JPS63154850A - Vaporized fuel disposing device for vehicle - Google Patents

Vaporized fuel disposing device for vehicle

Info

Publication number
JPS63154850A
JPS63154850A JP29867986A JP29867986A JPS63154850A JP S63154850 A JPS63154850 A JP S63154850A JP 29867986 A JP29867986 A JP 29867986A JP 29867986 A JP29867986 A JP 29867986A JP S63154850 A JPS63154850 A JP S63154850A
Authority
JP
Japan
Prior art keywords
fuel
adsorption layer
canister
evaporated fuel
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29867986A
Other languages
Japanese (ja)
Inventor
Yuji Ishiguro
石黒 裕次
Nobuhiko Koyama
信彦 小山
Kunio Okamoto
邦夫 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP29867986A priority Critical patent/JPS63154850A/en
Publication of JPS63154850A publication Critical patent/JPS63154850A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve collection efficiency, by a method wherein on adsorbent, having a high pore size, and an absorbent, having a low pore size, and activated cola fiber are arranged in a direction extending from the one end of a canister container, in which a vaporized fuel introduction and a purge port are formed, toward the other end in which an open air release port is formed. CONSTITUTION:A vaporized fuel introduction port 23, a feed oil vaporized fuel introduction port 24, and a purge port 25, connected to the suction pipe of an internal combustion engine are formed in an upper end plate 22 of a canister container 20, and an open air release port 32 opened to the open air is formed in the other end of the canister container 20. A first adsorption layer 33, formed in the direction of the open air release port 32 side by laminating granular activated cool having a high pore size of approximate 15 A, a second adsorption layer 34, formed in the middle by laminating granular activated coal adsorbing mainly a low boiling point component and having a low pore size of approximate 10A, end a third adsorbent layer 35, formed by activated coal fiber, ore formed, in order, from the upper end plate 22 side toward the open air release port 32 side.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、車両における燃料タンク内で発生した蒸発燃
料が直接大気中に放出されるのを防止する処理装置、す
なわちキャニスタに係り、特に給油中に燃料タンクに発
生する蒸発燃料も効果的に吸収することができるキャニ
スタに関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a processing device, that is, a canister, that prevents evaporated fuel generated in a fuel tank of a vehicle from being directly released into the atmosphere, and particularly relates to a canister. The present invention relates to a canister that can effectively absorb evaporated fuel generated in a fuel tank.

〔従来の技術〕[Conventional technology]

車両においては、燃料タンク内で発生した蒸発燃料が直
接人気中に放出されるのを防止するため、キャニスタを
使用していることは知られている。
It is known that canisters are used in vehicles to prevent the evaporated fuel generated in the fuel tank from being directly released into the vehicle.

キャニスタの構造について、その−例が特開昭57−1
76341号公報に記載されている。二のものは、キャ
ニスタ容器の一方の端部に、燃料タンクと連通され該燃
料タンクで発生した蒸発燃料を導く蒸発燃料導入口およ
び内燃機関の吸気通路と連通ずるパーシロを設けるとと
もに、−1−記キャニスタ容器の他方の端部に大気と連
通ずる大気開放口を設け、このキャニスタ容器内には粒
状活性炭からなる吸着層を設けである。
Regarding the structure of the canister, an example is given in JP-A-57-1.
It is described in Publication No. 76341. The second method is to provide, at one end of the canister container, an evaporated fuel inlet that communicates with the fuel tank and guides the evaporated fuel generated in the fuel tank, and a persilo that communicates with the intake passage of the internal combustion engine, and -1- The other end of the canister container is provided with an air opening that communicates with the atmosphere, and an adsorption layer made of granular activated carbon is provided within the canister container.

このようなキャニスタは、エンジン停止中に周囲温度の
影響にて燃料タンクで発生した蒸発燃料およびエンジン
運転中エンジンからリターンする燃料にて加温されるこ
とにより燃料タンクで発生した蒸発燃料(以下これらの
蒸発燃料を通常蒸発燃料と称する)が蒸発燃料導入口か
らキャニスタ容器内に導かれ、このキャニスタ容器内に
収容した粒状活性炭からなる吸着層に吸着される。そし
て、燃料成分が分離された空気成分は大気開放口から放
出される。
This type of canister is used to store evaporated fuel generated in the fuel tank due to the influence of ambient temperature when the engine is stopped, and evaporated fuel generated in the fuel tank by heating with fuel returned from the engine while the engine is running (hereinafter referred to as these). The evaporated fuel (usually referred to as evaporated fuel) is introduced into the canister container from the evaporated fuel inlet and is adsorbed by an adsorption layer made of granular activated carbon contained in the canister container. Then, the air component from which the fuel component has been separated is released from the atmosphere opening.

一方、エンジンの運転時には、機関の吸気通路に発生す
る負圧によってキャニスタ容器内の空気を吸気通路に吸
引し、この際、大気開放口から新規な空気を導入して該
空気により前記粒状活性炭に吸着した燃料成分を粒状活
性炭から分離し、吸気通路に引き込む。これにより粒状
活性炭の活性化、すなわち吸着能力の復活をなさしめる
ものである。
On the other hand, when the engine is running, the air in the canister container is sucked into the intake passage by the negative pressure generated in the intake passage of the engine, and at this time, new air is introduced from the atmosphere opening and the granular activated carbon is absorbed by the air. The adsorbed fuel components are separated from the granular activated carbon and drawn into the intake passage. This activates the granular activated carbon, that is, restores its adsorption capacity.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上記従来のキャニスタは、主としてエンジン
の停止中および運転中に燃料タンク内で蒸発する燃料、
すなわち通常蒸発燃料を捕集することにより大気に放出
させないように考慮されていた。
By the way, the above-mentioned conventional canister mainly stores fuel that evaporates in the fuel tank while the engine is stopped and when the engine is running.
In other words, consideration has been given to collecting evaporated fuel to prevent it from being released into the atmosphere.

しかしながら、近年、ガソリンスタンド等にて燃料を給
油する時にも発生する蒸発燃料(以下、これを給油時蒸
発燃料と称する)による大気汚染が問題視されるように
なってきた。
However, in recent years, air pollution caused by evaporated fuel (hereinafter referred to as evaporated fuel during refueling) generated even when refueling at a gas station or the like has become a problem.

このため、上記給油時蒸発燃料も処理する必要がでてき
たが、この給油時蒸発燃料のみを処理する専用のキャニ
スタを新設することは、車両の搭載スペースやコスト面
で不利である。特に、給油時蒸発燃料の蒸発量は給油ノ
ズルから供給される燃料の注入速度にほぼ比例するので
、短時間の内に大;の蒸発燃料が発生し、これを処理す
るためのキャニスタは大型になる心配があり、車両に搭
載することは不利である。
For this reason, it has become necessary to also process the evaporated fuel during refueling, but installing a new canister exclusively for processing only the evaporated fuel during refueling is disadvantageous in terms of vehicle mounting space and cost. In particular, since the amount of evaporated fuel during refueling is almost proportional to the injection speed of fuel supplied from the refueling nozzle, a large amount of evaporated fuel is generated in a short period of time, and the canister to handle this becomes large. Therefore, it is disadvantageous to install it in a vehicle.

このため、従来の通常蒸発燃料を捕集するキャニスタを
、給油時蒸発燃料を処理するキャニスタにも兼用するこ
とが考えられる。
For this reason, it is conceivable that the conventional canister that normally collects evaporated fuel may also be used as a canister that processes evaporated fuel during refueling.

しかしながら、従来における通常蒸発燃料を捕集するキ
ャニスタでは、単一の吸着剤を使用している。すなわち
、エンジンの停止中や運転中に燃料タンク内で蒸発する
燃料の成分は低沸点成分から高沸点成分まで亙っており
、これらを5遍なく吸着できる吸着剤が用いられている
However, conventional canisters that collect evaporated fuel typically use a single adsorbent. That is, the fuel components that evaporate in the fuel tank while the engine is stopped or running range from low boiling point components to high boiling point components, and an adsorbent that can uniformly adsorb all of these components is used.

これに対し、給油時に発生する蒸発燃料は低沸点成分が
主体であり、しかも高速で流入してくるから、上記従来
の吸着剤では給油時に発生する蒸発燃料の低沸点成分を
捕集し切れないとともに、吹き抜けてしまい、大気に放
出される不具合がある。
On the other hand, since the evaporated fuel generated during refueling is mainly composed of low boiling point components and flows in at high speed, the conventional adsorbents mentioned above cannot completely capture the low boiling point components of the evaporated fuel generated during refueling. At the same time, there is a problem that the gas blows through and is released into the atmosphere.

本発明においては、単一のキャニスタで通常蒸発燃料を
効率よく捕集することができるとともに、給油時蒸発燃
料も効果的に捕集することができる兼用の車両用蒸発燃
料処理装置を提供しようとするものである。
The present invention aims to provide a dual-purpose vehicular evaporative fuel processing device that can efficiently collect normal evaporated fuel and also effectively collect evaporated fuel during refueling with a single canister. It is something to do.

〔問題点を解決するための手段〕[Means for solving problems]

本発明においては、キャニスタ容器の一方の端部に、燃
料タンクと連通され該燃料タンクで発生した蒸発燃料を
導く蒸発燃料導入口、上記燃料タンクと連通されこの燃
料タンクに給油時に発生する蒸発燃料を導く給油蒸発燃
料導入口および内燃機関の吸気通路と連通ずるパーシロ
を設けるとともに、上記キャニスタ容器の他方の端部に
大気と連通ずる人気開放口を設け、このキャニスタ容器
内に充填する吸着剤を3層構造とし、上流側に主として
高沸点成分を吸着する細孔径の大きな吸着剤よりなる第
1の吸着層、中間に主として低沸点成分を吸着する細孔
径の小さな吸着剤よりなる第2の吸着層および大気側に
吸着速度の速い活性炭繊維よりなる第3の吸着層を設け
たことを特徴とする。
In the present invention, one end of the canister container is provided with an evaporative fuel inlet communicating with the fuel tank and introducing the evaporative fuel generated in the fuel tank, and an evaporative fuel inlet communicating with the fuel tank and introducing the evaporative fuel generated when refueling the fuel tank. A refueling evaporated fuel inlet that leads to the refueling and a persillo that communicates with the intake passage of the internal combustion engine are provided, and an open port that communicates with the atmosphere is provided at the other end of the canister container, and the adsorbent to be filled in this canister container is provided. It has a three-layer structure, with a first adsorption layer on the upstream side consisting of an adsorbent with a large pore diameter that mainly adsorbs high-boiling components, and a second adsorption layer in the middle consisting of an adsorbent with a small pore diameter that mainly adsorbs low-boiling components. It is characterized in that a third adsorption layer made of activated carbon fibers with a high adsorption rate is provided on the layer and the atmosphere side.

〔作用〕[Effect]

本発明の構成によると、通常蒸発燃料が蒸発燃料導入口
からキャニスタ容器内に導かれると、この通常蒸発燃料
に含まれる高沸点成分は主として細孔径の大きな吸着剤
よりなる第1の吸着層に選択的に吸着され、低沸点成分
は主としてその下流側の細孔径の小さな吸着剤よりなる
第2の吸着層に吸着される。この場合、通常蒸発燃料の
キャニスタ容器内への流入速度は極めて低いので大気へ
の吹き抜けは生じない。一方、給油時蒸発燃料が給油蒸
発燃料導入口を通じてキャニスタ容器内に導かれると、
この給油時蒸発燃料に主として含まれる低沸点成分は細
孔径の小さな吸着剤よりなる第2の吸着層に吸着される
。そしてこの場合、給油時蒸発燃料のキャニスタ容器内
への流入速度はかなり速いので、上記第1および第2の
吸着層で吸着しきれなかった蒸発燃料は吸着速度の速い
活性炭繊維よりなる第3の吸告層に吸着され、よって大
気への吹き抜けは生じない。そして、エンジンの運転時
には、機関の吸気通路に発生する負圧によってキャニス
タ容器内の空気がバーシロから吸気通路に吸引され、こ
の際、大気開放口から新規な空気を導入して該空気によ
り前記各吸着層に吸着した燃料成分を分離して吸気通路
に引き込む。
According to the configuration of the present invention, when the normal vaporized fuel is introduced into the canister container from the vaporized fuel inlet, the high boiling point components contained in the normal vaporized fuel are mainly absorbed into the first adsorption layer made of the adsorbent with a large pore size. It is selectively adsorbed, and the low-boiling components are mainly adsorbed on the downstream side of the second adsorption layer, which is made of an adsorbent with a small pore size. In this case, the rate at which the evaporated fuel normally flows into the canister is extremely low, so that no blow-through to the atmosphere occurs. On the other hand, when refueling vaporized fuel is introduced into the canister container through the refueling vaporized fuel inlet,
The low boiling point components mainly contained in the evaporated fuel during refueling are adsorbed on the second adsorption layer made of an adsorbent with a small pore diameter. In this case, the flow rate of the evaporated fuel into the canister container during refueling is quite fast, so the evaporated fuel that cannot be completely adsorbed by the first and second adsorption layers is transferred to the third layer made of activated carbon fibers, which has a high adsorption rate. It is adsorbed by the adsorption layer and therefore does not blow through to the atmosphere. When the engine is running, the air in the canister container is sucked into the intake passage from the versilor by the negative pressure generated in the intake passage of the engine, and at this time, new air is introduced from the atmosphere opening and the air is used to The fuel components adsorbed on the adsorption layer are separated and drawn into the intake passage.

これにより各吸着層の活性化がなされる。This activates each adsorption layer.

〔実施例〕〔Example〕

以下本発明について、図面に示す一実施例にもとづき説
明する。
The present invention will be described below based on an embodiment shown in the drawings.

第1図はキャニスタ全体の断面図、第2図はこのキャニ
スタを使用した蒸発燃料処理システムの概略的構成図で
あり、まず第2図の蒸発燃料処理システムについて説明
する。
FIG. 1 is a sectional view of the entire canister, and FIG. 2 is a schematic diagram of a fuel vapor treatment system using this canister. First, the fuel vapor treatment system shown in FIG. 2 will be explained.

図において1は燃料タンク、2はキャニスタ、3はエン
ジンである。
In the figure, 1 is a fuel tank, 2 is a canister, and 3 is an engine.

燃料タンク1は給油口4を備え、この給油口4に給油ノ
ズル5を差し込んで燃料の給油がおこなわれる。燃料タ
ンク1には、この燃料タンク1内で発生した通常蒸発燃
料をキャニスタ2に導く通常蒸発燃料導管6が接続され
ているとともに、給油時蒸発燃料をキャニスタ2に導く
給油時蒸発燃料導管7が接続されている。給油時蒸発燃
料導管7には、通常は閉じているが前記給油口4に給油
ノズル5が差し込まれた時にこれを検知して自動的に開
くバルブ8が設けられている。
The fuel tank 1 includes a fuel filler port 4, and a fuel nozzle 5 is inserted into the filler port 4 to supply fuel. The fuel tank 1 is connected with a normal evaporated fuel conduit 6 that guides the normal evaporated fuel generated in the fuel tank 1 to the canister 2, and a refueling evaporated fuel conduit 7 that guides the evaporated fuel during refueling to the canister 2. It is connected. The evaporated fuel conduit 7 during refueling is provided with a valve 8 which is normally closed but automatically opens when the refueling nozzle 5 is inserted into the refueling port 4 upon detecting this.

また、キャニスタ2と、エンジン3の吸気通路9の間に
はパージ導管IOが接続されている。
Further, a purge conduit IO is connected between the canister 2 and the intake passage 9 of the engine 3.

キャニスタ2の詳細について、第1図にもとづき説明す
る。20はキャニスタ容器であり、このキャニスタ容器
20は、容器本体21の上端開口を上部端板22にて気
密に閉塞して構成されている。
Details of the canister 2 will be explained based on FIG. 1. 20 is a canister container, and this canister container 20 is constructed by airtightly closing the upper end opening of a container body 21 with an upper end plate 22.

上部端板22には、前°記通常蒸発燃料導管6に接続さ
れる通常蒸発燃料導入口23か形成されているとともに
、上記給油時蒸発燃料導管7に接続される給油蒸発燃料
導入口24およびパージ導管10に接続されるバーシロ
25が設けられている。
The upper end plate 22 is formed with a normal evaporated fuel inlet 23 connected to the normal evaporated fuel conduit 6, and a refueled evaporated fuel inlet 24 connected to the evaporated fuel conduit 7 during refueling. A versilor 25 is provided which is connected to the purge conduit 10.

通常蒸発燃料導入口23の下部にはバルブ室2Bが形成
されており、このバルブ室26には負圧チェックバルブ
27が設けられている。また、このバルブ室2Bは一ヒ
記ヒ部端板22の中央部に形成した案内バイブ28に連
通しており、この案内バイブ28には正圧チェックバル
ブ29が設けられている。
Normally, a valve chamber 2B is formed below the vaporized fuel inlet 23, and a negative pressure check valve 27 is provided in this valve chamber 26. Further, this valve chamber 2B communicates with a guide vibe 28 formed in the center of the end plate 22 of the section A, and this guide vibe 28 is provided with a positive pressure check valve 29.

バーシロ25の下部にも他のバルブ室30が形成されて
おり、このバルブ室30には他の負圧チェックバルブ3
1が設けられている。
Another valve chamber 30 is formed in the lower part of the vershilo 25, and this valve chamber 30 has another negative pressure check valve 3.
1 is provided.

また、上記容器本体2Iの他端には人気に開放された大
気開放口32が形成されている。
Further, an air opening 32 is formed at the other end of the container body 2I.

このようなキャニスタ容器20内には、燃料吸着剤が収
容されている。燃料吸着剤は3層構造をなしており、上
部端板22側から大気開放口32側に向けて、主として
高沸点成分を吸着する細孔径の大きな(15人程度)吸
着剤、例えば粒状活性炭を積層してなる第1の吸着層3
3と、中間に主として低沸点成分を吸着する細孔径の小
さな(10人程度)吸着剤、例えば粒状活°性炭を積層
してなるよりなる第2の吸着層34および吸着速度の速
い活性炭繊維よりなる第3の吸着層35とで構成されて
いる。
A fuel adsorbent is accommodated in such a canister container 20. The fuel adsorbent has a three-layer structure, and from the upper end plate 22 side to the atmosphere opening 32 side, an adsorbent with a large pore size (about 15 layers) that mainly adsorbs high boiling point components, such as granular activated carbon, is placed. First adsorption layer 3 formed by stacking
3, and a second adsorption layer 34 consisting of a layered intermediate adsorbent with a small pore diameter (about 10 particles) that mainly adsorbs low-boiling components, such as granular activated carbon, and activated carbon fibers with a high adsorption rate. The third adsorption layer 35 is composed of:

これら各層1の吸着層33と、第2の吸着層34と、第
3の吸着層35との間には、これら各層の吸着剤が混じ
り合わないように、フィルタ3B、 37.38が設け
られている。
Filters 3B, 37, 38 are provided between the adsorption layer 33 of each layer 1, the second adsorption layer 34, and the third adsorption layer 35 so that the adsorbents of these layers do not mix. ing.

なお、第1の吸着層33はキャニスタ容器20内の容積
に対する略65%を占め、第2の吸着層34は同じく略
3096を占め、かつ第3の吸着層35は略5%を占め
ており、これらの充填容量は、実測割合にもとづき設定
される。
The first adsorption layer 33 occupies approximately 65% of the internal volume of the canister container 20, the second adsorption layer 34 also occupies approximately 3096, and the third adsorption layer 35 occupies approximately 5%. , these filling capacities are set based on actually measured proportions.

また、前記給油蒸発燃料導入口は、上部端板22と上部
フィルタ3Bの間に形成された空間39に開口されてい
る。
Further, the refueling evaporated fuel inlet is opened in a space 39 formed between the upper end plate 22 and the upper filter 3B.

第1の吸着層38内には、前記案内バイブ2Bと対向し
てバッフル40が、脚部41・・・を容器本体21に固
定されて設置されている。
A baffle 40 is installed in the first adsorption layer 38, facing the guide vibe 2B, with its legs 41 fixed to the container body 21.

このような構成による実施例の作用について説明する。The operation of the embodiment with such a configuration will be explained.

エンジン停止中に周囲温度の影響により燃料タンクl内
に発生した蒸発燃料およびエンジン運転中エンジンから
リターンする燃料にて加1Mされることにより燃料タン
ク1内で発生した蒸発燃料(通常蒸発燃料)は、通常蒸
発燃料導管6および蒸発燃料導入口23からキャニスタ
容器20内に導かれる。蒸発燃料導入口23からキャニ
スタ容器20内に入った通常蒸発燃料は、バルブ室2B
から案内パイプ28に流れ、この案内パイプ28の正圧
チェックバルブ29を押し開いて第1の吸着層33に導
かれる。
The evaporated fuel generated in the fuel tank 1 due to the influence of ambient temperature while the engine is stopped and the fuel returned from the engine while the engine is running are added to the evaporated fuel (usually evaporated fuel) that is generated in the fuel tank 1. , is normally introduced into the canister container 20 from the evaporated fuel conduit 6 and the evaporated fuel inlet 23. The normal evaporated fuel that entered the canister container 20 from the evaporated fuel inlet 23 flows into the valve chamber 2B.
The liquid flows from the gas into the guide pipe 28, pushes open the positive pressure check valve 29 of the guide pipe 28, and is guided to the first adsorption layer 33.

二の場合、前記案内パイプ28の直下にはバッフル40
が配置されているから、案内パイプ28から第1の吸着
層33に流れ込んだ通常蒸発燃料は、矢印で示すように
周囲の拡散され、第1の吸着層33を分散して流れる。
In case 2, a baffle 40 is provided directly below the guide pipe 28.
Because of the arrangement, the normal evaporated fuel that has flowed into the first adsorption layer 33 from the guide pipe 28 is diffused into the surrounding area as shown by the arrow, and flows through the first adsorption layer 33 in a dispersed manner.

そして、通常蒸発燃料は低沸点成分ばかりでなく高沸点
成分もかなり含まれるので、高沸点成分は主として細孔
径の大きな吸着剤よりなる第1の吸着層33に選択的に
吸着され、低沸点成分は主としてその下流側の細孔径の
小さな吸着剤よりなる第2の吸着層34に吸着される。
Since evaporated fuel normally contains not only low-boiling point components but also a considerable amount of high-boiling point components, the high-boiling point components are mainly selectively adsorbed by the first adsorption layer 33 made of adsorbent with a large pore size, and the low-boiling point components is mainly adsorbed on the downstream side of the second adsorption layer 34 made of an adsorbent with a small pore diameter.

この場合、通常蒸発燃料のキャニスタ容器20内への流
入速度は極めて微速であるから、第1の吸着層33およ
び第2の吸着層34に所定の吸着能力を与えておけば、
大気開放口32を通じて大気へ吹き抜けることはない。
In this case, since the flow rate of the vaporized fuel into the canister container 20 is usually extremely slow, if a predetermined adsorption capacity is given to the first adsorption layer 33 and the second adsorption layer 34,
It does not blow through to the atmosphere through the atmosphere opening 32.

したがって、燃料成分か分離された空気成分は大気開放
口32から放出されるので大気汚染を生じることはない
Therefore, the air component separated from the fuel component is released from the atmosphere opening port 32, so that no air pollution occurs.

一方、給油時にあっては、給油ノズル5を給油口4に差
し込むと、これを検知してバルブ8が自動的に開かれる
。このため、給油蒸発燃料導入口置開かれ、燃料タンク
I内と給油蒸発燃料導入口6が連通ずる。
On the other hand, when refueling, when the refueling nozzle 5 is inserted into the refueling port 4, this is detected and the valve 8 is automatically opened. Therefore, the refueling evaporative fuel inlet 6 is opened, and the inside of the fuel tank I and the refueling evaporative fuel inlet 6 communicate with each other.

したがって、給油時に燃料タンク1内に発生する蒸発燃
料がキャニスタ容器20内に導かれる。給油時に蒸発す
る燃料は常温状態て蒸発するものであるため、主として
低沸点成分である。
Therefore, evaporated fuel generated in the fuel tank 1 during refueling is guided into the canister container 20. Since the fuel that evaporates during refueling evaporates at room temperature, it is mainly a low boiling point component.

給油蒸発燃料導入口6よりキャニスタ容器20内に導か
れた給油時蒸発燃料は、まず第1の吸着層33を通るが
、第1の吸着層33は高沸点成分との親和性が高いので
すでに吸着されている高沸点成分の吸着膜の上に第2の
吸着膜として吸着される。
The refueling vaporized fuel introduced into the canister container 20 from the refueling vaporized fuel inlet 6 first passes through the first adsorption layer 33, but since the first adsorption layer 33 has a high affinity with high boiling point components, it has already been absorbed. It is adsorbed as a second adsorption film on the adsorption film of the high boiling point component that has been adsorbed.

そしてこの第1の吸着層33で吸着し切れなかった大部
分の低沸点成分は第2の吸着層34に吸着される。
Most of the low boiling point components that have not been completely adsorbed by the first adsorption layer 33 are adsorbed by the second adsorption layer 34.

そしてこの場合、給油時蒸発燃料のキャニスタ容器20
内への流入速度はかなり速いので、上記第1および第2
の吸着層33.34で吸若しきれなかった蒸発燃料は吸
着速度の速い活性炭繊維よりなる第3の吸着層35に吸
着され、よって蒸発燃料が大気へ吹き抜けることがない
In this case, the canister container 20 for vaporized fuel during refueling
Since the inflow speed into the interior is quite fast, the above-mentioned first and second
The evaporated fuel that cannot be completely absorbed by the adsorption layers 33 and 34 is adsorbed by the third adsorption layer 35 made of activated carbon fibers having a high adsorption rate, so that the evaporated fuel does not blow into the atmosphere.

エンジンの運転時には、エンジン3の吸気通路9に発生
する負圧かパージ導管10からパーシロ25に作用する
。この負圧はパーシロ25の下部に設けた他のバルブ室
30の負圧チェックバルブ31を開いてキャニスタ容器
20内の空気を吸気通路9に吸引する。このため、大気
開放ロアから新規な空気が導入され、この空気は第3の
吸着層35、第2の吸着層34、第1の吸着層33を通
ってパーシロ25に導かれる。この空気が各吸着1茜3
5.34.33を通過する過程で上記すでに吸着してい
る燃料成分を各吸着層35.34.33から分離して吸
気通路9に引き込む。これにより各吸着層35.34.
33の活性化がなされる。
When the engine is operating, the negative pressure generated in the intake passage 9 of the engine 3 acts on the persillo 25 from the purge conduit 10. This negative pressure opens the negative pressure check valve 31 of another valve chamber 30 provided at the lower part of the Persillo 25 and sucks the air inside the canister container 20 into the intake passage 9. For this reason, new air is introduced from the atmosphere opening lower, and this air is guided to the Persillo 25 through the third adsorption layer 35, the second adsorption layer 34, and the first adsorption layer 33. This air is adsorbed 1 Akane 3
5.34.33, the already adsorbed fuel components are separated from each adsorption layer 35.34.33 and drawn into the intake passage 9. This allows each adsorption layer 35.34.
33 activations are made.

したがって、上記実施例によると、単一のキャニスタ2
によって通常蒸発燃料と給油時蒸発燃料を吸着処理する
ことができ、したがって車両に格別な給油時蒸発燃料の
みを処理する専用のキャニスタを設置する必要がない。
Therefore, according to the above embodiment, a single canister 2
By this, the normal evaporated fuel and the evaporated fuel during refueling can be adsorbed and processed, so there is no need to install a special canister in the vehicle that processes only the evaporated fuel during refueling.

しかも、燃料吸右剤は主として高沸点成分を吸着する細
孔径の大きな第1の吸着層33と、低沸点成分を吸着す
る細孔径の小さな第2の吸着層34および成否速度の速
い活性炭繊維よりなる第3の吸着層35とで3層構造を
なしているから、給油時蒸発燃料の成分が大部分低沸点
成分てあっても、吹き抜けを発生させず、大気汚染を確
実に防+1することができる。
Moreover, the fuel adsorption agent mainly consists of a first adsorption layer 33 with a large pore diameter that adsorbs high boiling point components, a second adsorption layer 34 with a small pore diameter that adsorbs low boiling point components, and activated carbon fibers that have a fast success/failure rate. Since it has a three-layer structure with the third adsorption layer 35, even if most of the components of the vaporized fuel at the time of refueling are low boiling point components, blow-through does not occur and air pollution is reliably prevented by +1. I can do it.

なお、上記実施例ではEFI専用の蒸発燃料処理システ
ムについて説明したが、キャブ車の場合、キャブレタか
らの蒸発燃料を処理する必要があるから、第1図のキャ
ニスタ容器20にキャブレタからの蒸発燃料を導入する
ようにしてもよい。
In the above embodiment, an evaporative fuel processing system exclusively for EFI was explained, but in the case of a cab car, it is necessary to process evaporative fuel from the carburetor, so the evaporative fuel from the carburetor is placed in the canister container 20 shown in FIG. You may also introduce it.

〔発明の効果〕〔Effect of the invention〕

以−1−説明したように本発明によると、高沸点成分を
吸着する細孔径の大きな第1の吸着層と、低沸点成分を
吸着する細孔径の小さな第2の吸着層および吸着速度の
速い活性炭繊維よりなる第3の吸着層とで3層構造をな
したから、通常蒸発燃料を効率よく捕集することができ
るとともに、給油時蒸発燃料も効果的に捕集することが
できる。このため、単一のキャニスタによって通常蒸発
燃料と給油時蒸発燃料を吸着処理することができ、した
がって車両に格別な給油時蒸発燃料のみを処理する専用
のキャニスタを設置する必要がない。
As explained above-1-, according to the present invention, a first adsorption layer with a large pore size that adsorbs a high boiling point component, a second adsorption layer with a small pore size that adsorbs a low boiling point component, and a high adsorption rate. Since it has a three-layer structure with the third adsorption layer made of activated carbon fibers, normal evaporated fuel can be efficiently collected, and evaporated fuel during refueling can also be effectively collected. Therefore, the normal evaporated fuel and the evaporated fuel during refueling can be adsorbed and processed by a single canister, and there is no need to install a special canister in the vehicle that processes only the evaporated fuel during refueling.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示し、第1図はキャニスタの
断面図、第2図はこのキャニスタを使用した蒸発燃料処
理システムの概略的構成図である。 ■・・・燃料タンク、2・・・キャニスタ、3・・・エ
ンジン、4・・・給油口、5・・・給油ノズル、6・・
・通常蒸発燃料導管、7・・・給油蒸発燃料導入口8・
・・バルブ、IO・・・パージ導管、 20・・・キャニスタ容器、23・・・通常蒸発燃料導
入口、24・・・給油蒸発燃料導入口、25・・・パー
シロ、27・・・負圧チェックバルブ、29・・・正圧
チェックバルブ、31・・・他の負圧チェックバルブ、
32・・・大気開放口、33・・・第1の吸着層、34
・・・第2の吸着層、35・・・第3ノ吸RId、3B
、 37.38・・・フィルタ。
The drawings show one embodiment of the present invention, and FIG. 1 is a sectional view of a canister, and FIG. 2 is a schematic configuration diagram of an evaporative fuel processing system using this canister. ■...Fuel tank, 2...Canister, 3...Engine, 4...Refueling port, 5...Refueling nozzle, 6...
・Normal evaporative fuel conduit, 7... Refueling evaporative fuel inlet 8.
... Valve, IO... Purge conduit, 20... Canister container, 23... Normal vaporized fuel inlet, 24... Refueling vaporized fuel inlet, 25... Persil, 27... Negative pressure Check valve, 29... Positive pressure check valve, 31... Other negative pressure check valve,
32... Atmosphere opening port, 33... First adsorption layer, 34
...Second adsorption layer, 35...Third adsorption RId, 3B
, 37.38...filter.

Claims (1)

【特許請求の範囲】[Claims] キャニスタ容器の一方の端部に、燃料タンクと連通され
該燃料タンクで発生した蒸発燃料を導く蒸発燃料導入口
、上記燃料タンクと連通されこの燃料タンクに給油時に
発生する蒸発燃料を導く給油蒸発燃料導入口および内燃
機関の吸気通路と連通するパージ口を設けるとともに、
上記キャニスタ容器の他方の端部に大気と連通する大気
開放口を設け、このキャニスタ容器内には上記一方の端
部から他方の端部に向かって、細孔径の大きな吸着剤よ
りなる第1の吸着層、細孔径の小さな吸着剤よりなる第
2の吸着層および活性炭繊維よりなる第3の吸着層を設
けたことを特徴とする車両用蒸発燃料処理装置。
At one end of the canister container, an evaporative fuel inlet communicating with the fuel tank and guiding the evaporative fuel generated in the fuel tank, and a refueling evaporative fuel communicating with the fuel tank and guiding the evaporative fuel generated during refueling into the fuel tank. In addition to providing an inlet and a purge port that communicates with the intake passage of the internal combustion engine,
An atmosphere opening port communicating with the atmosphere is provided at the other end of the canister container, and a first adsorbent made of an adsorbent having a large pore size is disposed inside the canister container from the one end to the other end. 1. An evaporative fuel processing device for a vehicle, comprising an adsorption layer, a second adsorption layer made of an adsorbent with a small pore diameter, and a third adsorption layer made of activated carbon fiber.
JP29867986A 1986-12-17 1986-12-17 Vaporized fuel disposing device for vehicle Pending JPS63154850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29867986A JPS63154850A (en) 1986-12-17 1986-12-17 Vaporized fuel disposing device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29867986A JPS63154850A (en) 1986-12-17 1986-12-17 Vaporized fuel disposing device for vehicle

Publications (1)

Publication Number Publication Date
JPS63154850A true JPS63154850A (en) 1988-06-28

Family

ID=17862871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29867986A Pending JPS63154850A (en) 1986-12-17 1986-12-17 Vaporized fuel disposing device for vehicle

Country Status (1)

Country Link
JP (1) JPS63154850A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5632251A (en) * 1995-01-06 1997-05-27 Toyota Jidosha Kabushiki Kaisha Engine fuel vapor treating apparatus
US5914457A (en) * 1995-07-06 1999-06-22 Nippondenso Co., Ltd. Activated charcoal canister
JP2006083871A (en) * 2000-12-25 2006-03-30 Aisan Ind Co Ltd Canister
US7186195B2 (en) 2001-11-27 2007-03-06 Joh. Winklhofer & Sohne Gmbh Und. Co. Kg Chain-tensioner with mechanical locking
US7507278B2 (en) 2000-12-25 2009-03-24 Aisan Kogyo Kabushiki Kaisha Canister

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5632251A (en) * 1995-01-06 1997-05-27 Toyota Jidosha Kabushiki Kaisha Engine fuel vapor treating apparatus
US5914457A (en) * 1995-07-06 1999-06-22 Nippondenso Co., Ltd. Activated charcoal canister
JP2006083871A (en) * 2000-12-25 2006-03-30 Aisan Ind Co Ltd Canister
US7507278B2 (en) 2000-12-25 2009-03-24 Aisan Kogyo Kabushiki Kaisha Canister
US7998257B2 (en) 2000-12-25 2011-08-16 Aisan Kogyo Kabushiki Kaisha Canister
US7186195B2 (en) 2001-11-27 2007-03-06 Joh. Winklhofer & Sohne Gmbh Und. Co. Kg Chain-tensioner with mechanical locking

Similar Documents

Publication Publication Date Title
US5207808A (en) Canister for adsorbing evaporated fuel
JP2857658B2 (en) Evaporative fuel emission suppression device
US6230693B1 (en) Evaporative emission canister with heated adsorber
JP2910607B2 (en) Evaporative fuel treatment system for vehicles
JP3465393B2 (en) Evaporative fuel processor for internal combustion engines
JP2934699B2 (en) Evaporative fuel processing equipment
US6773491B1 (en) Activated carbon filter
JP3345007B2 (en) Exhaust device for fuel tank of internal combustion engine
JP3320722B2 (en) Exhaust device for fuel tank of internal combustion engine
US7909024B2 (en) Hydrocarbon fuel vapour filter system
JPH01159455A (en) Evaporative fuel treating equipment for vehicle
JPS63154850A (en) Vaporized fuel disposing device for vehicle
JP3705398B2 (en) Evaporative fuel control device for internal combustion engine
JPH05195884A (en) Evaporated fuel processing device
US7214258B2 (en) Evaporated fuel processing device
JPH09203353A (en) Vehicular canister
JP2020169613A (en) Evaporated fuel treatment device
JPH0674107A (en) Evaporation fuel treatment device
JPS61283756A (en) Evaporated fuel disposing device
JP2882015B2 (en) Evaporative fuel processing equipment
CN201351547Y (en) Charcoal canister for gas filtration of car and motorcycle
JPH07696Y2 (en) Canister device
CN101239582B (en) Vapor recovery system for a vehicle fuel tank
JPH08246966A (en) Fuel vaporization gas discharge suppressing device
JPH07151022A (en) Evaporated fuel processor