JP2000303917A - Canister - Google Patents

Canister

Info

Publication number
JP2000303917A
JP2000303917A JP11118215A JP11821599A JP2000303917A JP 2000303917 A JP2000303917 A JP 2000303917A JP 11118215 A JP11118215 A JP 11118215A JP 11821599 A JP11821599 A JP 11821599A JP 2000303917 A JP2000303917 A JP 2000303917A
Authority
JP
Japan
Prior art keywords
activated carbon
canister
carbon layer
fuel
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11118215A
Other languages
Japanese (ja)
Inventor
Hideaki Itakura
秀明 板倉
Naoya Kato
直也 加藤
Hisayoshi Ota
久喜 太田
Noriyasu Amano
典保 天野
Yoshihiko Hyodo
義彦 兵道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP11118215A priority Critical patent/JP2000303917A/en
Publication of JP2000303917A publication Critical patent/JP2000303917A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a canister having high adsorption and desorption performance. SOLUTION: Two or more activated carbon layers 11, 12, and 13 are arranged in series for an inflow of fuel steam from a fuel tank 2. Activated carbon A having a large grain size is used in the activated carbon layer 11 on the side situated upper stream brought into approximate saturated adsorption and activated carbon C is used in the activated carbon layer 13 on the side situated downstream, where fuel steam is apt to flow through voids of activated carbon since only a low boiling point component apt to vaporize flows in, and activated carbon C with a small grain size is used in the activated carbon layer 13 on the side situated downstream having adsorption density lower than that on the side situated upper upstream. Therefore, a pressure loss of a whole of the canister 1 is suppressed to a comparatively low pressure loss by the activated carbon A with a large grain size. Further, purging air is brought into a state to hardly pass the voids of the activated carbon by the activated carbon C with a small grain size, and HC is prevented from remaining on the side situated downstream. Simultaneously, steam fuel hardly passes through to the side situated downstream and adsorption performance of the whole of the canister 1 is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料タンクに連通
する蒸発燃料導入ポートと、大気に連通する大気ポート
を有する容器内に、燃料蒸気の吸脱着能力を有する活性
炭を充填したキャニスタに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a canister in which a container having an evaporative fuel introduction port communicating with a fuel tank and an atmosphere port communicating with the atmosphere is filled with activated carbon capable of absorbing and desorbing fuel vapor. is there.

【0002】[0002]

【従来の技術】内燃機関のキャニスタ(蒸発燃料処理装
置)には吸着剤として活性炭が封入されており、燃料タ
ンク内で蒸発し、排出される燃料蒸気を吸着保持する。
吸着した燃料蒸気はエンジン作動時に吸気管の負圧によ
りキャニスタの大気ポートより導入される外気によって
活性炭から脱離(パージ)され、吸気管に導出されてイ
ンジェクタからの噴射燃料とともに燃焼される。
2. Description of the Related Art Activated carbon is sealed as an adsorbent in a canister (evaporated fuel processing device) of an internal combustion engine, and adsorbs and retains fuel vapor evaporated and discharged in a fuel tank.
The adsorbed fuel vapor is desorbed (purged) from the activated carbon by the outside air introduced from the atmospheric port of the canister due to the negative pressure of the intake pipe during operation of the engine, and is led out to the intake pipe and burned together with the fuel injected from the injector.

【0003】1998年より米国にて給油時のHC大気
放出を規制するいわゆるORVR規制が始まっている。
この規制により燃料タンク内空間に滞留しているHCを
給油時にキャニスタにて捕集するため、給油抵抗を低減
するために必然的に粒径が大きく、またばらつきの少な
い活性炭がキャニスタに充填された。
In 1998, the so-called ORVR regulation, which regulates the emission of HC air during refueling, has begun in the United States.
Due to this regulation, HC staying in the fuel tank space is collected by the canister at the time of refueling, so that the canister was filled with activated carbon having a large particle size and a small variation inevitably to reduce refueling resistance. .

【0004】しかしながら、前記活性炭では空隙率が大
きくなり低圧損にはなるが、吸着しているHCを脱離す
る際、パージエアがこの空隙を通過しやすくなりキャニ
スタ内にHCが残存しやすい。この残存するHCにより
吸着に関与する細孔が埋まってしまい、新たなガソリン
蒸気の吸着に有効な細孔が減少し、吸着性能が低下する
といった問題が生じていた。
[0004] However, the activated carbon has a high porosity and a low pressure loss. However, when desorbing the adsorbed HC, the purge air easily passes through the air gap and the HC easily remains in the canister. The remaining HC fills the pores involved in the adsorption, and the number of pores effective for the adsorption of new gasoline vapor decreases, resulting in a problem that the adsorption performance is reduced.

【0005】また、キャニスタ特に下流側に残存したH
Cが車両放置中にキャニスタの出口方向に拡散し、大気
に洩れ出てくるといった問題も同時に生じていた。加え
て粒径が大きく通気抵抗が小さいため、燃料蒸気吸着の
際に燃料蒸気がキャニスタの下流側に進行しやすく、細
孔表面積や容積を増加させても吸着性能(活性炭単位体
積当たりの吸着量)が向上しないといった問題も生じて
いた。
[0005] In addition, the H remaining on the canister, particularly on the downstream side,
At the same time, the problem that carbon diffuses toward the exit of the canister while the vehicle is left undisturbed and leaks into the atmosphere has also occurred. In addition, due to the large particle size and low airflow resistance, fuel vapor tends to travel downstream of the canister when adsorbing fuel vapor, and even if the pore surface area and volume are increased, the adsorption performance (the amount of adsorption per unit volume of activated carbon) ) Did not improve.

【0006】市場環境において燃料タンクからキャニス
タに流入するHCのうち80%以上が炭素数4〜6の成
分(以後低沸点成分という)である。高沸点成分は液化
しやすく、つまり吸着しやすいため、キャニスタの上流
側で吸着が完了する。
In a market environment, 80% or more of the HC flowing into the canister from the fuel tank is a component having 4 to 6 carbon atoms (hereinafter referred to as a low boiling component). Since the high-boiling components are easily liquefied, that is, easily adsorbed, the adsorption is completed on the upstream side of the canister.

【0007】このため、実公平2−19570等ではキ
ャニスタの上流側の活性炭層ほど高沸点成分が吸着しや
すい細孔直径の大きい活性炭を充填した構造を有してい
る。実公平2−19570等は吸着成分にあった細孔直
径を有した活性炭層を配置する点では本発明と関連して
いるが、活性炭の粒径及び材質については全く着目して
いない。
[0007] For this reason, Japanese Utility Model Publication No. 2-195570 and the like have a structure in which the activated carbon layer on the upstream side of the canister is filled with activated carbon having a large pore diameter in which a high boiling point component is more likely to be adsorbed. Japanese Utility Model Publication No. 19570/1995 is related to the present invention in that an activated carbon layer having a pore diameter suitable for the adsorbed component is arranged, but does not pay any attention to the particle size and material of the activated carbon.

【0008】[0008]

【発明が解決しようとする課題】本発明はキャニスタの
上流側と下流側とで吸着する燃料蒸発成分と吸着密度が
異なることに着目して、上流側と下流側とで粒径、細孔
径分布及び材質が異なる活性炭を封入したことを特徴と
する。
SUMMARY OF THE INVENTION The present invention focuses on the difference between the adsorbed density and the fuel evaporation component adsorbed on the upstream and downstream sides of the canister. Activated carbon of a different material is enclosed.

【0009】燃料タンクから燃料蒸気が流入するキャニ
スタの上流側には燃料蒸気中の80%以上を占める低沸
点成分の他、比較的液化しやすい沸点の高い成分が吸着
する。また、常時燃料蒸気が流入する場所であり、活性
炭の吸着状態はほぼ飽和吸着である。実験により得られ
た、飽和吸着量は細孔性状(細孔表面積、容積)が同じ
であれば粒径(空隙)の大小には関係が無いという知見
に着目し、上流側には比較的粒径の大きい活性炭を封入
する。キャニスタに流入する燃料蒸気分子の大きさはお
よそ7〜20Åの大きさであり、この吸着される分子の
大きさdと活性炭の細孔直径Dとは相関(D≒3d)が
あるといわれている。キャニスタの上流側には燃料蒸気
中の全ての成分、特に高沸点成分は8割がこの部位で吸
着が完了するため、この部位の活性炭は細孔直径が20
〜70Åの範囲、特に50〜70Åを多く含むものとす
るのが好ましい。
On the upstream side of the canister into which the fuel vapor flows from the fuel tank, there is adsorbed a component having a high boiling point which is relatively easy to liquefy, in addition to a low boiling component occupying 80% or more of the fuel vapor. Further, it is a place where fuel vapor always flows, and the adsorption state of activated carbon is almost saturated adsorption. Focusing on the findings obtained by experiments that the saturated adsorption amount is not related to the size of the particle size (void) if the pore properties (pore surface area and volume) are the same, Enclose activated carbon with a large diameter. The size of the fuel vapor molecules flowing into the canister is about 7 to 20 °, and it is said that there is a correlation (D ≒ 3d) between the size d of the adsorbed molecules and the pore diameter D of the activated carbon. I have. On the upstream side of the canister, 80% of all components in the fuel vapor, especially high-boiling components, have been completely absorbed at this site.
It is preferable to include a large amount in the range of 70 to 70 °, particularly 50 to 70 °.

【0010】一方、キャニスタの下流側ほど気化しやす
い低沸点成分のみが流入するため、活性炭の空隙を抜け
やすく、上流側に比べ吸着密度が低下する。また、吸着
した燃料蒸気が下流側に残存すると、大気ポート側へ燃
料蒸気が洩れ出てくる要因となるため吸着している燃料
蒸気をできるだけ効率よく脱離する必要がある。ORV
R規制により給油時に燃料タンクに滞留している燃料蒸
気をキャニスタにて吸着する必要があり、キャニスタの
低圧損化は必須事項である。
[0010] On the other hand, only low-boiling components, which are more likely to be vaporized, flow in the downstream of the canister, so that the pores of the activated carbon are easily removed, and the adsorption density is lower than that in the upstream. In addition, if the adsorbed fuel vapor remains on the downstream side, it may cause the fuel vapor to leak to the atmosphere port side. Therefore, it is necessary to desorb the adsorbed fuel vapor as efficiently as possible. ORV
Due to the regulation of R, it is necessary to adsorb fuel vapor remaining in the fuel tank at the time of refueling with the canister, and it is essential to reduce the pressure loss of the canister.

【0011】そこで、本発明ではこれらの問題を解決す
るためにほぼ飽和吸着となる上流側には現行よりも大き
い粒径の活性炭を使用し、逆に下流側には現行よりも小
さい粒径の活性炭を使用し、パージエアが空隙を通過し
難くして下流側にHCが残存することを防止する。同時
に下流側に現行よりも小さい粒径の活性炭を使用したこ
とで燃料蒸気が通過しにくくなり、吸着性能の向上が可
能となる。
Therefore, in the present invention, in order to solve these problems, activated carbon having a larger particle size than the current size is used on the upstream side where almost saturated adsorption is performed, and conversely, activated carbon having a smaller particle size than the current size is used on the downstream side. Activated carbon is used to make it difficult for purge air to pass through the air gap and to prevent HC from remaining downstream. At the same time, the use of activated carbon having a particle size smaller than that of the current type on the downstream side makes it difficult for fuel vapor to pass therethrough, thereby improving the adsorption performance.

【0012】要するに、本発明は効率の良い吸着性能及
び脱離性能を得ると共に、従来に比し燃料蒸気が大気ポ
ート側に抜け難くしたキャニスタを提供することを目的
とする。
[0012] In short, an object of the present invention is to provide a canister in which fuel vapor is less likely to escape to the atmosphere port side than in the past, while obtaining efficient adsorption and desorption performance.

【0013】[0013]

【課題を解決するための手段】本発明は、前記課題を解
決するために、請求項1ないし請求項6に記載の技術的
手段を採用する。
According to the present invention, in order to solve the above-mentioned problems, the technical means described in claims 1 to 6 are employed.

【0014】請求項1に記載の発明では、燃料タンクか
らの燃料蒸気流入に対して直列に2つ以上の活性炭層を
有し、ほぼ飽和吸着となる上流側の活性炭層には大きい
粒径の活性炭を使用し、気化しやすい低沸点成分のみが
流入するため活性炭の空隙を抜けやすく上流側に比べ吸
着密度が低下する下流側の活性炭層には小さい粒径の活
性炭を使用しているので、大きい粒径の活性炭により、
キャニスタ全体の圧損を比較的低圧損におさえることが
でき、また小さい粒径の活性炭により、パージエアが活
性炭の空隙を通過し難くして下流側にHCが残存するこ
とを防止すると同時に、下流側に燃料蒸気が通過しにく
くなり、キャニスタ全体として吸着性能の向上が可能と
なる。
According to the first aspect of the present invention, two or more activated carbon layers are provided in series with respect to the fuel vapor inflow from the fuel tank, and the activated carbon layer on the upstream side, which is almost saturated, has a large particle size. Activated carbon is used, and only low-boiling components that are easy to vaporize flow in, so the activated carbon layer on the downstream side, where the adsorption density is lower than that on the upstream side because it easily escapes the voids of the activated carbon, uses activated carbon with a small particle size. With activated carbon of large particle size,
The pressure loss of the entire canister can be suppressed to a relatively low pressure loss, and the activated carbon having a small particle size makes it difficult for purge air to pass through the gap of the activated carbon, thereby preventing HC from remaining on the downstream side, and at the same time, preventing the purge air from remaining on the downstream side. It becomes difficult for fuel vapor to pass through, and the adsorption performance of the entire canister can be improved.

【0015】請求項2に記載の発明では、キャニスタに
おいて下流側の層ほど小さい細孔径を多く含むので、燃
料蒸気中の80%以上を占める低沸点成分である分子の
大きさが7〜10Åの燃料蒸気が下流側の層に多く含ま
れる小さい細孔に効率良く吸着される。
According to the second aspect of the present invention, since the downstream layer in the canister contains a larger number of small pores, the size of the low boiling component, which accounts for 80% or more of the fuel vapor, is 7 to 10 °. The fuel vapor is efficiently adsorbed by the small pores contained in the downstream layer.

【0016】請求項3に記載の発明では、キャニスタに
おいて、燃料タンクからの燃料蒸気流入に対して上流側
から下流側にかけて、徐々に粒径が小さくなる活性炭層
を有するので、請求項1に記載の発明の効果が段階的で
はなく連続的に得られるため効率が増す効果がある。
According to the third aspect of the present invention, the canister has an activated carbon layer whose particle diameter gradually decreases from the upstream side to the downstream side with respect to the inflow of fuel vapor from the fuel tank. The effect of the present invention can be obtained continuously rather than stepwise, thereby increasing the efficiency.

【0017】請求項4に記載の発明では、キャニスタに
おいて、燃料タンクからの燃料蒸気流入に対して上流側
から下流側にかけて、徐々に細孔径が小さくなる細孔を
多く含む活性炭層を有するので、請求項2に記載の発明
の効果が段階的ではなく連続的に得られるため効率が増
す効果がある。
According to the fourth aspect of the present invention, the canister has an activated carbon layer containing many pores whose pore diameter gradually decreases from the upstream side to the downstream side with respect to the inflow of fuel vapor from the fuel tank. Since the effect of the invention described in claim 2 can be obtained continuously rather than stepwise, there is an effect of increasing efficiency.

【0018】請求項5に記載の発明では、キャニスタに
おいて、上流側には柱状炭を、下流側には破砕炭を充填
したので、上流側は空隙が多くなることによって圧損が
低下し、下流側は充填効率を高め、更に燃料蒸気が活性
炭の空隙を通過しにくくすることによって吸着性能を向
上させ、同時にパージエアが細孔内部に当たりやすく脱
離性能を向上させる効果がある。
According to the fifth aspect of the present invention, in the canister, the columnar coal is filled on the upstream side and the crushed coal is filled on the downstream side. Has the effect of increasing the charging efficiency and improving the adsorption performance by making it difficult for the fuel vapor to pass through the voids of the activated carbon, and at the same time improving the desorption performance because the purge air easily hits the inside of the pores.

【0019】請求項6に記載の発明では、キャニスタに
おいて、上流側には木質系の活性炭を、下流側には石炭
系の活性炭を充填した。図3は一般に使用されている木
質系及び石炭系の活性炭の細孔表面積と細孔容積との関
係を示すグラフである。図3より木質系の活性炭は表面
積が小さく、容積が大きい傾向があることがわかる。こ
れは木質系の活性炭は細孔径の大きい細孔を多く持つこ
とを意味している。活性炭を製造する際の賦活条件によ
り細孔表面積及び細孔容積はある程度変えることは可能
であるが、材質の関係で前記の傾向がある。つまり上流
側の細孔径の大きい木質系の活性炭に上流側に流入する
燃料蒸気、特に高沸点成分が吸着され、下流側の細孔径
の比較的小さい石炭系の活性炭に分子の大きさが小さい
低沸点成分が効率良く吸着される。
According to the sixth aspect of the present invention, in the canister, wood-based activated carbon is filled on the upstream side, and coal-based activated carbon is filled on the downstream side. FIG. 3 is a graph showing the relationship between the pore surface area and the pore volume of commonly used wood-based and coal-based activated carbon. From FIG. 3, it can be seen that wood-based activated carbon tends to have a small surface area and a large volume. This means that woody activated carbon has many pores with large pore diameters. Although the pore surface area and pore volume can be changed to some extent depending on the activation conditions when producing activated carbon, the above tendencies tend to occur depending on the material. In other words, the fuel vapor flowing into the upstream side, particularly high-boiling components, is adsorbed on the woody activated carbon having a large pore diameter on the upstream side, and the low-molecular-weight, low-molecular-weight activated carbon having a relatively small pore diameter on the downstream side is adsorbed. Boiling point components are adsorbed efficiently.

【0020】[0020]

【発明の実施の形態】図1は本発明の実施形態の構成を
示すシステム図である。図1において、キャニスタ1は
燃料タンク2と蒸発燃料導入ポートをなすタンクポート
3を介して連通し、その途中には燃料タンクの内圧によ
って双方に連通する内圧弁4が設置されている。キャニ
スタ1内部には吸着剤として活性炭が封入されており、
本実施例における活性炭は同じ原料から得られたもので
あるが、細孔径分布及び粒径が異なる活性炭A、B、C
を燃料タンクからの蒸気流入に対して垂直に上流側から
11、12、13と3層に等分に配置してある。
FIG. 1 is a system diagram showing a configuration of an embodiment of the present invention. In FIG. 1, a canister 1 communicates with a fuel tank 2 via a tank port 3 serving as an evaporative fuel introduction port, and an intermediate pressure valve 4 is provided in the middle of the tank port 3 to communicate with the both by the internal pressure of the fuel tank. Activated carbon is sealed inside the canister 1 as an adsorbent,
The activated carbon in this example was obtained from the same raw material, but the activated carbons A, B, and C differed in the pore size distribution and the particle size.
Are vertically and equally distributed in three layers, 11, 12, and 13 from the upstream side with respect to the steam inflow from the fuel tank.

【0021】図2はその活性炭A、B、Cの細孔径分布
を示すグラフである。図2において、活性炭Aは細孔直
径が20〜70Åの範囲を、活性炭Bは20〜50Åの
範囲を、活性炭Cは20〜30Åの範囲を多く含んでい
る。また表1はキャニスタ1の各層の活性炭の平均粒
径、材質及び活性炭形状を示すものである。
FIG. 2 is a graph showing the pore size distribution of the activated carbons A, B and C. In FIG. 2, activated carbon A has a large pore diameter range of 20 to 70 °, activated carbon B has a large range of 20 to 50 °, and activated carbon C has a large range of 20 to 30 °. Table 1 shows the average particle size, material, and shape of the activated carbon in each layer of the canister 1.

【0022】活性炭は上下一対の多孔板51、52間に
充填され、多孔板51、52と容器体の間に配設したス
トッパ6によって挟持されている。多孔板51、52と
活性炭の間にはフィルタ71、72が配設されて活性炭
Cの脱落を防止している。タンクポート3と同じ端面に
はパージポート8が設置されており、吸気管にパージバ
ルブ9を介して連通している。また、活性炭層を挟んで
対面には大気ポート10が設置されており、キャニスタ
と大気との連通箇所となっている。
The activated carbon is filled between a pair of upper and lower perforated plates 51 and 52 and is sandwiched between stoppers 6 disposed between the perforated plates 51 and 52 and the container. Filters 71 and 72 are provided between the perforated plates 51 and 52 and the activated carbon to prevent the activated carbon C from falling off. A purge port 8 is provided on the same end surface as the tank port 3 and communicates with the intake pipe via a purge valve 9. An air port 10 is provided on the opposite side of the activated carbon layer, and serves as a communication point between the canister and the atmosphere.

【0023】 次に前記の如く構成される実施形態の作用について説明
する。
[0023] Next, the operation of the embodiment configured as described above will be described.

【0024】車両走行中、燃料タンク2で発生した燃料
蒸気はタンクポート3から最初に活性炭層11に流入す
る。燃料蒸気中に20%弱含まれる高沸点成分は液化し
やすいためほとんどは活性炭層11で吸着される。活性
炭層12には微量ではあるが活性炭層11で吸着できな
かった高沸点成分のなかでも沸点が低沸点成分に近い成
分と活性炭層11で吸着できなかった低沸点成分が流入
する。活性炭層13には活性炭層12までで吸着できな
かった低沸点成分が吸着する。車両走行中には吸着と同
時に、吸気負圧により大気ポート10よりエアが導入さ
れ、吸着しているHCを脱離してエアと共に吸気管に導
出するパージも行われている。
During running of the vehicle, the fuel vapor generated in the fuel tank 2 first flows into the activated carbon layer 11 from the tank port 3. Most of the high-boiling components contained in the fuel vapor, which are slightly less than 20%, are easily liquefied, and are mostly adsorbed by the activated carbon layer 11. Among the high-boiling components that could not be adsorbed by the activated carbon layer 11, although small amounts, the components having boiling points close to the low-boiling components and the low-boiling components that could not be adsorbed by the activated carbon layer 11 flow into the activated carbon layer 12. Activated carbon layer 13 adsorbs low-boiling components that could not be adsorbed up to activated carbon layer 12. During traveling of the vehicle, at the same time as the adsorption, air is introduced from the atmospheric port 10 by the intake negative pressure, and a purge for desorbing the adsorbed HC and leading it to the intake pipe together with the air is also performed.

【0025】従来は、キャニスタの下流側、部位として
は活性炭層13付近に吸着したHCは、キャニスタを低
圧損化するために使用した粒径の大きい活性炭のために
パージエアがその空隙を容易に通過し、充分脱離できな
かったが、本実施形態においては活性炭層13の粒径を
従来よりも小さくすること及び活性炭形状を破砕炭とす
ることによって充填効率を高め、下流側のHCが効率良
く脱離でき、HCの残存を低減することができる。これ
により車両走行後の車両放置中の大気へのHCの放出を
従来に比べ大幅に低減できる。
Conventionally, HC adsorbed on the downstream side of the canister, in the vicinity of the activated carbon layer 13, is easily purged by the purge air because of the activated carbon having a large particle size used for reducing the pressure drop of the canister. However, in the present embodiment, the filling efficiency was increased by reducing the particle size of the activated carbon layer 13 and the shape of the activated carbon to be crushed carbon, and the downstream HC was efficiently removed. It can be desorbed and the remaining HC can be reduced. As a result, the emission of HC into the atmosphere when the vehicle is left after the vehicle has traveled can be significantly reduced as compared with the related art.

【0026】キャニスタに流入する燃料蒸気分子の大き
さはおよそ7〜20Åの大きさであり、この吸着される
分子の大きさdと活性炭の細孔直径Dとは相関(D≒3
d)があると言われている。活性炭層13には低沸点成
分のみが流入し、その分子の大きさはおよそ7〜10Å
であることから活性炭層13の活性炭Cは細孔直径が2
0〜30Åの範囲を多く含む細孔を有するものとした。
また材質は前記のごとくの細孔径の特徴から石炭系とす
れば前記細孔直径範囲を多く含む活性炭が得られやす
い。
The size of the fuel vapor molecules flowing into the canister is about 7 to 20 °, and the size d of the adsorbed molecules and the pore diameter D of the activated carbon are correlated (D ≒ 3).
d) is said to be present. Only the low-boiling components flow into the activated carbon layer 13 and the molecular size thereof is about 7 to 10 °.
Therefore, the activated carbon C of the activated carbon layer 13 has a pore diameter of 2
It had pores containing a large range of 0 to 30 °.
Further, if the material is made of a coal based on the above-described characteristics of the pore diameter, activated carbon containing a large range of the pore diameter can be easily obtained.

【0027】ORVR規制によりキャニスタの低圧損化
は必要であり、圧損は従来品と同等におさえる必要があ
る。活性炭層13を従来よりも粒径の小さい活性炭を使
用し、圧損を高めたため他の層で圧損を従来よりも下げ
る必要がある。本発明においては活性炭層11の活性炭
Aを従来よりも大きい粒径とすることで対応する。
It is necessary to reduce the pressure loss of the canister according to the ORVR regulations, and it is necessary to reduce the pressure loss to the same level as that of the conventional product. The activated carbon layer 13 is made of activated carbon having a smaller particle size than the conventional one, and the pressure loss is increased. Therefore, it is necessary to reduce the pressure loss in the other layers as compared with the conventional case. In the present invention, the size of the activated carbon A of the activated carbon layer 11 is made larger than that of the conventional activated carbon.

【0028】これはキャニスタの上流部は、常時燃料蒸
気が流入する場所であり、活性炭の吸着状態はほぼ飽和
吸着であり、飽和吸着量は細孔性状(細孔表面積、容
積)が同じであれば粒径(空隙)の大小には関係が無い
という知見に基づくものである。粒径を従来よりも大き
くしたことにより活性炭に吸着したHCが脱離しにくく
なるが、キャニスタ上流部には高沸点成分が主に吸着さ
れ、下流側に比べ拡散して大気に放出される低沸点成分
は吸着される割合が極端に少ないため、粒径を大きくし
ても充分に脱離することが可能である。活性炭層11の
活性炭Aの細孔直径はキャニスタに流入する全ての燃料
蒸気分子の大きさに対応するため、20〜70Åの幅広
い範囲を有する必要があるが、特に高沸点成分に対応す
るために50〜70Åの細孔直径を多く有することが望
ましい。また、活性炭Aの材質は活性炭Cとは逆に木質
系の活性炭とすることで前記細孔直径範囲を多く含む活
性炭が得られやすい。
This is the location where the fuel vapor always flows in the upstream part of the canister. The adsorption state of the activated carbon is almost saturated adsorption, and the saturated adsorption amount is the same regardless of the pore characteristics (pore surface area and volume). This is based on the finding that there is no relation to the size of the particle size (void). Although the HC adsorbed on activated carbon is less likely to be desorbed by increasing the particle size than before, high boiling components are mainly adsorbed in the upstream of the canister, and the low boiling point is diffused and released to the atmosphere compared to the downstream. Since the component is adsorbed at an extremely low ratio, it can be sufficiently desorbed even if the particle size is increased. The pore diameter of the activated carbon A in the activated carbon layer 11 needs to have a wide range of 20 to 70 ° in order to correspond to the size of all the fuel vapor molecules flowing into the canister. It is desirable to have a large pore diameter of 50-70 °. In addition, when the activated carbon A is made of wood-based activated carbon, contrary to the activated carbon C, activated carbon containing a large pore diameter range can be easily obtained.

【0029】本実施形態はキャニスタ上流側及び下流側
に充填される活性炭の性状を制御したものであり、活性
炭層12の活性炭Bは従来と同等で問題は無い。しかし
ながら、前記のごとく活性炭層12には微量ではあるが
活性炭層11で吸着できなかった高沸点成分のなかでも
沸点が低沸点成分に近い成分と活性炭層11で吸着でき
なかった低沸点成分が流入するため、活性炭Bは活性炭
層11の活性炭Aよりも小さい20〜50Åの細孔直径
を多く含むものが望ましい。なお、本実施形態において
は活性炭層を等分としたが、活性炭A及び活性炭Cの粒
径と圧損とのマッチングにより、等分とすることは必ず
しも必要ではない。
In this embodiment, the properties of the activated carbon filled in the upstream and downstream sides of the canister are controlled, and the activated carbon B of the activated carbon layer 12 is equivalent to the conventional one and has no problem. However, as described above, among the high-boiling components that were not adsorbed by the activated carbon layer 11 in a small amount into the activated carbon layer 12, components having a boiling point close to the low-boiling component and low-boiling components that could not be adsorbed by the activated carbon layer 11 flowed into the activated carbon layer 12. Therefore, it is desirable that the activated carbon B contains a large pore diameter of 20 to 50 ° smaller than the activated carbon A of the activated carbon layer 11. In the present embodiment, the activated carbon layer is divided equally, but it is not always necessary to divide the activated carbon layer into equal parts by matching the particle diameters of the activated carbons A and C with the pressure loss.

【0030】給油時には、エンジンが停止しているため
HCはパージされることはなく、給油前に燃料タンク内
の空間に滞留していたHCが給油燃料に押し出される形
でキャニスタに流入する。このとき従来のようにキャニ
スタの下流側に粒径の大きい活性炭が封入されている
と、下流側に流入した液化しにくい低沸点成分が活性炭
の空隙を通過しやすくなるため活性炭単位体積当たりの
吸着量(吸着性能)が低下する。本実施形態において
は、液化しやすい、つまり吸着しやすい高沸点成分がほ
とんど吸着され、活性炭の飽和吸着量に近くなり吸着性
能が粒径にあまり左右されない上流側には従来よりも粒
径の大きい活性炭層11を配し、これにより圧損が低く
なった分を下流側の活性炭層13に従来よりも粒径の小
さい活性炭Cを封入することによって、低沸点成分が活
性炭の空隙を通過しにくくして吸着性能低下を防止して
いる。給油後、エンジン作動時にはパージが再び行われ
て、給油時にキャニスタに吸着したHC、特に下流側に
吸着した低沸点成分を効率良くパージして、車両停止時
の大気中へのHCの放出を防止する。
At the time of refueling, HC is not purged because the engine is stopped, and the HC remaining in the space in the fuel tank before refueling flows into the canister in a form of being pushed out by refueling fuel. At this time, if activated carbon with a large particle size is sealed downstream of the canister as in the conventional case, low-boiling components that are difficult to be liquefied and flow into the downstream can easily pass through the voids of the activated carbon, so that adsorption per unit volume of activated carbon can be achieved. The amount (adsorption performance) decreases. In the present embodiment, the high-boiling components that are easily liquefied, that is, easily adsorbed, are almost adsorbed, and the particle size is larger than the conventional one on the upstream side where the adsorption performance is close to the saturated adsorption amount of activated carbon and the adsorption performance is not so much affected by the particle size. The activated carbon layer 11 is disposed, and the portion having a reduced pressure loss is filled with activated carbon C having a smaller particle size than the conventional one in the activated carbon layer 13 on the downstream side, so that the low boiling point component is less likely to pass through the voids of the activated carbon. To prevent the adsorption performance from decreasing. After refueling, purging is performed again when the engine is operating, and HC adsorbed on the canister during refueling, especially low-boiling components adsorbed on the downstream side, is efficiently purged to prevent the emission of HC into the atmosphere when the vehicle is stopped. I do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の構成を示すシステム図であ
る。
FIG. 1 is a system diagram showing a configuration of an embodiment of the present invention.

【図2】活性炭A、B、Cの細孔径分布を示すグラフで
ある。
FIG. 2 is a graph showing the pore size distribution of activated carbons A, B and C.

【図3】一般に使用されている木質系及び石炭系の活性
炭の細孔表面積と細孔容積との関係を示すグラフであ
る。
FIG. 3 is a graph showing the relationship between the pore surface area and the pore volume of commonly used wood-based and coal-based activated carbons.

【符号の説明】[Explanation of symbols]

1 キャニスタ 2 燃料タンク 3 蒸発燃料導入ポート(タンクポート) 10 大気ポート 11、12、13 活性炭層 DESCRIPTION OF SYMBOLS 1 Canister 2 Fuel tank 3 Evaporated fuel introduction port (tank port) 10 Atmospheric port 11, 12, 13 Activated carbon layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 直也 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 太田 久喜 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 天野 典保 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 兵道 義彦 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Naoya Kato 14 Iwatani, Shimowasukamachi, Nishio City, Aichi Prefecture Inside the Japan Automobile Parts Research Institute (72) Kuki Ota 14th Iwatani, Shimotsukamachi, Nishio City, Aichi Prefecture Stock Company Inside the Japan Auto Parts Research Institute, Inc. (72) Noriyo Amano 14th Iwatani, Shimoba Kakumachi, Nishio City, Aichi Prefecture Inside the Japan Auto Parts Research Institute, Inc. (72) Inventor Yoshihiko Budo 1st Toyota Town, Toyota City, Aichi Prefecture Toyota Automobile Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 燃料タンクに連通する蒸発燃料導入ポー
トと、大気に連通する大気ポートを有する容器内に、燃
料蒸気の吸脱着能力を有する活性炭を充填したキャニス
タにおいて、 前記燃料タンクからの燃料蒸気流入に対して直列に2つ
以上の活性炭層を有し、上流側の該活性炭層には大きい
粒径の活性炭を使用し、下流側の該活性炭層には小さい
粒径の活性炭を使用したことを特徴とするキャニスタ。
1. A canister having a container having an evaporative fuel introduction port communicating with a fuel tank and an atmosphere port communicating with the atmosphere filled with activated carbon capable of adsorbing and desorbing fuel vapor. It has two or more activated carbon layers in series with respect to the inflow, and uses activated carbon having a large particle diameter for the activated carbon layer on the upstream side and activated carbon having a small particle diameter for the activated carbon layer on the downstream side. A canister characterized by the following.
【請求項2】 前記キャニスタにおいて、下流側の前記
活性炭層ほど小さい細孔径を多く含むことを特徴とする
請求項1に記載のキャニスタ。
2. The canister according to claim 1, wherein, in the canister, the activated carbon layer on the downstream side includes a smaller pore diameter.
【請求項3】 活性炭層が分割されていない単一の活性
炭層を有するキャニスタにおいて、燃料タンクからの燃
料蒸気流入に対して上流側から下流側にかけて、徐々に
粒径が小さくなる活性炭層を有することを特徴とするキ
ャニスタ。
3. A canister having a single activated carbon layer in which the activated carbon layer is not divided, the activated carbon layer having a particle diameter gradually decreasing from upstream to downstream with respect to the inflow of fuel vapor from the fuel tank. A canister characterized by the following:
【請求項4】 前記キャニスタにおいて、前記燃料タン
クからの燃料蒸気流入に対して上流側から下流側にかけ
て、徐々に細孔径が小さい細孔を多く含む前記活性炭層
を有することを特徴とする請求項3に記載のキャニス
タ。
4. The activated carbon layer in which the canister has a gradually increasing number of small pores from upstream to downstream with respect to fuel vapor inflow from the fuel tank. 3. The canister according to 3.
【請求項5】 前記キャニスタにおいて、上流側には柱
状炭を、下流側には破砕炭を充填したことを特徴とする
請求項1ないし請求項4の内のいずれかに記載のキャニ
スタ。
5. The canister according to claim 1, wherein the canister is filled with columnar coal on the upstream side and crushed coal on the downstream side.
【請求項6】 前記キャニスタにおいて、上流側には木
質系の活性炭を、下流側には石炭系の活性炭を充填した
ことを特徴とする請求項1ないし請求項5の内のいずれ
かに記載のキャニスタ。
6. The canister according to claim 1, wherein an upstream side is filled with woody activated carbon and a downstream side is filled with coal-based activated carbon. Canister.
JP11118215A 1999-04-26 1999-04-26 Canister Pending JP2000303917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11118215A JP2000303917A (en) 1999-04-26 1999-04-26 Canister

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11118215A JP2000303917A (en) 1999-04-26 1999-04-26 Canister

Publications (1)

Publication Number Publication Date
JP2000303917A true JP2000303917A (en) 2000-10-31

Family

ID=14731074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11118215A Pending JP2000303917A (en) 1999-04-26 1999-04-26 Canister

Country Status (1)

Country Link
JP (1) JP2000303917A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021007A (en) * 2001-07-03 2003-01-24 Denso Corp Canister
KR20030064953A (en) * 2002-01-29 2003-08-06 현대자동차주식회사 Charcoal canister for an automobile
WO2006077607A1 (en) * 2005-01-21 2006-07-27 Dayco Fluid Technologies S.P.A. A system for controlling the emissions of fuel vapours from a vehicle
JP2009019572A (en) * 2007-07-12 2009-01-29 Mahle Filter Systems Japan Corp Canister, adsorbent for canister and method of manufacturing its adsorbent
JP2010179303A (en) * 2002-06-18 2010-08-19 Osaka Gas Co Ltd Adsorbent of latent-heat storage type for canister and process for manufacturing the same
JP2014037790A (en) * 2012-08-13 2014-02-27 Aisan Ind Co Ltd Evaporated fuel treatment device
US8992673B2 (en) 2011-12-26 2015-03-31 Aisan Kogyo Kabushiki Kaisha Evaporated fuel treatment apparatus
CN105427404A (en) * 2015-11-06 2016-03-23 清华大学 Collecting system and method for oil gas generation and desorption vehicle-mounted data under actual working condition of motor vehicle
CN106321292A (en) * 2015-07-01 2017-01-11 爱三工业株式会社 Fuel vapor processing apparatus
US9982636B2 (en) 2015-07-01 2018-05-29 Aisan Kogyo Kabushiki Kaisha Fuel vapor processing apparatus

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021007A (en) * 2001-07-03 2003-01-24 Denso Corp Canister
KR20030064953A (en) * 2002-01-29 2003-08-06 현대자동차주식회사 Charcoal canister for an automobile
JP2010179303A (en) * 2002-06-18 2010-08-19 Osaka Gas Co Ltd Adsorbent of latent-heat storage type for canister and process for manufacturing the same
CN101155985B (en) * 2005-01-21 2011-09-14 德科福路德科技有限责任公司 System for controlling vehicle fuel vapor discharge
WO2006077607A1 (en) * 2005-01-21 2006-07-27 Dayco Fluid Technologies S.P.A. A system for controlling the emissions of fuel vapours from a vehicle
US7997254B2 (en) 2005-01-21 2011-08-16 Dayco Fluid Technologies, S.P.A. System for controlling the emissions of fuel vapours from a vehicle
US8360034B2 (en) 2007-07-12 2013-01-29 Mahle Filter Systems Japan Corporation Fuel vapor storage canister, fuel vapor adsorbent for canister, and method of producing fuel vapor adsorbent
US8015965B2 (en) 2007-07-12 2011-09-13 Mahle Filter Systems Japan Corporation Fuel vapor storage canister, fuel vapor adsorbent for canister, and method of producing fuel vapor adsorbent
JP2009019572A (en) * 2007-07-12 2009-01-29 Mahle Filter Systems Japan Corp Canister, adsorbent for canister and method of manufacturing its adsorbent
US8443786B2 (en) 2007-07-12 2013-05-21 Mahle Filter Systems Japan Corporation Fuel vapor storage canister, fuel vapor adsorbent for canister, and method of producing fuel vapor adsorbent
US8992673B2 (en) 2011-12-26 2015-03-31 Aisan Kogyo Kabushiki Kaisha Evaporated fuel treatment apparatus
JP2014037790A (en) * 2012-08-13 2014-02-27 Aisan Ind Co Ltd Evaporated fuel treatment device
CN106321292A (en) * 2015-07-01 2017-01-11 爱三工业株式会社 Fuel vapor processing apparatus
US9982636B2 (en) 2015-07-01 2018-05-29 Aisan Kogyo Kabushiki Kaisha Fuel vapor processing apparatus
US10184431B2 (en) 2015-07-01 2019-01-22 Aisan Kogyo Kabushiki Kaisha Fuel vapor processing apparatus
CN105427404A (en) * 2015-11-06 2016-03-23 清华大学 Collecting system and method for oil gas generation and desorption vehicle-mounted data under actual working condition of motor vehicle

Similar Documents

Publication Publication Date Title
US8992673B2 (en) Evaporated fuel treatment apparatus
US7305974B2 (en) Activated carbon and evaporative fuel treatment apparatus using the activated carbon
JP6140224B2 (en) Method and system for reducing emissions from an evaporative emissions control system
US7507278B2 (en) Canister
JP3892385B2 (en) Canister filter
JPH0571432A (en) Canister for evaporated fuel adsorption
JP2000303917A (en) Canister
JP3826028B2 (en) Canister
JP6762689B2 (en) Evaporative fuel processing equipment
US20030101867A1 (en) Process for the adsorption of organic vapours from gas mixtures containing them
JP6628992B2 (en) Evaporative fuel processing device
JP4001957B2 (en) Fuel transpiration prevention device
JP2004225550A (en) Canister
US7214258B2 (en) Evaporated fuel processing device
JPH0674107A (en) Evaporation fuel treatment device
JP7181254B2 (en) Evaporative fuel processing device
JPS63117155A (en) Fuel vapor catching device
CN207945023U (en) A kind of high-effect canister of automobile
JPH06249088A (en) Canister
JPS59226263A (en) Vaporized fuel adsorbing device
JPH0219570Y2 (en)
US11867140B1 (en) Evaporative emissions canister with layered carbon
KR20030064953A (en) Charcoal canister for an automobile
KR100535079B1 (en) Structure of canister in automobile
JPH05231249A (en) Vaporized fuel treating device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020716