JP4209884B2 - Canister - Google Patents

Canister Download PDF

Info

Publication number
JP4209884B2
JP4209884B2 JP2005357029A JP2005357029A JP4209884B2 JP 4209884 B2 JP4209884 B2 JP 4209884B2 JP 2005357029 A JP2005357029 A JP 2005357029A JP 2005357029 A JP2005357029 A JP 2005357029A JP 4209884 B2 JP4209884 B2 JP 4209884B2
Authority
JP
Japan
Prior art keywords
activated carbon
adsorbent layer
evaporated fuel
canister
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2005357029A
Other languages
Japanese (ja)
Other versions
JP2006083871A (en
Inventor
勝彦 牧野
隆司 小杉
朋造 土岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP2005357029A priority Critical patent/JP4209884B2/en
Publication of JP2006083871A publication Critical patent/JP2006083871A/en
Application granted granted Critical
Publication of JP4209884B2 publication Critical patent/JP4209884B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は内燃機関の蒸発燃料処理装置のキャニスタに関し、詳しくは、蒸発燃料の大気への放散を抑制することができるキャニスタに関するものである。   The present invention relates to a canister for an evaporative fuel processing apparatus of an internal combustion engine, and more particularly to a canister that can suppress the emission of evaporative fuel to the atmosphere.

従来、エンジン停止中に燃料タンクから生ずる蒸発燃料を、キャニスタ容器内に収容した吸着材に吸着させておき、エンジン始動後、吸着した蒸発燃料を吸気管負圧により脱離(パージ)して燃焼室で燃焼させる蒸発燃料処理装置のキャニスタがある。   Conventionally, evaporative fuel generated from a fuel tank while the engine is stopped is adsorbed to an adsorbent accommodated in a canister vessel, and after the engine is started, the adsorbed evaporative fuel is desorbed (purged) by an intake pipe negative pressure and burned. There is a canister for an evaporative fuel treatment device that burns in a chamber.

このキャニスタにおいては、エンジン停止時において、燃料タンクから流入する蒸発燃料が吸着しきれず、大気を導入するための大気ポートから大気に放散されてしまう、いわゆる吹き抜け現象が生ずる。この吹き抜けは、車両運転後のエンジン停止後に、所定時間高温雰囲気中に車両が放置されることにより、吸着材中に残存する蒸発燃料が蒸発して下流の大気ポート側の吸着材層に拡がる、いわゆる拡散現象が生じた後、燃料タンクから流入する蒸発燃料によって、前記拡散した蒸発燃料を押し出し、大気ポートから大気に放散させることにより発生する。   In this canister, when the engine is stopped, the evaporated fuel flowing from the fuel tank cannot be adsorbed, and a so-called blow-through phenomenon occurs in which it is diffused to the atmosphere from the atmosphere port for introducing the atmosphere. This blow-through is caused when the vehicle is left in a high temperature atmosphere for a predetermined time after the engine is stopped after driving the vehicle, so that the evaporated fuel remaining in the adsorbent evaporates and spreads to the adsorbent layer on the downstream atmospheric port side. After the so-called diffusion phenomenon occurs, the vaporized fuel flowing from the fuel tank pushes the diffused vaporized fuel and diffuses it from the atmospheric port to the atmosphere.

この吹き抜けは、キャニスタのコンパクト化を図るため、蒸発燃料の吸着量が多い特性を有する活性炭A(詳細は後述する)を吸着材として使用した、従来のキャニスタに多く発生する。図7は燃料タンクからの蒸発燃料の流入量に対する吹き抜け量を示すグラフで、図8は従来技術1のキャニスタの縦断面図である。図7のグラフは、図中に示される試験順序に従って行われた試験の結果として示したものである。すなわち、先ず始めに、図8におけるキャニスタ31の破過状態から所定時間パージさせる。これを繰り返すことにより蒸発燃料の安定化を図って残存量を一定に保持する。その後、高温状態で放置し、36時間経過後、キャニスタ31に流入する燃料タンク9からの蒸発燃料を想定して、時間当たり15gの蒸発燃料をキャニスタ31のタンクポート2dに供給する。この条件において、流入量に対する大気ポート2hからの吹き抜け量を測定したものである。吸着材として活性炭A(5a)だけを使用した、図8に示す従来技術1における吹き抜け量は、燃料タンク9からの蒸発燃料の流入量80gにおいて約140mgと多い。これは、活性炭の細孔奥部においてパージされずに残存する蒸発燃料中の低沸点成分が、高温雰囲気中に放置される間、蒸発して拡散現象により下流の吸着材層に充満し、後刻、燃料タンク9から流入する蒸発燃料により押し出されて大気へ吹き抜けると考えられている。   This blow-through frequently occurs in a conventional canister that uses activated carbon A (details will be described later) as an adsorbent, which has a characteristic that a large amount of evaporated fuel is adsorbed in order to make the canister compact. FIG. 7 is a graph showing the blow-through amount with respect to the inflow amount of the evaporated fuel from the fuel tank, and FIG. 8 is a longitudinal sectional view of the canister of the prior art 1. The graph of FIG. 7 is shown as a result of tests performed according to the test sequence shown in the figure. That is, first, the canister 31 in FIG. 8 is purged from the breakthrough state for a predetermined time. By repeating this, the fuel vapor is stabilized and the remaining amount is kept constant. Thereafter, the fuel is left in a high temperature state, and after 36 hours, the evaporated fuel from the fuel tank 9 flowing into the canister 31 is assumed, and 15 g of evaporated fuel per hour is supplied to the tank port 2d of the canister 31. Under these conditions, the blow-through amount from the atmospheric port 2h with respect to the inflow amount is measured. The blow-through amount in the prior art 1 shown in FIG. 8 using only activated carbon A (5a) as the adsorbent is as large as about 140 mg when the inflow amount of evaporated fuel from the fuel tank 9 is 80 g. This is because the low-boiling components in the evaporated fuel that remain without being purged at the back of the pores of the activated carbon evaporate while they are left in the high-temperature atmosphere and fill the downstream adsorbent layer by the diffusion phenomenon. It is considered that the fuel is pushed out by the evaporated fuel flowing from the fuel tank 9 and blown into the atmosphere.

そこで、その改良技術として、図9に示すようなキャニスタが知られている(特許文献1参照)。これを従来技術2とする。この従来技術2は、燃料吸着用の活性炭層を複数とし、燃料吸着力が弱く有効吸着量の多い活性炭により燃料タンクへの連通路25の連通口25a側やエンジン吸気系への連通口22側に配設される活性炭層20を形成し、燃料吸着力が強く、燃料の有効吸着量は少ないが、吸着作用の飽和状態以前に燃料の破過を生じることがほとんどない活性炭により大気開放口23側に金網24を介して配設される活性炭層21を形成しており、燃料タンクへの連通路25よりもたらされる燃料蒸気の大部分は上記連通口25a側の活性炭層20に吸着され、同活性炭層を破過したごく一部の蒸気が上記開放口23側の活性炭層21に吸着されるようになっているので、燃料蒸気が確実に活性炭層に吸着されるとしている。
実開昭57−68163号公報
Therefore, a canister as shown in FIG. 9 is known as an improved technique (see Patent Document 1). This is referred to as Conventional Technology 2. This prior art 2 has a plurality of activated carbon layers for adsorbing fuel, activated carbon having a weak fuel adsorbing power and a large effective adsorption amount, on the communication port 25 side of the communication passage 25 to the fuel tank and on the communication port 22 side to the engine intake system. The activated carbon layer 20 is formed, the fuel adsorbing power is strong, the effective adsorption amount of the fuel is small, but the activated carbon hardly causes breakthrough of the fuel before the saturated state of the adsorption action. An activated carbon layer 21 is formed on the side through a wire mesh 24, and most of the fuel vapor provided from the communication passage 25 to the fuel tank is adsorbed by the activated carbon layer 20 on the communication port 25a side. Since only a part of the vapor that broke through the activated carbon layer is adsorbed by the activated carbon layer 21 on the opening 23 side, the fuel vapor is surely adsorbed by the activated carbon layer.
Japanese Utility Model Publication No. 57-68163

しかしながら、前記従来技術2(特許文献1)のように、燃料吸着力(以下、保持力と記す)が弱く燃料の有効吸着量が多い活性炭(本願における活性炭A)と燃料保持力が強く燃料の有効吸着量が少ない活性炭(本願における活性炭C)との組み合わせによるキャニスタにおいては、図7に示すように、タンクポートからの蒸発燃料の流入量80gにおいて吹き抜け量が、約65mgと、従来技術1より大幅に減少しているものの、放置後の吹き抜けを目標値(50mg)以下に低減するにはまだ不十分である。これは、上述の活性炭Aおよび活性炭Cの特性が図6に示すように、パージ後における蒸発燃料中の低沸点成分の吸着量に対する残存量(以下残存量と略す)が多目のため、高温放置時に拡散現象の発生があり、後刻タンクポートから流入する蒸発燃料により押し出されて大気へ吹き抜けると考えられる。   However, as in the prior art 2 (Patent Document 1), activated carbon (activated carbon A in the present application) having a weak fuel adsorbing power (hereinafter referred to as holding power) and a large effective adsorbing amount of fuel and a strong fuel holding power. In the canister in combination with the activated carbon having a small effective adsorption amount (activated carbon C in the present application), as shown in FIG. 7, the blow-through amount at the inflow amount of evaporated fuel from the tank port is about 65 mg. Although it is greatly reduced, it is still insufficient to reduce the blow-through after being left to the target value (50 mg) or less. As shown in FIG. 6, the characteristics of the activated carbon A and activated carbon C described above are high in the remaining amount (hereinafter abbreviated as “residual amount”) of the low-boiling component in the evaporated fuel after purging because of the high temperature. There is a diffusion phenomenon when left unattended, and it is thought that it will be pushed out by evaporated fuel flowing in from the tank port later and blown into the atmosphere.

そこで本発明は、キャニスタの吸着材層内での拡散現象を極力抑え、流入する蒸発燃料を確実に吸着して、大気への吹き抜けを抑制することができるキャニスタを提供することを課題とするものである。   Accordingly, an object of the present invention is to provide a canister that can suppress the diffusion phenomenon in the adsorbent layer of the canister as much as possible, reliably adsorb the evaporated fuel flowing in, and suppress the blow-through to the atmosphere. It is.

前記の課題を解決するために、請求項1記載の発明は、吸着材層を隔壁により第1層目及び第2層目の吸着材層に2分し直列に配置したキャニスタにおいて、前記第2層目の吸着材層をフィルタまたはプレートにより2分して、前記第1層目の吸着材層に、前記第2層目の分割された大気ポート側の吸着材層の活性炭より蒸発燃料の吸着量が多く保持力が同等の活性炭を充填し、第2層目の分割された大気ポート側の吸着材層に、第1層目の吸着材層の活性炭より蒸発燃料の吸着量が少なく保持力が同等の活性炭を充填したことを特徴とするキャニスタである。 In order to solve the above-mentioned problem, the invention according to claim 1 is the canister in which the adsorbent layer is divided into the first adsorbent layer and the second adsorbent layer by the partition walls and arranged in series. The adsorbent layer of the first layer is divided into two by a filter or a plate , and the adsorbed fuel is adsorbed to the first adsorbent layer from the activated carbon of the adsorbent layer on the air port side divided as the second layer. A large amount of activated carbon with the same holding power is filled, and the adsorbent layer on the air port side divided in the second layer has less holding capacity for the evaporated fuel than the activated carbon of the first adsorbent layer. Is a canister characterized by being filled with equivalent activated carbon .

請求項記載の発明は、請求項載の発明において、前記2層目の分割された大気ポート側の吸着材層の容量を、全吸着材層の容量の14.3%以下としたことを特徴とするキャニスタである。 According to a second aspect of the invention of claim 1 Symbol placement, the capacity of the adsorbent layer of the second layer of the divided air port side was less 14.3% volume of the total adsorbent layer It is a canister characterized by this.

請求項記載の発明は、請求項1又は2載の発明において、前記フィルタまたは前記プレートを除去したことを特徴とするキャニスタである。 According to a third aspect of the present invention, in the mounting according to claim 1 or 2 SL, a canister, characterized in that the removal of the said filter or the plate.

本発明によれば、第2層目の大気ポート側の吸着材層にパージ後における蒸発燃料の残存量が第1層目の吸着材よりも少ない特性を有する活性炭Bを充填したので、キャニスタの高温放置後の蒸発燃料の大気への放散を抑制することができる。   According to the present invention, the adsorbent layer on the air port side of the second layer is filled with activated carbon B having a characteristic that the remaining amount of evaporated fuel after purging is less than that of the adsorbent of the first layer. Emission of evaporated fuel after being left at high temperature can be suppressed.

請求項の発明によれば、前記の効果を一層高めることができる。 According to invention of Claim 2 , the said effect can be heightened further.

また、請求項の発明によれば、フィルタまたはプレートを除去したので、構造が簡素になり安価に製作することができる。 According to the invention of claim 3 , since the filter or the plate is removed, the structure becomes simple and it can be manufactured at low cost.

本発明の望ましい実施の形態について、図1乃至図7に基づいて説明する。
先ず、本発明に使用する吸着材について図4乃至図6により説明する。
A preferred embodiment of the present invention will be described with reference to FIGS.
First, the adsorbent used in the present invention will be described with reference to FIGS.

本発明に使用する吸着材は活性炭であり、その活性炭の表面には図5に示すような細孔Pが多数存在し、その細孔の中にガソリン燃料の分子が入り込んで捕捉される。この図5において、Dは細孔直径、Fは細孔容積を示す。   The adsorbent used in the present invention is activated carbon, and there are many pores P as shown in FIG. 5 on the surface of the activated carbon, and gasoline fuel molecules enter and are captured in the pores. In FIG. 5, D represents the pore diameter, and F represents the pore volume.

次に、活性炭の微分型細孔分布と残存、吸脱領域(常温状態)について図4により説明する。   Next, the differential pore distribution and residual and adsorption / desorption regions (normal temperature state) of the activated carbon will be described with reference to FIG.

図4に示すような微分型細孔分布図の吸着・脱離領域G内での分布曲線内の面積E(細孔容積F)と蒸発燃料の吸着量は比例の関係にある。   The area E (pore volume F) in the distribution curve in the adsorption / desorption region G in the differential pore distribution diagram as shown in FIG. 4 is in a proportional relationship.

また、微分型細孔分布図のピーク位置の細孔直径が小さいほど蒸発燃料の保持力(吸着力)が強い傾向にある。すなわち、保持力は細孔直径に反比例の関係にある。   Further, the smaller the pore diameter at the peak position in the differential pore distribution diagram, the stronger the retention (adsorption force) of the evaporated fuel. That is, the holding force is inversely proportional to the pore diameter.

微分型細孔分布図の残存領域Hにおいて、分布曲線内の面積E(細孔容積F)と蒸発燃料中の低沸点成分の残存量は比例の関係にある。   In the residual region H of the differential pore distribution diagram, the area E (pore volume F) in the distribution curve and the residual amount of the low boiling point component in the evaporated fuel are in a proportional relationship.

更に、蒸発燃料の吹き抜け量については、吸着されたガソリン蒸気の拡散が1時間以内(放置なし)の場合には、微分型細孔分布曲線のピーク位置にある細孔直径の大小に比例する。また、蒸気の拡散が6時間以上(放置あり)の場合は、ピーク位置にある細孔直径と残存量の乗算した結果にほぼ比例する。   Further, the amount of blown fuel vapor is proportional to the size of the pore diameter at the peak position of the differential pore distribution curve when the adsorbed gasoline vapor is diffused within 1 hour (no standing). In addition, when the vapor diffusion is 6 hours or more (with leaving), it is almost proportional to the result of multiplying the residual diameter by the pore diameter at the peak position.

以上のような活性炭の特性に鑑み、本発明で使用する活性炭は図4に示す特性を有する3種の活性炭を選定して使用する。   In view of the characteristics of the activated carbon as described above, the activated carbon used in the present invention is selected from three types of activated carbon having the characteristics shown in FIG.

図4において、活性炭Aは、微分型細孔分布図におけるピーク位置が、ガソリン蒸気の吸着、脱離バランスの良好な細孔径に集中する特性を有するもので、直径Dが約2.5nmの細孔をピークとし、かつ微分型細孔分布図における活性炭Aの曲線と横軸とのなす面積E(細孔容積)が活性炭Bよりも多いものである。   In FIG. 4, activated carbon A has a characteristic that the peak position in the differential pore distribution diagram is concentrated on the pore diameter with a good balance of adsorption and desorption of gasoline vapor, and the diameter D is about 2.5 nm. The area E (pore volume) formed by the curve of the activated carbon A in the differential pore distribution diagram and the horizontal axis in the differential pore distribution diagram is larger than that of the activated carbon B.

したがって、この活性炭Aは、蒸発燃料の保持力が弱く、蒸発燃料の吸着量は多い特性を有する。   Therefore, this activated carbon A has a characteristic that the retention of the evaporated fuel is weak and the amount of adsorption of the evaporated fuel is large.

活性炭Bは、微分型細孔分布図におけるピーク位置が、前記活性炭Aと同じであるが、径の細孔容積が、活性炭Aに比べて少ないものである。   Activated carbon B has the same peak position in the differential pore distribution diagram as activated carbon A, but has a smaller pore volume than that of activated carbon A.

したがって、この活性炭Bは、蒸発燃料の保持力が前記活性炭Aと同様に弱く、蒸発燃料の吸着量は前記活性炭Aに比べて少ない特性を有する。   Therefore, this activated carbon B has a weaker retention of evaporated fuel, like the activated carbon A, and the amount of evaporated fuel adsorbed is smaller than that of the activated carbon A.

活性炭Cは、微分型細孔分布におけるピーク位置が、ガソリン蒸気中の低沸点成分(主にブタン)の吸着に適した細孔径に集中する特性を有するもので、直径Dが約2nmの細孔をピークとし、かつ細孔容積が前記活性炭A,Bよりも少ないものである。   Activated carbon C has a characteristic that the peak position in the differential pore distribution concentrates on the pore diameter suitable for the adsorption of low-boiling components (mainly butane) in gasoline vapor, and pores having a diameter D of about 2 nm. And the pore volume is smaller than that of the activated carbons A and B.

したがって、この活性炭Cは、蒸発燃料の吸着量が前記活性炭A,Bに比べて少ないが、蒸発燃料の保持力は前記活性炭A,Bに比べて強い特性を有する。   Therefore, the activated carbon C has a smaller amount of evaporated fuel adsorbed than the activated carbons A and B, but the evaporated fuel has a stronger holding power than the activated carbons A and B.

以上のことから、上記A,B,Cの活性炭を対比すると、図6の表に示すように、活性炭Aは、蒸発燃料の吸着量は活性炭A,B,Cの中で最も多いが保持力は弱く、このためパージ後における蒸発燃料中の低沸点成分の残存量が、活性炭A,B,Cの中で中程度の特性を有する。活性炭Bは、蒸発燃料の吸着量は活性炭A,B,Cの中で中程度で保持力は弱く、このためパージ後における蒸発燃料中の低沸点成分の残存量が活性炭A,B,Cの中で最も少ない特性を有する。活性炭Cは、蒸発燃料の吸着量は活性炭A,B,Cの中で最も少ないが保持力は活性炭A,Bよりも強く、このためパージ後における蒸発燃料中の低沸点成分の残存量が活性炭A,B,Cの中で最も多い特性を有する。   From the above, when the activated carbons A, B, and C are compared, as shown in the table of FIG. 6, activated carbon A has the largest adsorbed amount of evaporated fuel among activated carbons A, B, and C. Therefore, the residual amount of low boiling point components in the evaporated fuel after purging has a medium characteristic among the activated carbons A, B and C. In the activated carbon B, the adsorption amount of the evaporated fuel is medium among the activated carbons A, B, and C, and the holding power is weak. Therefore, the residual amount of the low boiling point component in the evaporated fuel after the purge is the activated carbon A, B, C. It has the fewest characteristics among them. Activated carbon C has the smallest adsorbed amount of evaporated fuel among activated carbons A, B, and C, but its holding power is stronger than activated carbons A and B. Therefore, the remaining amount of low boiling point components in evaporated fuel after purging is activated carbon. It has the most characteristics among A, B, and C.

以上のように、前記活性炭A及びBとして、微分型細孔分布における曲線のピーク位置が脱離限界線I付近にある活性炭を用いることにより、活性炭AとBにおいて、パージ終了後の蒸発燃料の残存量を少なくできる活性炭を作ることが可能になる。また、活性炭Cは、微分型細孔分布における曲線のピーク位置が脱離限界線Iよりも残存領域H側へ大きくずれた活性炭を用いている。   As described above, as the activated carbons A and B, by using activated carbon having a peak position of the curve in the differential pore distribution in the vicinity of the desorption limit line I, the activated fuel A and B can be used for the evaporated fuel after purging. It becomes possible to make activated carbon that can reduce the remaining amount. Further, as the activated carbon C, activated carbon in which the peak position of the curve in the differential pore distribution is significantly shifted from the desorption limit line I toward the remaining region H side is used.

燃料タンクからの蒸発燃料流入時の吹き抜け量については、パージ後に所定時間高温放置をした場合、すなわち放置有りでは、活性炭A,Cにおいては吹き抜け量が多く、活性炭Bにおいては少ない。これは、パージ後活性炭内に残存した蒸発燃料の低沸点成分が高温放置中に蒸発し拡散現象を生じてキャニスタ内に充満し、流入する蒸発燃料により押し出されて吹き抜けを生ずるためと考えられる。すなわち、上述のようにピーク位置にある細孔直径と残存量の乗算した結果にほぼ比例することから、活性炭A,B,Cを比較すると活性炭A,Cでは吹き抜け量が多く、活性炭Bでは少ない。   With respect to the amount of blow-through when evaporative fuel flows from the fuel tank, when the gas is left at a high temperature for a predetermined time after purging, that is, with leaving, the activated carbon A and C have a large amount of blow-through and the activated carbon B has a small amount. This is presumably because the low boiling point component of the evaporated fuel remaining in the activated carbon after purging evaporates during standing at a high temperature, causes a diffusion phenomenon, fills the canister, and is pushed out by the flowing evaporated fuel to cause blow-through. That is, since it is almost proportional to the result obtained by multiplying the residual diameter by the pore diameter at the peak position as described above, when activated carbon A, B, C is compared, activated carbon A, C has a large amount of blow-through and activated carbon B has a small amount. .

しかしながら、パージ後の高温放置をしない場合、すなわち、放置なしでは活性炭A,B,Cともに少ない。これは、活性炭に蒸発燃料中の低沸点成分の残存があっても高温放置がないため低沸点成分の蒸発による拡散現象がほとんど生じないからである。したがって、高温放置後における吹き抜け量の増加を抑制するためには、ピーク位置にある細孔直径の選定と、パージ後における蒸発燃料中の低沸点成分の残存量が少ないことが必要である。なお、上述の各特性を有する活性炭の製作については、特性を示すことにより活性炭製造業者により容易に製作が可能である。   However, when not leaving the high temperature after purging, that is, without leaving, there is little activated carbon A, B, C. This is because even if the low-boiling component remains in the evaporated fuel on the activated carbon, it is not left at a high temperature, so that a diffusion phenomenon due to evaporation of the low-boiling component hardly occurs. Therefore, in order to suppress an increase in the amount of blow-through after being left at a high temperature, it is necessary to select the pore diameter at the peak position and to reduce the residual amount of low-boiling components in the evaporated fuel after purging. In addition, about manufacture of the activated carbon which has each above-mentioned characteristic, it can manufacture easily by the activated carbon manufacturer by showing a characteristic.

次に、前記活性炭を使用した図1に示す本発明の第1実施例のキャニスタについて説明する。   Next, the canister of the first embodiment of the present invention shown in FIG. 1 using the activated carbon will be described.

図1において、キャニスタ1を構成するケース2の内部は隔壁2aにより2分され、一方は通気性を有するフィルタ3a,3b,3cにより挟持される吸着材5が通気性を有する、例えば孔が開いているプレート4aを介してスプリング6aにより押圧されて第1層目の吸着材層、すなわち第1吸着材層7を形成している。他方は同様に通気性を有するフィルタ3d,3eにより挟持された吸着材5が通気性を有する、例えば孔が開いているプレート4bを介してスプリング6bにより押圧され第2層目の吸着材層8を形成している。第2層目の吸着材層8は通気性を有する、例えば孔が開いているプレート4cまたはフィルタ3fにより区画され、第2吸着材層8aおよび第3吸着材層8bを形成している。   In FIG. 1, the inside of the case 2 constituting the canister 1 is divided into two by a partition wall 2a, and one of the adsorbents 5 is sandwiched by filters 3a, 3b, 3c having air permeability and has air permeability, for example, a hole is opened. The first adsorbent layer, that is, the first adsorbent layer 7 is formed by being pressed by the spring 6a through the plate 4a. Similarly, the second adsorbent layer 8 is pressed by the spring 6b through the plate 4b having a hole, for example, the adsorbent 5 sandwiched between the filters 3d and 3e having air permeability. Is forming. The second adsorbent layer 8 has air permeability, for example, is partitioned by a plate 4c or a filter 3f having a hole, and forms a second adsorbent layer 8a and a third adsorbent layer 8b.

ケース2およびフィルタ3aならびに仕切板2bにより形成される第1空間部2cには燃料タンク9の上部に連通するタンクポート2dが開口している。ケース2およびフィルタ3bならびに仕切板2bにより形成される第2空間部2eには、流量調整弁10を介して吸気管11のサージタンク11aに連通するパージポート2fが開口している。ケース2およびフィルタ3eならびに隔壁2aにより形成される第3空間部2gには大気に連通する大気ポート2hが開口している。隔壁2aの先端部には連通路2iが設けられ、ケース2およびプレート4a,4bにより第4空間部2jが形成されている。斯くして、各吸着材層7,8a,8bは第4空間部2jを介して、蒸発燃料の流れに対して直列に配置されて構成される。   A tank port 2d communicating with the upper portion of the fuel tank 9 is opened in the first space 2c formed by the case 2, the filter 3a, and the partition plate 2b. A purge port 2f communicating with the surge tank 11a of the intake pipe 11 through the flow rate adjusting valve 10 is opened in the second space 2e formed by the case 2, the filter 3b, and the partition plate 2b. An atmosphere port 2h communicating with the atmosphere is opened in the third space 2g formed by the case 2, the filter 3e, and the partition wall 2a. A communication passage 2i is provided at the tip of the partition wall 2a, and a fourth space 2j is formed by the case 2 and the plates 4a and 4b. Thus, each adsorbent layer 7, 8a, 8b is arranged in series with the flow of the evaporated fuel via the fourth space 2j.

前記第1吸着材層7には、吸着材5として、蒸発燃料の吸着量は多いが保持力が弱く、このためパージ後における蒸発燃料中の低沸点成分の残存量が比較的多い前記の活性炭A(5a)が充填されている。第2吸着材層8aおよび第3吸着材層8bには、蒸発燃料の吸着量は中くらいで、すなわち前記の活性炭Aより少なく、かつ、保持力が活性炭Aと同様に弱く、このため、パージ後における蒸発燃料中の低沸点成分の残存量が活性炭Aより少ない前記の活性炭B(5b)が充填されている。なお、第3吸着材層8bの容積は300cc、第1吸着材層7の容積は1400cc、全吸着材層の容積は2100ccで構成されている。   In the first adsorbent layer 7, the activated carbon has a large amount of evaporated fuel adsorbed but has a low holding power, and therefore the activated carbon has a relatively large amount of low-boiling components remaining in the evaporated fuel after purging. A (5a) is filled. In the second adsorbent layer 8a and the third adsorbent layer 8b, the adsorbed amount of the evaporated fuel is medium, that is, less than the activated carbon A, and the holding power is weak as in the activated carbon A. The activated carbon B (5b), in which the remaining amount of low boiling point components in the evaporated fuel later is less than that of the activated carbon A, is filled. The volume of the third adsorbent layer 8b is 300 cc, the volume of the first adsorbent layer 7 is 1400 cc, and the volume of all the adsorbent layers is 2100 cc.

次に、第1の実施形態の作用について説明する。
図1において、エンジン停止中に燃料タンク9から生じた蒸発燃料はキャニスタ1のタンクポート2dから流入し、第1吸着材層7内の活性炭A(5a)を経て第2吸着材層8aおよび第3吸着材層8b内の活性炭B(5b)に順次吸着され、大気への漏洩が抑制される。次いで、エンジン50が始動されて吸気管11に負圧が発生すると、その負圧により、大気ポート2hから流入する大気と共に活性炭A(5a)、B(5b)に吸着された蒸発燃料がパージポート2fからパージされる。所定時間パージされた後、エンジン50は停止され、車両は所定温度に保たれた部屋に所定時間放置される。
Next, the operation of the first embodiment will be described.
In FIG. 1, the evaporated fuel generated from the fuel tank 9 while the engine is stopped flows in from the tank port 2d of the canister 1, passes through the activated carbon A (5a) in the first adsorbent layer 7, and the second adsorbent layer 8a and the second adsorbent layer 8a. 3 is sequentially adsorbed by the activated carbon B (5b) in the adsorbent layer 8b, and leakage to the atmosphere is suppressed. Next, when the engine 50 is started and a negative pressure is generated in the intake pipe 11, the evaporated fuel adsorbed by the activated carbon A (5a) and B (5b) together with the atmosphere flowing in from the atmosphere port 2h is purged by the negative pressure. Purged from 2f. After purging for a predetermined time, the engine 50 is stopped and the vehicle is left in a room maintained at a predetermined temperature for a predetermined time.

この間、キャニスタ1は活性炭A(5a)内に所定の低沸点成分残存量を有した状態で高温放置されるので、残存燃料が蒸発し拡散してキャニスタ1の大気ポート2h側である下流に流れるが、低沸点成分の残存量が少ない第2および第3吸着材層8a,8b内の活性炭B(5b)に吸着され、後刻、燃料タンク9から流入する蒸発燃料も活性炭B(5b)に吸着されるので、大気への蒸発燃料の放散が確実に抑制される。この活性炭Bを使用したキャニスタにおいて、前記の条件で吹き抜け量を測定した結果、その吹き抜け量は図7において、タンクポート2dからの蒸発燃料の流入量80gにおいて40mg弱と従来技術1および2に比べて大幅に低減された。なお、図7の吹き抜け量の測定に用いたキャニスタの全吸着材層の容積は2100cc、第1吸着材層7の容積は1400cc、第3吸着材層8bの容積は300ccである。   During this time, the canister 1 is left in the activated carbon A (5a) with a predetermined low boiling point component remaining at a high temperature, so that the remaining fuel evaporates and diffuses and flows downstream on the atmospheric port 2h side of the canister 1. Is adsorbed by the activated carbon B (5b) in the second and third adsorbent layers 8a and 8b with a low residual amount of low-boiling components, and the evaporated fuel flowing from the fuel tank 9 is also adsorbed by the activated carbon B (5b) later. Therefore, the emission of evaporated fuel to the atmosphere is reliably suppressed. In the canister using this activated carbon B, the blow-through amount was measured under the above-mentioned conditions. As a result, the blow-through amount was slightly less than 40 mg in the inflow amount of evaporated fuel from the tank port 2d in FIG. Greatly reduced. The volume of the entire adsorbent layer of the canister used for the measurement of the blow-through amount in FIG. 7 is 2100 cc, the volume of the first adsorbent layer 7 is 1400 cc, and the volume of the third adsorbent layer 8b is 300 cc.

なお、本第1実施例においては、第2層目をフィルタまたは通気性を有するプレート4c(3f)により2分したことにより、第2吸着材層8aと第3吸着材層8bとの間で、前記フィルタ等による流れ抵抗を形成して、第3吸着材層8bを通って大気へ放散される蒸発燃料をより抑制することができる。   In the first embodiment, the second layer is divided into two by the filter or the air-permeable plate 4c (3f), so that the second adsorbent layer 8a and the third adsorbent layer 8b are separated. By forming a flow resistance by the filter or the like, it is possible to further suppress the evaporated fuel that is diffused to the atmosphere through the third adsorbent layer 8b.

図2は前記図1の変形例の第2実施例を示す。
この第2実施例は前記第1実施例における第2吸着材層8aおよび第3吸着材層8bを区画するプレート4cまたはフィルタ3fを除去して、前記第1実施例における第2吸着材層8aと第3吸着材層8bを一体化し、活性炭Bが充填された第2層目の吸着材層8を一体として形成したものである。
FIG. 2 shows a second embodiment of the modification of FIG.
In the second embodiment, the plate 4c or the filter 3f that partitions the second adsorbent layer 8a and the third adsorbent layer 8b in the first embodiment is removed, and the second adsorbent layer 8a in the first embodiment is removed. And the third adsorbent layer 8b are integrated, and the second adsorbent layer 8 filled with activated carbon B is integrally formed.

その他の構造は前記第1実施例と同様であるため、前記と同一部分には前記と同一の符号を付してその説明は省略する。   Since the other structure is the same as that of the first embodiment, the same parts as those described above are denoted by the same reference numerals and the description thereof is omitted.

本第2実施例においても前記第1実施例と同様の作用および効果(ただし、プレート4cまたはフィルタ3fの作用効果を除く)を発揮するとともに、更に前記第1実施例に比べて、プレート4cまたはフィルタ3fを除去したことにより、構造・製造がより簡単になり、低コストが図れる。   Also in the second embodiment, the same functions and effects as those of the first embodiment (except for the functions and effects of the plate 4c or the filter 3f) are exhibited, and further, compared with the first embodiment, the plate 4c or By removing the filter 3f, the structure and manufacturing become simpler and the cost can be reduced.

次に、図3に示す第3実施例について説明する。
なお、前記第1の実施例と異なる部分についてだけ説明し、同一機能部分については説明は省く。
Next, a third embodiment shown in FIG. 3 will be described.
Only the parts different from the first embodiment will be described, and the description of the same functional parts will be omitted.

図3は本発明の第3の実施例に係るキャニスタの縦断面図である。
図3において、第1吸着材層7内には前記第1実施例における活性炭A(5a)が充填され、第2吸着材層8aには前記第1実施例における活性炭B(5b)が充填されているが、第3吸着材層8bには、前記活性炭AおよびBと異なる前記活性炭Cが充填されている。
FIG. 3 is a longitudinal sectional view of a canister according to a third embodiment of the present invention.
In FIG. 3, the first adsorbent layer 7 is filled with activated carbon A (5a) in the first embodiment, and the second adsorbent layer 8a is filled with activated carbon B (5b) in the first embodiment. However, the third adsorbent layer 8b is filled with the activated carbon C different from the activated carbons A and B.

この活性炭Cは、蒸発燃料の吸着量は前記活性炭A及びBに比べて少ないが、蒸発燃料の保持力は前記活性炭A及びBに比べて強く、このため、パージ後における蒸発燃料中の低沸点成分の残存量が前記活性炭AおよびBに比べて多い特性の活性炭である。   The activated carbon C has a smaller amount of evaporated fuel adsorbed than the activated carbons A and B, but the retention of evaporated fuel is stronger than that of the activated carbons A and B. Therefore, the low boiling point of the evaporated fuel after purging is low. This is activated carbon having a characteristic that the remaining amount of components is larger than that of the activated carbons A and B.

本第3実施例の作用について説明する。
なお、エンジン停止中の蒸発燃料吸着までの工程は第1の実施例と同様であるので説明は省き、エンジン始動後のパージの段階から説明する。
The operation of the third embodiment will be described.
Since the process up to the adsorption of the evaporated fuel while the engine is stopped is the same as that in the first embodiment, the description will be omitted, and the description will start from the purge stage after the engine is started.

エンジン50の始動後のパージ段階において、第3吸着材層8b内の活性炭C(5c)に吸着された蒸発燃料は、パージポート2fに生じる吸気管11の負圧によりパージされるが、活性炭C(5c)はパージ後における蒸発燃料中の低沸点成分の吸着量に対する残存量が多い特性を有しているので、一般的には、パージ終了後においても多くの残存量が存在するが、吸着量が少なく、また、大気に最も近い第3吸着材層8b内に充填されているため、パージ開始とともに大気ポート2hから導入される新鮮な空気により効果的にパージが行われることによって、パージ終了後においても少しの残存量が存在することとなる。   In the purge stage after the start of the engine 50, the evaporated fuel adsorbed on the activated carbon C (5c) in the third adsorbent layer 8b is purged by the negative pressure of the intake pipe 11 generated in the purge port 2f. (5c) has a characteristic that there is a large residual amount with respect to the adsorption amount of the low boiling point component in the evaporated fuel after the purge, and in general, a large residual amount exists even after the purge is completed. Since the amount is small and the third adsorbent layer 8b closest to the atmosphere is filled, purging is effectively performed by fresh air introduced from the atmosphere port 2h at the start of the purge, thereby completing the purge. There will still be a small residual amount.

その後、燃料タンク9からの蒸発燃料がキャニスタ1内に流入しても蒸発燃料は、第1、第2の各吸着材層7,8aの活性炭A,Bでほとんど吸着され、吸着されなかったわずかな蒸発燃料が吸着力(保持力)の強い第3吸着材層8bの活性炭Cで確実に吸着されるので、少しの残存量があっても吸着量に余裕があり十分に大気への吹き抜けが抑制される。   Thereafter, even if the evaporated fuel from the fuel tank 9 flows into the canister 1, the evaporated fuel is almost adsorbed by the activated carbons A and B of the first and second adsorbent layers 7 and 8a, and is not adsorbed. Since the evaporated fuel is reliably adsorbed by the activated carbon C of the third adsorbent layer 8b having a strong adsorbing power (holding power), there is a sufficient adsorbing amount even if there is a small remaining amount, and the air can be blown into the atmosphere sufficiently. It is suppressed.

次に、前記第3吸着材層8bの容積を、吸着材層の全容積の2.3〜4.8%に設定した場合、例えば吸着材層の全容積を2100ccとし、第3吸着材層8bの容積を50ccとした場合について説明する。   Next, when the volume of the third adsorbent layer 8b is set to 2.3 to 4.8% of the total volume of the adsorbent layer, for example, the total volume of the adsorbent layer is 2100 cc, A case where the volume of 8b is 50 cc will be described.

なお、エンジン停止中の蒸発燃料吸着までの工程は第1の実施例と同様であるので説明は省き、エンジン始動後のパージの段階から説明する。   Since the process up to the adsorption of the evaporated fuel while the engine is stopped is the same as that in the first embodiment, the description thereof will be omitted, and the description will start from the purge stage after the engine is started.

図3において、エンジン50始動後のパージの段階において、第3吸着材層8b内の活性炭C(5c)に吸着された蒸発燃料は、パージポート2fに生じる吸気管11の負圧によりほぼ全量がパージされる。これは、活性炭C(5c)がパージ後における蒸発燃料中の低沸点成分の残存量が多い特性を有するにもかかわらず、第3吸着材層8bの容積を50ccと全容積2100ccの約2.4%の容積に小型化することにより、単位容積当りのパージ空気量を増加させることができ、パージ性能が向上したためである。例えば、パージ空気流通量が2100ccのとき、50ccの活性炭C(5c)の容量では、単位容積当たりのパージ空気流通量は2100cc/50cc=42cc/ccとなる。   In FIG. 3, the evaporated fuel adsorbed on the activated carbon C (5c) in the third adsorbent layer 8b at the purge stage after the start of the engine 50 is almost entirely due to the negative pressure of the intake pipe 11 generated in the purge port 2f. Purged. This is because activated carbon C (5c) has a characteristic that the amount of low-boiling components remaining in the evaporated fuel after purging is large, but the third adsorbent layer 8b has a volume of 50 cc and a total volume of 2100 cc. This is because by reducing the volume to 4%, the purge air amount per unit volume can be increased, and the purge performance is improved. For example, when the purge air flow rate is 2100 cc, the purge air flow rate per unit volume is 2100 cc / 50 cc = 42 cc / cc with a capacity of 50 cc activated carbon C (5c).

したがって、パージが終了し高温放置の段階においては、第1吸着材層7内に残存する低沸点成分が蒸発して拡散現象が生じても、活性炭B(5b)が充填された第2吸着材層8aで吸着されるので、後刻、燃料タンク9から蒸発燃料が流入しても、蒸発燃料は第2吸着材層8aで吸着され、第2吸着材層8aで吸着されなかった蒸発燃料は第3吸着材層8bで確実に吸着されるので大気への吹き抜けが抑制される。吹き抜け量は図7において、蒸発燃料の流入量80gにおいて30mg弱と従来技術1および2に比べて大幅に低減され、上述の第1の実施例に比べても低減されている。なお、第3吸着材層8bの容積については、全容積2100ccに対し50〜100cc(2.3〜4.8%)までは上述の効果が持続されるが、200ccにおいては効果は低減することが確認されている。   Therefore, at the stage of purging and leaving at high temperature, even if the low boiling point component remaining in the first adsorbent layer 7 evaporates and a diffusion phenomenon occurs, the second adsorbent filled with activated carbon B (5b). Since it is adsorbed by the layer 8a, even if evaporated fuel flows from the fuel tank 9 later, the evaporated fuel is adsorbed by the second adsorbent layer 8a, and the evaporated fuel not adsorbed by the second adsorbent layer 8a is the first. Since the three adsorbent layers 8b are reliably adsorbed, the blow-off to the atmosphere is suppressed. In FIG. 7, the blow-through amount is a little less than 30 mg when the inflow amount of evaporated fuel is 80 g, which is significantly reduced as compared with the prior arts 1 and 2, and is also reduced as compared with the first embodiment described above. Regarding the volume of the third adsorbent layer 8b, the above effect is maintained up to 50 to 100 cc (2.3 to 4.8%) with respect to the total volume of 2100 cc, but the effect is reduced at 200 cc. Has been confirmed.

本発明の第1の実施例に係るキャニスタの縦断面図である。1 is a longitudinal sectional view of a canister according to a first embodiment of the present invention. 本発明の第2の実施例に係るキャニスタの縦断面図である。It is a longitudinal cross-sectional view of the canister which concerns on the 2nd Example of this invention. 本発明の第3の実施例に係るキャニスタの縦断面図である。It is a longitudinal cross-sectional view of the canister which concerns on the 3rd Example of this invention. 本発明において使用する活性炭の細孔直径と細孔径に対する細孔容積の変化割合を示す特性図である。It is a characteristic view which shows the change rate of the pore volume with respect to the pore diameter of the activated carbon used in this invention, and a pore diameter. 活性炭の細孔を示す拡大図である。It is an enlarged view which shows the pore of activated carbon. 本発明に使用した活性炭の特性を示す一覧表である。It is a list which shows the characteristic of the activated carbon used for this invention. 従来および本発明に係るキャニスタの吹き抜け量を測定した試験結果を示すグラフである。It is a graph which shows the test result which measured the blow-through amount of the canister which concerns on the past and this invention. 従来技術1を示すキャニスタの縦断面図である。1 is a longitudinal sectional view of a canister showing a conventional technique 1. FIG. 従来技術2を示すキャニスタの縦断面図である。It is a longitudinal cross-sectional view of the canister which shows the prior art 2.

符号の説明Explanation of symbols

1 キャニスタ
2a 隔壁
3f フィルタ
4c プレート
5a 活性炭A
5b 活性炭B
5c 活性炭C
7 第1吸着材層(第1層目の吸着材層)
8 第2層目の吸着材層
8a 第2吸着材層
8b 第3吸着材層
G 吸着・脱離領域
H 残存領域
I 脱離限界線
1 Canister 2a Bulkhead 3f Filter 4c Plate 5a Activated carbon A
5b Activated carbon B
5c Activated carbon C
7 First adsorbent layer (first adsorbent layer)
8 Second adsorbent layer 8a Second adsorbent layer 8b Third adsorbent layer G Adsorption / desorption region H Remaining region I Desorption limit line

Claims (3)

吸着材層を隔壁により第1層目及び第2層目の吸着材層に2分し直列に配置したキャニスタにおいて、前記第2層目の吸着材層をフィルタまたはプレートにより2分して、前記第1層目の吸着材層に、前記第2層目の分割された大気ポート側の吸着材層の活性炭より蒸発燃料の吸着量が多く保持力が同等の活性炭を充填し、第2層目の分割された大気ポート側の吸着材層に、第1層目の吸着材層の活性炭より蒸発燃料の吸着量が少なく保持力が同等の活性炭を充填したことを特徴とするキャニスタ。 In a canister in which the adsorbent layer is divided into two first and second adsorbent layers by a partition and arranged in series, the second adsorbent layer is divided into two by a filter or a plate, The first adsorbent layer is filled with activated carbon having a larger amount of evaporated fuel adsorbed than the activated carbon of the adsorbent layer on the air port side divided in the second layer and having the same holding power. A canister characterized in that the divided adsorbent layer on the atmospheric port side is filled with activated carbon having a smaller amount of evaporated fuel adsorbed than the activated carbon of the first adsorbent layer and having the same holding power. 前記2層目の分割された大気ポート側の吸着材層の容量を、全吸着材層の容量の14.3%以下としたことを特徴とする請求項1載のキャニスタ。 The capacity of the adsorbent layer of the second layer of the divided air port side, claim 1 Symbol placement of the canister, characterized in that not more than 14.3% of the volume of all adsorbent layer. 前記フィルタまたは前記プレートを除去したことを特徴とする請求項1又は2載のキャニスタ。 Claim 1 or 2 Symbol mounting of the canister, characterized in that removing the filter or the plate.
JP2005357029A 2000-12-25 2005-12-09 Canister Expired - Lifetime JP4209884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005357029A JP4209884B2 (en) 2000-12-25 2005-12-09 Canister

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000404629 2000-12-25
JP2005357029A JP4209884B2 (en) 2000-12-25 2005-12-09 Canister

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001391571A Division JP3826028B2 (en) 2000-12-25 2001-12-25 Canister

Publications (2)

Publication Number Publication Date
JP2006083871A JP2006083871A (en) 2006-03-30
JP4209884B2 true JP4209884B2 (en) 2009-01-14

Family

ID=36162557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005357029A Expired - Lifetime JP4209884B2 (en) 2000-12-25 2005-12-09 Canister

Country Status (1)

Country Link
JP (1) JP4209884B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154850A (en) * 1986-12-17 1988-06-28 Nippon Denso Co Ltd Vaporized fuel disposing device for vehicle
JPH053737Y2 (en) * 1987-08-12 1993-01-28
JP3465393B2 (en) * 1995-01-06 2003-11-10 トヨタ自動車株式会社 Evaporative fuel processor for internal combustion engines
JP3727224B2 (en) * 2000-05-15 2005-12-14 愛三工業株式会社 Canister

Also Published As

Publication number Publication date
JP2006083871A (en) 2006-03-30

Similar Documents

Publication Publication Date Title
US7998257B2 (en) Canister
JP3826028B2 (en) Canister
US7305974B2 (en) Activated carbon and evaporative fuel treatment apparatus using the activated carbon
JP3319108B2 (en) Automotive canister
US8992673B2 (en) Evaporated fuel treatment apparatus
US20020078931A1 (en) Canister
JP2005195007A (en) Canister of car
JP2005016329A (en) Vaporized fuel treatment device and controller for internal combustion engine using it
JP3912048B2 (en) Evaporative fuel processing equipment
JP2005035812A (en) Active carbon and canister
JP2001323845A (en) Canister
JP2014118896A (en) Evaporation fuel treatment device
JP2016109090A (en) Canister
US7005001B2 (en) X-spring volume compensation for automotive carbon canister
JP6725483B2 (en) Canister
JP4209884B2 (en) Canister
JP2004225550A (en) Canister
JP2000303917A (en) Canister
JPH0674107A (en) Evaporation fuel treatment device
JP2022120492A (en) Evaporation fuel treatment device
JPH06249088A (en) Canister
JP2002266710A (en) Canister
JPS6119827B2 (en)
JP2014037790A (en) Evaporated fuel treatment device
JP2010031711A (en) Canister

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081023

R150 Certificate of patent or registration of utility model

Ref document number: 4209884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141031

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term