIG. When cooling at a fast rate exceeding 100 ° C./second with an average cooling rate from 1000 ° C. to 200 ° C., the magnetic flux density is significantly reduced. When the cooling rate is high, thermal strain is generated in the steel sheet cooled to room temperature, and it is surmised that this residual strain does not disappear even in the aging treatment and deteriorates the magnetic properties.
Therefore, the average cooling rate after solution treatment needs to be 100 ° C./second or less.
However, if it is slower than 1 ° C./second, Cu precipitates during cooling. It is preferable to make it a little faster than air cooling.
[0021]
【Example】
Steel having the composition shown in Table 1 is melted in a 30 kg high-frequency vacuum melting furnace, a hot-rolled sheet having a thickness of 3 mm is produced by rough hot rolling and finish rolling, and then annealing, pickling, and cold rolling are performed. An 8 mm thick cold-rolled plate was produced.
However, steel no. No. 10 had a large Cu content, so that remarkable ear cracking occurred at the stage of hot rolling. Since No. 13 had too much Si content, the crack generate | occur | produced by cold rolling. For this reason, the subsequent steps were omitted for these two steels.
Among the other steel samples, those that were strengthened by aging precipitation were subjected to solution treatment and aging treatment on a 0.8 mm thick cold-rolled sheet. The solution treatment temperature was kept at 1000 ° C. for 1 minute and then air-cooled. The average cooling rate to room temperature during air cooling was about 5 ° C./second. The aging treatment was performed at 550 ° C. for 30 minutes.
As a solid solution reinforcing material, a cold-rolled sheet having a thickness of 0.8 mm was annealed at 1000 ° C. The processed reinforcing material was kept rolled at a rolling rate at which the ear cut was not caused by cold rolling.
[0022]
The magnetic flux density of the aging reinforcement is processed into a ring-shaped test piece having an outer diameter of 45 mm and an inner diameter of 33 mm, followed by solution treatment and aging treatment, and then a magnetic flux when a magnetic field of 10 Oe is applied by a DC magnetization BH characteristic automatic recording device. density B 10 was measured. The magnetic flux density of the solid solution reinforcing material was measured by the same method after processing and annealing into a test piece of the same size, and the magnetic flux density of the processing reinforcing material was measured using a test piece cut out to the same size after processing.
The hardness was measured with a load of 10 kgf using a Vickers hardness tester.
The measurement results are shown in Table 2.
[0023]
Steel No. according to the present invention. In 1 to 8, no cracking occurred in both hot rolling and cold rolling. The magnetic flux density B 10 is at least 1.0 T, hardness at Hv250 or more, were in line with the intended purpose.
However, steel No. 4 containing more than 4.0% Cu was added. No. 10 is a hot rolling stage, and steel No. 10 containing more than 3.5% Si is added. In No. 13, significant cracking occurred before cold rolling to a predetermined thickness.
Steel No. 1 with only 2.5% Si added and solid solution strengthened. No. 9 had a magnetic flux density B 10 of 1.0 T or more, but a hardness of Hv 200 or less. It can be seen that the desired hardness cannot be obtained only by solid solution strengthening.
Steel No. In No. 11, since the A value was 13 or less, martensite was generated during cooling, and the magnetic flux density B 10 was extremely small. Steel No. In No. 12, since the Cr content exceeded 20.0%, the magnetic flux density B 10 was less than 1.0T. Furthermore, steel no. No. 14 was low in both the magnetic flux density B 10 and the hardness because the processing was strengthened.
[0024]
Figure 0004210495
[0025]
Figure 0004210495
[0026]
Steel No. 7 was used to investigate changes in magnetic flux density B 10 and hardness when solution treatment and aging treatment were performed under different conditions. The results are shown in Table 3.
Experiment No. according to the invention. E1~E3 are both magnetic flux density B 10 of not less than 1.0 T, also hardness was Hv250 or more.
However, in Experiment No. where the solution treatment temperature was low. E4 was insufficient in solid solution / precipitation of Cu, the increase in hardness after aging was small, and it was less than Hv250. Since the cooling after holding the solution temperature was performed by water cooling, the cooling rate was too fast. E5, the value of the magnetic flux density B 10 after aging becomes a significantly lower value. Experiment No. whose aging temperature was too high. E6 was over-aged, and a hardness of Hv250 or higher was not obtained. On the contrary, the experiment No. in which the aging temperature was too low. E7 did not have a hardness of Hv250 or higher even after aging for a long time.
[0027]
Figure 0004210495
[0028]
【The invention's effect】
As described above, according to the present invention, there are no problems such as cracking during hot rolling and cold rolling, and excellent corrosion resistance without adding a large amount of expensive Ni or Ti that causes surface scratches. It is possible to easily obtain a soft magnetic stainless steel having a high magnetic flux density B 10 exceeding 1.0 T and a hardness of Hv 250 or more.
Although explanation is omitted, since the electrical resistance of the stainless steel of the present invention is 60 μΩcm or more, the eddy current loss in an alternating magnetic field is small, and therefore the steel sheet according to the present invention has a small decrease in magnetic flux density at a high frequency. Further, since the strengthening mechanism of the present invention is aging strengthening, it is relatively soft before solution treatment and aging treatment, and is easy to process. Therefore, it is possible to easily form various complicated shapes such as a motor core and a yoke.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between an increase in hardness and a decrease in magnetic flux density B 10. FIG. 2 is a graph showing a relationship between the amount of Cu and Si added and the hardness. FIG. FIG. 4 is a diagram showing the relationship between the average cooling rate after solution heat treatment and the magnetic flux density after aging

Claims (3)

質量%で、C:0.03%以下,Si:0.2〜3.5%,Mn:1.0%以下,Ni:0.5%以下,P:0.04%以下,S:0.03%以下,Al:0.05〜5.0%,N:0.03%以下,Cr:9.0〜20.0%,Cu:1.0〜4.0%を含み、残部F及び不可避不純物からなる組成をもち、式(1)で定義されるA値が13を超え、溶体化時効処理によるCuリッチ相が分散・析出したフェライト単相からなる組織を有することを特徴とする高強度軟磁性ステンレス鋼。
A=(%Cr)+2.0×(%Si)+5.5×(%Al)-[2.7×(%Ni)+1.4×(%Mn)
+0.8×(%Cu)+68.7×(%N)+82.4×(%C)] ・・・・(1)
C: 0.03% or less, Si: 0.2-3.5%, Mn: 1.0% or less, Ni: 0.5% or less, P: 0.04% or less, S: 0% by mass .03% or less, Al: 0.05~5.0%, N: 0.03% or less, Cr: from 9.0 to 20.0%, Cu: includes 1.0 to 4.0%, the remaining portion It has a composition composed of Fe and inevitable impurities , has an A value defined by the formula (1) exceeding 13, and has a structure composed of a ferrite single phase in which a Cu-rich phase is dispersed and precipitated by solution aging treatment. High strength soft magnetic stainless steel.
A = (% Cr) + 2.0 × (% Si) + 5.5 × (% Al)-[2.7 × (% Ni) + 1.4 × (% Mn)
+ 0.8 × (% Cu) + 68.7 × (% N) + 82.4 × (% C)] (1)
さらにNb,Tiのうちから選ばれるいずれか少なくとも1種単独では、Nb:1.0%以下,Ti:0.5%以下,あるいはNbとTiの複合で1.0%以下を含み、式(2)で定義されるA値が13を超える請求項1に記載の高強度軟磁性ステンレス鋼。
A=(%Cr)+2.0×(%Si)+5.5×(%Al)+1.8×(%Nb)+1.5×(%Ti)-[2.7×(%Ni)
+1.4×(%Mn)+0.8×(%Cu)+68.7×(%N)+82.4×(%C)] ・・・・(2)
Further, at least one selected from Nb and Ti alone contains Nb: 1.0% or less, Ti: 0.5% or less, or a composite of Nb and Ti containing 1.0% or less, The high-strength soft magnetic stainless steel according to claim 1, wherein the A value defined in 2) exceeds 13.
A = (% Cr) + 2.0 × (% Si) + 5.5 × (% Al) + 1.8 × (% Nb) + 1.5 × (% Ti)-[2.7 × (% Ni)
+ 1.4 × (% Mn) + 0.8 × (% Cu) + 68.7 × (% N) + 82.4 × (% C)] (2)
請求項1または2に記載された成分を有する鋼板を、1000〜1200℃で溶体化後、平均冷却速度が100℃/秒以下となるように冷却し、その後400〜700℃の温度範囲内で時効処理することを特徴とする高強度軟磁性ステンレス鋼の製造方法。  The steel sheet having the component according to claim 1 or 2 is solutionized at 1000 to 1200 ° C, and then cooled so that the average cooling rate is 100 ° C / second or less, and then within a temperature range of 400 to 700 ° C. A method for producing high-strength soft magnetic stainless steel, characterized by aging treatment.
JP2002260038A 2002-09-05 2002-09-05 High-strength soft magnetic stainless steel and manufacturing method thereof Expired - Lifetime JP4210495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002260038A JP4210495B2 (en) 2002-09-05 2002-09-05 High-strength soft magnetic stainless steel and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002260038A JP4210495B2 (en) 2002-09-05 2002-09-05 High-strength soft magnetic stainless steel and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004099926A JP2004099926A (en) 2004-04-02
JP4210495B2 true JP4210495B2 (en) 2009-01-21

Family

ID=32260870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002260038A Expired - Lifetime JP4210495B2 (en) 2002-09-05 2002-09-05 High-strength soft magnetic stainless steel and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4210495B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090224613A1 (en) * 2004-05-13 2009-09-10 Masanobu Shimao Corrosion-resistant magnetic circuit and voice coil motor or actuator
JP5073966B2 (en) * 2006-05-25 2012-11-14 日新製鋼株式会社 Age-hardening ferritic stainless steel sheet and age-treated steel using the same
US20100158744A1 (en) 2006-06-16 2010-06-24 Hidekuni Murakami High strength electrical steel sheet and method of production of same
JP5342209B2 (en) * 2008-10-29 2013-11-13 日新製鋼株式会社 Laminated core and liquid transfer pump
CN103348023B (en) 2011-02-08 2015-11-25 新日铁住金不锈钢株式会社 The manufacture method of ferrite-group stainless steel hot-rolled steel sheet and manufacture method and ferrite series stainless steel plate
JP5846950B2 (en) * 2011-02-08 2016-01-20 新日鐵住金ステンレス株式会社 Ferritic stainless steel hot-rolled steel sheet and method for producing the same, and method for producing ferritic stainless steel sheet
WO2012108479A1 (en) * 2011-02-08 2012-08-16 新日鐵住金ステンレス株式会社 Hot rolled ferritic stainless steel sheet, method for producing same, and method for producing ferritic stainless steel sheet
CN106636909A (en) * 2017-01-13 2017-05-10 南京理工大学 Corrosion-resistant soft magnetic ferrite stainless steel
CN113789430B (en) * 2021-09-10 2023-03-14 贵州群建精密机械有限公司 Heat treatment method for improving mechanical properties of 05Cr17Ni4Cu4Nb steel

Also Published As

Publication number Publication date
JP2004099926A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
CN111575588B (en) Martensite precipitation hardening stainless steel and preparation method and application thereof
JP6302722B2 (en) High-strength duplex stainless steel wire excellent in spring fatigue characteristics, its manufacturing method, and high-strength duplex stainless steel wire excellent in spring fatigue characteristics
JP2012140676A (en) Non-oriented electromagnetic steel sheet and method for producing the same
WO2011089845A1 (en) Method for producing hot-rolled high carbon steel sheet
JPWO2002101108A1 (en) Duplex stainless steel strip for steel belt
JP4414727B2 (en) Magnetic steel sheet with excellent magnetic properties and deformation resistance and manufacturing method thereof
JP5630523B2 (en) Steel sheet for nitriding treatment and method for producing the same
JP4210495B2 (en) High-strength soft magnetic stainless steel and manufacturing method thereof
JP3550132B2 (en) Precipitation hardening type soft magnetic ferritic stainless steel
JP5521931B2 (en) Soft medium carbon steel plate with excellent induction hardenability
JP3896061B2 (en) Steel sheet with excellent curability after hot forming and method of using the same
JP5181439B2 (en) Non-oriented electrical steel sheet
JP6093063B1 (en) High-strength stainless steel material excellent in workability and its manufacturing method
JP2007302937A (en) Steel plate for hardened member, hardened member and manufacturing methods thereof
JP2004162120A (en) Wear resistant steel having superior weldability and excellent wear resistance and corrosion resistance in weld zone
JPH07113144A (en) Nonmagnetic stainless steel excellent in surface property and production thereof
JP3169977B2 (en) ▲ high ▼ strength non-magnetic stainless steel
JP3606200B2 (en) Chromium-based stainless steel foil and method for producing the same
JP4606113B2 (en) Austenitic stainless steel with high proportional limit stress and manufacturing method
JP3939568B2 (en) Nonmagnetic stainless steel with excellent workability
JP5207514B2 (en) Hysteresis motor
JP2001271143A (en) Ferritic stainless steel excellent in ridging resistance and its production method
JP2715033B2 (en) Non-magnetic PC steel wire and method of manufacturing the same
JP6279118B1 (en) High-strength duplex stainless steel with excellent corrosion resistance and bending workability
TWI773346B (en) Vostian iron-based stainless steel material, method for producing the same, and leaf spring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070417

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081027

R150 Certificate of patent or registration of utility model

Ref document number: 4210495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term