JP4210473B2 - High toughness thin die casting - Google Patents

High toughness thin die casting Download PDF

Info

Publication number
JP4210473B2
JP4210473B2 JP2002157328A JP2002157328A JP4210473B2 JP 4210473 B2 JP4210473 B2 JP 4210473B2 JP 2002157328 A JP2002157328 A JP 2002157328A JP 2002157328 A JP2002157328 A JP 2002157328A JP 4210473 B2 JP4210473 B2 JP 4210473B2
Authority
JP
Japan
Prior art keywords
casting
die
thin
cast
die casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002157328A
Other languages
Japanese (ja)
Other versions
JP2004001010A (en
Inventor
裕介 豊田
貴博 水上
文亮 福地
恒久 畑
勝弘 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002157328A priority Critical patent/JP4210473B2/en
Priority to EP03723374A priority patent/EP1508627B1/en
Priority to AU2003235302A priority patent/AU2003235302A1/en
Priority to PCT/JP2003/005993 priority patent/WO2003102257A1/en
Priority to US10/518,151 priority patent/US7713470B2/en
Publication of JP2004001010A publication Critical patent/JP2004001010A/en
Application granted granted Critical
Publication of JP4210473B2 publication Critical patent/JP4210473B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高靱性薄肉ダイカスト鋳に関する。この種の鋳物は、例えば自動車用車体、シャーシ部品等として用いられる。
【0002】
【従来の技術】
ダイカスト鋳物の高靱性化を図る場合、例えば、優れた靱性を有するAl−Mg系合金を用いる、という手段が採用されている。
【0003】
【発明が解決しようとする課題】
しかしながら鋳造材料の選択のみでは、その鋳造材料のもたらす靱性値が限度であって、それを上回る靱性向上効果を得ることはできない。
【0004】
【課題を解決するための手段】
本発明は、鋳造材料の選択と、真空ダイカスト法による特定厚さのチル化を併用して高靱性化を達成された大型の薄肉ダイカスト鋳を提供することを目的とする。
【0005】
前記目的を達成するため本発明によれば、3.5wt%≦Mg≦4.5wt%、0.8wt%≦Mn≦1.5wt%、Si<0.5wt%、Fe<0.5wt%、0.1wt%≦Tiおよび/またはZr≦0.3wt%ならびに残部AlよりなるAl−Mg系合金を用い、金型のキャビティ内における溶湯の最大流動距離dを200mm≦d≦600mmとした真空ダイカスト法により鋳造された、最小肉厚t1 が1.2mm≦t1 ≦2mmの板状をなす高靱性薄肉ダイカスト鋳物であって、両面にそれぞれチル層を有すると共に、その両チル層の厚さt3 ,t4 の和が前記最小肉厚t1 に関して占める割合Pが18%≦P≦60%に設定されたことを特徴とする高靱性薄肉ダイカスト鋳物が提供される。
【0006】
前記のように構成すると、薄肉ダイカスト鋳物が靱性の良好なAl−Mg系合金より構成され、またその断面構造が、比較的粗い金属組織の主体を、比較的厚く、且つ緻密な金属組織を持つ2つのチル層により挟んだサンドイッチ構造となり、しかも両チル層に溶湯中の不純物の多くが取籠められることもあって、前記肉厚t1 を持つ薄肉ダイカスト鋳物の伸びδをδ≧15%に向上させて、その高靱性化を図ることが可能である。ただし、前記割合PがP<18%では伸びδがδ<15%となる。チル層の厚さを増すためには、低温の金型に溶湯を高速充填して、型冷却によりダイカスト鋳物表面の冷却速度を高めることが必要であるが、この手段を薄肉ダイカスト鋳物に適用すると、湯回り不良等の鋳造品質の劣化を招き易い。このような不具合を生じることなく、薄肉ダイカスト鋳物の伸び向上を図るためには、前記割合Pの上限値は60%に設定される。
【0007】
Al−Mg系合金において、各化学成分の添加理由および添加量限定理由等は次の通りである。
【0008】
Mg:Mgはダイカスト鋳物の強度および靱性の向上に寄与する。ただし、Mg<3.5wt%では溶湯の流動性が悪化し、一方、Mg>4.5wt%ではダイカスト鋳物の靱性が低下し、また凝固が遅れた部分にAl−Mg共晶金属間化合物が偏析して鋳造割れを招来する。
【0009】
Mn:この合金は、ダイカスト鋳物の靱性確保のためFe含有量を低く設定しており、また比較的融点が高いため、金型に対して焼付きを生じ易い。Mnは耐焼付き性向上元素として寄与し、大型の薄肉ダイカスト鋳物の高速充填鋳造にとって不可欠の元素である。またMnは強度向上元素でもある。ただし、Mn<0.8wt%では合金の耐焼付き性が低下し、一方、Mn>1.5wt%ではダイカスト鋳物の強度は向上するものの、その靱性が低下し、また溶湯の流動性も悪化する。
【0010】
Si:Siはダイカスト鋳物の強度向上に寄与するが、Si≧0.5wt%ではMg2 Si金属間化合物が増加するためダイカスト鋳物の靱性が低下する。
【0011】
Fe:Feはダイカスト鋳物の強度向上に寄与するが、Fe≧0.5wt%ではFe系晶出物が生成されるためダイカスト鋳物の靱性が低下する。
【0012】
TiおよびZr:前記Tiおよび/またはZrとは、TiおよびZr(即ち、Ti+Zr)ならびにTiまたはZr、つまりTiおよびZrの少なくとも一方を用いることを意味する。TiおよびZrは、ダイカスト鋳物の金属組織を微細化して鋳造割れを防止し、また溶湯の流動性向上に寄与する。ただし、Tiおよび/またはZr<0.1wt%では金属組織の微細化効果が不十分になるため溶湯の流動性が悪化し、一方、Tiおよび/またはZr>0.3wt%ではTi−Al系高温晶出物の現出により溶湯の流動性が悪化する。
【0013】
【発明の実施の形態】
図1において、薄肉ダイカスト鋳物1は、最小肉厚t1 が1.2mm≦t≦2mm(平均肉厚t2 が1.5mm≦t2 ≦2mm)である板状をなし、且つAl−Mg系合金を用いて鋳造されたものである。薄肉ダイカスト鋳物1は、両面にそれぞれチル層2を有し、両チル層2の厚さt3 ,t4 の和sが最小肉厚t1 に関して占める割合P、つまり、P=(s/t1 )×100(%)を60%≧P≧18%に設定されている。また薄肉ダイカスト鋳物1は金型のキャビティ内における溶湯の最大流動距離dが600mm≧d≧200mmといったように大型である。
【0014】
前記のように構成すると、薄肉ダイカスト鋳物1が靱性の良好なAl−Mg系合金より構成され、またその断面構造が、比較的粗い金属組織の主体3を、比較的厚く、且つ緻密な金属組織を持つ2つのチル層2により挟んだサンドイッチ構造となり、しかも両チル層2に溶湯中の不純物の多くが取籠められることもあって、前記肉厚t1 を持つ薄肉ダイカスト鋳物1の伸びδをδ≧15%に向上させて、その高靱性化を図ることが可能である。
【0015】
Al−Mg系合金としては、3.5wt%≦Mg≦4.5wt%、0.8wt%≦Mn≦1.5wt%、Si<0.5wt%、Fe<0.5wt%、0.1wt%≦Tiおよび/またはZr≦0.3wt%ならびに残部Alよりなるものが用いられる。
【0016】
このAl−Mg系合金は優れた靱性を有する反面、流動性に乏しいため大型の薄肉ダイカスト鋳物1の鋳造には不向きである。そこで、前記Al−Mg系合金を鋳造材料とする、大型の薄肉ダイカスト鋳物1の鋳造に当り、真空ダイカスト法を適用し、また金型およびスリーブの温度を比較的高く設定し、その上、キャビティへの溶湯の充填時間を最適化する、といった手段を採用した。
【0017】
以下、具体例について説明する。
【0018】
Al−Mg系合金の一例として、4wt%Mg、0.9wt%Mn、0.2wt%Si、0.2wt%Fe、0.2wt%Tiおよび残部Alよりなるものを選定した。
【0019】
前記合金組成を有する溶湯を用い、また金型を真空ダイカスト装置に設置して、キャビティ内真空度:6kPa;金型温度:150〜300℃の範囲で変更;セラミック製断熱スリーブ温度:150〜300℃の範囲で変更(ただし、金型温度と同一);注湯温度:720℃;低速射出:0.5m/sec ;高速射出を2〜6m/sec (ゲートスピード換算:30〜70m/sec )の範囲で変えてキャビティへの溶湯の充填時間を変更、の条件で鋳造を行い、全体の肉厚が1.5mm(最小肉厚でもある)で、金型のキャビティ内における溶湯の最大流動距離dがd≒600mmである、大型の薄肉ダイカスト鋳物を複数鋳造した。各大型の薄肉ダイカスト鋳物よりテストピースを製作し、それらテストピースについて、両チル層2の厚さt3 ,t4 の和sが肉厚t1 (1.5mm)に関して占める割合Pを求めると共に伸びδを測定した。
【0020】
表1は、各薄肉ダイカスト鋳物1に関する金型温度およびスリーブ温度、溶湯の充填時間、前記両チル層の厚さに関する割合Pおよび伸びδを示す。
【0021】
【表1】

Figure 0004210473
【0022】
表1において、薄肉ダイカスト鋳物の例1,15,19,20は金型に対し焼付きを発生したもので、これらは前記割合Pの算出および伸びδの測定から除外された。
【0023】
図2は、表1に基づいて例2〜14,16,18に関し、前記割合Pと伸びδとの関係をグラフ化したものである。表1および図2から明らかなように、前記割合PをP≧18%に設定すると、伸びδ≧15%を確保して薄肉ダイカスト鋳物の靱性を向上させることができる。
【0024】
図3は、表1に基づいて充填時間と伸びδとの関係を、金型等の温度別にグラフ化したものである。図3より、伸びδ≧15%の薄肉ダイカスト鋳物を得るためには金型等の温度と充填時間とを適切に選定しなければならないことが判る。
【0025】
【発明の効果】
本発明によれば、前記のような特定の鋳造材料の選択と、真空ダイカスト法による特定厚さのチル化を併用したことで、高靱性化を達成された大型の薄肉ダイカスト鋳物を提供することができる。
【図面の簡単な説明】
【図1】 薄肉ダイカスト鋳物の要部断面図である。
【図2】 両チル層の厚さに関する割合Pと伸びδとの関係を示すグラフである。
【図3】 充填時間と伸びδとの関係を示すグラフである。
【符号の説明】
1………薄肉ダイカスト鋳物
2………チル層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to high tenacity thin die-casting cast products. This type of casting is used, for example, as an automobile body or chassis part.
[0002]
[Prior art]
In order to increase the toughness of the die cast casting, for example, a means of using an Al—Mg alloy having excellent toughness is employed.
[0003]
[Problems to be solved by the invention]
However, the selection of the casting material alone limits the toughness value provided by the casting material, and a toughness improvement effect exceeding that cannot be obtained.
[0004]
[Means for Solving the Problems]
The present invention aims at providing a selection of the casting material, a large thin-walled die-cast cast product achieved a combination with high toughness the chill of a particular thickness by the vacuum die casting method.
[0005]
According to the onset bright order to achieve the object, 3.5wt% ≦ Mg ≦ 4.5wt% , 0.8wt% ≦ Mn ≦ 1.5wt%, Si <0.5wt%, Fe <0.5wt% , 0.1 wt% ≦ Ti and / or Zr ≦ 0.3 wt% and an Al—Mg-based alloy composed of the balance Al, and a vacuum in which the maximum flow distance d of the molten metal in the mold cavity is 200 mm ≦ d ≦ 600 mm A high-toughness thin-walled die-casting cast with a minimum thickness t 1 of 1.2 mm ≦ t 1 ≦ 2 mm, cast by the die casting method, and has chill layers on both sides, and the thicknesses of both chill layers It is t 3, the ratio P of the sum of t 4 occupies with respect to said minimum thickness t 1 is 18% ≦ P high tenacity thin die cast, characterized in ≦ 60% that has been set to the Ru is provided.
[0006]
When configured as described above, the thin-walled die-cast casting is composed of an Al-Mg based alloy with good toughness, and the cross-sectional structure has a relatively coarse metal structure, a relatively thick and dense metal structure. Since the sandwich structure is sandwiched between two chill layers, and many impurities in the molten metal are trapped in both chill layers, the elongation δ of the thin die casting having the thickness t 1 is δ ≧ 15% It is possible to improve the toughness. However, when the ratio P is P <18%, the elongation δ is δ <15%. In order to increase the thickness of the chill layer, it is necessary to fill the low-temperature mold with molten metal at a high speed and to increase the cooling rate of the die-casting surface by cooling the mold, but if this means is applied to a thin-walled die-casting It is easy to cause deterioration of casting quality such as poor hot water. In order to improve the elongation of the thin die cast without causing such a problem, the upper limit value of the ratio P is set to 60%.
[0007]
In the Al-Mg alloy, the reason for adding each chemical component and the reason for limiting the amount added are as follows.
[0008]
Mg: Mg contributes to the improvement of the strength and toughness of the die casting. However, when Mg <3.5 wt%, the fluidity of the molten metal deteriorates, whereas when Mg> 4.5 wt%, the toughness of the die-cast casting decreases, and the Al—Mg eutectic intermetallic compound is present in the portion where solidification is delayed. Segregation causes casting cracks.
[0009]
Mn: This alloy has a low Fe content in order to ensure the toughness of the die-casting product, and has a relatively high melting point, so it tends to seize the mold. Mn contributes as an element for improving seizure resistance, and is an indispensable element for high-speed filling casting of large thin-walled die castings. Mn is also a strength improving element. However, when Mn <0.8 wt%, the seizure resistance of the alloy is reduced. On the other hand, when Mn> 1.5 wt%, the strength of the die-cast casting is improved, but the toughness is lowered and the fluidity of the molten metal is also deteriorated. .
[0010]
Si: Si contributes to improving the strength of the die-casting. However, when Si ≧ 0.5 wt%, the Mg 2 Si intermetallic compound increases, so that the toughness of the die-casting is lowered.
[0011]
Fe: Fe contributes to improving the strength of the die-casting. However, if Fe ≧ 0.5 wt%, Fe-based crystallized material is generated, so that the toughness of the die-casting is lowered.
[0012]
Ti and Zr: The Ti and / or Zr means that Ti and Zr (that is, Ti + Zr) and Ti or Zr, that is, at least one of Ti and Zr are used. Ti and Zr refine the metal structure of the die-casting to prevent casting cracks and contribute to improving the fluidity of the molten metal. However, when Ti and / or Zr <0.1 wt%, the fluidity of the molten metal deteriorates because the effect of refining the metal structure becomes insufficient. On the other hand, when Ti and / or Zr> 0.3 wt%, the Ti—Al system The fluidity of the melt deteriorates due to the appearance of high-temperature crystallization.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In FIG. 1, a thin die casting 1 has a plate shape with a minimum wall thickness t 1 of 1.2 mm ≦ t ≦ 2 mm (average wall thickness t 2 of 1.5 mm ≦ t 2 ≦ 2 mm), and Al—Mg. It is cast using a system alloy. The thin die casting 1 has chill layers 2 on both sides, and the ratio P of the sum s of the thicknesses t 3 and t 4 of both chill layers 2 with respect to the minimum thickness t 1 , that is, P = (s / t 1 ) x100 (%) is set to 60% ≧ P ≧ 18%. The thin-walled die casting 1 is large so that the maximum flow distance d of the molten metal in the mold cavity is 600 mm ≧ d ≧ 200 mm.
[0014]
When configured as described above, the thin-walled die cast casting 1 is made of an Al—Mg-based alloy having good toughness, and the cross-sectional structure of the main body 3 having a relatively coarse metal structure is relatively thick and dense. two becomes sandwiched sandwich structure by chill layer 2 having, moreover many impurities in the melt to both chill layer 2 there also is Me Tokago, elongation of the thin die cast 1 having the thickness t 1 [delta] It is possible to improve the toughness by improving δ ≧ 15%.
[0015]
As Al-Mg alloy, 3.5 wt% ≦ Mg ≦ 4.5 wt%, 0.8 wt% ≦ Mn ≦ 1.5 wt%, Si <0.5 wt%, Fe <0.5 wt%, 0.1 wt% ≦ Ti and / or Zr ≦ 0.3 wt% and the balance Al are used.
[0016]
While this Al-Mg alloy has excellent toughness, it is not suitable for casting a large-sized thin die casting 1 because of its poor fluidity. Therefore, a vacuum die casting method is applied to cast a large thin-walled die casting 1 using the Al—Mg alloy as a casting material, and the temperature of the mold and the sleeve is set relatively high. Measures such as optimizing the filling time of the molten metal into the steel were adopted.
[0017]
Hereinafter, specific examples will be described.
[0018]
As an example of the Al—Mg alloy, an alloy composed of 4 wt% Mg, 0.9 wt% Mn, 0.2 wt% Si, 0.2 wt% Fe, 0.2 wt% Ti and the balance Al was selected.
[0019]
The molten metal having the above alloy composition was used, and the mold was placed in a vacuum die casting apparatus, and the degree of vacuum in the cavity was changed to 6 kPa; the mold temperature was changed in the range of 150 to 300 ° C .; the heat insulating sleeve temperature made of ceramic: 150 to 300 Changed in the range of ℃ (however, same as mold temperature); pouring temperature: 720 ℃; low speed injection: 0.5m / sec; high speed injection 2-6m / sec (gate speed conversion: 30-70m / sec) The casting is performed under the conditions of changing the filling time of the molten metal into the cavity, and the total wall thickness is 1.5 mm (which is also the minimum wall thickness), and the maximum molten metal flow distance in the mold cavity A plurality of large thin die castings having d of d≈600 mm were cast. Test pieces are manufactured from each large thin die-cast casting, and for these test pieces, the ratio P of the sum s of the thicknesses t 3 and t 4 of both chill layers 2 with respect to the thickness t 1 (1.5 mm) is obtained. The elongation δ was measured.
[0020]
Table 1 shows the mold temperature and the sleeve temperature, the filling time of the molten metal, the ratio P and the elongation δ related to the thicknesses of the two chill layers for each thin die casting 1.
[0021]
[Table 1]
Figure 0004210473
[0022]
In Table 1, Examples 1, 15, 19, and 20 of thin-walled die castings were seized on the mold, and these were excluded from the calculation of the ratio P and the measurement of elongation δ.
[0023]
FIG. 2 is a graph showing the relationship between the ratio P and the elongation δ for Examples 2 to 14, 16, and 18 based on Table 1. As is apparent from Table 1 and FIG. 2, when the ratio P is set to P ≧ 18%, the elongation δ ≧ 15% can be secured and the toughness of the thin die casting can be improved.
[0024]
FIG. 3 is a graph showing the relationship between the filling time and the elongation δ according to the temperature of the mold or the like based on Table 1. From FIG. 3, it can be seen that in order to obtain a thin-walled die cast product having an elongation δ ≧ 15%, the temperature of the mold or the like and the filling time must be appropriately selected.
[0025]
【The invention's effect】
According to the present invention, there is provided a large-sized thin die casting that achieves high toughness by combining the selection of a specific casting material as described above and the chilling of a specific thickness by a vacuum die casting method. Can do.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a main part of a thin die casting.
FIG. 2 is a graph showing the relationship between the ratio P and the elongation δ relating to the thicknesses of both chill layers.
FIG. 3 is a graph showing the relationship between filling time and elongation δ.
[Explanation of symbols]
1 ... Thin die casting 2 ... Chill layer

Claims (1)

3.5wt%≦Mg≦4.5wt%、0.8wt%≦Mn≦1.5wt%、Si<0.5wt%、Fe<0.5wt%、0.1wt%≦Tiおよび/またはZr≦0.3wt%ならびに残部AlよりなるAl−Mg系合金を用い、金型のキャビティ内における溶湯の最大流動距離dを200mm≦d≦600mmとした真空ダイカスト法により鋳造された、最小肉厚t1 が1.2mm≦t1 ≦2mmの板状をなす高靱性薄肉ダイカスト鋳物であって、
両面にそれぞれチル層(2)を有すると共に、その両チル層(2)の厚さt3 ,t4 の和が前記最小肉厚t1 に関して占める割合Pが18%≦P≦60%に設定されたことを特徴とする高靱性薄肉ダイカスト鋳物。
3.5 wt% ≦ Mg ≦ 4.5 wt%, 0.8 wt% ≦ Mn ≦ 1.5 wt%, Si <0.5 wt%, Fe <0.5 wt%, 0.1 wt% ≦ Ti and / or Zr ≦ 0 The minimum thickness t 1 cast by a vacuum die casting method using an Al—Mg-based alloy consisting of 3 wt% and the balance Al and having a maximum molten metal flow distance d in the mold cavity of 200 mm ≦ d ≦ 600 mm is 1.2 mm ≦ t 1 ≦ 2 mm plate-like high toughness thin die casting,
Both sides have chill layers (2), and the ratio P of the sum of the thicknesses t 3 and t 4 of both chill layers (2) with respect to the minimum thickness t 1 is set to 18% ≦ P ≦ 60%. high tenacity thin die-casting cast product, characterized in that it is.
JP2002157328A 2002-05-30 2002-05-30 High toughness thin die casting Expired - Fee Related JP4210473B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002157328A JP4210473B2 (en) 2002-05-30 2002-05-30 High toughness thin die casting
EP03723374A EP1508627B1 (en) 2002-05-30 2003-05-14 High toughness die-cast product
AU2003235302A AU2003235302A1 (en) 2002-05-30 2003-05-14 Die casting having high toughness
PCT/JP2003/005993 WO2003102257A1 (en) 2002-05-30 2003-05-14 Die casting having high toughness
US10/518,151 US7713470B2 (en) 2002-05-30 2003-05-14 Die casting having high toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002157328A JP4210473B2 (en) 2002-05-30 2002-05-30 High toughness thin die casting

Publications (2)

Publication Number Publication Date
JP2004001010A JP2004001010A (en) 2004-01-08
JP4210473B2 true JP4210473B2 (en) 2009-01-21

Family

ID=30428404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002157328A Expired - Fee Related JP4210473B2 (en) 2002-05-30 2002-05-30 High toughness thin die casting

Country Status (1)

Country Link
JP (1) JP4210473B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004162140A (en) * 2002-11-14 2004-06-10 Toyota Motor Corp Al-Mg ALLOY FOR DIE CASTING AND METHOD FOR MANUFACTURING DIE-CAST PRODUCT MADE FROM Al-Mg ALLOY
JP5020889B2 (en) * 2008-05-26 2012-09-05 株式会社豊田中央研究所 Al alloy die casting and method for producing the same
JP7096690B2 (en) * 2018-03-29 2022-07-06 株式会社豊田中央研究所 Aluminum alloys for die casting and aluminum alloy castings

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11293375A (en) * 1998-04-14 1999-10-26 Hitachi Metals Ltd Aluminum alloy die casting with high toughness and its production

Also Published As

Publication number Publication date
JP2004001010A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
JP3415987B2 (en) Molding method of heat-resistant magnesium alloy molded member
Liu et al. An investigation into aluminum–aluminum bimetal fabrication by squeeze casting
CN105525158A (en) Semi-solid die-casting aluminum alloy material and die-casting molding method using same
JP2005264301A (en) Casting aluminum alloy, casting of aluminum alloy and manufacturing method therefor
CN102618758A (en) Cast magnesium alloy of low linear shrinkage
JP4574065B2 (en) Mold for semi-solid iron alloy molding
CN111485146B (en) High-thermal-conductivity high-strength low-Si cast aluminum alloy and preparation method thereof
CN110983120A (en) 300 MPa-grade high-strength plastic non-heat-treatment self-strengthening die-casting aluminum alloy and manufacturing method thereof
JP3737440B2 (en) Heat-resistant magnesium alloy casting and manufacturing method thereof
CN105112742A (en) Al-Si-Mg-Cu-Ti-Sc casting-forging alloy and preparation method thereof
CN114457263A (en) High-strength high-toughness high-heat-conductivity die-casting aluminum alloy and manufacturing method thereof
JPH0967635A (en) Aluminum alloy casting excellent in strength and toughness, by high pressure casting, and its production
CN113667864B (en) Preparation process of Al-Si-Mg-B-Mn casting alloy with excellent fluidity
JP4145242B2 (en) Aluminum alloy for casting, casting made of aluminum alloy and method for producing casting made of aluminum alloy
JP4210473B2 (en) High toughness thin die casting
US20210180159A1 (en) Aluminum alloy for die casting and method of manufacturing cast aluminum alloy using the same
JP3737371B2 (en) Magnesium alloy for die casting
JP2005240129A (en) Heat resistant magnesium alloy casting
JP2005187896A (en) Heat resistant magnesium alloy casting
JP4092138B2 (en) Al-Mg alloy for casting
US6277217B1 (en) Aluminum alloy for die-cast product having a high-toughness
JP2005187895A (en) Heat resistant magnesium alloy casting
JP4155509B2 (en) Aluminum alloy for casting, casting made of aluminum alloy and method for producing the same
US7713470B2 (en) Die casting having high toughness
CN108779521B (en) Aluminum alloy for low-pressure casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081015

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081027

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees