JP4209607B2 - Evaluation method of magnetized encoder - Google Patents

Evaluation method of magnetized encoder Download PDF

Info

Publication number
JP4209607B2
JP4209607B2 JP2001268261A JP2001268261A JP4209607B2 JP 4209607 B2 JP4209607 B2 JP 4209607B2 JP 2001268261 A JP2001268261 A JP 2001268261A JP 2001268261 A JP2001268261 A JP 2001268261A JP 4209607 B2 JP4209607 B2 JP 4209607B2
Authority
JP
Japan
Prior art keywords
encoder
seal
elastic member
magnetic
plate portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001268261A
Other languages
Japanese (ja)
Other versions
JP2002155962A (en
Inventor
孝幸 乗松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2001268261A priority Critical patent/JP4209607B2/en
Publication of JP2002155962A publication Critical patent/JP2002155962A/en
Application granted granted Critical
Publication of JP4209607B2 publication Critical patent/JP4209607B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Sealing Of Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、自動車等における車輪用軸受の着磁エンコーダの評価方法に関し、特に回転検出用のエンコーダ格子を一体化した密封構造に関する。
【0002】
【従来の技術】
アンチロックブレーキ装置(ABS)等においては、制御のために車輪の回転速度を検出する必要がある。このような車輪速度を検出するものとして、車輪用軸受に回転検出用の着磁エンコーダを設けたものがある。
例えば、従来、図9に示すように転動体103を介して転接する内方部材101および外方部材102間にシール装置105を設けた車輪用軸受において、シール装置105に着磁エンコーダ106を一体化させたものが提案されている(例えば、特開平6−281018号)。シール装置105は、各々断面L字状とされた第1,第2のシール板107,108を内方部材101および外方部材102にそれぞれ嵌合させ、第2のシール板108にリップ109を設けたものである。第1のシール板107は、スリンガと呼ばれる。着磁エンコーダ106は、磁性体粉が混入された弾性部材であり、第1のシール板107に加硫接着されている。着磁エンコーダ106は、円周方向に交互に磁極が形成されたものであり、対面配置された磁気センサ110で検出される。
【0003】
【発明が解決しようとする課題】
自動車の車輪周辺の温度環境は非常に厳しく、百度を超える高温から、零下数十度の範囲にわたり、温度が繰り返して変動する。そのため、上記車輪用軸受において、着磁エンコーダ106に、このような厳しい温度変化が生じる。この場合に、着磁エンコーダ106は、弾性部材であるゴム等だけでなく、フェライト等の磁性体粉が混入しているため、バインダーとしてのゴムの結合力が弱く、繰り返し生じる大きな温度変動により、初期の磁気特性が維持できない場合がある。このような着磁エンコーダ106の磁気特性の低下について改善の余地がある。
【0004】
この発明の目的は、自動車の車輪回りに生じる厳しい温度環境下において、着磁エンコーダが耐えることができ、回転検出精度の維持が確保できる着磁エンコーダの評価方法を提供することである。
この発明の他の目的は、着磁エンコーダを設けながら、軸受のコンパクト化、部品点数の削減、組立工数の削減が得られるものとすることである。
【0005】
【課題を解決するための手段】
この発明の車輪用軸受は、内方部材および外方部材と、これら内外の部材間に収容される複数の転動体と、上記内外の部材間の端部環状空間を密封するシール装置と、上記内方部材および外方部材のうちの回転側の部材に嵌合され、かつ磁性体粉が混入された弾性部材が加硫接着され、この弾性部材に回転側の部材の周方向に沿って交互の磁極が形成された着磁エンコーダとからなる車輪用軸受の、着磁エンコーダの評価方法において、
上記着磁エンコーダが、次の冷熱耐久試験条件下において、下記の各磁気特性を保持している耐熱ニトリルゴムをベース材とした弾性部材であることを特徴とするものである。
冷熱耐久試験条件は、120℃を1時間維持する加熱状態と、−40℃を1時間維持する冷却状態とでなる加熱・冷却のサイクルを、1000サイクル繰り返すことである。
磁気特性は、前記着磁エンコーダの磁力をエアギャップ2.0mmの位置で測定した場合に、
・ピッチ相互差:±2パーセント以下、
・磁束密度:±3mT以上、
である。ここで、ピッチ相互差とは、弾性部材を1回転させたときに磁気センサで得られる1回転分の出力波形のピッチを測定し、理想ピッチからのずれの最大値をいう。ピッチ相互差が小さい程、回転速度の検出精度が高い。
この構成によると、内方部材および外方部材のうちの回転側の部材に着磁エンコーダが取付けられているため、この着磁エンコーダに対面する磁気センサを設けることにより、回転側部材の回転検出を行うことができる。
上記の冷熱耐久試験条件は、実仕様に相当する条件であり、着磁エンコーダは、このような実仕様に相当する冷熱耐久試験条件下において、上記のように初期の各磁気特性を保持するものであるため、自動車の車輪回りに生じる厳しい使用環境下においても、初期の磁気特性が維持される。そのため、厳しい温度条件下での回転検出精度の維持が確保できる。
【0006】
この発明において、上記着磁エンコーダは、上記シール装置を構成するものであっても良い。
これにより、シール装置とは別に着磁エンコーダを設ける場合に比べて、軸受がコンパクト化され、かつ部品点数が削減され、組立工数も削減される。
【0007】
このように着磁エンコーダがシール装置を構成するものとする場合に、上記着磁エンコーダを、回転側部材に嵌合される円筒部と、この円筒部から径方向に延びる立板部とからなる断面L字状のものとし、この立板部の先端と上記固定側部材とを僅かな径方向隙間を持って対峙させても良い。
この構成の場合、着磁エンコーダの立板部の先端が固定側部材と僅かな径方向隙間を持って対峙する箇所により、ラビリンスシールとしての機能が得られる。また、上記円筒部を有するため、回転側部材への取付が簡単に行える。
【0008】
この発明において、上記着磁エンコーダがシール装置を構成するものとする場合に、このシール装置は、上記内方部材と外方部材のうちの互いに異なる部材に各々取付けられた第1および第2の環状のシール板を有し、両シール板は、各々円筒部と立板部とでなる断面L字状に形成されて互いに対向し、第1のシール板は上記内方部材および外方部材のうちの回転側の部材に嵌合され、立板部は軸受外方側に配されると共に、この立板部に磁性体粉が混入された弾性部材が加硫接着されて、この弾性部材は周方向に交互に磁極が形成され、第2のシール板は上記立板部に摺接するサイドリップと円筒部に摺接するラジアルリップとを一体に有し、この第2のシール板の円筒部と上記第1のシール板の立板部の先端とを僅かな径方向隙間をもって対峙させても良い。
この構成の場合、内外の部材間のシール機能として、第2のシール板に設けられた各シールリップの摺接による接触シール機能と、第2のシール板の円筒部に第1のシール板の立板部先端が僅かな径方向隙間で対峙することで構成されるラビリンスシール機能との両方が得られる。
【0009】
記弾性部材は耐熱ニトリルゴムである。すなわち、上記弾性部材は、耐熱ニトリルゴムをベース材として、磁性体粉が混入されたものである。
このように、耐熱ニトリルゴムをベース材として用いることにより、上記のような厳しい温度条件下における弾性部材の劣化が少なく、初期の磁気特性の維持が得られる。
【0010】
【発明の実施の形態】
この発明の第1の実施形態を図1〜図5と共に説明する。この実施形態は、駆動輪の支持に用いる車輪用軸受に適用した例であって、着磁エンコーダがシールスリンガを兼用した例である。
図1に示すように、この車輪用軸受は、内方部材1および外方部材2と、これら内外の部材1,2間に収容される複数の転動体3と、内外の部材1,2間の端部環状空間を密封するシール装置5,13とを備える。一端のシール装置5は、着磁エンコーダ20付きのものである。内方部材1および外方部材2は、転動体3の軌道面1a,2aを有しており、各軌道面1a,2aは溝状に形成されている。内方部材1および外方部材2は、各々転動体3を介して互いに回転自在となった内周側の部材および外周側の部材のことであり、軸受内輪および軸受外輪の単独であっても、これら軸受内輪や軸受外輪と別の部品とが組合わさった組立部材であっても良い。また、内方部材1は、軸であっても良い。転動体3は、ボールまたはころからなり、この例ではボールが用いられている。
【0011】
この車輪用軸受は、複列の転がり軸受、詳しくは複列のアンギュラ玉軸受とされていて、その軸受内輪は、各転動体列の軌道面1a,1aがそれぞれ形成された一対の分割型の内輪1A,1Bからなる。これら内輪1A,1Bは、ハブ輪6の軸部の外周に嵌合し、ハブ輪6と共に上記内方部材1を構成する。なお、内方部材1は、上記のようにハブ輪6および一対の分割型の内輪1A,1Bからなる3部品の組立部品とする代わりに、ハブ輪6および片方の内輪1Bが一体化された軌道面付きのハブ輪と、もう片方の内輪1Aとで構成される2部品からなるものとしても良い。
【0012】
ハブ輪6には、等速自在継手7の一端(例えば外輪)が連結され、ハブ輪6のフランジ部6aに車輪(図示せず)がボルト8で取付けられる。等速自在継手7は、その他端(例えば内輪)が駆動軸に連結される。
外方部材2は、軸受外輪からなり、懸架装置におけるナックル等からなるハウジング(図示せず)に取付けられる。転動体3は各列毎に保持器4で保持されている。
【0013】
図3は、着磁エンコーダ付きのシール装置5を拡大して示す。このシール装置5は、内方部材1と外方部材2に各々取付けられた第1および第2の環状のシール板11,12を有する。これらシール板11,12は、各々内方部材1および外方部材2に圧入状態に嵌合させることで取付けられている。両シール板11,12は、各々円筒部11a,12aと立板部11b,12bとでなる断面L字状に形成されて互いに対向する。
第1のシール板11は、内方部材1および外方部材2のうちの回転側の部材である内方部材1に嵌合され、スリンガとなる。第1のシール板11の立板部11bは、軸受外方側に配され、その外方側の側面に、磁性体粉が混入された弾性部材14が加硫接着されている。この弾性部材14は、第1のシール板1と共にパルサリングとなる着磁エンコーダ20を構成するものであり、周方向に沿って交互に磁極N,S(図2)が形成され、いわゆるゴム磁石とされている。磁極N,Sは、ピッチ円直径(PCD)において、所定のピッチpとなるように形成されている。この着磁エンコーダ20の弾性部材14にエアギャップGを介して対面して、同図のように着磁エンコーダ20の磁力を検出する磁気センサ15を配置することにより、車輪回転速度の検出用のロータリエンコーダが構成される。
弾性部材14は、第1のシール板11の立板部11bの先端部から先端内側面を覆う先端覆い部14aを有している。なお、この先端覆い部14aは、省略しても良い。
【0014】
第2のシール板12は、第1のシール板11の立板部11bに摺接するサイドリップ16aと円筒部11aに摺接するラジアルリップ16b,16cとを一体に有する。これらリップ16a〜16cは、第2のシール板12に加硫接着された弾性部材16の一部として設けられている。これらリップ16a〜16cの枚数は任意で良いが、図3の例では、1枚のサイドリップ16aと、軸方向の内外に位置する2枚のラジアルリップ16c,16bとを設けている。第2のシール板12は、固定側部材である外方部材1との嵌合部に弾性部材16を抱持したものとしてある。すなわち、弾性部材16は、円筒部12aの内径面から先端部外径までを覆う先端覆い部16dを有するものとし、この先端覆い部16dが、第2のシール板12と外方部材2との嵌合部に介在する。第2のシール板12の円筒部12aの先端部12aaは、円筒部12aの他の部分よりも薄肉とされて斜め内径側へ屈曲しており、この屈曲した先端部12aaを先端覆い部16dが覆っている。なお、先端覆い部16dは、弾性部材16の他の部分から分離されていても良い。
【0015】
第2のシール板12の円筒部12aと第1のシール板11の立板部11bの先端とは僅かな径方向隙間をもって対峙させ、その隙間でラビリンスシール17を構成している。第1,第2のシール板11,12の弾性部材14,16に先端覆い部14a,16dを設けた場合は、これら先端覆い部14a,16d間の隙間が上記ラビリンスシール17を構成する隙間となる。
【0016】
各部材の材質例を説明する。内方部材1、外方部材2、および転動体3は、いずれも軸受鋼等の炭素鋼からなる。第1のシール板11は、強磁性体等の磁性体の鋼板、例えばフェライト系のステンレス鋼板(JIS規格のSUS430系等)や、防錆処理された圧延鋼板等が用いられる。第2のシール板12は、鋼板、例えば非磁性体であるオーステナイト系のステンレス鋼板(SUS304系等)や、防錆処理された圧延鋼板等が用いられる。例えば、第1のシール板11をフェライト系のステンレス鋼板とし、第2のシール板12をオーステナイト系のステンレス鋼板としても良い。
【0017】
弾性部材14は、ベースゴム材として、例えば耐熱ニトリルゴム、またはフッ素樹脂系ゴムを用い、これに磁性体粉を混入させている。磁性体粉には、フェライト等が用いられる。
【0018】
着磁エンコーダ20は、次の冷熱耐久試験条件下において、下記の初期の各磁気特性を保持しているものとされる。
冷熱耐久試験条件は、120℃を1時間維持する加熱状態と、−40℃を1時間維持する冷却状態とでなる加熱・冷却のサイクルを、1000サイクル繰り返すことである。この冷熱耐久試験条件は、実仕様に相当する条件である。
初期の磁気特性は、エアギャップが2.0mmの場合に、
・ピッチ相互差:±2パーセント以下、
・磁束密度:±3mT以上、
である。
上記のエアギャップは、図3に示すエアギャップGであり、素子埋込位置からエンコーダ表面までの距離、つまり磁気センサ15の磁気検出素子の表面から、弾性部材14の表面までの距離である。
第1のシール板11における立板部11bが円周方向振れを発生すると、この立板部11bの磁極の形成された弾性部材14とこれに対面する磁気センサ15とのエアギャップGが変動する。ここで、円周方向振れは、立板部11bの外側面における任意の2つの円周方向位置間の最大の軸方向位置のずれをいう。エアギャップGが軸方向に広がると、ピッチ相互差が悪くなり、回転速度の検出精度が低下する。このため、円周方向振れを1mm以下に記載することが好ましく、これによりピッチ相互差を±2%(レンジで4%)以下に抑えることができる。
【0019】
上記の加熱・冷却のサイクルのヒートパターンは、詳しくは、例えば図4に示すパターンとされ、または図5に示すパターンとされる。
図4の例のヒートパターンでは、120℃の定温加熱区間aから−40℃の定温冷却区間bに至る温度低下区間に、急冷区間cとその後の緩冷区間dとを採っている。急冷区間cでは、−30℃まで温度低下させる。温度低下区間は30分とされ、そのうち5分が急冷区間cとされ、25分が緩冷区間dとされる。定温冷却区間bから定温加熱区間aに至る温度上昇区間eは3分とし、一定の上昇率で温度上昇させる。1サイクルは153分である。
図5の例のヒートパターンでは、120℃の定温加熱区間aから−40℃の定温冷却区間bに至る温度低下区間fの全区間を、一定の低下率で温度低下させる。定温冷却区間bから定温加熱区間aに至る温度上昇区間eは5分とし、一定の上昇率で温度上昇させる。1サイクルは155分である。
両図のヒートパターンは、いずれでも良いが、図4のパターンの方が、時間効率が良い。
【0020】
この構成の車輪用軸受によると、第1のシール板11の立板部11bに、磁性体粉の混入された弾性部材14が加硫接着され、周方向に交互に磁極N,Sが形成されているため、この弾性部材14および第1のシール板11により着磁エンコーダ20が構成され、これに対面する磁気センサ15で回転検出を行うことができる。
内外の部材1,2間のシールについては、第2のシール板12に設けられた各シールリップ16a〜16cの摺接と、第2のシール板12の円筒部12aに第1のシール板11の立板部11bの先端が僅かな径方向隙間で対峙することで構成されるラビリンスシール17とで得られる。
【0021】
着磁エンコーダ20は、実仕様に相当する上記の冷熱耐久試験条件下において、上記のようにピッチ相互差および磁束密度の各磁気特性について、上記のように初期の特性を保持するものであるため、自動車の車輪回りに生じる厳しい使用環境下においても、初期の磁気特性が維持される。そのため、厳しい温度条件下での回転検出精度の維持が確保できる。
【0022】
試験の結果、弾性部材14のベースゴムの材質として、一般のニトリルゴムを使用した場合は、上記の冷熱耐久試験条件下では、微小クラックが発生し、上記のような初期の磁気特性を満足することはできなかった。なお、通常のニトリルゴム製のシール(磁性体粉が混入していないもの)では、上記試験条件ではクラックの発生の問題はないが、磁性体粉を混入したものでは、上記のように微小クラックが発生した。
しかし、耐熱ニトリルゴムをベース材としたものは、磁性体粉を混入した弾性部材14においても、クラックの発生は認められなかった。弾性部材14のベースゴム材をフッ素系ゴムとした場合も、上記の冷熱耐久試験条件下で微小クラックの発生が生じないものと推測される。
【0023】
図6,図7は、この発明の他の実施形態を示す。この実施形態は従動輪の支持用の車輪用軸受に適用した例である。この例も着磁エンコーダはシールスリンガを兼用したタイプとされている。この例では、内方部材31を構成するハブ輪36の軸部36aは、上記実施形態と異なり、等速ジョイントとは連結されず、その車体内側の軸端が、カバー49で覆われている。このカバー49の周縁部で、内方部材31と外方部材32との間の端部環状空間の入口が覆われる。内方部材31が回転側の部材となり、外方部材32が固定側の部材となることについては、上記実施形態と同じである。
【0024】
内方部材31と外方部材32との間の端部環状空間に配置される着磁エンコーダ付きのシール装置35は、軸受内のグリースが漏れない程度のラビリンスシールを構成するものとされている。すなわちこのシール装置35は、円筒部41aと、この円筒部41aから径方向に延びる立板部41bとからなる断面L字状のシール板41における上記立板部41bに、弾性部材44を設けたものとされ、立板部41bの先端と外方部材32の内径面とを僅かな径方向隙間を持って対峙させている。弾性部材44は、第1の実施形態において説明した弾性部材14と同じ構成のものである。この例では、シール板41と弾性部材44とで着磁エンコーダ40が構成され、着磁エンコーダ40の全体がシール装置35を兼用する。弾性部材44に対面する磁気センサ15は、カバー49に取付けられている。
【0025】
この実施形態の場合、上記のようにシール装置35は、軸受内のグリースが漏れない程度のラビリンスシールを構成する。この構成の場合も、弾性部材44が、実仕様に相当する上記の冷熱耐久試験条件下において、上記のようにピッチ相互差および磁束密度の各磁気特性について、上記のように初期の特性を保持するものであるため、自動車の車輪回りに生じる厳しい使用環境下においても、初期の磁気特性が維持される。
この実施形態において、特に説明した事項の他は、図1〜図5と共に説明した第1の実施形態と同じである。
【0026】
図8は、この発明のさらに他の実施形態を示す。この実施形態は、従動輪の支持用の車輪用軸受に適用した例であって、着磁エンコーダをラジアル型とした例である。
この車輪用軸受は、内方部材51および外方部材52と、これら内外の部材51,52間に収容される複数の転動体53と、内外の部材51,52間の端部環状空間を密封するシール装置55,63とを備え、一端にシール装置55とは別の着磁エンコーダ70が設けられている。内方部材51および外方部材52は、転動体53の軌道面を有しており、各軌道面は溝状に形成されている。
【0027】
内方部材51は、一対の分割型の内輪51A,51Bと、これら内輪51A,51Bの内径面に嵌合する固定の車軸(図示せず)とからなる。外方部材52は回転輪となるものであり、一体のハブ輪兼用の軸受外輪からなる。
【0028】
外方部材52の一端の外周に、上記の着磁エンコーダ70が嵌合している。この着磁エンコーダ70は、外方部材52の外周に嵌合した金属製のリング部材62と、このリング部材62の外周に設けられた弾性部材64とからなる。弾性部材64は、アキシャル方向の幅に比べてラジアル方向の厚さが薄いリング状とされている。弾性部材64は、第1の実施形態と同じく、周方向に交互に磁極N,Sが形成され、いわゆるゴム磁石とされている。ただし、磁極N,Sの磁束の発生方向は、弾性部材64のラジアル方向である。弾性部材64の材質は、第1の実施形態における弾性部材14と同じであり、また弾性部材64は、第1の実施形態で述べた冷熱耐久試験条件下で、第1の実施形態と同じ初期の磁気特性を保持するものである。リング部材62の材質は、第1の実施形態におけるシール板11(図3)と同じ材質である。磁気センサ75は、着磁エンコーダ70にラジアル方向に対面して固定側の部材に設けられる。
【0029】
この実施形態の場合も、弾性部材64が、実仕様に相当する上記の冷熱耐久試験条件下において、上記のようにピッチ相互差および磁束密度の各磁気特性について、上記のように初期の特性を保持するものであるため、自動車の車輪回りに生じる厳しい使用環境下においても、初期の磁気特性が維持される。
【0030】
【発明の効果】
この発明の着磁エンコーダの評価方法は、内方部材および外方部材と、これら内外の部材間に収容される複数の転動体と、上記内外の部材間の端部環状空間を密封するシール装置と、上記内方部材および外方部材のうちの回転側の部材に嵌合され、かつ磁性体粉が混入された弾性部材が加硫接着され、この弾性部材に交互の磁極が形成された着磁エンコーダとからなる車輪用軸受の、着磁エンコーダの評価方法において、
上記着磁エンコーダが、120℃で1時間の加熱状態および−40℃で1時間の加熱・冷却サイクルを、1000サイクル繰り返す冷熱耐久試験条件下において、ピッチ相互差:±2パーセント以下、磁束密度:±3mT以上、という磁気特性が得られる耐熱ニトリルゴムをベース材とした弾性部材であるものとしたため、自動車の車輪回りに生じる厳しい温度環境下において、着磁エンコーダが耐えることができ、回転検出精度が維持される。
着磁エンコーダが上記シール装置を構成するものである場合は、軸受がコンパクト化され、かつ部品点数が削減され、組立工数も削減される。着磁エンコーダが、回転側部材に嵌合される円筒部と、この円筒部から径方向に延びる立板部とからなる断面L字状のものであり、この立板部の先端と上記固定側部材とを僅かな径方向隙間を持って対峙させた場合は、ラビリンスシール機能を得ることができる。
上記シール装置が、上記内方部材と外方部材のうちの互いに異なる部材に各々取付けられた第1および第2の環状のシール板を有し、両シール板は、各々円筒部と立板部とでなる断面L字状に形成されて互いに対向し、第1のシール板は上記内方部材および外方部材のうちの回転側の部材に嵌合され、立板部は軸受外方側に配されると共に、この立板部に磁性体粉が混入された弾性部材が加硫接着されて、この弾性部材は周方向に交互に磁極が形成され、第2のシール板は上記立板部に摺接するサイドリップと円筒部に摺接するラジアルリップとを一体に有し、この第2のシール板の円筒部と上記第1のシール板の立板部の先端とを僅かな径方向隙間をもって対峙させた場合は、接触シール機能とラビリンスシール機能とを併せ持つことができる。
上記弾性部材が耐熱ニトリルゴムであるため、上記のような厳しい温度条件下における弾性部材の劣化が少なく、初期の磁気特性の維持が得られる。
【図面の簡単な説明】
【図1】この発明の一実施形態にかかる車輪用軸受の断面図である。
【図2】その着磁エンコーダの部分正面図である。
【図3】同車輪用軸受の着磁エンコーダ付近の部分拡大断面図である。
【図4】冷熱耐久試験において着磁エンコーダに与えるヒートパターンの一例の説明図である。
【図5】冷熱耐久試験において着磁エンコーダに与えるヒートパターンの他の例の説明図である。
【図6】この発明における他の実施形態にかかる車輪用軸受の断面図である。
【図7】同車輪用軸受の着磁エンコーダ付近の部分拡大断面図である。
【図8】この発明におけるさらに他の実施形態にかかる車輪用軸受の断面図である。
【図9】従来例の断面図である。
【符号の説明】
1…内方部材
2…外方部材
3…転動体
5…シール装置
11…第1のシール板
12…第2のシール板
11a,12a…円筒部
11b,12b…立板部
14…弾性部材
15…センサ
16…弾性部材
20…着磁エンコーダ
N,S…磁極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for evaluating a magnetized encoder for a wheel bearing in an automobile or the like, and more particularly to a sealing structure in which an encoder grid for detecting rotation is integrated.
[0002]
[Prior art]
In an anti-lock brake device (ABS) or the like, it is necessary to detect the rotational speed of a wheel for control. As a device for detecting such a wheel speed, there is a wheel bearing provided with a magnetizing encoder for detecting rotation.
For example, in a conventional wheel bearing in which a seal device 105 is provided between an inner member 101 and an outer member 102 that are in rolling contact with each other via a rolling element 103 as shown in FIG. 9, a magnetizing encoder 106 is integrated with the seal device 105. There are proposals (for example, JP-A-6-281018). The sealing device 105 has first and second sealing plates 107 and 108 each having an L-shaped cross section fitted to the inner member 101 and the outer member 102, respectively, and a lip 109 is attached to the second sealing plate 108. It is provided. The first seal plate 107 is called a slinger. The magnetizing encoder 106 is an elastic member mixed with magnetic powder, and is vulcanized and bonded to the first seal plate 107. The magnetizing encoder 106 has magnetic poles alternately formed in the circumferential direction, and is detected by the magnetic sensor 110 arranged face-to-face.
[0003]
[Problems to be solved by the invention]
The temperature environment around the wheel of an automobile is extremely severe, and the temperature fluctuates repeatedly from a high temperature exceeding one hundred degrees to several tens of degrees below zero. Therefore, such a severe temperature change occurs in the magnetized encoder 106 in the wheel bearing. In this case, the magnetizing encoder 106 contains not only rubber, which is an elastic member, but also magnetic powder such as ferrite, so the binding force of rubber as a binder is weak, and due to large temperature fluctuations that occur repeatedly, The initial magnetic properties may not be maintained. There is room for improvement in such a decrease in magnetic characteristics of the magnetized encoder 106.
[0004]
The purpose of this invention, under severe temperature environment occurring wheels around the automobile, can be magnetized encoder endure, maintaining rotation detection precision is to provide a method of evaluating magnetized encoder that can be secured.
Another object of the present invention is to provide a compact bearing, a reduced number of parts, and a reduced number of assembly steps while providing a magnetized encoder.
[0005]
[Means for Solving the Problems]
The wheel bearing according to the present invention includes an inner member and an outer member, a plurality of rolling elements accommodated between the inner and outer members, a seal device that seals an end annular space between the inner and outer members, An elastic member that is fitted to the rotation side member of the inner member and the outer member and is mixed with magnetic powder is vulcanized and bonded, and the elastic member is alternately arranged along the circumferential direction of the rotation side member. Oite magnetic poles of a wheel bearing comprising a magnetized encoder formed, the evaluation method of magnetizing the encoder,
The magnetized encoder is an elastic member made of a heat-resistant nitrile rubber having the following magnetic characteristics as a base material under the following cold endurance test conditions.
The cold endurance test condition is that a heating / cooling cycle consisting of a heating state in which 120 ° C. is maintained for 1 hour and a cooling state in which −40 ° C. is maintained for 1 hour is repeated 1000 cycles.
Magnetic characteristics are obtained when the magnetic force of the magnetized encoder is measured at an air gap of 2.0 mm.
・ Pitch difference: ± 2% or less,
・ Magnetic flux density: ± 3mT or more
It is. Here, the pitch difference is the maximum value of deviation from the ideal pitch by measuring the pitch of the output waveform for one rotation obtained by the magnetic sensor when the elastic member is rotated once. The smaller the pitch difference, the higher the rotational speed detection accuracy.
According to this configuration, since the magnetizing encoder is attached to the rotation side member of the inner member and the outer member, the rotation detection of the rotation side member can be performed by providing the magnetic sensor facing the magnetization encoder. It can be performed.
The above cold endurance test conditions are the conditions corresponding to the actual specifications, and the magnetized encoder retains the initial magnetic characteristics as described above under the cold endurance test conditions corresponding to such actual specifications. Therefore, the initial magnetic characteristics are maintained even in a severe use environment generated around the wheel of the automobile. Therefore, it is possible to ensure the maintenance of the rotation detection accuracy under severe temperature conditions.
[0006]
In the present invention, the magnetized encoder may constitute the sealing device.
Thereby, compared with the case where a magnetizing encoder is provided separately from the sealing device, the bearing is made compact, the number of parts is reduced, and the number of assembly steps is also reduced.
[0007]
In this way, when the magnetized encoder constitutes a sealing device, the magnetized encoder is composed of a cylindrical portion fitted to the rotation side member and a vertical plate portion extending in the radial direction from the cylindrical portion. It may have an L-shaped cross section, and the tip of the upright plate portion and the fixed side member may be opposed to each other with a slight radial gap.
In the case of this configuration, the function as a labyrinth seal is obtained by the location where the tip of the standing plate portion of the magnetized encoder faces the stationary member with a slight radial gap. Moreover, since it has the said cylindrical part, attachment to a rotation side member can be performed easily.
[0008]
In the present invention, when the magnetized encoder constitutes a seal device, the seal device is provided with first and second members respectively attached to different members of the inner member and the outer member. The seal plate has an annular seal plate, each of the seal plates is formed in an L-shaped cross section composed of a cylindrical portion and a standing plate portion, and is opposed to each other, and the first seal plate is formed of the inner member and the outer member. It is fitted to the rotating side member, the upright plate part is arranged on the bearing outer side, and an elastic member mixed with magnetic powder is vulcanized and bonded to this upright plate part, and this elastic member is Magnetic poles are alternately formed in the circumferential direction, and the second seal plate integrally has a side lip that is in sliding contact with the upright plate portion and a radial lip that is in sliding contact with the cylindrical portion, and the cylindrical portion of the second seal plate and With a slight radial clearance from the tip of the upright plate portion of the first seal plate. It may be facing.
In the case of this configuration, as a sealing function between the inner and outer members, a contact sealing function by sliding contact of each seal lip provided on the second seal plate, and a first seal plate on the cylindrical portion of the second seal plate Both the labyrinth seal function configured by confronting the end of the upright plate portion with a slight radial gap can be obtained.
[0009]
Upper Symbol elastic member is a heat resistant nitrile rubber. That is, the elastic member is a material in which magnetic powder is mixed with heat-resistant nitrile rubber as a base material .
As described above, by using the heat-resistant nitrile rubber as the base material, the elastic member is hardly deteriorated under the severe temperature condition as described above, and the initial magnetic characteristics can be maintained.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present invention will be described with reference to FIGS. This embodiment is an example applied to a wheel bearing used to support a drive wheel, and an example in which a magnetizing encoder also serves as a seal slinger.
As shown in FIG. 1, the wheel bearing includes an inner member 1 and an outer member 2, a plurality of rolling elements 3 accommodated between the inner and outer members 1 and 2, and the inner and outer members 1 and 2. Sealing devices 5 and 13 for sealing the end annular space. The sealing device 5 at one end has a magnetizing encoder 20. The inner member 1 and the outer member 2 have raceway surfaces 1a and 2a of the rolling element 3, and each raceway surface 1a and 2a is formed in a groove shape. The inner member 1 and the outer member 2 are an inner peripheral member and an outer peripheral member that are rotatable with respect to each other via the rolling elements 3, respectively. An assembly member in which the bearing inner ring and the bearing outer ring are combined with another component may be used. Further, the inner member 1 may be a shaft. The rolling element 3 consists of a ball or a roller, and a ball is used in this example.
[0011]
This wheel bearing is a double-row rolling bearing, more specifically, a double-row angular contact ball bearing, and the inner ring of the bearing is a pair of split type in which the raceway surfaces 1a and 1a of the respective rolling element rows are respectively formed. It consists of inner rings 1A and 1B. The inner rings 1 </ b> A and 1 </ b> B are fitted to the outer periphery of the shaft portion of the hub wheel 6 and constitute the inner member 1 together with the hub wheel 6. The inner member 1 is integrated with the hub wheel 6 and one inner ring 1B instead of the three-piece assembly part including the hub ring 6 and the pair of split inner rings 1A and 1B as described above. It is good also as what consists of two components comprised by the hub ring with a raceway surface, and the other inner ring | wheel 1A.
[0012]
One end (for example, an outer ring) of the constant velocity universal joint 7 is connected to the hub wheel 6, and a wheel (not shown) is attached to the flange portion 6 a of the hub wheel 6 with a bolt 8. The other end (for example, inner ring) of the constant velocity universal joint 7 is connected to the drive shaft.
The outer member 2 includes a bearing outer ring, and is attached to a housing (not shown) including a knuckle or the like in the suspension device. The rolling elements 3 are held by a holder 4 for each row.
[0013]
FIG. 3 shows an enlarged view of the sealing device 5 with a magnetized encoder. The sealing device 5 includes first and second annular sealing plates 11 and 12 attached to the inner member 1 and the outer member 2, respectively. The seal plates 11 and 12 are attached to the inner member 1 and the outer member 2 by being fitted in a press-fitted state. Both seal plates 11 and 12 are formed in an L-shaped cross section composed of cylindrical portions 11a and 12a and upright plate portions 11b and 12b, and face each other.
The first seal plate 11 is fitted to the inner member 1 which is a rotating side member of the inner member 1 and the outer member 2, and becomes a slinger. The standing plate portion 11b of the first seal plate 11 is disposed on the bearing outer side, and an elastic member 14 mixed with magnetic powder is vulcanized and bonded to the outer side surface. This elastic member 14 constitutes a magnetizing encoder 20 that becomes pulsar ring together with the first seal plate 1, and magnetic poles N and S (FIG. 2) are alternately formed along the circumferential direction. Has been. The magnetic poles N and S are formed to have a predetermined pitch p in the pitch circle diameter (PCD). A magnetic sensor 15 for detecting the magnetic force of the magnetized encoder 20 as shown in the figure is arranged facing the elastic member 14 of the magnetized encoder 20 via the air gap G, so that the wheel rotation speed is detected. A rotary encoder is configured.
The elastic member 14 has a tip cover portion 14 a that covers the tip inner surface from the tip portion of the standing plate portion 11 b of the first seal plate 11. In addition, you may abbreviate | omit this front end cover part 14a.
[0014]
The second seal plate 12 integrally includes a side lip 16a that is in sliding contact with the standing plate portion 11b of the first seal plate 11 and radial lips 16b and 16c that are in sliding contact with the cylindrical portion 11a. The lips 16 a to 16 c are provided as a part of the elastic member 16 that is vulcanized and bonded to the second seal plate 12. The number of the lips 16a to 16c may be arbitrary, but in the example of FIG. 3, one side lip 16a and two radial lips 16c and 16b positioned inside and outside in the axial direction are provided. The second seal plate 12 is configured such that an elastic member 16 is held in a fitting portion with the outer member 1 that is a fixed side member. That is, the elastic member 16 has a tip cover portion 16d that covers from the inner diameter surface of the cylindrical portion 12a to the outer diameter of the tip portion, and this tip cover portion 16d is formed between the second seal plate 12 and the outer member 2. Intervenes in the fitting part. The distal end portion 12aa of the cylindrical portion 12a of the second seal plate 12 is thinner than the other portions of the cylindrical portion 12a and is bent toward the oblique inner diameter side. The bent distal end portion 12aa is covered by a distal end covering portion 16d. Covering. The tip cover portion 16d may be separated from other portions of the elastic member 16.
[0015]
The cylindrical portion 12a of the second seal plate 12 and the tip of the standing plate portion 11b of the first seal plate 11 are opposed to each other with a slight radial gap, and the labyrinth seal 17 is configured by the gap. When the tip cover portions 14 a and 16 d are provided on the elastic members 14 and 16 of the first and second seal plates 11 and 12, the gap between the tip cover portions 14 a and 16 d is the gap constituting the labyrinth seal 17. Become.
[0016]
An example of the material of each member will be described. The inner member 1, the outer member 2, and the rolling element 3 are all made of carbon steel such as bearing steel. The first seal plate 11 is made of a magnetic steel plate such as a ferromagnetic material, for example, a ferritic stainless steel plate (JIS standard SUS430), a rust-proof rolled steel plate, or the like. The second seal plate 12 is made of a steel plate, for example, an austenitic stainless steel plate (SUS304 type or the like) that is a non-magnetic material, a rust-proof rolled steel plate, or the like. For example, the first seal plate 11 may be a ferritic stainless steel plate, and the second seal plate 12 may be an austenitic stainless steel plate.
[0017]
Elastic member 14, as the base rubber material, for example heat nitrile rubber, was or a fluorine resin-based rubber, and is mixed with magnetic powder thereto. Ferrite or the like is used for the magnetic powder.
[0018]
The magnetized encoder 20 is assumed to retain the following initial magnetic characteristics under the following cold endurance test conditions.
The cold endurance test condition is that a heating / cooling cycle consisting of a heating state in which 120 ° C. is maintained for 1 hour and a cooling state in which −40 ° C. is maintained for 1 hour is repeated 1000 cycles. This cooling / heating durability test condition is a condition corresponding to an actual specification.
The initial magnetic properties are when the air gap is 2.0 mm.
・ Pitch difference: ± 2% or less,
・ Magnetic flux density: ± 3mT or more
It is.
The air gap is the air gap G shown in FIG. 3 and is the distance from the element embedding position to the encoder surface, that is, the distance from the surface of the magnetic detection element of the magnetic sensor 15 to the surface of the elastic member 14.
When the standing plate portion 11b of the first seal plate 11 is caused to swing in the circumferential direction, the air gap G between the elastic member 14 on which the magnetic pole of the standing plate portion 11b is formed and the magnetic sensor 15 facing the member changes. . Here, the circumferential runout refers to the maximum axial displacement between any two circumferential positions on the outer surface of the upright plate portion 11b. When the air gap G widens in the axial direction, the pitch difference becomes worse and the rotational speed detection accuracy decreases. For this reason, it is preferable to describe the circumferential runout to 1 mm or less, whereby the pitch difference can be suppressed to ± 2% (range 4%) or less.
[0019]
Specifically, the heat pattern of the heating / cooling cycle is, for example, the pattern shown in FIG. 4 or the pattern shown in FIG.
In the heat pattern of the example of FIG. 4, a rapid cooling section c and a subsequent slow cooling section d are adopted as a temperature decrease section from a constant temperature heating section a of 120 ° C. to a constant temperature cooling section b of −40 ° C. In the rapid cooling section c, the temperature is lowered to -30 ° C. The temperature decrease section is 30 minutes, of which 5 minutes is the rapid cooling section c and 25 minutes is the slow cooling section d. The temperature increase section e from the constant temperature cooling section b to the constant temperature heating section a is 3 minutes, and the temperature is increased at a constant rate of increase. One cycle is 153 minutes.
In the heat pattern of the example of FIG. 5, the temperature of all the sections of the temperature decrease section f from the constant temperature heating section a of 120 ° C. to the constant temperature cooling section b of −40 ° C. is decreased at a constant decrease rate. The temperature increase section e from the constant temperature cooling section b to the constant temperature heating section a is 5 minutes, and the temperature is increased at a constant rate of increase. One cycle is 155 minutes.
The heat patterns in both figures may be any, but the pattern in FIG. 4 is more time efficient.
[0020]
According to the wheel bearing of this configuration, the elastic member 14 mixed with magnetic powder is vulcanized and bonded to the standing plate portion 11b of the first seal plate 11, and the magnetic poles N and S are alternately formed in the circumferential direction. Therefore, the magnetized encoder 20 is constituted by the elastic member 14 and the first seal plate 11, and the rotation detection can be performed by the magnetic sensor 15 facing the encoder.
Regarding the seal between the inner and outer members 1, 2, the first seal plate 11 is brought into sliding contact with the seal lips 16 a to 16 c provided on the second seal plate 12 and the cylindrical portion 12 a of the second seal plate 12. It is obtained by the labyrinth seal 17 comprised by the front-end | tip of the standing plate part 11b facing each other with a slight radial clearance.
[0021]
The magnetizing encoder 20 retains the initial characteristics as described above for the magnetic characteristics of the pitch difference and the magnetic flux density as described above under the above-described thermal endurance test conditions corresponding to actual specifications. The initial magnetic characteristics are maintained even under severe usage conditions that occur around the wheels of automobiles. Therefore, it is possible to ensure the maintenance of the rotation detection accuracy under severe temperature conditions.
[0022]
As a result of the test, when a general nitrile rubber is used as the material of the base rubber of the elastic member 14, microcracks are generated under the above-described cold endurance test conditions, and the above initial magnetic characteristics are satisfied. I couldn't. In the case of a normal nitrile rubber seal (which does not contain magnetic powder), there is no problem of cracking under the above test conditions. There has occurred.
However, in the case of using the heat-resistant nitrile rubber as a base material, no crack was observed even in the elastic member 14 mixed with magnetic powder. Even when the base rubber material of the elastic member 14 and off Tsu Motokei rubber, it is presumed that the occurrence of fine cracks do not occur in thermal endurance test conditions described above.
[0023]
6 and 7 show another embodiment of the present invention. This embodiment is an example applied to a wheel bearing for supporting a driven wheel. In this example as well, the magnetized encoder is a type that also serves as a seal slinger. In this example, the shaft portion 36a of the hub wheel 36 constituting the inner member 31 is not connected to the constant velocity joint, and the shaft end on the inner side of the vehicle body is covered with the cover 49, unlike the above embodiment. . The entrance of the end annular space between the inner member 31 and the outer member 32 is covered by the peripheral portion of the cover 49. It is the same as that of the said embodiment that the inner member 31 becomes a rotation side member and the outer member 32 becomes a stationary side member.
[0024]
The seal device 35 with a magnetized encoder disposed in the end annular space between the inner member 31 and the outer member 32 constitutes a labyrinth seal that does not leak grease in the bearing. . That is, in the sealing device 35, the elastic member 44 is provided on the upright plate portion 41b in the L-shaped seal plate 41 having a cylindrical portion 41a and a upright plate portion 41b extending in a radial direction from the cylindrical portion 41a. The front end of the upright plate portion 41b and the inner diameter surface of the outer member 32 are opposed to each other with a slight radial gap. The elastic member 44 has the same configuration as the elastic member 14 described in the first embodiment. In this example, the magnetizing encoder 40 is configured by the seal plate 41 and the elastic member 44, and the entire magnetizing encoder 40 also serves as the sealing device 35. The magnetic sensor 15 facing the elastic member 44 is attached to the cover 49.
[0025]
In the case of this embodiment, as described above, the sealing device 35 constitutes a labyrinth seal that does not leak grease in the bearing. Also in this configuration, the elastic member 44 retains the initial characteristics as described above for each of the magnetic characteristics of the pitch difference and the magnetic flux density as described above under the above-described thermal durability test conditions corresponding to actual specifications. Therefore, the initial magnetic characteristics are maintained even under severe use environment generated around the wheel of the automobile.
This embodiment is the same as the first embodiment described with reference to FIGS.
[0026]
FIG. 8 shows still another embodiment of the present invention. This embodiment is an example applied to a wheel bearing for supporting a driven wheel, in which the magnetizing encoder is a radial type.
This wheel bearing seals an inner member 51 and an outer member 52, a plurality of rolling elements 53 accommodated between the inner and outer members 51, 52, and an end annular space between the inner and outer members 51, 52. And a magnetizing encoder 70 different from the sealing device 55 is provided at one end. The inner member 51 and the outer member 52 have raceway surfaces of the rolling elements 53, and each raceway surface is formed in a groove shape.
[0027]
The inner member 51 includes a pair of split inner rings 51A and 51B and a fixed axle (not shown) that fits on the inner diameter surfaces of the inner rings 51A and 51B. The outer member 52 is a rotating wheel, and is composed of a bearing outer ring that also serves as an integral hub ring.
[0028]
The magnetized encoder 70 is fitted on the outer periphery of one end of the outer member 52. The magnetized encoder 70 includes a metal ring member 62 fitted to the outer periphery of the outer member 52 and an elastic member 64 provided on the outer periphery of the ring member 62. The elastic member 64 is formed in a ring shape whose thickness in the radial direction is thinner than the width in the axial direction. As in the first embodiment, the elastic member 64 has magnetic poles N and S alternately formed in the circumferential direction, and is a so-called rubber magnet. However, the magnetic flux N and S are generated in the radial direction of the elastic member 64. The material of the elastic member 64 is the same as that of the elastic member 14 in the first embodiment, and the elastic member 64 is the same as that in the first embodiment under the cold endurance test conditions described in the first embodiment. These magnetic properties are retained. The material of the ring member 62 is the same material as the seal plate 11 (FIG. 3) in the first embodiment. The magnetic sensor 75 faces the magnetizing encoder 70 in the radial direction and is provided on a fixed member.
[0029]
Also in this embodiment, the elastic member 64 has the initial characteristics as described above for the magnetic characteristics of the pitch difference and the magnetic flux density as described above under the above-mentioned cold endurance test conditions corresponding to actual specifications. Since it is held, the initial magnetic characteristics are maintained even under severe use environment generated around the wheel of the automobile.
[0030]
【The invention's effect】
An evaluation method for a magnetized encoder according to the present invention includes an inner member and an outer member, a plurality of rolling elements accommodated between the inner and outer members, and a sealing device for sealing an end annular space between the inner and outer members. And an elastic member that is fitted to the rotation side member of the inner member and the outer member and mixed with magnetic powder is vulcanized and bonded, and alternating magnetic poles are formed on the elastic member. the wheel bearing comprising a magnetic encoder, Oite the evaluation method of magnetizing the encoder,
The above-mentioned magnetized encoder is subjected to 1000 cycles of a heating state at 120 ° C. for 1 hour and a heating / cooling cycle at −40 ° C. for 1 hour. Since it is an elastic member based on heat-resistant nitrile rubber that can achieve magnetic properties of ± 3 mT or more, the magnetized encoder can withstand the severe temperature environment that occurs around the wheels of automobiles, and rotation detection accuracy Is maintained.
When the magnetizing encoder constitutes the sealing device, the bearing is made compact, the number of parts is reduced, and the number of assembly steps is also reduced. The magnetizing encoder has an L-shaped cross section composed of a cylindrical portion fitted to the rotation side member and a vertical plate portion extending in a radial direction from the cylindrical portion, and the tip of the vertical plate portion and the fixed side When the members are opposed to each other with a slight radial gap, a labyrinth seal function can be obtained.
The seal device has first and second annular seal plates respectively attached to different members of the inner member and the outer member, and both the seal plates are respectively a cylindrical portion and a standing plate portion. The first seal plate is fitted to the rotating member of the inner member and the outer member, and the upright plate portion is on the bearing outer side. In addition, an elastic member mixed with magnetic powder is vulcanized and bonded to the standing plate portion, and magnetic poles are alternately formed in the circumferential direction of the elastic member. The side lip that is in sliding contact with the radial lip that is in sliding contact with the cylindrical portion, and the cylindrical portion of the second seal plate and the tip of the upright plate portion of the first seal plate are provided with a slight radial gap. When facing each other, it can have both a contact seal function and a labyrinth seal function. That.
The elastic member is heat nitrile rubber der because, less deterioration of the elastic member in harsh temperature conditions as described above, the maintenance of the initial magnetic characteristics.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a wheel bearing according to an embodiment of the present invention.
FIG. 2 is a partial front view of the magnetized encoder.
FIG. 3 is a partially enlarged sectional view of the vicinity of the magnetized encoder of the wheel bearing.
FIG. 4 is an explanatory diagram showing an example of a heat pattern applied to a magnetized encoder in a cold endurance test.
FIG. 5 is an explanatory diagram of another example of a heat pattern applied to a magnetized encoder in a cold endurance test.
FIG. 6 is a cross-sectional view of a wheel bearing according to another embodiment of the present invention.
FIG. 7 is a partially enlarged sectional view of the vicinity of the magnetized encoder of the wheel bearing.
FIG. 8 is a cross-sectional view of a wheel bearing according to still another embodiment of the present invention.
FIG. 9 is a cross-sectional view of a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Inner member 2 ... Outer member 3 ... Rolling body 5 ... Sealing device 11 ... 1st seal plate 12 ... 2nd seal plate 11a, 12a ... Cylindrical part 11b, 12b ... Standing plate part 14 ... Elastic member 15 ... Sensor 16 ... Elastic member 20 ... Magnetized encoders N and S ... Magnetic poles

Claims (4)

内方部材および外方部材と、これら内外の部材間に収容される複数の転動体と、上記内外の部材間の端部環状空間を密封するシール装置と、上記内方部材および外方部材のうちの回転側の部材に嵌合され、かつ磁性体粉が混入された弾性部材が加硫接着され、この弾性部材に回転側の部材の周方向に沿って交互の磁極が形成された着磁エンコーダとからなる車輪用軸受の、着磁エンコーダの評価方法において、
上記着磁エンコーダが、次の冷熱耐久試験条件下において、下記の各磁気特性を保持している耐熱ニトリルゴムをベース材とした弾性部材であることを特徴とする着磁エンコーダの評価方法。
冷熱耐久試験条件は、120℃を1時間維持する加熱状態と、−40℃を1時間維持する冷却状態とでなる加熱・冷却のサイクルを、1000サイクル繰り返すことである。
磁気特性は、前記着磁エンコーダの磁力をエアギャップ2.0mmの位置で測定した場合に、
・ピッチ相互差:±2パーセント以下、
・磁束密度:±3mT以上、
である。
An inner member and an outer member, a plurality of rolling elements accommodated between the inner and outer members, a seal device for sealing an end annular space between the inner and outer members, and the inner member and the outer member. Magnetization in which an elastic member fitted with a rotating member and vulcanized and bonded with magnetic powder is formed, and alternating magnetic poles are formed on the elastic member along the circumferential direction of the rotating member. the wheel bearing consisting of an encoder, Oite the evaluation method of magnetizing the encoder,
The magnetized encoder, the following thermal endurance test conditions, the evaluation method of magnetizing the encoder you characterized in that an elastic member which has a heat-resistant nitrile rubber base material holding the respective magnetic properties below.
The cold endurance test condition is that a heating / cooling cycle consisting of a heating state in which 120 ° C. is maintained for 1 hour and a cooling state in which −40 ° C. is maintained for 1 hour is repeated 1000 cycles.
Magnetic characteristics are obtained when the magnetic force of the magnetized encoder is measured at an air gap of 2.0 mm.
・ Pitch difference: ± 2% or less,
・ Magnetic flux density: ± 3mT or more
It is.
上記着磁エンコーダが、上記シール装置を構成する請求項1に記載の着磁エンコーダの評価方法。 The method for evaluating a magnetized encoder according to claim 1, wherein the magnetized encoder constitutes the sealing device . 上記着磁エンコーダが、回転側部材に嵌合される円筒部と、この円筒部から径方向に延びる立板部とからなる断面L字状のものであり、この立板部の先端と上記固定側部材とを僅かな径方向隙間を持って対峙させた請求項2に記載の着磁エンコーダの評価方法。 The magnetizing encoder has an L-shaped cross section including a cylindrical portion fitted to the rotation side member and a vertical plate portion extending in a radial direction from the cylindrical portion, and the tip of the vertical plate portion and the fixed portion The method for evaluating a magnetized encoder according to claim 2, wherein the side member is opposed to the side member with a slight radial gap . 上記シール装置は、上記内方部材と外方部材のうちの互いに異なる部材に各々取付けられた第1および第2の環状のシール板を有し、両シール板は、各々円筒部と立板部とでなる断面L字状に形成されて互いに対向し、第1のシール板は上記内方部材および外方部材のうちの回転側の部材に嵌合され、立板部は軸受外方側に配されると共に、この立板部に磁性体粉が混入された弾性部材が加硫接着されて、この弾性部材は周方向に交互に磁極が形成され、第2のシール板は上記立板部に摺接するサイドリップと円筒部に摺接するラジアルリップとを一体に有し、この第2のシール板の円筒部と上記第1のシール板の立板部の先端とを僅かな径方向隙間をもって対峙させた請求項2に記載の着磁エンコーダの評価方法。 The seal device includes first and second annular seal plates respectively attached to different members of the inner member and the outer member, and the two seal plates are respectively a cylindrical portion and a standing plate portion. The first seal plate is fitted to the rotating member of the inner member and the outer member, and the upright plate portion is on the bearing outer side. In addition, an elastic member mixed with magnetic powder is vulcanized and bonded to the standing plate portion, and magnetic poles are alternately formed in the circumferential direction of the elastic member, and the second seal plate is formed from the standing plate portion. The side lip that is in sliding contact with the radial lip that is in sliding contact with the cylindrical portion, and the cylindrical portion of the second seal plate and the tip of the upright plate portion of the first seal plate are provided with a slight radial gap. The method for evaluating a magnetized encoder according to claim 2, which is opposed to each other.
JP2001268261A 2000-09-05 2001-09-05 Evaluation method of magnetized encoder Expired - Fee Related JP4209607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001268261A JP4209607B2 (en) 2000-09-05 2001-09-05 Evaluation method of magnetized encoder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000268198 2000-09-05
JP2000-268198 2000-09-05
JP2001268261A JP4209607B2 (en) 2000-09-05 2001-09-05 Evaluation method of magnetized encoder

Publications (2)

Publication Number Publication Date
JP2002155962A JP2002155962A (en) 2002-05-31
JP4209607B2 true JP4209607B2 (en) 2009-01-14

Family

ID=26599243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001268261A Expired - Fee Related JP4209607B2 (en) 2000-09-05 2001-09-05 Evaluation method of magnetized encoder

Country Status (1)

Country Link
JP (1) JP4209607B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004183769A (en) * 2002-12-03 2004-07-02 Ntn Corp Bearing device for wheel
JP5086003B2 (en) * 2007-08-28 2012-11-28 Ntn株式会社 Rotation sensor unit
KR101956816B1 (en) * 2017-07-07 2019-03-13 주식회사 일진글로벌 Wheel bearing for vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987415A (en) * 1989-09-18 1991-01-22 The Torrington Company High resolution encoder
JPH04267307A (en) * 1991-02-21 1992-09-22 Kawasaki Steel Corp Focused orientation type ring-shaped magnet
JP3312531B2 (en) * 1994-07-18 2002-08-12 日本精工株式会社 Hub unit with rotation speed detector
JP3968857B2 (en) * 1998-01-09 2007-08-29 日本精工株式会社 Seal structure of rotation speed detector
JPH11264738A (en) * 1998-03-17 1999-09-28 Yazaki Corp Rotation detector
JP4018313B2 (en) * 2000-03-01 2007-12-05 Ntn株式会社 Manufacturing method of magnetic encoder

Also Published As

Publication number Publication date
JP2002155962A (en) 2002-05-31

Similar Documents

Publication Publication Date Title
JP5914585B2 (en) Wheel bearing device
JP4925398B2 (en) Sealing device
WO2006028209A1 (en) Bearing device for wheel, having rotation speed detection device
JP4683496B2 (en) Wheel bearing device
JP6294394B2 (en) Wheel bearing device
JP2010151277A (en) Wheel bearing device with rotation speed detector
JP4628049B2 (en) Wheel bearing device with rotation speed detector
JP4209607B2 (en) Evaluation method of magnetized encoder
JP6654941B2 (en) Wheel bearing device
JP5521696B2 (en) Rolling bearing unit for wheel support with encoder
US6857782B2 (en) Magnetic encoder and wheel bearing assembly using the same
JP2010151279A (en) Wheel bearing device with rotation speed detector
JP4867454B2 (en) SEALING DEVICE WITH MULTI-POLE MAGNET ENCODER Rolling bearing and wheel support bearing unit provided with the sealing device
WO2009119036A1 (en) Bearing device adapted for use in wheel and having rotational speed detection device
JP4498052B2 (en) Wheel bearing device with rotation speed detector
JP2009228819A (en) Bearing device adapted for use in wheel and having rotational speed detection device
US20020028032A1 (en) Wheel Bearing assembly
JP4952035B2 (en) Manufacturing method of seal ring with encoder and rolling bearing unit with encoder
JP2009197941A (en) Wheel bearing device with rotation speed detector
JP4105379B2 (en) Wheel bearing
JP4627068B2 (en) Quality control method of magnetic encoder
JP2007198886A (en) Encoder, sealing device for roller bearing, and roller bearing apparatus with sensor
JP2003075194A (en) Method of magnetizing pulser ring
JP5867101B2 (en) Method for assembling wheel bearing rolling bearing unit with encoder and method for assembling wheel bearing rolling bearing unit with rotational speed detection device
JP6648904B2 (en) Wheel bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081023

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4209607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees