JP5521696B2 - Rolling bearing unit for wheel support with encoder - Google Patents

Rolling bearing unit for wheel support with encoder Download PDF

Info

Publication number
JP5521696B2
JP5521696B2 JP2010075648A JP2010075648A JP5521696B2 JP 5521696 B2 JP5521696 B2 JP 5521696B2 JP 2010075648 A JP2010075648 A JP 2010075648A JP 2010075648 A JP2010075648 A JP 2010075648A JP 5521696 B2 JP5521696 B2 JP 5521696B2
Authority
JP
Japan
Prior art keywords
diameter side
plate portion
cover
encoder
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010075648A
Other languages
Japanese (ja)
Other versions
JP2011208702A (en
Inventor
孝範 宮坂
雅人 松井
正人 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2010075648A priority Critical patent/JP5521696B2/en
Publication of JP2011208702A publication Critical patent/JP2011208702A/en
Application granted granted Critical
Publication of JP5521696B2 publication Critical patent/JP5521696B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/723Shaft end sealing means, e.g. cup-shaped caps or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7816Details of the sealing or parts thereof, e.g. geometry, material
    • F16C33/783Details of the sealing or parts thereof, e.g. geometry, material of the mounting region

Description

本発明は、自動車の車輪を懸架装置に対して回転自在に支持すると共に、この車輪の回転速度を検出する為のエンコーダ付転がり軸受ユニットであって、外輪の軸方向内端開口を塞ぐ非磁性板製のカバーを有するものの改良に関する。   The present invention is a rolling bearing unit with an encoder for rotatably supporting a wheel of an automobile with respect to a suspension device and detecting the rotational speed of the wheel, and is a non-magnetic member that blocks an axial inner end opening of an outer ring. The present invention relates to an improvement in one having a plate cover.

自動車の車輪を懸架装置に対して回転自在に支持すると共に、この車輪の回転速度を検出する為の回転速度検出装置付転がり軸受ユニットとして、従来から各種構造のものが知られている。何れの構造の場合も、回転速度検出装置は、車輪と共に回転するハブの一部に支持固定されたエンコーダと、回転しない部分に支持固定されたセンサとを、このエンコーダの被検出面にこのセンサの検出部が対向する様に配置し、前記エンコーダの回転に伴って変化する、このセンサの出力信号の周波数又は周期に基づいて、このエンコーダと共に回転する前記車輪の回転速度を求める様に構成されている。   2. Description of the Related Art Conventionally, various structures are known as rolling bearing units with a rotational speed detecting device for rotatably supporting a vehicle wheel with respect to a suspension device and detecting the rotational speed of the wheel. In any structure, the rotational speed detection device includes an encoder supported and fixed to a part of a hub that rotates together with a wheel and a sensor supported and fixed to a non-rotating part on the detected surface of the encoder. The detectors are arranged so as to face each other, and based on the frequency or period of the output signal of the sensor that changes as the encoder rotates, the rotational speed of the wheel that rotates with the encoder is obtained. ing.

この様な回転速度検出装置付転がり軸受ユニットを構成するエンコーダが泥水や塵埃等の付着により損傷する事を防止する為、或いはこのエンコーダに磁性粉等の異物が付着して、このエンコーダを利用した回転速度検出の信頼性が損なわれる事を防止する為、非磁性板製のカバーにより、このエンコーダを外部から隔てる構造が従来から知られている(例えば、特許文献1参照)。図7は、この様な構造を有する回転速度検出装置付転がり軸受ユニットの従来構造の1例として、前記特許文献1に記載されたものを示している。この従来構造は、転がり軸受ユニット5にエンコーダ1を組み込んで成るエンコーダ付転がり軸受ユニット2と、懸架装置を構成するナックル3に支持固定したセンサ4とから成る。   This encoder is used to prevent the encoder constituting the rolling bearing unit with such a rotational speed detection device from being damaged by adhesion of muddy water, dust, etc., or when foreign particles such as magnetic powder adhere to this encoder. In order to prevent the reliability of rotation speed detection from being impaired, a structure in which the encoder is separated from the outside by a cover made of a non-magnetic plate is conventionally known (see, for example, Patent Document 1). FIG. 7 shows one described in Patent Document 1 as an example of a conventional structure of a rolling bearing unit with a rotational speed detection device having such a structure. This conventional structure includes a rolling bearing unit 2 with an encoder in which an encoder 1 is incorporated in a rolling bearing unit 5 and a sensor 4 supported and fixed to a knuckle 3 constituting a suspension device.

このうちの転がり軸受ユニット5は、ハブ6と、外輪7と、複数個との転動体8、8とを備える。このうちの外輪7は、内周面に複列の外輪軌道9、9を、外周面に静止側フランジ10を、それぞれ有し、この静止側フランジ10を介して、前記ナックル3に支持固定されて、使用時に回転しないものである。又、前記ハブ6は、ハブ本体11と内輪12とを、かしめ部13により結合固定して成るもので、外周面に複列の内輪軌道14、14を有し、前記外輪7の内径側にこの外輪7と同心に支持されている。又、前記ハブ本体11の軸方向外端部(軸方向に関して「外」とは、懸架装置に組み付けた状態で車体の幅方向外寄りとなる側を言い、各図の左側。反対に、懸架装置に組み付けた状態で車体の幅方向中央寄りとなる各図の右側を、軸方向に関して「内」と言う。本明細書及び特許請求の範囲全体で同じ。)で前記外輪7の内径側から軸方向外方に突出した部分に、車輪を支持する為の回転側フランジ15を設けている。又、前記各転動体8、8は、前記両外輪軌道9、9と前記両内輪軌道14、14との間に、両列毎に複数個ずつ、保持器16、16により保持された状態で、転動自在に設けられている。   Among these, the rolling bearing unit 5 includes a hub 6, an outer ring 7, and a plurality of rolling elements 8 and 8. Of these, the outer ring 7 has double-row outer ring raceways 9 and 9 on the inner peripheral surface and a stationary flange 10 on the outer peripheral surface, and is supported and fixed to the knuckle 3 via the stationary flange 10. And does not rotate during use. The hub 6 is formed by connecting and fixing a hub body 11 and an inner ring 12 by a caulking portion 13. The hub 6 has double-row inner ring raceways 14 and 14 on the outer peripheral surface, and is arranged on the inner diameter side of the outer ring 7. The outer ring 7 is supported concentrically. Further, the axially outer end of the hub body 11 ("outside" with respect to the axial direction means the side that is outside the vehicle body in the width direction when assembled to the suspension device, and is the left side of each figure. The right side of each figure that is closer to the center in the width direction of the vehicle body when assembled in the apparatus is referred to as “inner” with respect to the axial direction (the same applies throughout the present specification and claims), and from the inner diameter side of the outer ring 7. A rotation-side flange 15 for supporting the wheel is provided in a portion protruding outward in the axial direction. Each of the rolling elements 8 and 8 is held between the outer ring raceways 9 and 9 and the inner ring raceways 14 and 14 by a plurality of retainers 16 and 16 in both rows. It is provided so that it can roll freely.

又、前記エンコーダ1は、断面L字形で全体を円環状に構成した磁性金属板製の支持環23と、永久磁石製で円輪状のエンコーダ本体24とから成る。被検出面である、このエンコーダ本体24の軸方向内側面には、N極とS極とが円周方向に関して交互に且つ等ピッチで配置されている。この様なエンコーダ1は、前記ハブ6を構成する内輪12の肩部22に前記支持環23の基端部を締り嵌めで外嵌する事により、前記ハブ6に対し、このハブ6と同心に支持固定されている。   The encoder 1 includes a support ring 23 made of a magnetic metal plate having an L-shaped cross section and an annular shape as a whole, and a ring-shaped encoder body 24 made of a permanent magnet. N poles and S poles are alternately arranged at equal pitches in the circumferential direction on the inner side surface in the axial direction of the encoder body 24, which is the detected surface. Such an encoder 1 is concentric with the hub 6 by fitting the base end portion of the support ring 23 to the shoulder portion 22 of the inner ring 12 constituting the hub 6 with an interference fit. The support is fixed.

更に、前記各転動体8、8を設置した内部空間17の軸方向両端部は、シールリング18とカバー19とにより塞がれている。このカバー19は、SUS304の如きオーステナイト系ステンレス鋼板、アルミニウム系合金板、合成樹脂板等の非磁性板製で、全体を有底円筒状に構成しており、円筒部20と、この円筒部20の軸方向内端開口を塞ぐ円板状の塞ぎ板部21とを備える。この様なカバー19は、前記円筒部20を前記外輪7の軸方向内端部に締り嵌めで内嵌する事により、この外輪7に支持固定されている。   Further, both end portions in the axial direction of the internal space 17 in which the rolling elements 8 and 8 are installed are closed by a seal ring 18 and a cover 19. The cover 19 is made of a non-magnetic plate such as an austenitic stainless steel plate such as SUS304, an aluminum alloy plate, or a synthetic resin plate, and has a cylindrical shape with a bottom. The cylindrical portion 20 and the cylindrical portion 20 And a disc-shaped closing plate portion 21 that closes the axially inner end opening of the. Such a cover 19 is supported and fixed to the outer ring 7 by fitting the cylindrical portion 20 into the inner end of the outer ring 7 in the axial direction with an interference fit.

前記エンコーダ1の被検出面は、前記カバー19を構成する塞ぎ板部21の軸方向外側面(内面)に、微小隙間を介して近接対向させている。言い換えれば、前記塞ぎ板部21の軸方向外側面が前記エンコーダ1の被検出面に近接対向する状態になるまで、前記カバー19を前記外輪7の軸方向内端部に押し込んでいる。   The surface to be detected of the encoder 1 is opposed to the axially outer surface (inner surface) of the closing plate portion 21 constituting the cover 19 through a minute gap. In other words, the cover 19 is pushed into the inner end of the outer ring 7 in the axial direction until the outer surface in the axial direction of the closing plate portion 21 is in a state of being opposed to the surface to be detected of the encoder 1.

更に、前記センサ4は、その検出部を前記塞ぎ板部21の軸方向内側面(外面)に当接させた状態で、前記ナックル3に支持固定されている。この状態で、前記センサ4の検出部は、前記塞ぎ板部21を介して、前記エンコーダ1の被検出面に対向している。
自動車の運転時に、車輪を支持固定した前記ハブ6と共に前記エンコーダ1が回転すると、前記センサ4の検出部の近傍を、このエンコーダ1の被検出面に存在するS極とN極とが交互に通過する。この結果、前記センサ4の出力が変化する。この変化の周波数は前記車輪の回転速度に比例し、この変化の周期はこの回転速度に反比例するので、これら周波数と周期との何れかに基づいて、前記車輪の回転速度を求められる。
Further, the sensor 4 is supported and fixed to the knuckle 3 in a state where the detection portion is in contact with the inner side surface (outer surface) in the axial direction of the closing plate portion 21. In this state, the detection unit of the sensor 4 is opposed to the detection surface of the encoder 1 through the closing plate unit 21.
When the encoder 1 rotates together with the hub 6 that supports and fixes the wheels during driving of the automobile, the S pole and the N pole existing on the detection surface of the encoder 1 alternately in the vicinity of the detection portion of the sensor 4. pass. As a result, the output of the sensor 4 changes. Since the frequency of this change is proportional to the rotational speed of the wheel, and the period of this change is inversely proportional to the rotational speed, the rotational speed of the wheel can be determined based on either of these frequencies or the period.

上述の図7に示した従来構造の場合、前記エンコーダ1と外部空間とを、非磁性板製のカバー19により隔てているので、このエンコーダ1の被検出面に、磁性粉等の異物が付着する事を防止できる。この為、この被検出面を清浄な状態に保って、前記エンコーダ1を利用した回転速度検出の信頼性確保を図れる。   In the case of the conventional structure shown in FIG. 7, the encoder 1 and the external space are separated from each other by a cover 19 made of a non-magnetic plate, so that foreign matter such as magnetic powder adheres to the detection surface of the encoder 1. Can be prevented. Therefore, it is possible to ensure the reliability of rotation speed detection using the encoder 1 while keeping the detected surface clean.

但し、上述した従来構造に於いて、前記カバー19を前記外輪7に支持固定すべく、前記円筒部20をこの外輪7の軸方向内端部に締り嵌めで内嵌すると、この円筒部20の内径側に存在する前記塞ぎ板部21に径方向内方に向いた力が加わる。この為、この塞ぎ板部21は、当該力に基づいて、湾曲する様に厚さ方向(軸方向内外方向)に変形するが、この変形の方向及び変形の程度は、規制する事も予測する事も難しい。従って、前記塞ぎ板部21のうちで、前記エンコーダ1の被検出面と前記センサ4の検出部との間に存在する部分の軸方向位置を、精度良く規制する事は難しい。一方、例えば、前記センサ4の検出部を前記塞ぎ板部21の軸方向内側面(外面)に突き当てる事によって、このセンサ4の位置決めを図る場合、前記塞ぎ板部21が歪んでいると、この位置決めが不正確になる。この結果、前記エンコーダ1の被検出面から出て前記センサ4の検出部に達する磁束の密度がばらつき、回転速度検出の信頼性を確保する面から不利になる。   However, in the above-described conventional structure, when the cylindrical portion 20 is fitted into the inner end of the outer ring 7 in the axial direction so as to support and fix the cover 19 to the outer ring 7, A force directed radially inward is applied to the closing plate portion 21 existing on the inner diameter side. For this reason, the closing plate portion 21 is deformed in the thickness direction (axial direction inside / outside direction) so as to be curved based on the force, but it is also predicted that the direction and the degree of the deformation are regulated. Things are also difficult. Therefore, it is difficult to accurately regulate the position in the axial direction of the portion of the closing plate portion 21 between the detected surface of the encoder 1 and the detection portion of the sensor 4. On the other hand, for example, when positioning the sensor 4 by abutting the detection portion of the sensor 4 against the inner side surface (outer surface) in the axial direction of the closing plate portion 21, when the closing plate portion 21 is distorted, This positioning is inaccurate. As a result, the density of the magnetic flux that comes out of the detection surface of the encoder 1 and reaches the detection portion of the sensor 4 varies, which is disadvantageous in terms of ensuring the reliability of rotation speed detection.

特許第4206550号公報Japanese Patent No. 4206550

本発明の目的は、上述の様な事情に鑑みて、エンコーダの被検出面とセンサの検出部との距離に関する精度を向上させて、回転速度検出の信頼性をより一層向上させたエンコーダ付車輪支持用転がり軸受ユニットを提供する事にある。   In view of the circumstances as described above, an object of the present invention is to provide an encoder-equipped wheel that further improves the accuracy of rotation speed detection by improving the accuracy with respect to the distance between the detected surface of the encoder and the detection portion of the sensor. It is to provide a rolling bearing unit for support.

本発明のエンコーダ付車輪支持用転がり軸受ユニットは、外輪と、ハブと、複数個の転動体と、エンコーダと、カバーとを備える。
このうちの外輪は、内周面に複列の外輪軌道を有し、使用時に懸架装置に支持固定された状態で回転しない。
又、前記ハブは、外周面に複列の内輪軌道を有し、使用時に車輪を支持固定した状態でこの車輪と共に回転する。
又、前記各転動体は、前記両外輪軌道と前記両内輪軌道との間に、両列毎に複数個ずつ設けられている。
又、前記エンコーダは、軸方向内側面を円周方向に関して磁気特性が交互に変化する被検出面としたもので、前記ハブにこのハブと同心に支持固定されている。
更に、前記カバーは、非磁性板製で、円筒部、及び、この円筒部の軸方向内端開口を塞ぐ塞ぎ板部を有する。そして、このうちの円筒部を前記外輪の軸方向内端部に締り嵌めで内嵌すると共に、前記塞ぎ板部を前記エンコーダの被検出面に近接対向させている。
特に、本発明のエンコーダ付車輪支持用転がり軸受ユニットに於いては、前記カバーを構成する塞ぎ板部のうち、前記エンコーダの被検出面を近接対向させる部分を含む外径側部分が円輪状の外径側平板部であり、同じくこの外径側平板部よりも内径側の部分が、この外径側平板部よりも軸方向外側に位置する形状を有する内径側板部であり、前記カバーの重心が、この内径側板部の内部(厚さ方向中間部)に位置している。
The wheel support rolling bearing unit with an encoder of the present invention includes an outer ring, a hub, a plurality of rolling elements, an encoder, and a cover.
Among these, the outer ring has a double row outer ring raceway on the inner peripheral surface, and does not rotate while being supported and fixed to the suspension device during use.
The hub has a double-row inner ring raceway on the outer peripheral surface, and rotates together with the wheel while supporting and fixing the wheel during use.
A plurality of rolling elements are provided for each row between the outer ring raceways and the inner ring raceways.
In the encoder, the inner surface in the axial direction is a surface to be detected whose magnetic characteristics alternately change in the circumferential direction, and is supported and fixed to the hub concentrically with the hub.
Further, the cover is made of a non-magnetic plate, and has a cylindrical portion and a closing plate portion that closes an axially inner end opening of the cylindrical portion. Of these, the cylindrical portion is fitted into the inner end portion in the axial direction of the outer ring with an interference fit, and the closing plate portion is closely opposed to the detected surface of the encoder.
In particular, in the rolling bearing unit with an encoder-equipped wheel support according to the present invention, the outer diameter side portion including the portion that makes the detected surface of the encoder close to each other out of the closing plate portion constituting the cover has an annular shape. It is an outer diameter side flat plate portion, and an inner diameter side plate portion having a shape in which the inner diameter side of the outer diameter side flat plate portion is positioned axially outside of the outer diameter side flat plate portion, and the center of gravity of the cover However, it is located inside the inner diameter side plate portion (intermediate portion in the thickness direction).

上述の様な本発明のエンコーダ付車輪支持用転がり軸受ユニットを実施する場合には、例えば請求項2に記載した発明の構成、即ち、前記カバーを構成する塞ぎ板部のうち、前記エンコーダの被検出面を近接対向させる部分を含む外径側部分が、円輪状の外径側平板部であり、同じく中央部を含む内径側部分が、この外径側平板部よりも軸方向外側に位置する円板状の内径側平板部であり、同じくこれら外径側平板部と内径側平板部との間部分が、円筒状若しくは軸方向外方に向かうに従って直径が小さくなる方向に傾斜した部分円すい筒状の連結板部であって、前記カバーの重心が、前記内径側平板部の内部(厚さ方向中間部)に位置している構成を採用できる。   When the above-described wheel support rolling bearing unit with an encoder according to the present invention is implemented, for example, the structure of the invention described in claim 2, that is, the cover plate portion constituting the cover, The outer diameter side portion including the portion that makes the detection surface close to each other is an annular outer diameter side flat plate portion, and the inner diameter side portion including the center portion is located on the outer side in the axial direction than the outer diameter side flat plate portion. It is a disk-shaped inner diameter side flat plate portion, and the portion between the outer diameter side flat plate portion and the inner diameter side flat plate portion is cylindrical or a partial conical cylinder inclined in a direction in which the diameter decreases toward the outer side in the axial direction. It is a shape-like connection board part, Comprising: The structure which the gravity center of the said cover is located in the inside (thickness direction intermediate part) of the said inner diameter side flat plate part is employable.

上述の様な本発明のエンコーダ付車輪支持用転がり軸受ユニットを実施する場合に、好ましくは、請求項3に記載した発明の様に、前記カバーを構成する円筒部の軸方向内端部に、前記外輪の軸方向内端部の内径よりも小さな外径を有し、軸方向寸法が前記カバーを構成する板材の厚さ寸法の2倍(好ましくは3倍、より好ましくは4倍)以上である非当接部を全周に亙って形成する。そして、前記カバーを前記外輪の軸方向内端部に内嵌した状態で、前記円筒部を前記外輪の軸方向内端部に、前記非当接部よりも軸方向外寄り部分でのみ締り嵌めで内嵌する。
尚、前記2倍(好ましくは3倍、より好ましくは4倍)なる値は、前記カバーの円筒部を前記外輪の軸方向内端部に締り嵌めで内嵌し、このカバーの外径寄り部分が弾性変形した状態での値とする。
又、前記非当接部は、例えば、軸方向内方に向かうに従って直径が小さくなる方向に傾斜した、部分円すい筒状に構成する事もできるし、或いは、前記円筒部の軸方向外寄り部分との間に段差部を介在させた、小径段部とする事もできる。
When implementing the rolling bearing unit with an encoder-equipped wheel support of the present invention as described above, preferably, as in the invention described in claim 3, at the axially inner end of the cylindrical portion constituting the cover, The outer ring has an outer diameter smaller than the inner diameter of the inner end portion in the axial direction, and the axial dimension is at least twice (preferably three times, more preferably four times) the thickness dimension of the plate material constituting the cover. A non-contact part is formed over the entire circumference. Then, with the cover being fitted in the inner end of the outer ring in the axial direction, the cylindrical portion is tightly fitted to the inner end of the outer ring in the axial direction only at a portion outside the non-contact portion in the axial direction. It fits inside.
The value of 2 times (preferably 3 times, more preferably 4 times) means that the cylindrical portion of the cover is fitted into the inner end in the axial direction of the outer ring by an interference fit, and the portion closer to the outer diameter of the cover Is a value in a state where is elastically deformed.
In addition, the non-contact portion can be configured in a partially conical cylindrical shape, for example, inclined in a direction in which the diameter decreases as it goes inward in the axial direction, or the axially outward portion of the cylindrical portion A small-diameter step portion having a step portion interposed therebetween can also be used.

上述の様に構成する本発明のエンコーダ付車輪支持用転がり軸受ユニットによれば、後述する本発明者が行った実験の結果に示される様に、外輪の軸方向内端部にカバーの円筒部を締り嵌めで内嵌する事に伴って生じる、このカバーの塞ぎ板部を構成する外径側平板部の軸方向の歪み変形量を抑えられる。この為、この外径側平板部の軸方向位置、並びに、前記円筒部に対する直角度等の面精度を、精度良く規制できる。従って、回転速度検出用のセンサと組み合わせた状態(このセンサの検出部を前記エンコーダの被検出面に、前記外径側平板部を介して対向させた状態)で、このエンコーダの被検出面から出て前記センサの検出部に達する磁束の密度のばらつきを抑えられる。この結果、回転速度検出の信頼性の確保を図れる。   According to the wheel support rolling bearing unit with an encoder of the present invention configured as described above, as shown in the result of an experiment performed by the present inventor described later, the cylindrical portion of the cover is disposed at the axial inner end of the outer ring. The amount of strain deformation in the axial direction of the outer-diameter side flat plate portion constituting the closing plate portion of the cover, which is caused by the inner fitting of the cover, can be suppressed. For this reason, it is possible to accurately regulate the axial position of the outer diameter side flat plate portion and the surface accuracy such as the squareness with respect to the cylindrical portion. Therefore, in a state where it is combined with a sensor for detecting the rotational speed (a state where the detection portion of this sensor is opposed to the detection surface of the encoder via the outer-diameter side flat plate portion), the detection surface of the encoder Variations in the density of magnetic flux that reaches the detection portion of the sensor can be suppressed. As a result, the reliability of rotation speed detection can be ensured.

又、請求項3に記載した発明の構成を採用すれば、外輪の軸方向内端部にカバーの円筒部を締り嵌めで内嵌する事に伴って生じる、このカバーの塞ぎ板部を構成する外径側平板部の軸方向の歪み変形量を、更に抑えられる。即ち、請求項3に記載した発明の場合には、前記外輪の軸方向内端部に前記カバーを内嵌固定した状態でも、この外輪の軸方向内端部内周面と、このカバーの円筒部の軸方向内端部に設けた非当接部の外周面との間には、全周に亙って隙間が存在し、この非当接部が径方向内方に押圧される事はない。前記円筒部のうちでこの非当接部よりも軸方向外寄り部分に存在し、前記外輪の軸方向内端部に締り嵌めで内嵌される部分は径方向内方に強く押されるが、軸方向に関して、この締り嵌めで内嵌される部分と前記塞ぎ板部との間には、前記非当接部が、全周に亙って存在する。この為、前記締り嵌めで内嵌される部分に、径方向内方に向いた強い力が加わっても、この力のうちの多くの部分は、前記非当接部を変形させる事に消費され、前記塞ぎ板部にまでは伝わらない。従って、前記外輪の軸方向内端部に前記カバーの円筒部を締り嵌めで内嵌する事に伴って生じる、このカバーの塞ぎ板部を構成する外径側平板部の軸方向の歪み変形量を、更に抑えられる。   Further, if the configuration of the invention described in claim 3 is adopted, the cover plate portion of the cover, which is generated when the cylindrical portion of the cover is fitted into the inner end portion in the axial direction of the outer ring by an interference fit, is formed. The strain deformation amount in the axial direction of the outer diameter side flat plate portion can be further suppressed. That is, in the case of the invention described in claim 3, even when the cover is fitted and fixed to the inner end of the outer ring in the axial direction, the inner peripheral surface of the outer end of the outer ring in the axial direction and the cylindrical portion of the cover There is a gap over the entire circumference between the outer peripheral surface of the non-contact portion provided at the axially inner end portion, and the non-contact portion is not pressed radially inward. . Of the cylindrical portion, the portion that is present in the axially outer portion than the non-contact portion, and the portion that is fitted into the axially inner end portion of the outer ring by an interference fit is strongly pressed radially inward, With respect to the axial direction, the non-contact portion exists over the entire circumference between the portion fitted by the interference fit and the closing plate portion. For this reason, even if a strong force directed radially inward is applied to the portion fitted by the interference fit, most of the force is consumed by deforming the non-contact portion. It is not transmitted to the closing plate part. Therefore, the amount of strain deformation in the axial direction of the outer-diameter side flat plate portion constituting the closing plate portion of the cover, which is caused by fitting the cylindrical portion of the cover into the inner end portion in the axial direction of the outer ring by interference fitting. Can be further suppressed.

本発明の実施の形態の第1例を示す部分断面図。The fragmentary sectional view which shows the 1st example of embodiment of this invention. 第1例に組み込むカバーの半部断面図。The half part sectional view of the cover built in the 1st example. 本発明の実施の形態の第2例を示す、カバーの部分断面図。The fragmentary sectional view of the cover which shows the 2nd example of embodiment of this invention. 同第3例を示す、カバーの部分断面図。The fragmentary sectional view of the cover which shows the 3rd example. 非当接部の外周面にシール材を被覆したカバーの2例を示す、図3〜4と同様の図。The figure similar to FIGS. 3-4 which shows two examples of the cover which coat | covered the sealing material on the outer peripheral surface of the non-contact part. 本発明を適用可能なカバーの形状の3例を示す半部断面図。The half part sectional view which shows three examples of the shape of the cover which can apply this invention. 従来構造の1例を示す半部断面図。The half part sectional view showing an example of conventional structure.

[実施の形態の第1例]
図1〜2は、請求項1〜2に対応する、本発明の実施の形態の第1例を示している。尚、本例のエンコーダ付車輪支持用転がり軸受ユニットの特徴は、外輪7の軸方向内端部にカバー19aの円筒部20を締り嵌めで内嵌する事に伴って生じる、このカバー19aの塞ぎ板部21aのうちエンコーダ1の被検出面に近接対向する部分の厚さ方向(軸方向)の歪み変形量を抑える為の構造にある。その他の部分の構造及び作用は、前述の図7に示した従来構造の場合と同様であるから、同等部分には同一符号を付して、重複する図示並びに説明は省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。
[First example of embodiment]
1 and 2 show a first example of an embodiment of the present invention corresponding to claims 1 and 2. The feature of the wheel bearing rolling bearing unit with an encoder of this example is that the cover 19a is closed when the cylindrical portion 20 of the cover 19a is fitted into the inner end of the outer ring 7 in the axial direction by an interference fit. The plate 21 a has a structure for suppressing the amount of distortion deformation in the thickness direction (axial direction) of the portion of the plate 21 a that is close to and faces the detection surface of the encoder 1. Since the structure and operation of the other parts are the same as in the case of the conventional structure shown in FIG. 7, the same reference numerals are given to the equivalent parts, and overlapping illustrations and descriptions are omitted or simplified. The description will focus on the features of this example.

本例の場合、前記カバー19aは、SUS304の如きオーステナイト系ステンレス鋼板、アルミニウム系合金板、合成樹脂板等の非磁性板製で、全体を略有底円筒状に構成しており、円筒部20と、この円筒部20の軸方向内端開口を塞ぐ塞ぎ板部21aとを備える。このうちの塞ぎ板部21aは、エンコーダ1の被検出面に近接対向させる部分を含む外径側部分を、円輪状の外径側平板部25とし、同じく中央部を含む内径側部分を、この外径側平板部25よりも軸方向外側に位置する円板状の内径側平板部26とし、同じくこれら外径側平板部25と内径側平板部26との間部分を、軸方向外方に向かうに従って直径が小さくなる方向に傾斜した部分円すい筒状の連結板部27としている。特に、本例の場合には、前記カバー19aの重心Gが、前記内径側平板部26の中心部の内部に位置する様に、前記カバー19aの各部の寸法(厚さ寸法、軸方向寸法、径方向寸法等)を規制している。この様なカバー19aは、前記円筒部20を前記外輪7の軸方向内端部に締り嵌めで内嵌する事により、この外輪7に支持固定した状態で、前記外径側平板部25の軸方向外側面(内面)をエンコーダ1の被検出面に、微小隙間28を介して近接対向させている。   In this example, the cover 19a is made of a non-magnetic plate such as an austenitic stainless steel plate, an aluminum alloy plate, a synthetic resin plate such as SUS304, and has a substantially bottomed cylindrical shape as a whole. And a closing plate portion 21 a that closes the axially inner end opening of the cylindrical portion 20. Of these, the closing plate portion 21a has an outer diameter side portion including a portion facing and close to the detection surface of the encoder 1 as an annular outer diameter side flat plate portion 25, and an inner diameter side portion including the center portion. A disk-shaped inner-diameter side flat plate portion 26 located on the outer side in the axial direction from the outer-diameter side flat plate portion 25 is formed, and the portion between the outer-diameter side flat plate portion 25 and the inner-diameter side flat plate portion 26 is also axially outward. The connecting plate portion 27 has a partially conical cylindrical shape that is inclined in a direction in which the diameter decreases as it goes. In particular, in the case of this example, the dimensions (thickness dimensions, axial dimensions, etc.) of each part of the cover 19a so that the center of gravity G of the cover 19a is located inside the central part of the inner diameter side flat plate part 26. The radial dimensions are regulated. Such a cover 19a is configured such that the cylindrical portion 20 is fitted into the inner end portion of the outer ring 7 in the axial direction by an interference fit, so that the shaft 19 of the outer diameter side flat plate portion 25 is supported and fixed to the outer ring 7. The outer side surface (inner surface) in the direction is made to face and face the detected surface of the encoder 1 through a minute gap 28.

上述の様な構成を有する本例のエンコーダ付車輪支持用転がり軸受ユニットの場合には、前記カバー19aの重心Gを、前記内径側平板部26の中央部の内部に位置させている為、前記外輪7の軸方向内端部に前記円筒部20を締り嵌めで内嵌する事に伴って生じる、前記塞ぎ板部21aを構成する外径側平板部25の軸方向の歪み変形量を抑えられる。この為、この外径側平板部25の軸方向位置、並びに、前記円筒部20に対する直角度等の面精度を、精度良く規制できる。従って、回転速度検出用のセンサ4aと組み合わせた状態(このセンサ4aの検出部を前記エンコーダ1の被検出面に、前記外径側平板部25を介して対向させた状態)で、このエンコーダ1の被検出面から出て前記センサ4aの検出部に達する磁束の密度のばらつきを抑えられる。この結果、回転速度検出の信頼性の確保を図れる。   In the case of the wheel support rolling bearing unit with an encoder of the present example having the above-described configuration, the center of gravity G of the cover 19a is located inside the central portion of the inner diameter side flat plate portion 26. It is possible to suppress the amount of distortion in the axial direction of the outer-diameter side flat plate portion 25 that constitutes the closing plate portion 21a, which is caused by fitting the cylindrical portion 20 into the inner end portion in the axial direction of the outer ring 7 with an interference fit. . For this reason, the axial direction position of the outer diameter side flat plate portion 25 and the surface accuracy such as the squareness with respect to the cylindrical portion 20 can be regulated with high accuracy. Accordingly, the encoder 1 is combined with the sensor 4a for detecting the rotational speed (the detection portion of the sensor 4a is opposed to the detection surface of the encoder 1 via the outer-diameter flat plate portion 25). Variation in the density of the magnetic flux coming out of the detected surface and reaching the detecting portion of the sensor 4a can be suppressed. As a result, the reliability of rotation speed detection can be ensured.

[実施の形態の第2例]
図3は、請求項1〜3に対応する、本発明の実施の形態の第2例を示している。本例の場合には、カバー19bを構成する円筒部20の軸方向内端部に、非当接部29を、全周に亙って形成している。この非当接部29は、軸方向内方に向かうに従って直径が小さくなる方向に傾斜した、部分円すい筒状である。本例の場合、この非当接部29の軸方向(図3の左右方向)寸法を、前記カバー19bの板厚の3〜4倍程度としている。
[Second Example of Embodiment]
FIG. 3 shows a second example of an embodiment of the present invention corresponding to claims 1 to 3. In the case of this example, the non-contact part 29 is formed over the entire circumference at the axially inner end of the cylindrical part 20 constituting the cover 19b. The non-contact portion 29 has a partially conical cylindrical shape that is inclined in a direction in which the diameter decreases as it goes inward in the axial direction. In the case of this example, the dimension of the non-contact portion 29 in the axial direction (left-right direction in FIG. 3) is about 3 to 4 times the plate thickness of the cover 19b.

この様なカバー19bを含んで構成する本例のエンコーダ付車輪支持用転がり軸受ユニットの場合には、外輪7(図1参照)の軸方向内端部に前記カバー19bを内嵌固定した状態でも、この外輪7の軸方向内端部内周面と、このカバー19bの円筒部20の軸方向内端部に設けた非当接部29の外周面との間には、全周に亙って隙間が存在し、この非当接部29が径方向内方に押圧される事はない。前記円筒部20のうちでこの非当接部29よりも軸方向外寄り部分に存在し、前記外輪7の軸方向内端部に締り嵌めで内嵌される部分は径方向内方に強く押されるが、軸方向に関して、この締り嵌めで内嵌される部分と前記塞ぎ板部21aとの間には、前記非当接部29が、全周に亙って存在する。この為、前記締り嵌めで内嵌される部分に、径方向内方に向いた強い力が加わっても、この力のうちの多くの部分は、前記非当接部29を変形させる事に消費され、前記塞ぎ板部21aにまでは伝わらない。従って、前記外輪7の軸方向内端部に前記カバー19bの円筒部20を締り嵌めで内嵌する事に伴って生じる、前記塞ぎ板部21aを構成する外径側平板部25の軸方向の歪み変形量を、更に抑えられる。その他の構成及び作用は、上述の図1〜2に示した第1例の場合と同様であるから、重複する図示並びに説明は省略する。   In the case of the rolling bearing unit with a wheel support with an encoder of this example configured to include such a cover 19b, the cover 19b is fitted and fixed to the inner end in the axial direction of the outer ring 7 (see FIG. 1). Between the inner peripheral surface of the inner end portion in the axial direction of the outer ring 7 and the outer peripheral surface of the non-contact portion 29 provided at the inner end portion in the axial direction of the cylindrical portion 20 of the cover 19b, it extends over the entire periphery. There is a gap, and the non-contact portion 29 is not pressed radially inward. A portion of the cylindrical portion 20 which is present in the axially outer portion than the non-contact portion 29 and is fitted into the inner end portion in the axial direction of the outer ring 7 by an interference fit is strongly pressed radially inward. However, with respect to the axial direction, the non-contact portion 29 exists over the entire circumference between the portion fitted by the interference fit and the closing plate portion 21a. For this reason, even if a strong force directed radially inward is applied to the portion fitted by the interference fit, most of the force is consumed by deforming the non-contact portion 29. However, it does not reach the closing plate portion 21a. Accordingly, the axial direction of the outer diameter side flat plate portion 25 constituting the closing plate portion 21a, which is generated when the cylindrical portion 20 of the cover 19b is fitted into the inner end portion in the axial direction of the outer ring 7 by interference fitting. The amount of distortion deformation can be further suppressed. Other configurations and operations are the same as those in the case of the first example shown in FIGS.

[実施の形態の第3例]
図4は、請求項1〜3に対応する、本発明の実施の形態の第3例を示している。本例の場合には、カバー19cを構成する円筒部20の軸方向内端部に形成した非当接部29aを、この円筒部20の軸方向外寄り部分との間に段差部30を介在させた、小径段部としている。この様なカバー19cを含んで構成する本例のエンコーダ付車輪支持用転がり軸受ユニットの場合も、上述した第2例の場合と同様、前記非当接部29aの存在に基づいて、外輪7(図1参照)の軸方向内端部に前記カバー19cの円筒部20を締り嵌めで内嵌する事に伴って生じる、このカバー19cの外径側平板部25の軸方向の歪み変形量を、更に抑えられる。その他の構成及び作用は、前述の図1〜2に示した第1例の場合と同様であるから、重複する図示並びに説明は省略する。
[Third example of embodiment]
FIG. 4 shows a third example of an embodiment of the present invention corresponding to claims 1 to 3. In the case of this example, a stepped portion 30 is interposed between the non-contact portion 29a formed at the inner end in the axial direction of the cylindrical portion 20 constituting the cover 19c and the axially outer portion of the cylindrical portion 20. The small-diameter step portion. Also in the case of the rolling bearing unit with an encoder wheel support of this example configured to include such a cover 19c, as in the case of the above-described second example, the outer ring 7 ( The amount of strain deformation in the axial direction of the outer-diameter side flat plate portion 25 of the cover 19c, which is generated when the cylindrical portion 20 of the cover 19c is fitted into the inner end portion in the axial direction of FIG. It is further suppressed. Other configurations and operations are the same as those in the case of the first example shown in FIGS.

尚、上述の図3〜4に示した第2〜3例の場合、図5の(A)(B)に示す様に、前記非当接部29、29aの外周面に、ゴム、ビニルの如きエラストマー等の弾性を有するシール材31を、全周に亙って被覆する事もできる。このシール材31の自由状態での外径は、外輪7(図1参照)の軸方向内端部の内径よりも大きくする。この様なシール材31を、前記非当接部29、29aの外周面と前記外輪7の軸方向内端部の内周面との間で、全周に亙って径方向に弾性的に圧縮した状態で挟持すれば、前記外輪7の軸方向内端部に対する前記カバー19b、19cの嵌合部のシール性向上を図れる。   In the case of the second to third examples shown in FIGS. 3 to 4 described above, as shown in FIGS. 5 (A) and 5 (B), rubber and vinyl are formed on the outer peripheral surfaces of the non-contact portions 29 and 29a. Such a sealing material 31 having elasticity such as an elastomer can be covered over the entire circumference. The outer diameter of the sealing material 31 in a free state is made larger than the inner diameter of the inner end portion in the axial direction of the outer ring 7 (see FIG. 1). Such a sealing material 31 is elastically distributed in the radial direction over the entire circumference between the outer peripheral surface of the non-contact portion 29, 29a and the inner peripheral surface of the inner end portion in the axial direction of the outer ring 7. If it clamps in the compressed state, the sealing performance of the fitting part of the said covers 19b and 19c with respect to the axial direction inner end part of the said outer ring | wheel 7 can be aimed at.

本発明の効果を確認する為に行った実験の1例に就いて説明する。
本実験では、それぞれが図1〜2に示した形状を有するカバー19a(SUS304材製、厚さt19=0.6mm、外径D19=57mm、軸方向長さL19=7.8mm)であって、重心Gの位置を互いに異ならせた、下記の表1に示す様な3つの試料(「実施例」、「比較例1」、「比較例2」)を用意した。これら各試料に就いては、外径側平板部25の内側面から内径側平板部26の内側面までの軸方向距離(凹入量LA)を互いに異ならせる事により、前記外径側平板部25の内側面から前記カバー19aの重心Gまでの軸方向距離(重心距離LG)を互いに異ならせている。具体的に言うと、「実施例」に就いては、前記重心Gを前記内径側平板部26の中央部の内部に位置させている。これに対して、「比較例1」に就いては、前記重心Gを前記内径側平板部26よりも軸方向内側に位置させており、「比較例2」に就いては、前記重心Gを前記内径側平板部26よりも軸方向外側に位置させている。
そして、上述の様な各試料に就いて、外輪7の軸方向内端部に円筒部20を締り嵌めで内嵌する事に伴って生じる、前記外径側円板部25の軸方向の変形量(カバー変形量)を測定した。尚、嵌合部の締め代の値(|前記外輪7の軸方向内端部の内径−前記カバー19aの外径D19|)は、0.240mmとした。前記カバー変形量の測定結果を、下記の表1中に示す。

Figure 0005521696
An example of an experiment conducted for confirming the effect of the present invention will be described.
In this experiment, covers 19a each having the shape shown in FIGS. 1-2 (made of SUS304, thickness t 19 = 0.6 mm, outer diameter D 19 = 57 mm, axial length L 19 = 7.8 mm) Then, three samples ("Example", "Comparative Example 1", and "Comparative Example 2") as shown in Table 1 below were prepared in which the positions of the centers of gravity G were different from each other. For each of these samples, the outer diameter side flat plate is made different from each other in the axial distance (indentation amount L A ) from the inner side surface of the outer diameter side flat plate portion 25 to the inner side surface of the inner diameter side flat plate portion 26. The axial distances from the inner surface of the portion 25 to the center of gravity G of the cover 19a (center of gravity distance L G ) are different from each other. More specifically, in the “example”, the center of gravity G is positioned inside the central portion of the inner diameter side flat plate portion 26. On the other hand, in the case of “Comparative Example 1”, the center of gravity G is positioned on the inner side in the axial direction from the inner diameter side flat plate portion 26, and in the case of “Comparative Example 2”, the center of gravity G is set. The inner diameter side flat plate part 26 is positioned on the outer side in the axial direction.
And about each sample as mentioned above, the deformation | transformation of the axial direction of the said outer diameter side disk part 25 which arises when the cylindrical part 20 is fitted by interference fitting in the axial direction inner end part of the outer ring | wheel 7. The amount (cover deformation amount) was measured. The tightening margin value of the fitting portion (| the inner diameter of the inner end in the axial direction of the outer ring 7−the outer diameter D 19 | of the cover 19a) was 0.240 mm. The measurement results of the cover deformation amount are shown in Table 1 below.
Figure 0005521696

この表1中に示したカバー変形量の測定結果から明らかな様に、本実験によって、前記重心Gが前記内径側平板部26の内部に位置する「実施例」の場合には、同じく外部に位置する「比較例1」及び「比較例2」の場合よりも、前記カバー変形量を抑えられる事が確認できた。   As is clear from the measurement results of the cover deformation amount shown in Table 1, according to this experiment, in the case of the “example” in which the center of gravity G is located inside the inner diameter side flat plate portion 26, It was confirmed that the amount of deformation of the cover can be suppressed as compared with the cases of “Comparative Example 1” and “Comparative Example 2”.

尚、本発明を実施する場合、カバーを構成する塞ぎ板部のうち、外径側平板部よりも内径側に存在する内径側板部の形状は、この内径側板部がこの外径側平板部よりも軸方向外側に位置する形状であれば良く、前述の図1〜2に示した様な形状(連結板部27+内径側平板部28)には限られない。例えば、図6の(A)に示すカバー19dの様に、塞ぎ板部21bを構成する内径側板部32aを、外径側平板部25よりも軸方向外側に位置する、部分球状の板部にする事もできる。又は、同図の(B)に示すカバー19eの様に、塞ぎ板部21cを構成する内径側板部32bを、外径側平板部25よりも軸方向外側に位置する、断面クランク形の板部にする事もできる。更には、同図の(C)に示すカバー19fの様に、塞ぎ板部21dを構成する内径側板部32cを、外径側平板部25よりも軸方向外側に位置する、円すい状の板部にする事もできる。何れの形状を採用する場合でも、前記各内径側板部32a〜32cの中央部の内部に前記各カバー19d〜19fの重心Gを配置すれば、前述した各実施の形態の場合と同様の効果を得られる。   In the case of carrying out the present invention, the shape of the inner diameter side plate portion that exists on the inner diameter side of the outer diameter side flat plate portion among the closing plate portions constituting the cover is such that the inner diameter side plate portion is more than the outer diameter side flat plate portion. Also, any shape may be used as long as the shape is located on the outside in the axial direction, and the shape is not limited to the shape shown in the above-described FIGS. For example, like the cover 19d shown in FIG. 6A, the inner diameter side plate portion 32a that constitutes the closing plate portion 21b is formed into a partially spherical plate portion that is positioned on the outer side in the axial direction than the outer diameter side flat plate portion 25. You can also do it. Alternatively, like the cover 19e shown in FIG. 5B, the inner diameter side plate portion 32b constituting the closing plate portion 21c is positioned on the outer side in the axial direction from the outer diameter side flat plate portion 25. It can also be made. Furthermore, like the cover 19f shown in FIG. 5C, a conical plate portion in which the inner diameter side plate portion 32c constituting the closing plate portion 21d is positioned axially outside the outer diameter side flat plate portion 25. It can also be made. In any case, if the center of gravity G of each of the covers 19d to 19f is arranged inside the central portion of each of the inner diameter side plate portions 32a to 32c, the same effect as in the above-described embodiments can be obtained. can get.

1 エンコーダ
2 エンコーダ付転がり軸受ユニット
3 ナックル
4 センサ
5 転がり軸受ユニット
6 ハブ
7 外輪
8 転動体
9 外輪軌道
10 静止側フランジ
11 ハブ本体
12 内輪
13 かしめ部
14 内輪軌道
15 回転側フランジ
16 保持器
17 内部空間
18 シールリング
19、19a〜19f カバー
20 円筒部
21、21a〜21d 塞ぎ板部
22 肩部
23 支持環
24 エンコーダ本体
25 外径側平板部
26 内径側平板部
27 連結板部
28 微小隙間
29、29a 非当接部
30 段差部
31 シール材
32a〜32c 内径側板部
DESCRIPTION OF SYMBOLS 1 Encoder 2 Rolling bearing unit with an encoder 3 Knuckle 4 Sensor 5 Rolling bearing unit 6 Hub 7 Outer ring 8 Rolling element 9 Outer ring track 10 Stationary side flange 11 Hub body 12 Inner ring 13 Caulking part 14 Inner ring track 15 Rotating side flange 16 Cage 17 Inside Space 18 Seal ring 19, 19a to 19f Cover 20 Cylindrical portion 21, 21a to 21d Blocking plate portion 22 Shoulder portion 23 Support ring 24 Encoder body 25 Outer diameter side flat plate portion 26 Inner diameter side flat plate portion 27 Connecting plate portion 28 Micro gap 29, 29a Non-contact part 30 Step part 31 Sealing material 32a-32c Inner diameter side plate part

Claims (3)

内周面に複列の外輪軌道を有し、使用時に懸架装置に支持固定された状態で回転しない外輪と、外周面に複列の内輪軌道を有し、使用時に車輪を支持固定した状態でこの車輪と共に回転するハブと、これら両内輪軌道と前記両外輪軌道との間に、両列毎に複数個ずつ設けられた転動体と、軸方向内側面を、円周方向に関して磁気特性が交互に変化する被検出面とし、前記ハブにこのハブと同心に支持固定されたエンコーダと、非磁性板製で、円筒部及びこの円筒部の軸方向内端開口を塞ぐ塞ぎ板部を有し、このうちの円筒部を前記外輪の軸方向内端部に締り嵌めで内嵌すると共に、前記塞ぎ板部を前記エンコーダの被検出面に近接対向させたカバーとを備えたエンコーダ付車輪支持用転がり軸受ユニットに於いて、前記カバーを構成する塞ぎ板部のうち、前記エンコーダの被検出面を近接対向させる部分を含む外径側部分が円輪状の外径側平板部であり、同じくこの外径側平板部よりも内径側の部分が、この外径側平板部よりも軸方向外側に位置する形状を有する内径側板部であり、前記カバーの重心が、この内径側板部の内部に位置している事を特徴とするエンコーダ付車輪支持用転がり軸受ユニット。   The outer ring has a double-row outer ring raceway on the inner peripheral surface and is supported and fixed to the suspension system during use, and the outer ring has a double-row inner ring raceway on the outer peripheral surface and the wheel is supported and fixed in use. Magnetic characteristics in the circumferential direction alternate between the hub rotating with the wheels, the rolling elements provided in each row between the inner ring raceways and the outer ring raceways, and the inner side surface in the axial direction. An encoder that is supported and fixed to the hub concentrically with the hub, a non-magnetic plate, a cylindrical portion, and a closing plate portion that closes the axially inner end opening of the cylindrical portion, Of these, the cylindrical portion is fitted into the inner end portion of the outer ring in the axial direction by an interference fit, and the wheel for supporting wheel with an encoder is provided with a cover in which the closing plate portion is closely opposed to the detection surface of the encoder. In the bearing unit, the block constituting the cover The outer diameter side portion including the portion where the detected surface of the encoder is closely opposed is an annular outer diameter side flat plate portion, and the inner diameter side portion of the outer diameter side flat plate portion is also the outer diameter side flat plate portion. A rolling bearing for wheel support with an encoder, characterized in that it is an inner diameter side plate portion having a shape located on the outer side in the axial direction from the radial side flat plate portion, and the center of gravity of the cover is located inside the inner diameter side plate portion. unit. 前記カバーを構成する塞ぎ板部のうち、前記エンコーダの被検出面を近接対向させる部分を含む外径側部分が円輪状の外径側平板部であり、同じく中央部を含む内径側部分がこの外径側平板部よりも軸方向外側に位置する円板状の内径側平板部であり、同じくこれら外径側平板部と内径側平板部との間部分が円筒状若しくは軸方向外方に向かうに従って直径が小さくなる方向に傾斜した部分円すい筒状の連結板部であって、前記カバーの重心が、前記内径側平板部の内部に位置している、請求項1に記載したエンコーダ付車輪支持用転がり軸受ユニット。   Of the closing plate portion constituting the cover, the outer diameter side portion including the portion where the detection surface of the encoder is closely opposed is an annular outer diameter side flat plate portion, and the inner diameter side portion including the center portion is the same. It is a disk-shaped inner diameter side flat plate portion located on the outer side in the axial direction from the outer diameter side flat plate portion, and the portion between the outer diameter side flat plate portion and the inner diameter side flat plate portion is directed to the outside in the cylindrical shape or the axial direction. The wheel support with an encoder according to claim 1, wherein the connecting plate portion is a partial conical cylindrical shape inclined in a direction in which the diameter decreases in accordance with the structure, and the center of gravity of the cover is positioned inside the inner diameter side flat plate portion. Rolling bearing unit for use. 前記カバーを構成する円筒部の軸方向内端部に、前記外輪の軸方向内端部の内径よりも小さな外径を有し、軸方向寸法が前記カバーを構成する板材の厚さ寸法の2倍以上である非当接部を全周に亙って形成し、前記カバーを前記外輪の軸方向内端部に内嵌した状態で、前記円筒部を前記外輪の軸方向内端部に、前記非当接部よりも軸方向外寄り部分でのみ締り嵌めで内嵌している、請求項1〜2のうちの何れか1項に記載したエンコーダ付車輪支持用転がり軸受ユニット。   The axial inner end of the cylindrical portion constituting the cover has an outer diameter smaller than the inner diameter of the axial inner end of the outer ring, and the axial dimension is 2 of the thickness dimension of the plate material constituting the cover. A non-contact portion that is more than double is formed over the entire circumference, and in the state where the cover is fitted into the inner end portion in the axial direction of the outer ring, the cylindrical portion is formed in the inner end portion in the axial direction of the outer ring. The rolling bearing unit with a wheel support with an encoder according to any one of claims 1 to 2, wherein the rolling bearing unit is fitted with an interference fit only at an axially outer portion than the non-contact portion.
JP2010075648A 2010-03-29 2010-03-29 Rolling bearing unit for wheel support with encoder Expired - Fee Related JP5521696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010075648A JP5521696B2 (en) 2010-03-29 2010-03-29 Rolling bearing unit for wheel support with encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010075648A JP5521696B2 (en) 2010-03-29 2010-03-29 Rolling bearing unit for wheel support with encoder

Publications (2)

Publication Number Publication Date
JP2011208702A JP2011208702A (en) 2011-10-20
JP5521696B2 true JP5521696B2 (en) 2014-06-18

Family

ID=44939977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010075648A Expired - Fee Related JP5521696B2 (en) 2010-03-29 2010-03-29 Rolling bearing unit for wheel support with encoder

Country Status (1)

Country Link
JP (1) JP5521696B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6035588B2 (en) * 2013-01-18 2016-11-30 内山工業株式会社 Cap for bearing device
ITTO20130660A1 (en) * 2013-08-02 2015-02-03 Skf Ab SEALING DEVICE FOR HUB-WHEEL GROUP
JP6239920B2 (en) * 2013-09-30 2017-11-29 Ntn株式会社 Wheel bearing device
JP6654941B2 (en) 2016-03-18 2020-02-26 Ntn株式会社 Wheel bearing device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004084848A (en) * 2002-08-28 2004-03-18 Koyo Seiko Co Ltd Roller bearing device
JP5109369B2 (en) * 2006-12-28 2012-12-26 株式会社ジェイテクト Rolling bearing device for wheels

Also Published As

Publication number Publication date
JP2011208702A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
JP5327077B2 (en) Rolling bearing unit for wheel support with encoder
JP5169886B2 (en) Rolling bearing unit with rotational speed detector
JP5488696B2 (en) Rolling bearing unit for wheel support with encoder
JP5327369B2 (en) Rolling bearing unit for driven wheels with rotational speed detector
JP2010106909A (en) Wheel bearing device with rotating speed detector
JP5521696B2 (en) Rolling bearing unit for wheel support with encoder
JP2010151277A (en) Wheel bearing device with rotation speed detector
JP6654941B2 (en) Wheel bearing device
JP2010151279A (en) Wheel bearing device with rotation speed detector
JP6349954B2 (en) Bearing unit with rotation speed detector
JP4604421B2 (en) Rotation support device for wheel with rotation speed detection device and assembly method thereof
JP2010125866A (en) Wheel bearing device with rotation speed detector
JP5691859B2 (en) Rolling bearing unit with encoder
JP4742796B2 (en) Rolling bearing unit with rotation detector
JP6555366B2 (en) Rolling bearing unit with sensor
JP5867101B2 (en) Method for assembling wheel bearing rolling bearing unit with encoder and method for assembling wheel bearing rolling bearing unit with rotational speed detection device
JP6488920B2 (en) Rolling bearing unit with rotational speed detector
JP6500345B2 (en) Sensor and rolling bearing unit
JP5598150B2 (en) Rolling bearing unit with encoder
JP4209607B2 (en) Evaluation method of magnetized encoder
JP4627068B2 (en) Quality control method of magnetic encoder
JP2002147474A (en) Wheel bearing
JP2017129430A (en) Slinger with encoder and method of manufacturing the same
JP2008223816A (en) Rolling bearing device for wheel
JP2007003266A (en) Bearing device for wheel fitted with rotational speed detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R150 Certificate of patent or registration of utility model

Ref document number: 5521696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees