JP4209998B2 - Sheet material thickness measuring device - Google Patents

Sheet material thickness measuring device Download PDF

Info

Publication number
JP4209998B2
JP4209998B2 JP13232399A JP13232399A JP4209998B2 JP 4209998 B2 JP4209998 B2 JP 4209998B2 JP 13232399 A JP13232399 A JP 13232399A JP 13232399 A JP13232399 A JP 13232399A JP 4209998 B2 JP4209998 B2 JP 4209998B2
Authority
JP
Japan
Prior art keywords
sheet material
gauge
measured
thickness
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13232399A
Other languages
Japanese (ja)
Other versions
JP2000321029A (en
Inventor
雄一 野田
陽久 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP13232399A priority Critical patent/JP4209998B2/en
Publication of JP2000321029A publication Critical patent/JP2000321029A/en
Application granted granted Critical
Publication of JP4209998B2 publication Critical patent/JP4209998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えばカレンダー加工によって成形された各種材質のシート材の厚さを測定するシート材の厚さ測定装置に関するものである。
【0002】
【従来の技術】
従来、この種の厚さ測定方法としては、測定対象物であるシート材の表面に光学変位計の測定光を照射してシート材の厚さ方向の変位量を測定し、その測定値と予め設定されている測定基準値に基づいてシート材の厚さを演算器により演算する方法が用いられている。
【0003】
【発明が解決しようとする課題】
ところで、測定対象物であるシート材が材質の異なるものに変更された場合、材質の違いによってシート材の光学的特性(反射率,表面平坦性等)が変わると、光学変位計の変位−出力特性も変わるため、演算器の設定を再度調整する必要がある。この場合、実際に測定するシート材に光学変位計の測定光を照射して測定基準値及び任意の変位量に応じた測定値をそれぞれ求め、これらの値から新たなシート材に対応した設定を演算器に入力しなければならない。このため、シート材の変更に伴う設定作業に多大な手間を要し、新たな材質のシート材の測定に速やかに移行することができないという問題点があった。
【0004】
本発明は前記問題点に鑑みてなされたものであり、その目的とするところは、測定すべきシート材が材質の異なるものに変更された場合でも、新たな材質のシート材の測定に速やかに移行することのできるシート材の厚さ測定装置を提供することにある。
【0005】
【課題を解決するための手段】
本発明は前記目的を達成するために、請求項1では、シート材の表面に光学変位計の測定光を照射してシート材の厚さ方向の変位量を測定し、その測定値と測定基準値に基づいてシート材の厚さを演算器により演算するシート材の厚さ測定装置において、前記光学変位計の測定光を受光する面をシート材と同一の材質または同等の光学的特性を有する材質によって形成された互いに厚さの異なる第1及び第2の基準ゲージと、材質の異なる複数種類のシート材にそれぞれ対応する複数ずつの第1及び第2の基準ゲージを具備し、任意の基準ゲージを光学変位計の測定光の照射位置まで移動して保持するゲージ交換手段と、測定すべきシート材の材質に関する情報を記憶した記憶装置と、測定すべきシート材の材質が入力されると、記憶装置のデータに基づいて対応する基準ゲージを選択し、その基準ゲージを光学変位計の測定光の照射位置まで移動させるように前記ゲージ交換手段を制御する制御手段とを備えている。
【0006】
本発明によれば、第1の基準ゲージを光学変位計の測定光の照射位置に保持し、測定光を第1の基準ゲージに照射して測定基準値を測定した後、ゲージ交換手段により第1の基準ゲージに代えて第2の基準ゲージを測定光の照射位置に移動して保持し、光学変位計の測定光を第2の基準ゲージに照射して、その測定値と前記測定基準値との差が第1及び第2の基準ゲージの厚みの差になるように演算器を設定し、測定光の照射位置から基準ゲージを除いてシート材の測定を行うことが可能となる。これにより、材質の異なる複数種類のシート材にそれぞれ対応する複数ずつの第1及び第2の基準ゲージを用い、任意の基準ゲージを測定すべきシート材に応じて選択することにより、シート材が材質の異なるものに変更された場合でも、設定器の設定が速やかに行われるとともに、ゲージ交換手段によって基準ゲージの交換作業を自動化することが可能である。また、シート材の材質に応じて基準ゲージの交換作業を自動化することが可能である。
【0007】
また、請求項2では、請求項1記載のシート材の厚さ測定装置において、前記第1及び第2の基準ゲージを、所定のシート材と同一の材質からなる被測定材と、被測定材を厚さ方向に挟持する一対の挟持板とから形成し、各挟持板にはそれぞれ被測定材の一部を露出させる孔を設けている。
【0008】
これにより、請求項1の作用に加え、第1及び第2の基準ゲージでは光学変位計の測定光を受光する被測定材が所定のシート材と同一の材質によって形成されていることから、演算器の設定をより正確に行うことが可能となる。
【0009】
【発明の実施の形態】
図1乃至図4は本発明の一実施形態を示すもので、図1は厚さ測定装置の概略構成図、図2は基準ゲージの斜視図、図2は支持板の正面図、図4は基準ゲージを用いた測定方法を示す概略図である。
【0010】
【発明の実施の形態】
図1乃至図4は本発明の前提となる実施形態を示すもので、図1は厚さ測定装置の概略構成図、図2は基準ゲージの斜視図、図2は支持板の正面図、図4は基準ゲージを用いた測定方法を示す概略図である。
【0011】
各光学変位計1は、例えばレーザー光を測定対象物に照射してその反射光を検出する周知の機器からなり、それぞれ測定対象物の一方の面及び他方の面に測定光を照射するようになっている。
【0012】
演算器2は各光学変位計1の出力信号に基づいて変位量を演算する周知の機器からなり、その測定値を表示部2aに表示するようになっている。
【0013】
第1及び第2の基準ゲージ3,4は平板状に形成され、それぞれシート材Aと同等の光学的特性を有する材質からなる。この場合、第1の基準ゲージ3は図2(a) に示すように厚さt1 に均一に形成され、第2の基準ゲージ4は図2(b) に示すように厚さt1 に形成された一端部4aと、厚さt2 (>t1 )に形成された他端部4bとからなる。
【0014】
支持板5は上下方向中央部に測定中のシート材Aを通過させる切り欠き部5aを有し、その上部及び下部にはそれぞれ各光学変位計1が互いに対向して取付けられている。また、支持板5の切り欠き部5aには基準ゲージ3,4を保持する溝5bが設けられている。即ち、図3(a) に示すように第1の基準ゲージ3を溝5bに挿入することにより、図3(b) に示すように第1の基準ゲージ3が各光学変位計1の間に保持され、各光学変位計1の測定光1aが第1の基準ゲージ3の一方の面及び他方の面にそれぞれ照射されるようになっている。この場合、第2の基準ゲージ4は第1の基準ゲージ3と厚さの等しい一端部4a側を溝5bに挿入される。
【0015】
以上のように構成された厚さ測定装置においては、シート材Aの測定を行う前に、第1の基準ゲージ3を支持板5の溝5bに挿入して各光学変位計1の測定光1aの照射位置に保持し、図4に示すように各光学変位計1の測定光1aを第1の基準ゲージ3に照射して測定基準値を測定する。次に、第1の基準ゲージ3に代えて第2の基準ゲージ4を測定光の照射位置に保持し、各光学変位計1の測定光1aを第2の基準ゲージ4に照射して、その測定値と前記測定基準値との差が第1及び第2の基準ゲージ3,4の厚みの差(t2 −t1 )になるように演算器2を設定する。この後、測定光の照射位置から第2の基準ゲージ4を取外し、図1に示すようにシート材Aを各光学変位計1の間を通過させながら厚さの測定を行う。測定されるシート材Aは、例えばカレンダー加工によって形成されたシート状のゴムであり、図示しない判定器によってその厚さが規定値の範囲内か否かを判定され、規定値から外れた場合は警報等が発せられる。この場合、シート材Aの厚さは各光学変位計1の変位量を合算することによって求められる。また、前記シート材Aの測定終了後、材質の異なった他の種類のシート材の測定を行う場合は、新たなシート材と同一の材質または同等の光学的特性を有する材質の基準ゲージを用い、前述と同様にして演算器2の設定を行う。
【0016】
このように、本実施形態の厚さ測定装置によれば、測定すべきシート材Aと同等の光学的特性を有する材質によって形成された第1及び第2の基準ゲージ3,4をそれぞれ各光学変位計1の測定光の照射位置に保持し、その測定値に基づいて演算器2の設定を行った後、シート材Aの厚さを測定するようにしたので、材質の異なるシート材ごとの演算器2の設定を極めて容易に行うことができ、測定すべきシート材が材質の異なるものに変更された場合でも、新たな材質のシート材の測定に速やかに移行することができる。
【0017】
尚、前記実施形態では第1及び第2の基準ゲージ3,4をそれぞれ別体に形成したものを示したが、例えば厚さの異なる基準面(測定光を受光する面)を一体に有する基準ゲージを用い、各基準面の位置をずらして測定を行うようにしてもよい。また、前記実施形態では対向一対の光学変位計1を備えた例を示したが、一つの光学変位計1によってシート材Aの片側の面の変位量を測定する場合にも適用することが可能である。
【0018】
図5は本発明の実施形態を示す厚さ測定装置の概略構成図であり、前記実施形態と同等の構成部分には同一の符号を付して示す。即ち、同図に示す厚さ測定装置は、前記実施形態の構成に加え、ゲージ交換装置6と、ゲージ交換装置6を制御する制御装置7とを備えている。
【0019】
ゲージ交換装置6は、材質の異なる複数種類のシート材にそれぞれ対応する複数ずつの第1及び第2の基準ゲージ3,4をゲージストッカ6aに具備し、ゲージストッカ6aの任意の基準ゲージ3,4を駆動アーム6bによって各光学変位計1の測定光1aの照射位置まで移動して保持するようになっている。
【0020】
制御装置7は、例えばパーソナルコンピュータによって構成され、その記憶装置7aにはシート材の材質に関する情報が記憶されている。この制御装置7では、測定すべきシート材の材質を入力すると、記憶装置7aのデータに基づいて対応する基準ゲージ3,4を選択し、その基準ゲージ3,4をゲージ交換装置6によって各光学変位計1の測定光1aの照射位置まで移動して前記実施形態と同様の測定を行うようになっている。
【0021】
即ち、本実施形態によれば、基準ゲージ3,4の交換作業をゲージ交換装置6によって自動化することができるので、人的労力の軽減を図ることができる。また、ゲージ交換装置6の動作を制御装置7及び記憶装置7aのデータに基づいて制御するようにしたので、例えば測定の予定されているシート材の材質及び測定順序を制御装置7にプログラムしておくことにより、シート材の材質に応じて基準ゲージ3,4の交換作業を自動化することも可能である。
【0022】
図6及び図7は基準ゲージの変形例を示すものである。即ち、同図に示す第1及び第2の基準ゲージ8,9は、所定のシート材と同一の材質からなる被測定材10と、被測定材10を厚さ方向に挟持する一対の挟持板11,12とからなり、各挟持板11,12にはそれぞれ被測定材10の一部を露出させる孔11a,12aが設けられている。各挟持板11,12は互いに複数のネジ13によって連結されるとともに、一方の挟持板11の一端部11bは前記支持板5の溝5bに挿入可能な長さを有している。この場合、図7(a) に示すように第1の基準ゲージ8の被測定材10は厚さt1 に形成され、図7(b) に示すように第2の基準ゲージ9の被測定材10は厚さt2 (>t1 )に形成されている。
【0023】
即ち、前記基準ゲージ8,9では光学変位計1の測定光1aを受光する被測定材10が所定のシート材と同一の材質によって形成されているので、演算器2の設定をより正確に行うことが可能である。
【0024】
【発明の効果】
以上説明したように、請求項1の厚さ測定装置によれば、材質の異なるシート材ごとの演算器の設定を極めて容易に行うことができるので、測定すべきシート材が材質の異なるものに変更された場合でも、新たな材質のシート材の測定に速やかに移行することができ、生産性の向上を図ることができる。この場合、基準ゲージの交換作業を自動化することができるので、人的労力の軽減を図ることができる。また、シート材の材質に応じて基準ゲージの交換作業を自動化することができるので、生産性をより向上させることができる。
【0025】
また、請求項2の厚さ測定装置によれば、請求項1の効果に加え、演算器の設定をより正確に行うことができる。
【図面の簡単な説明】
【図1】 本発明の前提となる実施形態を示す厚さ測定装置の概略構成図
【図2】 基準ゲージの斜視図
【図3】 支持板の正面図
【図4】 基準ゲージを用いた測定方法を示す概略図
【図5】 本発明の実施形態を示す厚さ測定装置の概略構成図
【図6】 基準ゲージの変形例を示す平面図
【図7】 基準ゲージの変形例を示す側面図
【符号の説明】
1…光学変位計、2…演算器、3…第1の基準ゲージ、4…第2の基準ゲージ、5b…溝、6…ゲージ交換装置、7…制御装置、8…第1の基準ゲージ、9…第2の基準ゲージ、8…第1の基準ゲージ、9…第2の基準ゲージ、10…被測定材、11,12…挟持板、A…シート材。
[0001]
BACKGROUND OF THE INVENTION
The present invention is, for example, relates TeiSo location measuring the thickness of the sheet material for measuring the thickness of the sheet material of various materials that are formed by calendering.
[0002]
[Prior art]
Conventionally, as this type of thickness measurement method, the surface of a sheet material that is a measurement object is irradiated with measurement light from an optical displacement meter to measure the amount of displacement in the thickness direction of the sheet material. A method is used in which the thickness of the sheet material is calculated by a calculator based on the set measurement reference value.
[0003]
[Problems to be solved by the invention]
By the way, when the sheet material that is the object to be measured is changed to a different material, if the optical properties (reflectance, surface flatness, etc.) of the sheet material change due to the material difference, the displacement-output of the optical displacement meter Since the characteristics also change, it is necessary to adjust the setting of the arithmetic unit again. In this case, the measurement material of the optical displacement meter is irradiated onto the sheet material to be actually measured to obtain the measurement value corresponding to the measurement reference value and the arbitrary displacement amount, and the setting corresponding to the new sheet material is obtained from these values. Must be input to the calculator. For this reason, there has been a problem that setting work accompanying the change of the sheet material requires a great deal of labor, and it is not possible to quickly shift to the measurement of a new sheet material.
[0004]
The present invention has been made in view of the above-described problems, and the object of the present invention is to promptly measure a new sheet material even when the sheet material to be measured is changed to a different one. and to provide a TeiSo location measuring the thickness of sheet material that can be migrated.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, in claim 1, the surface of the sheet material is irradiated with measurement light from an optical displacement meter to measure the amount of displacement in the thickness direction of the sheet material. In the sheet material thickness measuring apparatus that calculates the thickness of the sheet material by an arithmetic unit based on the value, the surface receiving the measurement light of the optical displacement meter has the same material as the sheet material or equivalent optical characteristics 1st and 2nd reference gauges with different thicknesses formed by the material, and a plurality of first and second reference gauges respectively corresponding to a plurality of types of sheet materials with different materials, When the gauge replacement means for moving the gauge to the measurement light irradiation position of the optical displacement meter and holding it , the storage device storing the information on the material of the sheet material to be measured, and the material of the sheet material to be measured are input. Of storage Select the reference gauge corresponding based on chromatography data, and a control means for controlling the gauge exchange means so as to move the reference gauge to the irradiation position of the measuring light of the optical displacement meter.
[0006]
According to the present invention, the first reference gauge is held at the measurement light irradiation position of the optical displacement meter, and the measurement reference value is measured by irradiating the first reference gauge with the measurement light. In place of the first reference gauge, the second reference gauge is moved to the measurement light irradiation position and held, and the measurement light of the optical displacement meter is irradiated to the second reference gauge. The calculator is set so that the difference between the first and second reference gauges is the difference between the thicknesses of the first and second reference gauges, and the sheet material can be measured by removing the reference gauge from the measurement light irradiation position. Thus, by using a plurality of first and second reference gauges respectively corresponding to a plurality of types of sheet materials having different materials, an arbitrary reference gauge is selected according to the sheet material to be measured. Even when the material is changed to a different one, the setting device can be quickly set and the reference gauge replacement operation can be automated by the gauge replacement means. In addition, it is possible to automate the replacement work of the reference gauge according to the material of the sheet material.
[0007]
According to a second aspect of the present invention, in the thickness measurement apparatus for a sheet material according to the first aspect , the first and second reference gauges are measured materials made of the same material as the predetermined sheet material, and the measured material. Is formed from a pair of clamping plates that are clamped in the thickness direction, and each clamping plate is provided with a hole for exposing a part of the material to be measured.
[0008]
Thus, in addition to the operation of claim 1 , the first and second reference gauges are formed of the same material as the predetermined sheet material, since the measured material that receives the measurement light of the optical displacement meter is calculated. The instrument can be set more accurately.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
1 to 4 show an embodiment of the present invention. FIG. 1 is a schematic configuration diagram of a thickness measuring device, FIG. 2 is a perspective view of a reference gauge, FIG. 2 is a front view of a support plate, and FIG. It is the schematic which shows the measuring method using a reference | standard gauge.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
1 to 4 show an embodiment as a premise of the present invention, FIG. 1 is a schematic configuration diagram of a thickness measuring device, FIG. 2 is a perspective view of a reference gauge, FIG. 2 is a front view of a support plate, FIG. 4 is a schematic view showing a measuring method using a reference gauge.
[0011]
Each optical displacement meter 1 is composed of, for example, a known device that irradiates a measurement object with laser light and detects the reflected light, and irradiates the measurement light on one surface and the other surface of the measurement object, respectively. It has become.
[0012]
The calculator 2 is a well-known device that calculates the amount of displacement based on the output signal of each optical displacement meter 1, and displays the measured value on the display unit 2a.
[0013]
The first and second reference gauges 3 and 4 are formed in a flat plate shape and are each made of a material having optical characteristics equivalent to the sheet material A. In this case, the first reference gauge 3 is uniformly formed to a thickness t1 as shown in FIG. 2 (a), and the second reference gauge 4 is formed to a thickness t1 as shown in FIG. 2 (b). The other end portion 4a and the other end portion 4b formed to a thickness t2 (> t1).
[0014]
The support plate 5 has a cutout portion 5a for allowing the sheet material A being measured to pass through at the center in the vertical direction, and the optical displacement meters 1 are attached to the upper and lower portions of the cutout portion 5a so as to face each other. Further, a groove 5 b for holding the reference gauges 3, 4 is provided in the notch portion 5 a of the support plate 5. That is, by inserting the first reference gauge 3 into the groove 5b as shown in FIG. 3 (a), the first reference gauge 3 is placed between the optical displacement meters 1 as shown in FIG. 3 (b). The measurement light 1 a of each optical displacement meter 1 is held on one surface and the other surface of the first reference gauge 3. In this case, the second reference gauge 4 is inserted into the groove 5b on the one end 4a side having the same thickness as the first reference gauge 3.
[0015]
In the thickness measuring apparatus configured as described above, before the measurement of the sheet material A, the first reference gauge 3 is inserted into the groove 5b of the support plate 5, and the measurement light 1a of each optical displacement meter 1 is measured. The measurement reference value is measured by irradiating the first reference gauge 3 with the measurement light 1a of each optical displacement meter 1 as shown in FIG. Next, instead of the first reference gauge 3, the second reference gauge 4 is held at the measurement light irradiation position, and the measurement light 1 a of each optical displacement meter 1 is irradiated to the second reference gauge 4. The calculator 2 is set so that the difference between the measured value and the measurement reference value is the difference in thickness (t2 -t1) between the first and second reference gauges 3 and 4. Thereafter, the second reference gauge 4 is removed from the measurement light irradiation position, and the thickness is measured while passing the sheet material A between the optical displacement meters 1 as shown in FIG. The sheet material A to be measured is, for example, a sheet-like rubber formed by calendering, and it is determined whether or not its thickness is within a specified value range by a determiner (not shown). An alarm is issued. In this case, the thickness of the sheet material A is obtained by adding the displacement amounts of the respective optical displacement meters 1. Further, after the measurement of the sheet material A, when measuring another type of sheet material having a different material, a reference gauge made of the same material as the new sheet material or a material having the same optical characteristics is used. The calculator 2 is set in the same manner as described above.
[0016]
As described above, according to the thickness measuring apparatus of the present embodiment, the first and second reference gauges 3 and 4 formed of a material having optical characteristics equivalent to those of the sheet material A to be measured are used for the respective optical elements. Since the thickness of the sheet material A is measured after holding the measurement light irradiation position of the displacement meter 1 and setting the computing unit 2 based on the measurement value, The setting of the computing unit 2 can be performed very easily, and even when the sheet material to be measured is changed to a different material, it is possible to quickly shift to measurement of a new material sheet material.
[0017]
In the above-described embodiment, the first and second reference gauges 3 and 4 are separately formed. However, for example, a reference surface having a different thickness (a surface that receives measurement light) is integrated. You may make it measure by using the gauge and shifting the position of each reference plane. Moreover, although the example provided with a pair of opposing optical displacement meters 1 was shown in the said embodiment, it is applicable also when measuring the displacement amount of the surface of the one side of the sheet | seat material A with one optical displacement meter 1. FIG. It is.
[0018]
Figure 5 is a schematic block diagram of a thickness measuring apparatus according to the implementation embodiments of the present invention are denoted by the same reference numerals in the embodiments and equivalent components. That is, the thickness measuring device shown in the figure includes a gauge changing device 6 and a control device 7 for controlling the gauge changing device 6 in addition to the configuration of the embodiment.
[0019]
The gauge changer 6 includes a plurality of first and second reference gauges 3 and 4 corresponding to a plurality of types of sheet materials of different materials in a gauge stocker 6a, and an arbitrary reference gauge 3 of the gauge stocker 6a. 4 is moved to the irradiation position of the measuring light 1a of each optical displacement meter 1 by the driving arm 6b and held.
[0020]
The control device 7 is constituted by, for example, a personal computer, and information related to the material of the sheet material is stored in the storage device 7a. In this control device 7, when the material of the sheet material to be measured is input, the corresponding reference gauges 3 and 4 are selected based on the data in the storage device 7a, and the reference gauges 3 and 4 are selected by the gauge changing device 6 for each optical. It moves to the irradiation position of the measuring light 1a of the displacement meter 1 and performs the same measurement as in the above embodiment.
[0021]
In other words, according to the present embodiment, the replacement work of the reference gauges 3 and 4 can be automated by the gauge replacement device 6, so that human labor can be reduced. Further, since the operation of the gauge changing device 6 is controlled based on the data of the control device 7 and the storage device 7a, for example, the material and the measurement order of the sheet material scheduled to be measured are programmed in the control device 7. Accordingly, the replacement work of the reference gauges 3 and 4 can be automated depending on the material of the sheet material.
[0022]
6 and 7 show modifications of the reference gauge. That is, the first and second reference gauges 8 and 9 shown in the figure are a material to be measured 10 made of the same material as a predetermined sheet material, and a pair of clamping plates that clamp the material to be measured 10 in the thickness direction. 11 and 12, and the holding plates 11 and 12 are provided with holes 11 a and 12 a for exposing a part of the material to be measured 10, respectively. The holding plates 11 and 12 are connected to each other by a plurality of screws 13, and one end portion 11 b of one holding plate 11 has a length that can be inserted into the groove 5 b of the support plate 5. In this case, the material to be measured 10 of the first reference gauge 8 is formed to a thickness t1 as shown in FIG. 7 (a), and the material to be measured of the second reference gauge 9 is shown in FIG. 7 (b). 10 is formed to a thickness t2 (> t1).
[0023]
That is, in the reference gauges 8 and 9, since the measured material 10 that receives the measuring light 1a of the optical displacement meter 1 is formed of the same material as the predetermined sheet material, the setting of the computing unit 2 is performed more accurately. It is possible.
[0024]
【The invention's effect】
As described above, according to the thickness measuring apparatus of the first aspect, the calculator can be set very easily for each sheet material having a different material, so that the sheet material to be measured has a different material. Even when it is changed, it is possible to promptly shift to measurement of a new sheet material, and it is possible to improve productivity. In this case, the replacement work of the reference gauge can be automated, so that human labor can be reduced. In addition, since the reference gauge replacement operation can be automated according to the material of the sheet material, productivity can be further improved.
[0025]
Moreover, according to the thickness measuring apparatus of Claim 2, in addition to the effect of Claim 1, the calculator can be set more accurately.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a thickness measuring apparatus showing an embodiment as a premise of the present invention. FIG. 2 is a perspective view of a reference gauge. FIG. 3 is a front view of a support plate. side showing a modification of the plan view FIG. 7 reference gauge showing a modification of the schematic diagram FIG. 6 reference gauge thickness measuring apparatus according to the implementation form of schematic Figure 5 the present invention illustrating a method Figure [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Optical displacement meter, 2 ... Operation unit, 3 ... 1st reference gauge, 4 ... 2nd reference gauge, 5b ... Groove, 6 ... Gauge change device, 7 ... Control apparatus, 8 ... 1st reference gauge, DESCRIPTION OF SYMBOLS 9 ... 2nd reference gauge, 8 ... 1st reference gauge, 9 ... 2nd reference gauge, 10 ... Material to be measured, 11, 12 ... Holding plate, A ... Sheet material.

Claims (2)

シート材の表面に光学変位計の測定光を照射してシート材の厚さ方向の変位量を測定し、その測定値と測定基準値に基づいてシート材の厚さを演算器により演算するシート材の厚さ測定装置において、
前記光学変位計の測定光を受光する面をシート材と同一の材質または同等の光学的特性を有する材質によって形成された互いに厚さの異なる第1及び第2の基準ゲージと、
材質の異なる複数種類のシート材にそれぞれ対応する複数ずつの第1及び第2の基準ゲージを具備し、任意の基準ゲージを光学変位計の測定光の照射位置まで移動して保持するゲージ交換手段と、
測定すべきシート材の材質に関する情報を記憶した記憶装置と、
測定すべきシート材の材質が入力されると、記憶装置のデータに基づいて対応する基準ゲージを選択し、その基準ゲージを光学変位計の測定光の照射位置まで移動させるように前記ゲージ交換手段を制御する制御手段とを備えた
ことを特徴とするシート材の厚さ測定装置。
A sheet that measures the amount of displacement in the thickness direction of the sheet material by irradiating the surface of the sheet material with measurement light from an optical displacement meter, and calculates the thickness of the sheet material with a calculator based on the measured value and the measurement reference value In the material thickness measuring device,
First and second reference gauges having different thicknesses formed from the same material as the sheet material or a material having equivalent optical characteristics on the surface that receives the measurement light of the optical displacement meter,
Gauge exchanging means comprising a plurality of first and second reference gauges respectively corresponding to a plurality of types of sheet materials of different materials, and moving and holding any reference gauge to the measurement light irradiation position of the optical displacement meter When,
A storage device storing information about the material of the sheet material to be measured;
When the material of the sheet material to be measured is input, the corresponding gauge is selected based on the data stored in the storage device, and the gauge changing means is configured to move the reference gauge to the measurement light irradiation position of the optical displacement meter. thickness measuring device features and to Resid over preparative material that a control means for controlling.
前記第1及び第2の基準ゲージを、所定のシート材と同一の材質からなる被測定材と、被測定材を厚さ方向に挟持する一対の挟持板とから形成し、各挟持板にはそれぞれ被測定材の一部を露出させる孔を設けた
ことを特徴とする請求項1記載のシート材の厚さ測定装置。
The first and second reference gauges are formed from a measured material made of the same material as a predetermined sheet material, and a pair of clamping plates that clamp the measured material in the thickness direction. The thickness measurement device for a sheet material according to claim 1, wherein a hole for exposing a part of the material to be measured is provided.
JP13232399A 1999-05-13 1999-05-13 Sheet material thickness measuring device Expired - Fee Related JP4209998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13232399A JP4209998B2 (en) 1999-05-13 1999-05-13 Sheet material thickness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13232399A JP4209998B2 (en) 1999-05-13 1999-05-13 Sheet material thickness measuring device

Publications (2)

Publication Number Publication Date
JP2000321029A JP2000321029A (en) 2000-11-24
JP4209998B2 true JP4209998B2 (en) 2009-01-14

Family

ID=15078640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13232399A Expired - Fee Related JP4209998B2 (en) 1999-05-13 1999-05-13 Sheet material thickness measuring device

Country Status (1)

Country Link
JP (1) JP4209998B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10360414A1 (en) 2003-12-19 2005-07-21 Carl Zeiss Smt Ag EUV projection lens and method for its production
WO2008003442A1 (en) 2006-07-03 2008-01-10 Carl Zeiss Smt Ag Method for revising/repairing a lithographic projection objective
JP5154564B2 (en) 2006-12-01 2013-02-27 カール・ツァイス・エスエムティー・ゲーエムベーハー Optical system with interchangeable and operable correction arrangement for reducing image aberrations
JP5833831B2 (en) * 2011-04-25 2015-12-16 株式会社東芝 Thickness measuring device and thickness measuring method
JP2013003117A (en) * 2011-06-22 2013-01-07 Yokohama Rubber Co Ltd:The Thickness measuring method of sheet-like material, and conveyance device of sheet-like material
CN113720282B (en) * 2021-08-25 2022-11-25 广东奥普特科技股份有限公司 Method and device for measuring flatness of tab

Also Published As

Publication number Publication date
JP2000321029A (en) 2000-11-24

Similar Documents

Publication Publication Date Title
US6360012B1 (en) In situ projection optic metrology method and apparatus
US5396279A (en) Method and apparatus for setting flat elements in relation to a reference device, in particular stamping dies or the like
US20100153059A1 (en) Apparatus and method for measuring the positions of marks on a mask
AT517796B1 (en) Chuck, in particular for use in a mask alignment device
JP4209998B2 (en) Sheet material thickness measuring device
TW201611097A (en) Imprint apparatus, imprint system, and method of manufacturing article
US5928822A (en) Method for confirming optimum focus of stepper
CN103499276A (en) Detection system, detection method and adjustment method for uniformity of cutting edge of printing scraper
WO2014127582A1 (en) Method and device for determining photolithography process parameter
CN110345876A (en) Polarisation plate detection device and polarisation plate detection method, readable storage medium storing program for executing
KR100700370B1 (en) Method of Preparing a Substrate, Method of Measuring, Device Manufacturing Method, Lithographic Apparatus, Computer Program and Substrate
CN115597504A (en) Laser coaxiality calibration device and method for machine vision measurement
JP2001264025A (en) Method and instrument for measuring distance between rolls
US20030192868A1 (en) Method for determining the accuracy of processing machines
JP4526921B2 (en) SUBJECT HOLDING METHOD AND DEVICE, AND TEST SHAPE MEASURING DEVICE PROVIDED WITH THE SUBJECT HOLDING DEVICE
KR20140012900A (en) Eyeglass frame shape measurement apparatus
JPS6057003B2 (en) Sheet dimension and squareness measuring device
CN115763430B (en) Display panel and film thickness measuring method and structure thereof
JPH02159509A (en) Film thickness measuring apparatus
JPH03125901A (en) Measuring jig for warp of strip material
JPH0285703A (en) Plate for measuring moving quantity
US20050000088A1 (en) Method of determining the position of a supporting pin, and device for this
EP0763755A2 (en) Apparatus and method for measuring alignment in lenticular media
JPH04277746A (en) Film tool for production of printed wiring board and its expansion and contraction measuring method
JPH04349962A (en) Device for adjusting roll gap

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080603

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees