JP3912048B2 - Evaporative fuel processing equipment - Google Patents

Evaporative fuel processing equipment Download PDF

Info

Publication number
JP3912048B2
JP3912048B2 JP2001192446A JP2001192446A JP3912048B2 JP 3912048 B2 JP3912048 B2 JP 3912048B2 JP 2001192446 A JP2001192446 A JP 2001192446A JP 2001192446 A JP2001192446 A JP 2001192446A JP 3912048 B2 JP3912048 B2 JP 3912048B2
Authority
JP
Japan
Prior art keywords
chamber
evaporative fuel
adsorption
adsorbent
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001192446A
Other languages
Japanese (ja)
Other versions
JP2003003914A (en
Inventor
正弘 小川
隆之 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001192446A priority Critical patent/JP3912048B2/en
Publication of JP2003003914A publication Critical patent/JP2003003914A/en
Application granted granted Critical
Publication of JP3912048B2 publication Critical patent/JP3912048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車両に用いられるキャニスタに代表される蒸発燃料処理装置に関する。
【0002】
【従来の技術】
ガソリンを燃料とする自動車では、主に燃料タンク内の蒸発燃料(HC)が大気へ放出されることを抑制するために、蒸発燃料処理装置としてのキャニスタが好適に用いられる。このキャニスタの容器の内部には大気や蒸発ガスが通流する流路が形成され、この流路の一端に大気を導入する大気導入部が設けられるとともに、他端に蒸発燃料導入部及び蒸発燃料排出部が設けられている。そして、機関停止時等には蒸発燃料導入部より導入される蒸発燃料を吸着体で吸着するとともに、機関運転中の所定のパージ運転時には、大気導入部よりキャニスタ内に大気を導入して、吸着体に吸着している蒸発燃料を脱離させ、この蒸発燃料を蒸発燃料排出部を介して機関の吸気系へ吸引し、燃焼処理するようになっている。
【0003】
ところで、吸着体としての活性炭に吸着された蒸発燃料の濃度分布は、大気導入部へ向かって低くなる傾向にあるが、活性炭がキャニスタ内の一つの連続する空間内に充填されていると、吸着平衡により蒸発燃料が時間の経過とともに濃度の低い大気導入部の方向へ向かって拡散・移動する所謂マイグレーション現象が進行し、時間の経過に伴って蒸発燃料の大気開放部へのリーク(放出)が起こり易くなってしまう。
【0004】
このような課題に対し、特開平10−37812号公報には、図10に示すように、筒状の第1キャニスタ101の大気導入部側に、相対的に小さい筒状の第2キャニスタ102を直列に配設し、両キャニスタ101,102を細い配管103により接続した構造が開示されている。この場合、両キャニスタ101,102内の活性炭が配管103により隔離されるため、この配管103の部分で吸着平衡による蒸発燃料の拡散・移動が実質的に中断されることとなり、ひいては蒸発燃料のリークを抑制できると記載されている。
【0005】
【発明が解決しようとする課題】
しかしながら、この公報のように、外郭形状の異なる2つのキャニスタ101,102を細い配管103で接続した構成では、構成部品が多くなってコストが嵩むとともに、配管103での圧力損失が大きく、また長手方向に長尺な形状となるため、車両搭載性も良くない。
【0006】
本発明の一つの目的は、比較的簡素かつ安価な構造で、蒸発燃料の大気導入部からのリークを有効に防止し得る新規な蒸発燃料処理装置を提供することを一つの目的としている。
【0007】
【課題を解決するための手段】
請求項1に係る発明は、内部に流路が形成され、この流路の一端に大気を導入する大気導入部が設けられるとともに、他端に蒸発燃料が導入される蒸発燃料導入部及び蒸発燃料が排出される蒸発燃料排出部が設けられた蒸発燃料処理装置において、上記流路の長手方向である主通流方向に沿って延在する筒部を有し、この筒部が、蒸発燃料を吸着・脱離する第1吸着体が充填される第1吸着室と、この第1吸着室よりも大気導入部寄りに直列に配置され、上記第1吸着体よりも吸着・脱離能力が高い第2吸着体が充填される第2吸着室と、流路断面方向に沿って第1吸着室と第2吸着室とを通流可能に隔離する隔離層と、を有することを特徴としている。
【0008】
典型的には、上記の蒸発燃料導入部が車両の燃料タンクに接続され、蒸発燃料排出部が内燃機関の吸気系に接続される。そして、燃料タンク内の温度上昇等に伴い蒸発ガスが蒸発燃料導入部を経由して流路へ導入され、この蒸発ガス内に含まれる蒸発燃料が吸着体に一時的に吸着され、残りの空気が大気導入部を経由して外部へ排出される。また、機関運転中の所定のパージ運転時には、蒸発燃料排出部から作用する吸気負圧により、大気導入部より大気が流路へ導入され、吸着体に付着している蒸発燃料が脱離され、この蒸発燃料が大気とともに蒸発燃料導入部を経由して吸気系へ供給され、最終的には機関の燃焼室内で燃焼処理される。吸気系へ導入される蒸発燃料の量及び時期は、典型的には蒸発燃料排出部と吸気系とを接続するパージ配管を開閉するパージコントロールバルブにより調節される。このパージコントロールバルブとしては、後述する実施形態のように機関運転状態に応じて電気的に制御されるものの他、吸気負圧に応じて強制的に開閉する機械式のものが挙げられる。
【0009】
そして、第1吸着体と第2吸着体とが隔離層により通流可能に隔離されているため、上述したマイグレーション現象が隔離層の部分で実質的に中断されることとなる。このため、時間の経過に伴い第1吸着室から第2吸着室へ拡散・移動する蒸発燃料の量及び速度が著しく抑制されることに加え、大気導入部寄りの第2吸着体の吸着・脱離能力を相対的に高くしているため、大気導入部への蒸発燃料のリークを十分に抑制することができる。言い換えると、吸着・脱離能力が高く高価な第2吸着体を大気導入部寄りの部分に局所的に配置しているため、コストを抑制しつつ効果的に蒸発燃料のリークの低減化を図ることができる。このような作用効果が得られる構造を、均一断面形状で主通流方向へ延在する筒部で実現でき、例えば上記公報のように形状の異なる2つのキャニスタを細い配管で接続する構造に比して、その形状が十分に単純化,簡素化され、レイアウト的に有利であるとともに、圧力損失も抑制される。
【0010】
図7に示すように、本発明のように吸着・脱離能力の異なる2種類の活性炭(吸着体)を用いた例a2,a3では、1種類の活性炭しか用いていない例a1に比して、排気エミッションが十分に低減されることがエバポ試験により確認された。また、図7及び図8に示すように、蒸発燃料排出部より流路へ導入されるパージ空気量を増加させることにより、吸着・脱離能力すなわちワーキングキャパシティが増加することも確認された。つまり、本発明と合わせてパージ空気量を増加させることにより、吸着体に残存する蒸発燃料の量を更に低減し、蒸発燃料のリークをより確実に防止することができる。なお、パージ空気量の増加は、典型的には、リニア型の空燃比センサ等を利用してパージ運転領域を拡大することにより実現できる。
【0011】
上記隔離層は、例えば発泡セラミック等で形成したり、単なる空間層とすることも可能であるが、典型的には安価で確実に隔離できるウレタン等で成形されたスクリーンすなわち不織布が用いられる。上記第1吸着体は、典型的には粒状の多数の活性炭により構成される。第2吸着体は、第1吸着体よりも吸着・脱離能力が高く効率の良いものとされる。典型的には、ハニカム活性炭,セラミック吸着材,高効率活性炭,及び高比熱活性炭等が挙げられる。なお、上記の吸着・脱離能力とは、ワーキングキャパシティ又は吸着・脱離効率とも称されるもので、吸着容量に対する脱離容量の割合に対応している。一般的には、比熱が高くなるほど吸着・脱離能力が向上する傾向にある。
【0012】
第2吸着体の吸着・脱離能力を最も効率よく高めるために、好ましくは第2吸着室を流路断面方向に円形をなす円柱形状又は円錐形状とし、特に好ましくは製造の容易な円柱形状とする。具体的には、上記筒部の内周面にインナケースを液密に嵌合し、このインナーケースの円柱形状をなす内周面により第2吸着室を画成する。つまり、インナーケースを用いて第2吸着室を筒部の内部で円柱形状に縮径させる。この場合、好ましくは第2吸着体を、インナーケースの内周面に嵌合する円柱状のセラミックフィルタ(ハニカム活性炭)とする。また、典型的には第2吸着室の中心軸線と筒状をなす大気導入部の中心軸線とを一致させる。なお、コストや吸着・脱離効率等を勘案すると、第2吸着体の容量は、第1吸着体を含む第2吸着体以外の残りの吸着体の容量に対して2%〜20%以下であることが好ましい。
【0013】
図9に示すように、上記流路の主通流方向に沿う長さをL、流路断面積の実質的な直径をDとすると、吸着室の直径Dに対する長さLの比、すなわちL/D比が高くなるほど、吸着・脱離能力が向上する反面、圧力損失が増加し、L/D比が低くなるほど、圧力損失が低下する反面、吸着・脱離能力が低下してしまう。従って、圧力損失の増加を抑制しつつ、大気導入部からの蒸発燃料のリークを効率的に抑制するためには、第吸着室のL/D比を第吸着室のL/D比よりも低く設定することが好ましい。特に好ましくは、ダスト耐久後の圧力損失が過度に大きくならないように、上記第吸着室のL/D比を2〜5の範囲に設定し、上記第吸着室のL/D比を略1.5に設定する。なお、断面形状が長方形等の場合、同じ断面積となるような円形の直径が上記の実質的な直径に相当する。
【0014】
典型的には、上記筒部と、この筒部に並設される筒状の反大気側筒部と、両筒部の一側を一体的に接続する連通部と、が一体的に形成された容器を有している。この容器は、例えば樹脂等により一体的に形成され、全体的な外郭形状がシンプルな箱形をなしている。また、上記流路を両筒部及び連通部の内部にわたって略U字状に延在させて、コンパクトな容器内で流路の長尺化を図る。上記反大気側筒部には、上記第2吸着体よりも吸着・脱離能力が低い第3吸着体が充填される第3吸着室が形成される。この第3吸着体は、例えば第1吸着体と同様、粒状の多数の活性炭により構成される。そして、上記容器の一方の側で、上記大気導入部が筒部の端部に形成されるとともに、上記蒸発燃料導入部及び蒸発燃料排出部が反大気側筒部の端部に形成される。このように、容器の一方の側に、大気導入部,蒸発燃料導入部,及び蒸発燃料排出部を集約させることにより、配管作業が容易化されるとともに、車両等への搭載性も向上する。
【0015】
より好ましくは、上記蒸発燃料排出部と蒸発燃料導入部とを仕切る仕切壁部と、上記第3吸着室の主通流方向両側の内側面を画成する通流可能な一対のスクリーンと、これらスクリーン及び第3吸着体を上記仕切壁部へ押し付ける捩りコイルスプリングや板ばね等の付勢手段と、を有している。これにより、蒸発燃料導入部から蒸発燃料排出部へ蒸発ガスが流れるような場合に、この蒸発ガスが確実に第3吸着室内を通過することとなり、蒸発燃料排出部へ排出される蒸発ガスの燃料濃度が緩和される。
【0016】
更に好ましくは、上記仕切壁部より第3吸着室の内部へ主通流方向に沿って延び、第3吸着室の一部を、上記蒸発燃料導入部へ連なる部分と、上記蒸発燃料排出部へ連なる部分と、に仕切るバッフルを有している。この場合、蒸発燃料導入部から蒸発燃料排出部へ蒸発ガスが流れるような場合に、第3吸着室内を流れる蒸発ガスが、バッフルにより略U字状に大きく迂回することとなり、蒸発燃料排出部へ排出される蒸発ガスの燃料濃度が更に効果的に緩和される。
【0017】
【発明の効果】
以上のように本発明によれば、比較的簡素な構造で、蒸発燃料の大気導入部からのリークを有効に防止することができる。
【0018】
【発明の実施の形態】
以下、本発明の好適な実施の形態を図面に基づいて説明する。図1は、本発明に係る蒸発燃料処理装置としてのキャニスタ10を適用した車両の蒸発燃料処理システムの概要を示す構成図である。キャニスタ10の内部には、蒸発燃料(ベーパー)を吸着及び脱離する吸着体(21,23,31)が充填されている。内燃機関の停止時等には、高温高圧な燃料タンク1内の蒸発ガスがチャージ配管2を経由してキャニスタ10内に導入され、この蒸発ガス内に含まれる蒸発燃料が吸着体に一時的に吸着され、残りの空気が大気側配管3を経由して大気へ排出される。また、機関運転中の所定のパージ運転時には、吸気管4のスロットル弁4aの下流側の吸気負圧をパージ配管5を介してキャニスタ10内へ作用させる。この負圧により、大気が大気側配管3からキャニスタ10内へ導入され、吸着体に付着している蒸発燃料が脱離され、この蒸発燃料が大気とともにパージ配管5を通して吸気管4に供給され、最終的には燃焼室6内で燃焼処理される。このように吸気系へ導入される蒸発燃料の量及び時期は、パージ配管5を開閉するパージコントロールバルブ7により調整される。このパージコントロールバルブ7は、この実施形態ではECM(エンジン制御部)8により機関運転状態に応じて電気的に制御される。また、このシステムは、チャージ配管2に負圧カットバルブ(チェックバルブ)が設けられていない簡素な構造となっている。
【0019】
次に図2及び図3を参照して、本発明の第1実施形態に係るキャニスタ10の具体的な構造について詳述する。このキャニスタ10は、樹脂材料等により一体的に形成される容器11を主体としている。この容器11は、均一な矩形断面で長手方向に延在する筒状の大気側筒部12と反大気側筒部13の一端同士を連通部14で一体的に接続してなり、全体としての外郭形状がシンプルな直方体状の略箱形をなしている。なお、両筒部12,13の互いに対向する側面は補強用のリブ15により一体的に連結されている。この容器11の内部には、大気や蒸発燃料が通流する流路16が形成されており、この流路16は、両筒部12,13及び連通部14にわたって延在する略U字状をなしている。このように流路16をU字状とすることにより、容器11の短縮化,小型化と流路16の長尺化とを両立させている。
【0020】
図1にも示すように、流路16の一端には、大気側配管3に接続する筒状の大気導入部17が容器11の内側へ凹設されている。また、流路16の他端には、チャージ配管2に接続する筒状の蒸発燃料導入部18と、パージ配管5に接続する筒状の蒸発燃料排出部19と、が容器11の外側へ突出形成されている。流路16が略U字状に形成されている関係で、上記の大気導入部17,蒸発燃料導入部18,及び蒸発燃料排出部19の全てが容器11の一方の側(図3の右側)に配置されている。従って、これらの部分17〜19に接続する配管2,3,5の全てが容器11の一方の側に集約される形となり、その配管作業が容易で車両搭載性も向上する。
【0021】
再び図2及び図3を参照して、大気側筒部12の内部には、蒸発燃料を吸着・脱離する第1吸着体21が充填される第1吸着室22と、この第1吸着室22よりも流路16の大気導入部17寄り(図3の右側)に直列に配置され、第1吸着体21よりも吸着・脱離能力が高い第2吸着体23が充填される第2吸着室24と、が形成されている。第1吸着室22の内周面は大気側筒部12の内壁面により画成され、第1吸着室22の長手方向である主通流方向の両側の内側面は第1スクリーン25及び第2スクリーン26により画成されている。第2吸着室24の内周面は大気側筒部12内に液密状態で嵌合するインナケース27の円柱状の内周面により画成され、第2吸着体23の主通流方向両側の内側面は第2スクリーン26及び第3スクリーン28により画成されている。インナケース27の外周面と大気側筒部12の内周面との間はシールリング等によりシールされている。容器11の連通部14側の内側面と第1スクリーン25の間には、付勢手段としての第1捩りコイルスプリング29が圧縮状態で介装されており、この第1捩りコイルスプリング29によって、スクリーン25,26、第1吸着体21、及びインナケース27等が大気導入部17側へ押し付けられた状態で保持されている。この実施形態では、第1吸着体21が粒状の多数の活性炭により構成され、第2吸着体23としてインナケース27の円柱状の内壁面に嵌合する円柱状の多孔質なセラミックフィルタ(ハニカム活性炭)が用いられている。
【0022】
このようにインナケース27を利用して第2吸着室24を最も吸着・脱離能力に優れた円柱形状に縮径しており、かつ、この第2吸着室24の中心軸線を大気導入部17の中心軸線と一致させているため、簡素な構造で、圧力損失等を抑制しつつ第2吸着体23の吸着・脱離能力が有効に高められている。
【0023】
反大気側筒部13の内部には、第3吸着体31が充填される第3吸着室32が形成されている。第3吸着体31は、少なくとも第2吸着体23よりも吸着・脱離能力が低く、この実施形態では第1吸着体21と同じく粒状の多数の活性炭により構成されている。第3吸着室32の内周面は反大気側筒部13の内壁面により画成され、第3吸着室32の主通流方向両側の内側面は、通流可能な第4スクリーン33及び第5スクリーン34により画成されている。第4スクリーン33と容器11の連通部14側(図3の左側)の内側面との間には付勢手段としての第2捩りコイルスプリング35が圧縮状態で介装されている。この第2捩りコイルスプリング35によって、スクリーン33,34及び第3吸着体31が、蒸発燃料導入部18と蒸発燃料排出部19とを仕切る仕切壁部36へ押し付けられた状態で保持されている。この仕切壁部36は、容器11の外壁部から連続的に屈曲形成されている。
【0024】
また、第3吸着室32の一部を蒸発燃料導入部18へ連通する部分と蒸発燃料排出部19へ連通する部分とに仕切る薄板状のバッフル38が、第3吸着室32内を流路16の主通流方向に沿って延在している。このバッフル38は、仕切壁部36の突出端部から一体的に突出形成されている。このようにバッフル38を用いた場合、第5スクリーン34は、バッフル38を挟んで一対の分割体34a,34bに分割構成される。
【0025】
上記のスクリーン25,26,28,33,34は、流路16の流路断面方向に延在する通流可能な層状のフィルタであり、吸着体の脱落を防止しつつ吸着体を保持する機能を有し、典型的には比較的安価なウレタンスクリーン等の不織布が用いられる。特に、第2スクリーン26は、第1吸着室22と第2吸着室24とを所定の間隔をあけて隔離する隔離層26として機能しており、上述したマイグレーション現象をより確実に防止するために、好ましくは図3にも示すように他のスクリーン25,28,33,34よりも主通流方向の厚さが長く設定されている。
【0026】
流路16の主通流方向に沿う長さをL、流路16の流路断面積の実質的な直径をDとすると、同じ活性炭が充填される第1吸着室22と第3吸着室32とは略同じL/D比に設定される。つまり、第1吸着室22の長さL及び直径Dがそれぞれ第3吸着室32の長さL及び直径Dの略半分となるように設定されている。これに対し、第2吸着室24は、インナケース27により断面円形状に縮径されている等の関係で、上記の第1吸着室22や第3吸着室32に比してL/D比が高く設定されている。このように、インナケース27を利用して、均一断面形状の大気側筒部12の内部に、L/D比の異なる第1吸着室22と第2吸着室24とを形成することができ、上述した特開平10−37812号公報のものに比して、構造が著しく簡素化される。より具体的には、第1吸着室22や第3吸着室32のL/D比を略1.5に設定し、第2吸着室24のL/D比を2〜5の範囲に設定する。また、第2吸着体23の容量を、残りの第1吸着体21及び第3吸着体31の容量に対して2%〜20%以下とする。
【0027】
燃料タンク1内の温度上昇等に伴い、図3に示すように、蒸発燃料導入部18より導入される蒸発ガスが、流路16内を矢印A1の方向へ流れる間に、蒸発ガス内の蒸発燃料が吸着体31,21,23に吸着され、残りの大気が大気導入部17より排出される。蒸発ガスは第3吸着体31,第1吸着体21,第2吸着体23の順に通過するため、一般的には第2吸着体23の吸着濃度が最も低くなり、かつ、この第2吸着体23の吸着・脱離能力を相対的に高く設定しているため、蒸発燃料が吸着されずに大気導入部17へ排出されることはほとんどない。
【0028】
また、上述したように、一つの連続する吸着室内に充填される吸着体においても、蒸発燃料の濃度勾配は大気導入部17の方向へ向かって低くなる傾向にある。ここで、時間の経過に伴って吸着体内の燃料濃度が平衡化するいわゆるマイグレーション現象によって、蒸発燃料が濃度の低い大気導入部の方向へ向かって拡散・移動する傾向にあることが知られているが、本実施形態では、第1吸着体21と第2吸着体23とが第2スクリーン26により隔てられているため、この第2スクリーン26の部分でマイグレーション現象が実質的に分断され、第2吸着体23への蒸発燃料の拡散・移動量が著しく抑制され、ひいては大気導入部17への燃料のリークをより確実に防止できる。
【0029】
次に図4及び図5を参照して、蒸発燃料導入部18から蒸発燃料排出部19へ流れる蒸発ガスによる排気エミッションインパクトについて説明する。本実施形態のようにチャージ配管2にチェックバルブが設けられていない構成では、機関運転中に蒸発燃料導入部18から蒸発燃料排出部19へ向かって蒸発ガスが流れることがある。
【0030】
ここで図5に示す比較例のように、第2捩りコイルスプリング35’が本実施形態とは逆に蒸発燃料導入部18や蒸発燃料排出部19の側に設けられている場合、蒸発燃料導入部18と蒸発燃料排出部19とを仕切る仕切壁部36と第5スクリーン34’との間に空間部Kができてしまう。従って、蒸発燃料導入部18から導入される蒸発ガスが、第3吸着室32’の内部をほとんど通過することなく、矢印A3に示すように空間部Kを経由して直接的に蒸発燃料排出部19へ流れるため、吸気系へ導入される蒸発ガスの燃料濃度が高くなって、空燃比が不用意にリッチ化し、いわゆる排気エミッションインパクトと呼ばれる排気性能の低下を招き易い。
【0031】
これに対して本実施形態では、図4に示すように、第2捩りコイルスプリング35によりスクリーン33,34及び第3吸着体31を仕切壁部36に押し付けて保持しており、かつ、第3吸着室32の一部をバッフル38により仕切っているため、矢印A2に示すように、蒸発燃料導入部18から導入される蒸発ガスが第5スクリーン34を通って第3吸着室32へ確実に導入されるとともに、バッフル38によりU字状に大きく迂回して蒸発燃料排出部19へ流れることとなる。このため、蒸発ガス中の蒸発燃料が第3吸着体31に吸着される量が増し、吸気系へ導入される蒸発ガスの燃料濃度が十分に緩和(抑制)され、上記の排気エミッションインパクトを十分に抑制することができる。
【0032】
図6は第2実施形態を示している。なお、第1実施形態と同じ構成には同一参照符号を付し、重複する説明を省略する。この第2実施形態では、第2吸着室24をウレタンスクリーン等の通流可能な隔離層40により第1分割室41と第2分割室42とに更に分割しており、これらの分割室41,42に、第1吸着体21や第3吸着体31よりも吸着・脱離能力の高い吸着体43,44をそれぞれ充填している。例えば、第1分割室41には高比熱活性炭を充填し、第2分割室42には円柱状のセラミックフィルタを充填する。このように第2吸着室24を隔離層40により更に分割構成することにより、上記のマイグレーション現象を更に確実に抑制することができる。
【0033】
なお、本発明は上述した実施形態に限定されるものではなく、種々の変更,変形を含むものである。例えば、上記第1実施形態に対し、隔離層としての第2スクリーン26を他のスクリーン25,28,33,34と略同等又は短い厚さとしたり、バッフル38を省略したり、第2吸着体23として高比熱活性炭や高効率活性炭を用いても良い。
【図面の簡単な説明】
【図1】本発明に係る蒸発燃料処理装置としてのキャニスタを適用した内燃機関の蒸発燃料処理システムを示す概略構成図。
【図2】第1実施形態に係る蒸発燃料処理装置としてのキャニスタの内部を透視して示す斜視対応図。
【図3】図2のキャニスタの断面図。
【図4】同じく図2のキャニスタの断面図。
【図5】比較例に係るキャニスタの断面図。
【図6】第2実施形態に係る蒸発燃料処理装置としてのキャニスタを示す断面図。
【図7】吸着・脱離能力の異なる2種類の活性炭を用いた例a2,a3と、1種類の活性炭を用いた例a1とのエミッションを表す特性図。
【図8】パージ空気量に対するワーキングキャパシティの変化を示す特性図。
【図9】L/D比に対する吸着・脱離能力と圧力損失の変化を示す特性図。
【図10】従来例としての蒸発燃料処理装置を示す構成図。
【符号の説明】
11…容器
12…大気側筒部(筒部)
13…反大気側筒部
14…連通部
16…流路
17…大気導入部
18…蒸発燃料導入部
19…蒸発燃料排出部
21…第1吸着体
22…第1吸着室
23…第2吸着体
24…第2吸着室
25,28,33,34…スクリーン
26…第2スクリーン(隔離層)
27…インナケース
29,35…捩りコイルスプリング(付勢手段)
31…第3吸着体
32…第3吸着室
36…仕切壁部
38…バッフル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel vapor processing apparatus represented by a canister used in a vehicle.
[0002]
[Prior art]
In an automobile using gasoline as a fuel, a canister as an evaporative fuel processing device is preferably used in order to mainly prevent the evaporative fuel (HC) in the fuel tank from being released to the atmosphere. A flow path through which air and evaporative gas flow is formed inside the container of the canister, and an air introduction section for introducing air is provided at one end of the flow path, and an evaporative fuel introduction section and evaporative fuel are provided at the other end. A discharge part is provided. When the engine is stopped, etc., the adsorbed fuel adsorbs the evaporated fuel introduced from the evaporative fuel introduction part. At the time of a predetermined purge operation during engine operation, the atmosphere is introduced into the canister by the atmospheric introduction part and adsorbed. The evaporated fuel adsorbed on the body is desorbed and the evaporated fuel is sucked into the intake system of the engine via the evaporated fuel discharge portion and subjected to combustion processing.
[0003]
By the way, the concentration distribution of the evaporated fuel adsorbed on the activated carbon as the adsorbent tends to decrease toward the atmosphere introduction part. However, if the activated carbon is packed in one continuous space in the canister, the adsorption A so-called migration phenomenon occurs in which the evaporated fuel diffuses and moves toward the atmosphere introduction portion having a low concentration as time elapses due to the equilibrium, and the leakage (release) of the evaporated fuel to the atmosphere release portion progresses with time. It becomes easy to happen.
[0004]
In response to such a problem, Japanese Patent Laid-Open No. 10-37812 discloses a relatively small cylindrical second canister 102 on the air introduction part side of the cylindrical first canister 101 as shown in FIG. A structure in which both canisters 101 and 102 are connected in series by a thin pipe 103 is disclosed. In this case, since the activated carbon in both the canisters 101 and 102 is isolated by the pipe 103, the diffusion and movement of the evaporated fuel due to the adsorption equilibrium is substantially interrupted in the pipe 103, and consequently the leak of the evaporated fuel. It is described that can be suppressed.
[0005]
[Problems to be solved by the invention]
However, as in this publication, in the configuration in which two canisters 101 and 102 having different outer shapes are connected by a thin pipe 103, the number of components increases, the cost increases, and the pressure loss in the pipe 103 increases, and the longitudinal length increases. Since it becomes a long shape in the direction, vehicle mountability is not good.
[0006]
One object of the present invention is to provide a novel evaporative fuel processing apparatus capable of effectively preventing leakage of evaporative fuel from the atmosphere introduction portion with a relatively simple and inexpensive structure.
[0007]
[Means for Solving the Problems]
According to the first aspect of the present invention, there is provided an evaporative fuel introduction section and an evaporative fuel in which a flow path is formed therein, an air introduction section for introducing the air is provided at one end of the flow path, and evaporative fuel is introduced at the other end. The evaporative fuel processing apparatus is provided with an evaporative fuel discharge portion that has a cylinder portion extending along a main flow direction that is a longitudinal direction of the flow path. The first adsorbing chamber filled with the first adsorbing body to be adsorbed / desorbed is arranged in series closer to the air introduction part than the first adsorbing chamber, and has higher adsorption / desorption capability than the first adsorbent. It has the 2nd adsorption chamber filled with the 2nd adsorption body, and the isolation layer which isolates so that the 1st adsorption chamber and the 2nd adsorption chamber can flow along a channel section direction.
[0008]
Typically, the evaporative fuel introduction part is connected to a fuel tank of the vehicle, and the evaporative fuel discharge part is connected to an intake system of the internal combustion engine. Then, as the temperature in the fuel tank rises, evaporative gas is introduced into the flow path via the evaporative fuel introduction part, and evaporative fuel contained in this evaporative gas is temporarily adsorbed by the adsorbent, and the remaining air Is discharged to the outside via the air introduction part. Further, at the time of a predetermined purge operation during engine operation, due to the intake negative pressure acting from the evaporated fuel discharge part, the atmosphere is introduced from the atmosphere introduction part into the flow path, and the evaporated fuel adhering to the adsorbent is desorbed, This evaporative fuel is supplied to the intake system together with the atmosphere via the evaporative fuel introduction section, and finally burned in the combustion chamber of the engine. The amount and timing of the evaporated fuel introduced into the intake system are typically adjusted by a purge control valve that opens and closes a purge pipe that connects the evaporated fuel discharge unit and the intake system. Examples of the purge control valve include those that are electrically controlled according to the engine operating state as in the embodiments described later, and mechanical types that forcibly open and close according to the intake negative pressure.
[0009]
And since the 1st adsorption body and the 2nd adsorption body are isolated so that a flow may be carried out by the isolation layer, the migration phenomenon mentioned above will be interrupted substantially in the part of an isolation layer. For this reason, the amount and speed of the evaporated fuel that diffuses and moves from the first adsorption chamber to the second adsorption chamber over time is remarkably suppressed, and the adsorption / desorption of the second adsorbent near the air introduction portion is suppressed. Since the separation capability is relatively high, the leakage of the evaporated fuel to the atmosphere introduction portion can be sufficiently suppressed. In other words, since the expensive second adsorbent having high adsorption / desorption capability is locally disposed near the air introduction part, the leakage of the evaporated fuel is effectively reduced while suppressing the cost. be able to. A structure capable of obtaining such operational effects can be realized with a cylindrical portion having a uniform cross-sectional shape and extending in the main flow direction. For example, as compared with a structure in which two canisters having different shapes are connected by a thin pipe as in the above publication. Thus, the shape is sufficiently simplified and simplified, which is advantageous in terms of layout, and pressure loss is also suppressed.
[0010]
As shown in FIG. 7, in the examples a2 and a3 using two types of activated carbon (adsorbents) having different adsorption / desorption capacities as in the present invention, as compared with the example a1 using only one type of activated carbon. It was confirmed by the evaporation test that exhaust emission was sufficiently reduced. Further, as shown in FIGS. 7 and 8, it was confirmed that the adsorption / desorption capability, that is, the working capacity is increased by increasing the purge air amount introduced into the flow path from the evaporated fuel discharge portion. That is, by increasing the purge air amount together with the present invention, it is possible to further reduce the amount of evaporated fuel remaining in the adsorbent and more reliably prevent the evaporated fuel from leaking. The increase in the purge air amount can be typically realized by expanding the purge operation region using a linear air-fuel ratio sensor or the like.
[0011]
The isolation layer can be formed of, for example, ceramic foam or a simple space layer, but a screen formed of urethane or the like that can be reliably isolated at low cost, that is, a nonwoven fabric is typically used. The first adsorbent is typically composed of a large number of granular activated carbons. The second adsorbent has higher adsorption / desorption capability and higher efficiency than the first adsorbent. Typical examples include honeycomb activated carbon, ceramic adsorbent, high efficiency activated carbon, and high specific heat activated carbon. The adsorption / desorption capacity is also called working capacity or adsorption / desorption efficiency, and corresponds to the ratio of desorption capacity to adsorption capacity. In general, the higher the specific heat, the higher the adsorption / desorption ability.
[0012]
In order to increase the adsorption / desorption capability of the second adsorbent most efficiently, the second adsorbing chamber is preferably formed in a circular column shape or conical shape in the cross-sectional direction of the flow path, and particularly preferably a column shape that is easy to manufacture. To do. Specifically, an inner case is liquid-tightly fitted to the inner peripheral surface of the cylindrical portion, and the second suction chamber is defined by the inner peripheral surface having a cylindrical shape of the inner case. That is, the diameter of the second suction chamber is reduced to a cylindrical shape inside the cylindrical portion using the inner case. In this case, the second adsorbent is preferably a columnar ceramic filter (honeycomb activated carbon) fitted to the inner peripheral surface of the inner case. Further, typically, the central axis of the second adsorption chamber and the central axis of the cylindrical air introduction part are matched. In consideration of cost, adsorption / desorption efficiency, etc., the capacity of the second adsorbent is 2% to 20% or less with respect to the capacity of the remaining adsorbent other than the second adsorbent including the first adsorbent. Preferably there is.
[0013]
As shown in FIG. 9, when the length along the main flow direction of the channel is L and the substantial diameter of the channel cross-sectional area is D, the ratio of the length L to the diameter D of the adsorption chamber, that is, L The higher the / D ratio, the better the adsorption / desorption capability, while the pressure loss increases. The lower the L / D ratio, the lower the pressure loss, but the adsorption / desorption capability decreases. Therefore, while suppressing increase in pressure loss in order to effectively suppress leakage of fuel vapor from the ambient air intake part, from the L / D ratio of the first adsorption chamber L / D ratio of the second adsorption chamber Is also preferably set low. Particularly preferably, the L / D ratio of the second adsorption chamber is set in the range of 2 to 5 so that the pressure loss after the dust durability does not become excessively large, and the L / D ratio of the first adsorption chamber is substantially set. Set to 1.5. When the cross-sectional shape is a rectangle or the like, a circular diameter having the same cross-sectional area corresponds to the substantial diameter.
[0014]
Typically, the cylindrical portion, the cylindrical anti-atmosphere side cylindrical portion arranged in parallel with the cylindrical portion, and the communication portion that integrally connects one side of both cylindrical portions are integrally formed. Have a container. The container is integrally formed of, for example, resin, and has a box shape with a simple overall outer shape. Moreover, the said flow path is extended in the substantially U shape over the inside of both the cylinder parts and a communication part, and the length of a flow path is aimed at in a compact container. A third adsorption chamber filled with a third adsorbent having a lower adsorption / desorption capacity than the second adsorbent is formed in the anti-atmosphere side cylinder. The third adsorbent is composed of a large number of granular activated carbons, for example, like the first adsorbent. Then, on one side of the container, the atmospheric introduction part is formed at the end of the cylinder part, and the evaporated fuel introduction part and the evaporated fuel discharge part are formed at the end part of the anti-atmosphere side cylinder part. Thus, by integrating the air introduction part, the evaporated fuel introduction part, and the evaporated fuel discharge part on one side of the container, the piping work is facilitated and the mounting property to a vehicle or the like is improved.
[0015]
More preferably, a partition wall portion that partitions the evaporated fuel discharge portion and the evaporated fuel introduction portion, a pair of flowable screens that define inner surfaces on both sides in the main flow direction of the third adsorption chamber, and these And a biasing means such as a torsion coil spring or a leaf spring that presses the screen and the third adsorbent against the partition wall. As a result, when evaporative gas flows from the evaporative fuel introduction part to the evaporative fuel discharge part, the evaporative gas surely passes through the third adsorption chamber, and the fuel of the evaporative gas discharged to the evaporative fuel discharge part The concentration is relaxed.
[0016]
More preferably, it extends along the main flow direction from the partition wall portion to the inside of the third adsorption chamber, and a part of the third adsorption chamber is connected to the evaporated fuel introduction portion and the evaporated fuel discharge portion. It has a baffle that divides into a continuous part. In this case, when the evaporative gas flows from the evaporative fuel introduction part to the evaporative fuel discharge part, the evaporative gas flowing through the third adsorption chamber is largely detoured in a substantially U shape by the baffle, and thus to the evaporative fuel discharge part. The fuel concentration of the discharged evaporative gas is further effectively reduced.
[0017]
【The invention's effect】
As described above, according to the present invention, it is possible to effectively prevent leakage of evaporated fuel from the air introduction portion with a relatively simple structure.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Preferred embodiments of the invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram showing an outline of a vehicle evaporative fuel processing system to which a canister 10 as an evaporative fuel processing apparatus according to the present invention is applied. The canister 10 is filled with adsorbents (21, 23, 31) that adsorb and desorb evaporated fuel (vapor). When the internal combustion engine is stopped, the evaporated gas in the high-temperature and high-pressure fuel tank 1 is introduced into the canister 10 via the charge pipe 2, and the evaporated fuel contained in the evaporated gas is temporarily stored in the adsorbent. It is adsorbed and the remaining air is discharged to the atmosphere via the atmosphere side pipe 3. Further, during a predetermined purge operation during engine operation, the intake negative pressure on the downstream side of the throttle valve 4 a of the intake pipe 4 is applied to the canister 10 via the purge pipe 5. Due to this negative pressure, the atmosphere is introduced from the atmosphere side pipe 3 into the canister 10, the evaporated fuel adhering to the adsorbent is desorbed, and this evaporated fuel is supplied together with the atmosphere to the intake pipe 4 through the purge pipe 5. Finally, the combustion process is performed in the combustion chamber 6. Thus, the amount and timing of the evaporated fuel introduced into the intake system are adjusted by the purge control valve 7 that opens and closes the purge pipe 5. In this embodiment, the purge control valve 7 is electrically controlled by an ECM (engine control unit) 8 according to the engine operating state. Further, this system has a simple structure in which the charge pipe 2 is not provided with a negative pressure cut valve (check valve).
[0019]
Next, a specific structure of the canister 10 according to the first embodiment of the present invention will be described in detail with reference to FIGS. The canister 10 is mainly composed of a container 11 that is integrally formed of a resin material or the like. This container 11 is formed by integrally connecting one end of a cylindrical atmosphere side cylinder portion 12 and a non-atmosphere side cylinder portion 13 which extend in the longitudinal direction with a uniform rectangular cross section by a communication portion 14. It has a simple rectangular parallelepiped box shape. In addition, the mutually opposing side surfaces of the cylindrical portions 12 and 13 are integrally connected by a reinforcing rib 15. A flow path 16 through which air or evaporated fuel flows is formed inside the container 11, and the flow path 16 has a substantially U-shape extending over both the cylinder portions 12 and 13 and the communication portion 14. There is no. Thus, by making the flow path 16 U-shaped, the shortening and size reduction of the container 11 and the lengthening of the flow path 16 are compatible.
[0020]
As shown also in FIG. 1, at one end of the flow path 16, a cylindrical atmosphere introduction portion 17 connected to the atmosphere side pipe 3 is recessed to the inside of the container 11. Further, at the other end of the flow path 16, a cylindrical evaporated fuel introduction part 18 connected to the charge pipe 2 and a cylindrical evaporated fuel discharge part 19 connected to the purge pipe 5 protrude outside the container 11. Is formed. Since the flow path 16 is formed in a substantially U-shape, all of the air introduction part 17, the evaporated fuel introduction part 18, and the evaporated fuel discharge part 19 are on one side of the container 11 (the right side in FIG. 3). Is arranged. Accordingly, all of the pipes 2, 3, and 5 connected to these portions 17 to 19 are gathered on one side of the container 11, so that the piping work is easy and the vehicle mountability is improved.
[0021]
Referring to FIGS. 2 and 3 again, a first adsorbing chamber 22 filled with a first adsorbent 21 that adsorbs and desorbs evaporated fuel inside the atmosphere side cylinder portion 12, and the first adsorbing chamber. 2nd adsorption | suction which is arrange | positioned in series near the atmosphere introduction part 17 of the flow path 16 rather than 22 (right side of FIG. 3), and is filled with the 2nd adsorption body 23 whose adsorption / desorption capability is higher than the 1st adsorption body 21. A chamber 24 is formed. The inner peripheral surface of the first adsorption chamber 22 is defined by the inner wall surface of the atmosphere side cylinder portion 12, and the inner surfaces on both sides in the main flow direction that is the longitudinal direction of the first adsorption chamber 22 are the first screen 25 and the second screen. It is defined by the screen 26. The inner peripheral surface of the second adsorption chamber 24 is defined by a cylindrical inner peripheral surface of an inner case 27 that fits in the air-side cylinder portion 12 in a liquid-tight state, and both sides of the second adsorbent 23 in the main flow direction. The inner surface is defined by a second screen 26 and a third screen 28. A space between the outer peripheral surface of the inner case 27 and the inner peripheral surface of the atmosphere side cylinder portion 12 is sealed with a seal ring or the like. A first torsion coil spring 29 as an urging means is interposed in a compressed state between the inner surface of the container 11 on the communication portion 14 side and the first screen 25, and by this first torsion coil spring 29, The screens 25, 26, the first adsorbent 21, the inner case 27, and the like are held in a state of being pressed toward the atmosphere introduction unit 17 side. In this embodiment, the first adsorbent 21 is composed of a large number of granular activated carbons, and a cylindrical porous ceramic filter (honeycomb activated carbon) that fits as the second adsorbent 23 on the cylindrical inner wall surface of the inner case 27. ) Is used.
[0022]
Thus, the inner case 27 is used to reduce the diameter of the second adsorption chamber 24 to a cylindrical shape having the best adsorption / desorption capability, and the central axis of the second adsorption chamber 24 is set to the atmosphere introduction portion 17. Therefore, the adsorption / desorption capability of the second adsorbent 23 is effectively enhanced with a simple structure and suppressing pressure loss and the like.
[0023]
A third adsorption chamber 32 that is filled with the third adsorbent 31 is formed inside the anti-atmosphere side cylinder portion 13. The third adsorbent 31 has a lower adsorption / desorption capability than at least the second adsorbent 23, and in this embodiment is composed of a large number of granular activated carbons, like the first adsorbent 21. The inner peripheral surface of the third adsorption chamber 32 is defined by the inner wall surface of the anti-atmosphere side cylinder 13, and the inner surfaces on both sides in the main flow direction of the third adsorption chamber 32 are the fourth screen 33 and the It is defined by five screens 34. A second torsion coil spring 35 as an urging means is interposed in a compressed state between the fourth screen 33 and the inner surface of the container 11 on the communication portion 14 side (left side in FIG. 3). The screens 33 and 34 and the third adsorbent 31 are held by the second torsion coil spring 35 in a state of being pressed against the partition wall portion 36 that partitions the evaporated fuel introduction portion 18 and the evaporated fuel discharge portion 19. The partition wall portion 36 is continuously bent from the outer wall portion of the container 11.
[0024]
Further, a thin plate-like baffle 38 that divides a part of the third adsorption chamber 32 into a part communicating with the evaporated fuel introduction part 18 and a part communicating with the evaporated fuel discharge part 19 is provided inside the third adsorption chamber 32 with the flow path 16. It extends along the main flow direction. The baffle 38 is integrally formed to protrude from the protruding end portion of the partition wall portion 36. When the baffle 38 is used in this way, the fifth screen 34 is divided into a pair of divided bodies 34 a and 34 b with the baffle 38 interposed therebetween.
[0025]
The screens 25, 26, 28, 33, and 34 are layered filters that extend in the cross-sectional direction of the flow path 16 and can hold the adsorbent while preventing the adsorbent from falling off. Typically, a nonwoven fabric such as a urethane screen that is relatively inexpensive is used. In particular, the second screen 26 functions as an isolation layer 26 that isolates the first adsorption chamber 22 and the second adsorption chamber 24 at a predetermined interval, in order to more reliably prevent the above-described migration phenomenon. Preferably, the thickness in the main flow direction is set to be longer than that of the other screens 25, 28, 33, 34 as shown in FIG.
[0026]
When the length along the main flow direction of the flow path 16 is L, and the substantial diameter of the cross-sectional area of the flow path 16 is D, the first adsorption chamber 22 and the third adsorption chamber 32 filled with the same activated carbon. Are set to substantially the same L / D ratio. That is, the length L and the diameter D of the first adsorption chamber 22 are set to be approximately half the length L and the diameter D of the third adsorption chamber 32, respectively. On the other hand, the second adsorption chamber 24 has an L / D ratio as compared with the first adsorption chamber 22 and the third adsorption chamber 32 because the diameter is reduced to a circular cross section by the inner case 27. Is set high . Thus, using the inner case 27, the first adsorption chamber 22 and the second adsorption chamber 24 having different L / D ratios can be formed inside the atmosphere-side cylindrical portion 12 having a uniform cross-sectional shape, Compared with the above-mentioned Japanese Patent Application Laid-Open No. 10-37812, the structure is remarkably simplified. More specifically, the L / D ratio of the first adsorption chamber 22 and the third adsorption chamber 32 is set to about 1.5 , and the L / D ratio of the second adsorption chamber 24 is set to a range of 2 to 5. . Further, the capacity of the second adsorbent 23 is set to 2% to 20% or less with respect to the capacity of the remaining first adsorbent 21 and third adsorbent 31.
[0027]
As the temperature in the fuel tank 1 rises, etc., as shown in FIG. 3, while the evaporated gas introduced from the evaporated fuel introducing portion 18 flows in the flow path 16 in the direction of the arrow A1, the evaporation in the evaporated gas is performed. The fuel is adsorbed by the adsorbents 31, 21, 23, and the remaining air is discharged from the air introduction unit 17. Since the evaporating gas passes through the third adsorbent 31, the first adsorbent 21 and the second adsorbent 23 in this order, the adsorption concentration of the second adsorbent 23 is generally the lowest, and this second adsorbent. Since the adsorbing / desorbing capacity 23 is set to be relatively high, the evaporated fuel is hardly discharged to the atmosphere introduction unit 17 without being adsorbed.
[0028]
Further, as described above, the concentration gradient of the evaporated fuel also tends to decrease toward the atmosphere introduction unit 17 in the adsorbent filled in one continuous adsorption chamber. Here, it is known that the evaporative fuel tends to diffuse and move toward the atmosphere introduction portion where the concentration is low due to the so-called migration phenomenon in which the fuel concentration in the adsorbent is balanced over time. However, in this embodiment, since the first adsorbent 21 and the second adsorbent 23 are separated by the second screen 26, the migration phenomenon is substantially divided at the second screen 26, and the second The amount of diffusion and movement of the evaporated fuel to the adsorbent 23 is remarkably suppressed, and as a result, the leakage of fuel to the atmosphere introduction unit 17 can be prevented more reliably.
[0029]
Next, with reference to FIG. 4 and FIG. 5, the exhaust emission impact due to the evaporated gas flowing from the evaporated fuel introduction section 18 to the evaporated fuel discharge section 19 will be described. In the configuration in which the check valve is not provided in the charge pipe 2 as in the present embodiment, the evaporated gas may flow from the evaporated fuel introduction portion 18 toward the evaporated fuel discharge portion 19 during engine operation.
[0030]
Here, as in the comparative example shown in FIG. 5, when the second torsion coil spring 35 ′ is provided on the evaporative fuel introduction part 18 or the evaporative fuel discharge part 19, contrary to the present embodiment, the evaporative fuel introduction is performed. A space portion K is formed between the partition wall portion 36 that partitions the portion 18 and the evaporated fuel discharge portion 19 and the fifth screen 34 ′. Therefore, the evaporative gas introduced from the evaporative fuel introduction part 18 hardly passes through the inside of the third adsorption chamber 32 ', and directly passes through the space part K as shown by the arrow A3. Therefore, the fuel concentration of the evaporative gas introduced into the intake system becomes high, the air-fuel ratio is inadvertently rich, and the exhaust performance called the so-called exhaust emission impact tends to be lowered.
[0031]
On the other hand, in the present embodiment, as shown in FIG. 4, the screens 33 and 34 and the third adsorbent 31 are pressed against the partition wall 36 by the second torsion coil spring 35, and the third Since a part of the adsorption chamber 32 is partitioned by the baffle 38, the vaporized gas introduced from the vaporized fuel introduction portion 18 is reliably introduced into the third adsorption chamber 32 through the fifth screen 34 as indicated by an arrow A2. At the same time, the baffle 38 largely detours in a U shape and flows to the evaporated fuel discharge portion 19. For this reason, the amount of the evaporated fuel in the evaporated gas adsorbed by the third adsorbent 31 is increased, the fuel concentration of the evaporated gas introduced into the intake system is sufficiently relaxed (suppressed), and the exhaust emission impact is sufficiently increased. Can be suppressed.
[0032]
FIG. 6 shows a second embodiment. Note that the same components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted. In the second embodiment, the second adsorption chamber 24 is further divided into a first divided chamber 41 and a second divided chamber 42 by a separation layer 40 that can flow, such as a urethane screen. 42 are filled with adsorbents 43 and 44 having higher adsorption / desorption capabilities than the first adsorbent 21 and the third adsorbent 31, respectively. For example, the first division chamber 41 is filled with high specific heat activated carbon, and the second division chamber 42 is filled with a cylindrical ceramic filter. Thus, by further dividing the second adsorption chamber 24 with the isolation layer 40, the above-mentioned migration phenomenon can be more reliably suppressed.
[0033]
In addition, this invention is not limited to embodiment mentioned above, A various change and deformation | transformation are included. For example, with respect to the first embodiment, the second screen 26 as the isolation layer has a thickness substantially equal to or shorter than that of the other screens 25, 28, 33, 34, the baffle 38 is omitted, or the second adsorbent 23 Alternatively, high specific heat activated carbon or high efficiency activated carbon may be used.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an evaporated fuel processing system for an internal combustion engine to which a canister as an evaporated fuel processing apparatus according to the present invention is applied.
FIG. 2 is a perspective view showing a perspective view of the inside of a canister as the evaporated fuel processing apparatus according to the first embodiment.
3 is a cross-sectional view of the canister of FIG.
4 is a cross-sectional view of the canister of FIG.
FIG. 5 is a cross-sectional view of a canister according to a comparative example.
FIG. 6 is a cross-sectional view showing a canister as an evaporative fuel processing apparatus according to a second embodiment.
FIG. 7 is a characteristic diagram showing emissions of Examples a2 and a3 using two types of activated carbons having different adsorption / desorption capacities and Example a1 using one type of activated carbon.
FIG. 8 is a characteristic diagram showing a change in working capacity with respect to the purge air amount.
FIG. 9 is a characteristic diagram showing changes in adsorption / desorption ability and pressure loss with respect to the L / D ratio.
FIG. 10 is a configuration diagram showing a fuel vapor processing apparatus as a conventional example.
[Explanation of symbols]
11 ... Container 12 ... Atmosphere side cylinder part (cylinder part)
DESCRIPTION OF SYMBOLS 13 ... Anti-atmosphere side cylinder part 14 ... Communication part 16 ... Flow path 17 ... Atmosphere introduction part 18 ... Evaporated fuel introduction part 19 ... Evaporated fuel discharge part 21 ... 1st adsorption body 22 ... 1st adsorption chamber 23 ... 2nd adsorption body 24 ... second adsorption chambers 25, 28, 33, 34 ... screen 26 ... second screen (isolation layer)
27 ... Inner case 29, 35 ... Torsion coil spring (biasing means)
31 ... 3rd adsorption body 32 ... 3rd adsorption chamber 36 ... Partition wall part 38 ... Baffle

Claims (11)

内部に流路が形成され、この流路の一端に大気を導入する大気導入部が設けられるとともに、他端に蒸発燃料が導入される蒸発燃料導入部及び蒸発燃料が排出される蒸発燃料排出部が設けられた蒸発燃料処理装置において、
上記流路の主通流方向に沿って延在する筒部を有し、
この筒部が、蒸発燃料を吸着・脱離する第1吸着体が充填される第1吸着室と、この第1吸着室よりも大気導入部寄りに直列に配置され、上記第1吸着体よりも吸着・脱離能力が高い第2吸着体が充填される第2吸着室と、流路断面方向に沿って第1吸着室と第2吸着室とを通流可能に隔離する隔離層と、を有し、
上記筒部の内周面に液密状態で嵌合するインナケースの内周面により上記第2吸着室が画成されて、この第2吸着室が第1吸着室よりも縮径されていることを特徴とする蒸発燃料処理装置。
A flow path is formed inside, an air introduction part for introducing air to one end of the flow path is provided, and an evaporative fuel introduction part for evaporating fuel to be introduced to the other end and an evaporative fuel discharge part for discharging the evaporative fuel In the evaporative fuel processing apparatus provided with
It has a cylindrical portion extending along the main flow direction of the flow path,
The cylindrical portion is arranged in series with a first adsorbing chamber filled with a first adsorbent for adsorbing and desorbing evaporated fuel, and closer to the air introduction portion than the first adsorbing chamber. A second adsorbing chamber filled with a second adsorbent having a high adsorption / desorption capability, an isolation layer for separating the first adsorbing chamber and the second adsorbing chamber along the flow path cross-sectional direction, have a,
The second suction chamber is defined by the inner peripheral surface of the inner case that is fitted in a liquid-tight manner to the inner peripheral surface of the cylindrical portion, and the diameter of the second suction chamber is smaller than that of the first suction chamber. The evaporative fuel processing apparatus characterized by the above-mentioned.
記第2吸着体が、上記インナーケースの内周面に嵌合する円柱状のセラミックフィルタであることを特徴とする請求項1に記載の蒸発燃料処理装置。Second adsorber above SL is, the fuel vapor processing apparatus according to claim 1, characterized in that a cylindrical ceramic filter to be fitted to the inner circumferential surface of the inner case. 上記隔離層が、ウレタンスクリーンであることを特徴とする請求項1又は2に記載の蒸発燃料処理装置。  The evaporative fuel processing apparatus according to claim 1, wherein the isolation layer is a urethane screen. 上記第1吸着体が粒状の活性炭により構成されていることを特徴とする請求項1〜3のいずれかに記載の蒸発燃料処理装置。  The evaporative fuel processing device according to claim 1, wherein the first adsorbent is made of granular activated carbon. 上記流路の主通流方向に沿う長さをL、流路断面積の実質的な直径をDとすると、
上記第吸着室のL/D比が第吸着室のL/D比よりも低く設定されていることを特徴とする請求項1〜4のいずれかに記載の蒸発燃料処理装置。
When the length along the main flow direction of the flow path is L and the substantial diameter of the cross-sectional area of the flow path is D,
Evaporative fuel processing apparatus according to any one of claims 1 to 4, characterized in that it is set lower than the L / D ratio L / D ratio of the first adsorption chamber and the second adsorption chamber.
上記第吸着室のL/D比が2〜5,上記第吸着室のL/D比が略1.5に設定されていることを特徴とする請求項5に記載の蒸発燃料処理装置。6. The evaporative fuel processing apparatus according to claim 5, wherein the L / D ratio of the second adsorption chamber is set to 2 to 5, and the L / D ratio of the first adsorption chamber is set to approximately 1.5. . 上記筒部と、この筒部に並設される筒状の反大気側筒部と、両筒部の一側を一体的に接続する連通部と、が一体的に形成された容器を有し、
上記流路が両筒部及び連通部の内部を略U字状に延在しており、上記反大気側筒部に、上記第2吸着体よりも吸着・脱離能力が低い第3吸着体が充填される第3吸着室が形成され、
、上記容器の一方の側で、上記大気導入部が筒部の端部に形成されているとともに、上記蒸発燃料導入部及び蒸発燃料排出部が反大気側筒部の端部に形成されていることを特徴とする請求項1〜6のいずれかに記載の蒸発燃料処理装置。
A container in which the cylindrical portion, a cylindrical anti-atmosphere side cylindrical portion provided in parallel with the cylindrical portion, and a communication portion that integrally connects one side of both cylindrical portions are integrally formed; ,
A third adsorbent in which the flow path extends in a substantially U shape inside both the cylinder part and the communication part, and has a lower adsorption / desorption capacity than the second adsorbent in the anti-atmosphere side cylinder part A third adsorption chamber filled with
The air introduction part is formed at the end of the cylinder part on one side of the container, and the evaporated fuel introduction part and the evaporated fuel discharge part are formed at the end part of the anti-atmosphere side cylinder part. The evaporative fuel processing apparatus according to any one of claims 1 to 6.
上記蒸発燃料排出部と蒸発燃料導入部とを仕切る仕切壁部と、上記第3吸着室の主通流方向両側の内側面を画成する通流可能な一対のスクリーンと、これらスクリーン及び第3吸着体を上記仕切壁部へ押し付ける付勢手段と、を有することを特徴とする請求項7に記載の蒸発燃料処理装置。  A partition wall that partitions the evaporative fuel discharge portion and the evaporative fuel introduction portion, a pair of flowable screens that define inner surfaces on both sides in the main flow direction of the third adsorption chamber, and the screen and the third The evaporated fuel processing apparatus according to claim 7, further comprising an urging unit that presses the adsorbent against the partition wall. 上記仕切壁部より第3吸着室の内部へ主通流方向に沿って延び、第3吸着室の一部を、上記蒸発燃料導入部へ連なる部分と、上記蒸発燃料排出部へ連なる部分と、に仕切るバッフルを有することを特徴とする請求項8に記載の蒸発燃料処理装置。  Extending along the main flow direction from the partition wall to the inside of the third adsorption chamber, a part of the third adsorption chamber, a part connected to the evaporated fuel introduction part, a part connected to the evaporated fuel discharge part, The evaporative fuel processing apparatus according to claim 8, further comprising a baffle that is partitioned into two. 上記インナケース内の第2吸着室が、第1分割室と第2分割室とに分割されていることを特徴とする請求項1に記載の蒸発燃料処理装置。2. The evaporative fuel processing apparatus according to claim 1, wherein the second adsorption chamber in the inner case is divided into a first divided chamber and a second divided chamber. 上記隔離層とともに第1吸着室と第2吸着室の主通流方向両側の内側面を画成する他のスクリーンを有し、これら他のスクリーンに比して上記隔離層の主通流方向の厚さが長く設定されていることを特徴とする請求項1〜10のいずれかに記載の蒸発燃料処理装置。It has other screens defining inner surfaces on both sides in the main flow direction of the first adsorption chamber and the second adsorption chamber together with the isolation layer, and in the main flow direction of the isolation layer as compared with these other screens. The evaporative fuel processing apparatus according to claim 1, wherein the thickness is set to be long.
JP2001192446A 2001-06-26 2001-06-26 Evaporative fuel processing equipment Expired - Fee Related JP3912048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001192446A JP3912048B2 (en) 2001-06-26 2001-06-26 Evaporative fuel processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001192446A JP3912048B2 (en) 2001-06-26 2001-06-26 Evaporative fuel processing equipment

Publications (2)

Publication Number Publication Date
JP2003003914A JP2003003914A (en) 2003-01-08
JP3912048B2 true JP3912048B2 (en) 2007-05-09

Family

ID=19030895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001192446A Expired - Fee Related JP3912048B2 (en) 2001-06-26 2001-06-26 Evaporative fuel processing equipment

Country Status (1)

Country Link
JP (1) JP3912048B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130186375A1 (en) * 2012-01-24 2013-07-25 Aisan Kogyo Kabushiki Kaisha Trap canister capturing fuel vapor

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3892385B2 (en) 2002-10-22 2007-03-14 株式会社デンソー Canister filter
JP2005016329A (en) 2003-06-24 2005-01-20 Nissan Motor Co Ltd Vaporized fuel treatment device and controller for internal combustion engine using it
DE102004054114A1 (en) * 2003-12-30 2005-08-04 Hyundai Motor Co. Canister for vehicle, has partition dividing inner space of canister into first and second spaces, first activated charcoal, second activated charcoal, and diffuser
DE602005007269D1 (en) 2005-01-21 2008-07-10 Dayco Fluid Technologies Spa SYSTEM FOR CONTROLLING EMISSIONS FROM FUEL MUFFS FROM A VEHICLE
JP4718311B2 (en) * 2005-11-30 2011-07-06 株式会社マーレ フィルターシステムズ Canister
WO2009080075A2 (en) * 2007-12-20 2009-07-02 Kautex Textron Gmbh & Co. Kg Fuel vapor storage and recovery apparatus
JP4937949B2 (en) * 2008-03-19 2012-05-23 愛三工業株式会社 Evaporative fuel processing equipment
US7909919B2 (en) 2008-03-10 2011-03-22 Aisan Kogyo Kabushiki Kaisha Vaporized fuel treatment apparatus
JP4964808B2 (en) * 2008-03-10 2012-07-04 愛三工業株式会社 Evaporative fuel processing equipment
KR100931119B1 (en) 2008-03-20 2009-12-10 현대자동차주식회사 Automotive canister device with activated carbon leakage prevention structure
JP5179965B2 (en) * 2008-06-23 2013-04-10 フタバ産業株式会社 Canister
JP2012007501A (en) * 2010-06-23 2012-01-12 Mahle Filter Systems Japan Corp Canister
JP5015344B2 (en) * 2011-08-08 2012-08-29 愛三工業株式会社 Evaporative fuel processing equipment
JP5976381B2 (en) * 2012-04-27 2016-08-23 愛三工業株式会社 Evaporative fuel processing equipment
JP2015057551A (en) * 2014-12-22 2015-03-26 愛三工業株式会社 Evaporation fuel treatment device
JP6376106B2 (en) 2015-11-10 2018-08-22 マツダ株式会社 Canister
JP6507092B2 (en) * 2015-12-17 2019-04-24 フタバ産業株式会社 Evaporative fuel processing system
DE102018004001A1 (en) 2018-05-17 2019-11-21 A. Kayser Automotive Systems Gmbh Fuel vapor buffer means
JP6949889B2 (en) * 2019-02-04 2021-10-13 フタバ産業株式会社 Canister
JP2020148174A (en) * 2019-03-15 2020-09-17 フタバ産業株式会社 Canister
JP7181254B2 (en) * 2020-06-12 2022-11-30 フタバ産業株式会社 Evaporative fuel processing device
JP7244553B2 (en) * 2021-02-05 2023-03-22 フタバ産業株式会社 Evaporative fuel processing device
JP7303241B2 (en) * 2021-04-16 2023-07-04 フタバ産業株式会社 canister

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130186375A1 (en) * 2012-01-24 2013-07-25 Aisan Kogyo Kabushiki Kaisha Trap canister capturing fuel vapor

Also Published As

Publication number Publication date
JP2003003914A (en) 2003-01-08

Similar Documents

Publication Publication Date Title
JP3912048B2 (en) Evaporative fuel processing equipment
JP2005016329A (en) Vaporized fuel treatment device and controller for internal combustion engine using it
US5207808A (en) Canister for adsorbing evaporated fuel
JP5976381B2 (en) Evaporative fuel processing equipment
JP3788152B2 (en) Internal combustion engine canister
US6237574B1 (en) Evaporative emission canister for an automotive vehicle
US20130186375A1 (en) Trap canister capturing fuel vapor
US20040083894A1 (en) Filter and canister having the same
JP5220631B2 (en) Evaporative fuel processing equipment
JP2013036416A (en) Evaporated fuel treating apparatus
US20140165843A1 (en) Fuel vapor treatment device
JP2015117603A (en) Evaporative fuel treatment apparatus
US9243594B2 (en) Hydrocarbon storage canister
JP2001132559A (en) Evaporation fuel processing device for internal combustion engine
JPH05195884A (en) Evaporated fuel processing device
JP2010031711A (en) Canister
US7214258B2 (en) Evaporated fuel processing device
JP2008202604A (en) Evaporative fuel handling device
JP7444836B2 (en) canister
US11326561B2 (en) Canister
JPH06249088A (en) Canister
US20050229787A1 (en) Evaporative emissions canister partition
JP7328305B2 (en) canister
JP2009203838A (en) Evaporated fuel treatment device
US11867140B1 (en) Evaporative emissions canister with layered carbon

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees