JPH09203353A - Vehicular canister - Google Patents

Vehicular canister

Info

Publication number
JPH09203353A
JPH09203353A JP1143096A JP1143096A JPH09203353A JP H09203353 A JPH09203353 A JP H09203353A JP 1143096 A JP1143096 A JP 1143096A JP 1143096 A JP1143096 A JP 1143096A JP H09203353 A JPH09203353 A JP H09203353A
Authority
JP
Japan
Prior art keywords
layer
adsorbent
adsorbent layer
canister
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1143096A
Other languages
Japanese (ja)
Inventor
Hideo Yamada
英生 山田
Tomozou Toki
朋造 土岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP1143096A priority Critical patent/JPH09203353A/en
Publication of JPH09203353A publication Critical patent/JPH09203353A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten oil supply time in a vehicular canister in which evaporative fuel is passed from an upstream side absorbent layer through a downstream side absorbent layer via a gas flow resistance part, by providing a bypass pass which bypasses the gas flow resistance part and the downstream absorbent layer, and providing a valve opened at the time of oil supplying on the way of the bypass pass. SOLUTION: When raw fuel in a fuel tank 27 is evaporated during an oil non- supplying period, evaporated fuel and air are sucked in the diffusion chamber 9 of a canister through a communicating passage 26, and discharged from a releasing port 37 by being passed through an absorbent 8 layer, a dispersion chamber 10, an absorbent 17 layer, a dispersion chamber 19, a restrictor 23, a diffusion chamber 20, an absorbent 18 layer and a diffusion chamber 21. Next, when oil is supplied while an engine is stopped, a great deal of evaporative fuel is generated in the fuel tank 27, and a valve 43 opened at the time of oil supplying is operated to be opened when the inside of a canister case 1 becomes positive pressure higher than the oil non- supplying period, and the inside of a bypass passage 24 becomes a specified high pressure or more. Hereby, gas flow resistance is lowered in comparison with gas flow resistance led to flow through the restrictor 23, therefore, such inconvenience is solved that oil supply hours are lengthened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【発明の属する技術分野】本発明は燃料タンク等から発
生する蒸発燃料を大気中へ放出させないように処理する
車両用キャニスタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle canister that processes vaporized fuel generated from a fuel tank or the like so as not to be released into the atmosphere.

【従来の技術】従来、自動車等の内燃機関に供給する燃
料を貯蔵する燃料タンクにおいては、その燃料タンク内
で発生した蒸発燃料をキャニスタで捕集し、機関運転時
に上記捕集した蒸発燃料を機関へパージするようにして
いる。このようなキャニスタにおいて、蒸発燃料の吹き
抜けを防止するために、主吸着剤層とは別に副吸着剤層
を仕切壁で区画して設けるとともに該仕切壁に小径の絞
り通路を設け、更に仕切壁の上流部に拡散室を設けて、
キャニスタへ吸入された蒸発燃料が上記主吸着剤層→拡
散室→絞り通路→副吸着剤層へと流れるようにしたもの
が知られている(例えば特開平5−187330号公
報)。
2. Description of the Related Art Conventionally, in a fuel tank for storing fuel to be supplied to an internal combustion engine of an automobile or the like, vaporized fuel generated in the fuel tank is collected by a canister, and the vaporized fuel collected during engine operation is collected. I try to purge it to the engine. In such a canister, in order to prevent blow-through of evaporated fuel, a sub-adsorbent layer is provided separately from the main adsorbent layer by a partition wall, and a small-diameter throttle passage is provided in the partition wall. A diffusion chamber is installed in the upstream part of
It is known that the evaporated fuel sucked into the canister flows through the main adsorbent layer → diffusion chamber → throttle passage → sub-adsorbent layer (for example, JP-A-5-187330).

【発明が解決しようとする課題】ところで、燃料タンク
内での蒸発燃料の発生は、通常の非給油時と給油時とで
考えることができ、前者での蒸発燃料の単位時間当りの
発生量は少ないが、後者での蒸発燃料の単位時間当りの
発生量は極めて多量である。そのため、上記従来のよう
に副吸着剤層、仕切壁、絞り等を設けたキャニスタにお
いては、非給油時での蒸発燃料の吸着が良好に行われる
としても、給油時においては、上記絞り通路や副吸着剤
層等が大きな通気抵抗となり、短時間に高圧で多量に発
生する蒸発燃料をキャニスタ内へ吸入できなくなり、燃
料タンクの内圧が高くなって給油時間が長くなったり、
強いては給油が自動停止することがある。そこで本発明
は、非給油時及び給油時の双方において、燃料タンク内
に発生した蒸発燃料を良好にキャニスタへ吸入し、かつ
給油時には上記のように給油時間が長くなったり、給油
が自動停止することを防止する車両用キャニスタを提供
することを目的とするものである。
The generation of evaporative fuel in the fuel tank can be considered when the fuel is not refueled and when it is normally refueled. In the former case, the amount of evaporative fuel generated per unit time is Although the amount is small, the amount of evaporated fuel generated per unit time in the latter is extremely large. Therefore, in the canister provided with the sub-adsorbent layer, the partition wall, the throttle, and the like as in the above-described conventional case, even if the evaporated fuel is favorably adsorbed at the time of non-refueling, at the time of refueling, the above-mentioned throttle passage or The secondary adsorbent layer, etc. has a large ventilation resistance, and it becomes impossible to suck in a large amount of evaporated fuel at a high pressure in a short time into the canister, which increases the internal pressure of the fuel tank and prolongs the refueling time.
In some cases, refueling may stop automatically. Therefore, the present invention satisfactorily sucks the evaporated fuel generated in the fuel tank into the canister both at the time of non-fueling and at the time of fueling, and at the time of fueling, the fueling time becomes longer as described above or the fueling stops automatically. It is an object of the present invention to provide a vehicle canister that prevents this.

【課題を解決するための手段】上記の課題を解決するた
めに、第1の発明は、複数の吸着剤層を設けるとともに
その上流側の吸着剤層と下流側の吸着剤層間に通気抵抗
部を設けて、燃料タンク内に発生した蒸発燃料と空気と
を上流側の吸着剤層から通気抵抗部を通じて下流側の吸
着剤層へ通過させて大気へ放出するキャニスタにおい
て、上記上流側の吸着剤(8,17)層から上記通気抵
抗部(23)と下流側吸着剤(18)層をバイパスして
大気へ開口するバイパス通路(24)を設け、上記バイ
パス通路(24)には、該バイパス通路(24)内が所
定の正圧になった場合にその圧力で開口する給油時開放
バルブ(43)を設けたことを特徴とするものである。
本発明においては、機関の停止状態での非給油時は、蒸
発燃料と空気が通気抵抗部(23)を通って流れ、上流
側の吸着剤(8,17)層で主に蒸発燃料が吸着捕集さ
れ、また蒸発燃料の吹き抜けも防止される。機関の停止
状態での給油時には、バイパス通路(24)内が昇圧さ
れて給油時開放バルブ(43)が開作動し、上流側の吸
着剤(8,17)層内の圧力はバイパス通路(24)を
経て大気へ放出される。そのため、上記の通気抵抗部
(23)や下流側の吸着剤(18)層による通気抵抗が
なく、燃料タンク(27)の昇圧が抑制される。第2の
発明は、キャニスタケース(1)内に区画壁(2)を設
けてその一側に第1の吸着剤(8)層を設け、他側に第
2の吸着剤(17)層と第3の吸着剤(18)層を重層
的に設け、第1の吸着剤(8)層の下流側と第2の吸着
剤(17)層の上流側を連通し、第2の吸着剤(17)
層と第3の吸着剤(18)層とを通気抵抗部(23)を
介して連通し、第3の吸着剤(18)層の下流を大気へ
連通し、上記第2の吸着剤(17)層から上記通気抵抗
部(23)と第3の吸着剤(18)層をバイパスして大
気へ開口するバイパス通路(24)を設け、該バイパス
通路(24)の内径を上記通気抵抗部(23)での通気
径より大径とし、更に上記バイパス通路(24)には、
該バイパス通路(24)内が所定の正圧になった場合に
その圧力で開口する給油時開放バルブ(43)を設け、
更に、第1の吸着剤(8)層の上流側に、燃料タンク
(27)の気相部に連通する小径の第1の蒸発燃料吸入
ポート(25)と大径の第2の蒸発燃料吸入ポート(2
9)を設けたことを特徴とするものである。本発明にお
いては、上記の第1の発明の作用に加え、上流側の吸着
剤層が、第1の吸着剤(8)層と第2の吸着剤(17)
層との2つの層により大容量に形成され、給油時におい
て、蒸発燃料と空気がバイパス通路(24)を通過する
以前にその蒸発燃料を効率的に吸着捕集でき、蒸発燃料
の大気への放出量を極めて少なくすることができる。更
に、大径の第2の蒸発燃料吸入ポート(29)を設けた
こと及びバイパス通路(24)を通気抵抗部(23)で
の通気径より大径に形成したことにより、給油時におけ
るキャニスタケース(1)内の圧力が速やかに大気へ放
出され、燃料タンク(27)内の昇圧の抑制が一層良好
に行われる。
In order to solve the above-mentioned problems, the first invention provides a plurality of adsorbent layers and a ventilation resistance section between the adsorbent layer on the upstream side and the adsorbent layer on the downstream side. In the canister which is provided with the vaporized fuel and the air generated in the fuel tank and passes from the adsorbent layer on the upstream side to the adsorbent layer on the downstream side through the ventilation resistance portion and is released to the atmosphere, the adsorbent on the upstream side is provided. A bypass passage (24) that opens from the (8, 17) layer to the atmosphere by bypassing the ventilation resistance portion (23) and the downstream adsorbent (18) layer is provided, and the bypass passage (24) includes the bypass passage (24). When the inside of the passage (24) becomes a predetermined positive pressure, an opening valve (43) for refueling that is opened by the pressure is provided.
In the present invention, when the engine is stopped and fuel is not supplied, the evaporated fuel and air flow through the ventilation resistance portion (23), and the adsorbent (8, 17) layer on the upstream side mainly adsorbs the evaporated fuel. It is also collected and the evaporative fuel is prevented from blowing through. During refueling while the engine is stopped, the pressure inside the bypass passage (24) is increased and the opening valve (43) during refueling is opened, so that the pressure in the upstream adsorbent (8, 17) layer is increased by the bypass passage (24). ) Is released into the atmosphere. Therefore, there is no ventilation resistance due to the ventilation resistance portion (23) or the adsorbent (18) layer on the downstream side, and the pressure increase in the fuel tank (27) is suppressed. A second invention provides a partition wall (2) in a canister case (1), a first adsorbent (8) layer is provided on one side thereof, and a second adsorbent (17) layer is provided on the other side thereof. The third adsorbent (18) layers are provided in multiple layers, and the downstream side of the first adsorbent (8) layer and the upstream side of the second adsorbent (17) layer are communicated with each other, and the second adsorbent (18 17)
The layer and the third adsorbent (18) layer are communicated with each other via the ventilation resistance portion (23), the downstream of the third adsorbent (18) layer is communicated with the atmosphere, and the second adsorbent (17) ) Layer is provided with a bypass passage (24) that bypasses the ventilation resistance portion (23) and the third adsorbent (18) layer and opens to the atmosphere, and the inner diameter of the bypass passage (24) is set to the ventilation resistance portion ( 23) is larger than the ventilation diameter in 23), and further in the bypass passage (24),
An opening valve (43) for refueling is provided, which opens when the pressure in the bypass passage (24) reaches a predetermined positive pressure.
Further, upstream of the first adsorbent (8) layer, a small diameter first evaporated fuel intake port (25) communicating with the gas phase portion of the fuel tank (27) and a large diameter second evaporated fuel intake. Port (2
9) is provided. In the present invention, in addition to the operation of the first invention described above, the upstream adsorbent layer has the first adsorbent (8) layer and the second adsorbent (17).
It is formed in a large capacity by two layers, a layer and a layer, and at the time of refueling, the evaporated fuel and the air can be adsorbed and collected efficiently before passing through the bypass passage (24), and the evaporated fuel can be collected into the atmosphere. The amount of release can be extremely small. Further, by providing the large-diameter second evaporated fuel intake port (29) and forming the bypass passage (24) with a diameter larger than that of the ventilation resistance portion (23), the canister case at the time of refueling The pressure in (1) is promptly released to the atmosphere, and the pressure increase in the fuel tank (27) is suppressed more favorably.

【発明の実施の形態】図に示す実施例に基づいて本発明
の実施の形態を説明する。図1において、1はキャニス
タケースである。2はキャニスタケース1内に固設され
た区画壁で、該区画壁2の一側に第1吸着剤室3が形成
され、これと並列して他側に第2吸着剤室4と第3吸着
剤室5が区画形成されている。上記第1吸着剤室3の上
下部にはフィルタ6,7が設置され、この両フィルタ
6,7間に活性炭等からなる第1吸着剤8が充填されて
いる。上部のフィルタ6の上側には第1拡散室9が形成
され、また下部のフィルタ7の下側には第2拡散室10
が形成されている。11は第2拡散室10内に設けたコ
イルスプリングで、上記フィルタ7を上方へ押圧してい
る。上記第2吸着剤室4と第3吸着剤室5は、前者を下
層に配置して直列的に形成され、夫々の室4、5の上下
部にはフィルタ12,13,14,15が設置されてい
る。フィルタ13の下側は上記第2拡散室10に形成さ
れ、該第2拡散室10内には、フィルタ13を上方へ押
圧するコイルスプリング16が設置されている。上記第
2吸着剤室4における両フィルタ12,13間には活性
炭等からなる第2吸着剤17が充填されている。上記第
3吸着剤室5における両フィルタ14,15間には活性
炭等からなる第3吸着剤18が充填されている。上記フ
ィルタ12の上側には第3拡散室19が形成され、また
上記フィルタ15の下側には第4拡散室20が形成さ
れ、更にフィルタ14の上側には第5拡散室21が形成
されている。22は上記第3拡散室19と第4拡散室2
0間に、すなわち第2吸着剤17層部と第3吸着剤18
層部間に固設した吸着燃料拡散防止壁で、これに小径穴
からなる絞り23が形成され、第2吸着剤17層から第
3吸着剤18層への通気流量を抑制している。この絞り
23が通気抵抗部を構成している。24はバイパス通路
で、その道中が上記吸着燃料拡散防止壁22、第4,第
5拡散室20,21、両フィルタ14,15及び第3吸
着剤18層を貫通し、その内端24aが上記第3拡散室
19に開口連通し、外端24bがキャニスタケース1外
に突出している。上記バイパス通路24の内径D1 は上
記絞り23の内径D4 よりも大きく、D 1 >D4 に設定
されており、具体的にはD1 =φ16に形成されてい
る。次に各ポートについて説明する。25は上記第1拡
散室9に開口連通した第1の蒸発燃料吸入ポートで、連
通路26を通じて燃料タンク27の気相部28へ連通し
ている。29は上記第1拡散室9に開口連通した第2の
蒸発燃料吸入ポートで、連通路30を通じて燃料タンク
27の気相部28であって燃料注入管31の近傍に位置
して開口連通している。この第2の蒸発燃料吸入ポート
29とその連通路30の内径D3 は、上記第1の蒸発燃
料吸入ポート25とその連通路26の内径D4 よりも大
きく、D3 >D4 に設定されており、具体的にはD3
φ16に形成されている。32は上記第1拡散室9に開
口連通したパージポートで、連通路33を通じて機関E
へのインテークマニホールド34へ開口連通している。
35は上記第5拡散室21に開口連通した空気ポート
で、チェックバルブ36を介して開放ポート37に連通
している。上記チェックバルブ36は、キャニスタケー
ス1内が正圧になったとき、その圧力により開口して空
気ポート35から開放ポート37への流通を可能にする
常閉バルブとなっている。38は空気吸入ポートで、コ
ントロールバルブ39を介して上記空気ポート35から
分岐した通路35aに連通しており、その外端は連通路
40を通じてエアクリーナ41に開口連通している。上
記コントロールバルブ39はダイアフラムバルブで構成
され、常時はそのダイアフラムスプリングにより閉状態
にあり、所定の負圧が負圧室39b内に作用するとダイ
アフラムスプリングに抗してダイアフラムが吸引されて
弁39aが開作動するようになっている。また上記負圧
室39bは通路42により上記第1拡散室9に連通して
いる。43は上記バイパス通路24の外端24bである
開口部に備えた給油時開放バルブで、ダイアフラムバル
ブで構成され、その弁43aがダイアフラムスプリング
Sによりバイパス通路24の開口部24bを閉じるよう
に付勢されている。また、ダイアフラム室43bは大気
導入口44から連通路44aを通じて燃料タンク27に
おける燃料注入管31の給油口付近に連通している。次
に作用について説明する。非給油時は燃料タンク27内
の気相部28の内圧が比較的低い正圧であるため、キャ
ニスタケース1内の内圧も同等に低い正圧となる。この
とき、給油時開放バルブ43内のダイアフラム室43b
内には連通路44a、大気導入口44を通じて燃料タン
ク27の内圧(上記キャニスタ内の内圧と略同圧)が作
用し、ダイアフラムスプリングSの付勢力によって給油
時開放バルブ43のダイアフラム弁43aは図のように
閉状態に維持される。そして非給油状態でかつ機関の停
止中に燃料タンク27内の生燃料が蒸発してその気相部
28が昇圧し、キャニスタ1内も同等圧になると、その
圧力と大気圧との差圧によってチェックバルブ36が開
作動し、キャニスタ1内と開放ポート37が連通する。
この連通により燃料タンク27における気相部28の蒸
発燃料と空気は、連通路26を通じて第1の蒸発燃料吸
入ポート25よりキャニスタの第1拡散室9内に吸入さ
れ、実線矢印の経路のように、フィルタ6、第1吸着剤
8層、フィルタ7、第2拡散室10、フィルタ13、第
2吸着剤17層、フィルタ12、第3拡散室19、絞り
23、第4拡散室20、フィルタ15、第3吸着剤18
層、フィルタ14、第5拡散室21、空気ポート35、
チェックバルブ36を通じて開放ポート37から大気へ
流れる。上記の流れにより、その蒸発燃料は各吸着剤8
と17及び18に吸着捕集され、蒸発燃料をほとんど含
まない空気が開放ポート37から流出する。このとき、
第2吸着剤17層から第3吸着剤18層へ至る流路が小
径の絞り23になっていることから、第3吸着剤18層
への流入が抑制され、第1吸着剤8及び第2吸着剤17
による大容量の吸着剤に蒸発燃料が捕集され、吸着効率
が良好に行われる。また、この絞り23により、蒸発燃
料の吹き抜けも防止される。次に、機関停止状態で給油
されると、燃料タンク27内で多量の蒸発燃料が発生
し、その気相部28内の圧力が急上昇し、キャニスタケ
ース1内が非給油状態よりも高い正圧になる。また、燃
料タンク27の給油キャップが外されると、大気圧が連
通路44a、大気導入口44を通じて給油時間開放バル
ブ43のダイアフラム室43bに導入される。そのた
め、バイパス通路24内が所定以上の高圧(正圧)にな
ると、差圧によって給油時開放バルブ43の弁43aが
開作動する。この開作動により、燃料タンク27の気相
部28の蒸発燃料と空気は、連通路30を通じて第2の
蒸発燃料吸入ポート29よりキャニスタの第1拡散室9
内に吸入され、1点鎖線矢印の経路のように、フィルタ
6、第1吸着剤8層、フィルタ7、第2拡散室10、フ
ィルタ13、第2吸着剤17層、フィルタ12、第3拡
散室19、バイパス通路24、給油時開放バルブ43、
連通口37aを通じて開放ポート37から大気へ流れ
る。また、キャニスタケース1内が昇圧することによ
り、チェック弁36も開作動し、上記実線矢印の経路に
よっても蒸発燃料と空気が流通する。上記のように、大
径でかつ絞り23及び第3吸着剤18層をバイパスする
バイパス通路24を経て流れることにより、その通気抵
抗が上記絞り23を通じて流れる通気抵抗に比べて極め
て低くなり、単位時間当りの脱気量が多くなる。そのた
め、燃料タンク27内の昇圧が抑制され、給油時間が前
記従来のものに比べて早くなるとともに給油が自動停止
することもない。また、この給油時における蒸発燃料の
流れは、第1吸着剤8層と第2吸着剤17層との2つの
層からなる大容量の吸着剤を通過するため、その蒸発燃
料の吸着捕集量も多くなり、蒸発燃料の大気への放出量
も極めて少なくなる。次に、非給油状態での機関運転時
には、インテークマニホールド34に発生する負圧が、
連通路33を通じてパージポート32から第1拡散室9
内に作用する。この負圧は通路42を通じてコントロー
ルバルブ39の負圧室39b内に作用し、弁39aを開
作動する。また、上記の負圧はキャニスタケース1内に
も作用し、チェックバルブ36と給油時開放バルブ43
は閉作動が維持される。そして上記のようにコントロー
ルバルブ39が開作動することによって、キャニスタケ
ース1内の負圧と大気圧との差圧により、エアクリーナ
41内のクリーンな空気が連通路40を通じて空気吸入
ポート38に吸入され、2点鎖線矢印の経路のように、
開口されたコントロールバルブ39、通路35a、空気
ポート35、第5拡散室21、フィルタ14、第3吸着
剤18層、フィルタ15、第4拡散室20、絞り23、
第3拡散室19、フィルタ12、第2吸着剤17層、フ
ィルタ13、第2拡散室10、フィルタ7、第1吸着剤
8層、フィルタ6、第1拡散室9、パージポート32、
連通路33を通じてインテークマニホールド34に吸入
され、機関Eへ供給される。この空気の流れにより、各
吸着剤8,17,18に吸着捕集されていた蒸発燃料は
離脱され、空気と共に機関Eへパージされる。尚、上記
実施例においては給油時開放バルブ43をダイアフラム
式のバルブとしたことにより、次のような効果がある。
給油時開放バルブ43部には、キャニスタ内の吸着剤で
除湿された乾燥空気が作用するため、バルブ部に付着し
た異物が乾燥して固形化しやすい。そのため、このバル
ブとして仮に電磁弁を使用した場合には、電磁弁の摺動
部に異物が乾燥して固化し、電磁弁の摺動不良を招くお
それがある。これに対し、上記のようにダイアフラム式
のバルブを使用した場合には、乾燥によって作動不良に
なる機能部品はないので、長期に亘って良好な弁作動が
期待できる効果がある。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is based on the embodiment shown in the drawings.
An embodiment will be described. In FIG. 1, 1 is a canis
It is a case. 2 is fixed in the canister case 1
The first adsorbent chamber 3 is formed on one side of the partition wall 2
In parallel with this, the second adsorbent chamber 4 and the third adsorption are provided on the other side.
The agent chamber 5 is partitioned and formed. Above the first adsorbent chamber 3
Filters 6 and 7 are installed at the bottom, and both filters are installed.
The first adsorbent 8 made of activated carbon or the like is filled between 6 and 7.
I have. A first diffusion chamber 9 is formed on the upper side of the upper filter 6.
The second diffusion chamber 10 is provided below the lower filter 7.
Are formed. Reference numeral 11 denotes a coil provided in the second diffusion chamber 10.
The filter 7 is pressed upward by the ill spring.
You. The second adsorbent chamber 4 and the third adsorbent chamber 5 are lower than the former.
Arranged in layers and formed in series, above and below each chamber 4, 5.
Filters 12, 13, 14, 15 are installed in the section
You. The lower side of the filter 13 is formed in the second diffusion chamber 10.
Then, the filter 13 is pushed upward in the second diffusion chamber 10.
A coil spring 16 for pressing is installed. The above
2 There is activity between the filters 12 and 13 in the adsorbent chamber 4.
The second adsorbent 17 made of charcoal or the like is filled. The above
3 Active between the two filters 14 and 15 in the adsorbent chamber 5.
The third adsorbent 18 made of charcoal or the like is filled. Above
A third diffusion chamber 19 is formed above the filter 12, and
A fourth diffusion chamber 20 is formed below the filter 15.
Further, a fifth diffusion chamber 21 is formed above the filter 14.
Have been. 22 is the third diffusion chamber 19 and the fourth diffusion chamber 2
0, that is, the second adsorbent 17 layer portion and the third adsorbent 18
Adsorbed fuel diffusion prevention wall fixed between layers, with a small hole
A diaphragm 23 composed of the second adsorbent 17
3 The air flow rate to 18 layers of the adsorbent is suppressed. This aperture
Reference numeral 23 constitutes a ventilation resistance portion. 24 is a bypass passage
In that way, the adsorbed fuel diffusion prevention wall 22,
5 diffusion chambers 20 and 21, both filters 14 and 15, and a third suction chamber
It penetrates through the 18 layers of the adhesive and its inner end 24a is the third diffusion chamber.
19, and the outer end 24b is outside the canister case 1.
Overhangs. Inner diameter D of the bypass passage 241Is above
Inner diameter D of diaphragm 23FourGreater than, D 1> DFourSet to
Has been done, specifically D1= Φ16
You. Next, each port will be described. 25 is the first expansion
The first evaporative fuel intake port, which is open to the dispersion chamber 9,
Communicating with the gas phase portion 28 of the fuel tank 27 through the passage 26
ing. Numeral 29 denotes a second opening which communicates with the first diffusion chamber 9
Evaporative fuel intake port, fuel tank through communication passage 30
Located in the gas phase portion 28 of 27 and near the fuel injection pipe 31
And communicate with the opening. This second evaporative fuel intake port
29 and the inner diameter D of the communicating passage 30ThreeIs the first evaporation fuel
Inner diameter D of the material intake port 25 and its communication passage 26FourGreater than
Kiku, DThree> DFourIs set to, specifically DThree=
It is formed in φ16. 32 opens in the first diffusion chamber 9
The purge port communicates with the engine E through the communication passage 33.
To the intake manifold 34.
The air port 35 is open to the fifth diffusion chamber 21 and communicates therewith.
Communicates with the open port 37 via the check valve 36
doing. The check valve 36 is a canister case.
When the pressure inside the space 1 becomes positive, the pressure causes it to open and empty.
Allows distribution from the air port 35 to the open port 37
It is a normally closed valve. 38 is an air intake port,
From the air port 35 through the control valve 39
It communicates with the branched passage 35a, and its outer end is a communication passage.
An opening 40 communicates with an air cleaner 41. Up
The control valve 39 is a diaphragm valve.
Closed at all times by the diaphragm spring
When a predetermined negative pressure acts on the negative pressure chamber 39b, the die
The diaphragm is sucked against the afram spring
The valve 39a is adapted to open. In addition, the negative pressure
The chamber 39b communicates with the first diffusion chamber 9 through the passage 42.
I have. 43 is an outer end 24b of the bypass passage 24.
A valve that opens when refueling is provided in the opening.
Valve 43a is a diaphragm spring.
The opening 24b of the bypass passage 24 is closed by S.
Has been energized. Also, the diaphragm chamber 43b is in the atmosphere.
From the inlet 44 to the fuel tank 27 through the communication passage 44a
The fuel injection pipe 31 communicates with the vicinity of the fuel filler port. Next
The operation will be described. Inside the fuel tank 27 when not refueling
Since the internal pressure of the gas phase portion 28 of the
The internal pressure in the nister case 1 is also a low positive pressure. this
At the time of refueling, the diaphragm chamber 43b in the open valve 43
A fuel tank is provided in the interior through the communication passage 44a and the air inlet 44.
The internal pressure of the cylinder 27 (substantially the same as the internal pressure in the canister above) is generated.
Oil supply by the urging force of the diaphragm spring S
The diaphragm valve 43a of the time release valve 43 is as shown in the figure.
It is kept closed. The engine is not refueled and the engine is stopped.
When the fuel tank 27 is stopped, the raw fuel in the fuel tank 27 evaporates and its vapor phase part
When the pressure in 28 rises and the pressure in the canister 1 becomes equal,
The check valve 36 opens due to the pressure difference between the pressure and the atmospheric pressure.
It operates and the inside of the canister 1 communicates with the open port 37.
By this communication, the vapor phase portion 28 in the fuel tank 27 is vaporized.
The generated fuel and air pass through the communication passage 26 to suck the first evaporated fuel.
Inhaled from the inlet port 25 into the first diffusion chamber 9 of the canister.
As shown by the path of the solid arrow, the filter 6, the first adsorbent
8 layers, filter 7, second diffusion chamber 10, filter 13,
2 layers of adsorbent 17, filter 12, third diffusion chamber 19, diaphragm
23, fourth diffusion chamber 20, filter 15, third adsorbent 18
Layer, filter 14, fifth diffusion chamber 21, air port 35,
Check valve 36 to open port 37 to atmosphere
Flows. Due to the above-mentioned flow, the evaporated fuel is absorbed by each adsorbent 8
And 17 and 18 are adsorbed and collected, containing almost no evaporated fuel.
The remaining air flows out from the open port 37. At this time,
The flow path from the 17th layer of the second adsorbent to the 18th layer of the third adsorbent is small
Since the diameter of the diaphragm is 23, the third adsorbent 18 layers
Flow into the first adsorbent 8 and the second adsorbent 17 is suppressed.
The large amount of adsorbent collects the evaporated fuel, and the adsorption efficiency
Is done well. In addition, this throttle 23 allows the evaporated fuel to be evaporated.
It is also possible to prevent the material from passing through. Next, refuel with the engine stopped
Then, a large amount of evaporated fuel is generated in the fuel tank 27.
However, the pressure in the gas phase portion 28 suddenly rises, and the canister
The positive pressure in the source 1 becomes higher than that in the unlubricated state. Also burning
When the refueling cap of the fuel tank 27 is removed, atmospheric pressure continues.
Refueling time open bar through passage 44a and air inlet 44
It is introduced into the diaphragm chamber 43b of the sleeve 43. That
Therefore, the pressure inside the bypass passage 24 becomes higher than the predetermined value (positive pressure).
Then, due to the differential pressure, the valve 43a of the open valve 43 during refueling is
Open operation. By this opening operation, the gas phase of the fuel tank 27
The vaporized fuel and air in the portion 28 pass through the communication passage 30 to the second
From the evaporated fuel suction port 29, the first diffusion chamber 9 of the canister
Inhaled into the filter, like the path of the one-dot chain line arrow
6, first adsorbent 8 layers, filter 7, second diffusion chamber 10, flap
Filter 13, second adsorbent 17 layers, filter 12, third expansion
A sprinkling chamber 19, a bypass passage 24, a refueling opening valve 43,
Flow from the open port 37 to the atmosphere through the communication port 37a
You. In addition, the pressure inside the canister case 1 is increased.
Then, the check valve 36 also opens, and the path indicated by the solid arrow
Therefore, the evaporated fuel and the air flow. As mentioned above, large
The diameter and bypasses the throttle 23 and the third adsorbent 18 layer
By flowing through the bypass passage 24, the ventilation resistance
The resistance is extremely higher than the ventilation resistance that flows through the throttle 23.
And the amount of degassing per unit time increases. That
Therefore, the pressure increase in the fuel tank 27 is suppressed,
Refueling is automatically stopped and faster than the conventional one
Nothing to do. In addition, the fuel vapor
The flow consists of two layers, a first adsorbent 8 layer and a second adsorbent 17 layer.
Because it passes through a large volume of adsorbent consisting of layers,
The amount of fuel adsorbed and collected also increases, and the amount of evaporated fuel released to the atmosphere
Is also extremely low. Next, when the engine is running in the unlubricated state
Is a negative pressure generated in the intake manifold 34,
From the purge port 32 through the communication passage 33 to the first diffusion chamber 9
Acts within. This negative pressure is controlled through the passage 42.
The valve 39a by opening the valve 39a.
Operate. In addition, the negative pressure described above is stored in the canister case 1.
Also works, check valve 36 and refueling open valve 43
Is kept closed. And as above
When the valve 39 opens, the canister
Due to the differential pressure between the negative pressure in the base 1 and the atmospheric pressure, the air cleaner
Clean air inside 41 sucks air through communication passage 40
Inhaled into the port 38, like the path of the two-dot chain line arrow,
Control valve 39 opened, passage 35a, air
Port 35, fifth diffusion chamber 21, filter 14, third adsorption
18 layers of agent, filter 15, fourth diffusion chamber 20, diaphragm 23,
The third diffusion chamber 19, the filter 12, the second adsorbent 17 layer, the filter
Filter 13, second diffusion chamber 10, filter 7, first adsorbent
8 layers, filter 6, first diffusion chamber 9, purge port 32,
Intake into intake manifold 34 through communication passage 33
And supplied to the engine E. By this air flow, each
The evaporated fuel that has been adsorbed and collected by the adsorbents 8, 17 and 18 is
It is disengaged and purged into engine E with air. The above
In the embodiment, the refueling opening valve 43 is provided as a diaphragm.
The following effects are obtained by using the valve of the formula.
At the time of refueling, the open valve 43 is filled with the adsorbent in the canister.
Since dehumidified dry air acts, it will not adhere to the valve.
Foreign matter tends to dry and solidify. Therefore, this bar
If a solenoid valve is used as a
Foreign matter may dry up and solidify on the parts, causing sliding failure of the solenoid valve.
It has On the other hand, as mentioned above, the diaphragm type
When using the valve of
Since there are no functional parts that can
There is an expected effect.

【発明の効果】以上のようであるから請求項1記載の発
明によれば、蒸発燃料の吹き抜けを防止し、かつ給油を
スムースに行うことができる。更に、バイパス通路を開
閉するバルブとして、給油時に発生する圧力で開閉する
圧力弁を用いたので、電気的に作動させるものに比べて
簡易になる。請求項2記載の発明によれば、更に蒸発燃
料の吸着効率を向上させることができる上に給油を一層
スムースに行うことができる。
As described above, according to the first aspect of the present invention, blow-through of evaporated fuel can be prevented and refueling can be smoothly performed. Furthermore, since a pressure valve that opens and closes by the pressure generated during refueling is used as the valve that opens and closes the bypass passage, it is simpler than an electrically operated valve. According to the second aspect of the present invention, the adsorption efficiency of the evaporated fuel can be further improved, and the refueling can be performed more smoothly.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す断面図。FIG. 1 is a sectional view showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 キャニスタケース 2 区画壁 8 第1の吸着剤 17 第2の吸着剤 18 第3の吸着剤 23 通気抵抗部 24 バイパス通路 25 第1の蒸発燃料吸入ポート 27 燃料タンク 28 気相部 29 第2の蒸発燃料吸入ポート 1 canister case 2 partition wall 8 first adsorbent 17 second adsorbent 18 third adsorbent 23 airflow resistance part 24 bypass passage 25 first evaporative fuel intake port 27 fuel tank 28 gas phase part 29 second Evaporative fuel intake port

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数の吸着剤層を設けるとともにその上
流側の吸着剤層と下流側の吸着剤層間に通気抵抗部を設
けて、燃料タンク内に発生した蒸発燃料と空気とを上流
側の吸着剤層から通気抵抗部を通じて下流側の吸着剤層
へ通過させて大気へ放出するキャニスタにおいて、 上記上流側の吸着剤層から上記通気抵抗部と下流側吸着
剤層をバイパスして大気へ開口するバイパス通路を設
け、 上記バイパス通路には、該バイパス通路内が所定の正圧
になった場合にその圧力で開口する給油時開放バルブを
設けたことを特徴とするキャニスタ。
1. A plurality of adsorbent layers are provided, and a ventilation resistance portion is provided between the adsorbent layer on the upstream side and the adsorbent layer on the downstream side, so that the evaporated fuel and air generated in the fuel tank can be disposed on the upstream side. In a canister which passes from the adsorbent layer to the adsorbent layer on the downstream side through the ventilation resistance section and releases it to the atmosphere, the canister that opens from the adsorbent layer on the upstream side to the atmosphere by bypassing the ventilation resistance section and the adsorbent layer on the downstream side A canister characterized in that a bypass passage is provided, and an opening valve for refueling is provided in the bypass passage when the inside of the bypass passage reaches a predetermined positive pressure and the valve is opened at the time of refueling.
【請求項2】 キャニスタケース内に区画壁を設けてそ
の一側に第1の吸着剤層を設け、他側に第2の吸着剤層
と第3の吸着剤層を重層的に設け、第1の吸着剤層の下
流側と第2の吸着剤層の上流側を連通し、第2の吸着剤
層と第3の吸着剤層とを通気抵抗部を介して連通し、第
3の吸着剤層の下流を大気へ連通し、上記第2の吸着剤
層から上記通気抵抗部と第3の吸着剤層をバイパスして
大気へ開口するバイパス通路を設け、該バイパス通路の
内径を上記通気抵抗部での通気径より大径とし、更に上
記バイパス通路には、該バイパス通路内が所定の正圧に
なった場合にその圧力で開口する給油時開放バルブを設
け、更に、第1の吸着剤層の上流側に、燃料タンクの気
相部に連通する小径の第1の蒸発燃料吸入ポートと大径
の第2の蒸発燃料吸入ポートを設けたことを特徴とする
キャニスタ。
2. A partition wall is provided in a canister case, a first adsorbent layer is provided on one side of the partition wall, and a second adsorbent layer and a third adsorbent layer are provided on the other side in a multi-layered manner. The downstream side of the first adsorbent layer and the upstream side of the second adsorbent layer are communicated with each other, the second adsorbent layer and the third adsorbent layer are communicated with each other through the ventilation resistance part, and the third adsorption is performed. A bypass passage communicating with the atmosphere downstream of the agent layer and bypassing the ventilation resistance portion and the third adsorbent layer from the second adsorbent layer to open to the atmosphere is provided, and the inner diameter of the bypass passage is ventilated. A diameter larger than the ventilation diameter in the resistance portion is provided, and further, in the bypass passage, there is provided a refueling opening valve that opens at the pressure when the inside of the bypass passage reaches a predetermined positive pressure, and further, the first adsorption A small-diameter first evaporated fuel intake port and a large-diameter second evaporated fuel intake port that communicate with the gas phase portion of the fuel tank are provided upstream of the agent layer. A canister featuring an inlet port.
JP1143096A 1996-01-26 1996-01-26 Vehicular canister Pending JPH09203353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1143096A JPH09203353A (en) 1996-01-26 1996-01-26 Vehicular canister

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1143096A JPH09203353A (en) 1996-01-26 1996-01-26 Vehicular canister

Publications (1)

Publication Number Publication Date
JPH09203353A true JPH09203353A (en) 1997-08-05

Family

ID=11777867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1143096A Pending JPH09203353A (en) 1996-01-26 1996-01-26 Vehicular canister

Country Status (1)

Country Link
JP (1) JPH09203353A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6047687A (en) * 1997-05-27 2000-04-11 Toyota Jidosha Kabushiki Kaisha Canister
LU90932B1 (en) * 2002-06-10 2003-12-11 Delphi Tech Inc Evaporated fuel processing device
EP1496239A3 (en) * 2003-07-11 2007-10-31 Delphi Technologies, Inc. Canister of an evaporated fuel processing system
JP2012036734A (en) * 2010-08-03 2012-02-23 Toyota Motor Corp Evaporation fuel treatment device
JP2013217244A (en) * 2012-04-06 2013-10-24 Aisan Industry Co Ltd Trap canister
US9181906B2 (en) 2010-12-14 2015-11-10 Aisan Kogyo Kabushiki Kaisha Fuel vapor processing systems
WO2016147717A1 (en) * 2015-03-18 2016-09-22 フタバ産業株式会社 Canister
US9777679B2 (en) 2014-07-29 2017-10-03 Toyota Jidosha Kabushiki Kaisha Canister
US10859039B2 (en) 2019-02-12 2020-12-08 Aisan Kogyo Kabushiki Kaisha Canister for evaporated fuel processing device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6047687A (en) * 1997-05-27 2000-04-11 Toyota Jidosha Kabushiki Kaisha Canister
LU90932B1 (en) * 2002-06-10 2003-12-11 Delphi Tech Inc Evaporated fuel processing device
EP1496239A3 (en) * 2003-07-11 2007-10-31 Delphi Technologies, Inc. Canister of an evaporated fuel processing system
JP2012036734A (en) * 2010-08-03 2012-02-23 Toyota Motor Corp Evaporation fuel treatment device
US9181906B2 (en) 2010-12-14 2015-11-10 Aisan Kogyo Kabushiki Kaisha Fuel vapor processing systems
US9005352B2 (en) 2012-04-06 2015-04-14 Aisan Kogyo Kabushiki Kaisha Trap canister for adsorbing fuel vapor
JP2013217244A (en) * 2012-04-06 2013-10-24 Aisan Industry Co Ltd Trap canister
US9777679B2 (en) 2014-07-29 2017-10-03 Toyota Jidosha Kabushiki Kaisha Canister
WO2016147717A1 (en) * 2015-03-18 2016-09-22 フタバ産業株式会社 Canister
JP2016176342A (en) * 2015-03-18 2016-10-06 フタバ産業株式会社 Canister
CN107407232A (en) * 2015-03-18 2017-11-28 双叶产业株式会社 Filtering tank
CN107407232B (en) * 2015-03-18 2019-07-12 双叶产业株式会社 Filtering tank
US10859039B2 (en) 2019-02-12 2020-12-08 Aisan Kogyo Kabushiki Kaisha Canister for evaporated fuel processing device

Similar Documents

Publication Publication Date Title
JP3465393B2 (en) Evaporative fuel processor for internal combustion engines
JP2910607B2 (en) Evaporative fuel treatment system for vehicles
JP3111396B2 (en) Evaporative fuel emission control device
JP2002004956A (en) Device for preventing discharging of evaporated fuel
JPS6356425B2 (en)
JPH07189823A (en) Evaporative fuel treating device
US7909024B2 (en) Hydrocarbon fuel vapour filter system
JPH05141317A (en) Fuel vapor reservoir assemblage
JP3274084B2 (en) Canister
JPS624546B2 (en)
JPH09203353A (en) Vehicular canister
JP2002235610A (en) Canister for automobile
JP3705398B2 (en) Evaporative fuel control device for internal combustion engine
JPH0674107A (en) Evaporation fuel treatment device
JPH05195884A (en) Evaporated fuel processing device
JP2020169613A (en) Evaporated fuel treatment device
JPS6323379B2 (en)
JPH09209849A (en) Evaporated fuel collection device at fueling time in vehicle
JPS63154850A (en) Vaporized fuel disposing device for vehicle
JP2002310008A (en) Fuel vapor treatment equipment
JPH08232777A (en) Vaporizing fuel control device for internal combustion engine
JPH0329574Y2 (en)
JPH06280693A (en) Evaporated fuel processor
JPH07151022A (en) Evaporated fuel processor
JPH0942080A (en) Canister