JP4207010B2 - Fuel injection device - Google Patents

Fuel injection device Download PDF

Info

Publication number
JP4207010B2
JP4207010B2 JP2005072357A JP2005072357A JP4207010B2 JP 4207010 B2 JP4207010 B2 JP 4207010B2 JP 2005072357 A JP2005072357 A JP 2005072357A JP 2005072357 A JP2005072357 A JP 2005072357A JP 4207010 B2 JP4207010 B2 JP 4207010B2
Authority
JP
Japan
Prior art keywords
pressure
amount
fuel
pressure reducing
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005072357A
Other languages
Japanese (ja)
Other versions
JP2006257883A (en
Inventor
健介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005072357A priority Critical patent/JP4207010B2/en
Priority to DE102006000117.6A priority patent/DE102006000117B4/en
Publication of JP2006257883A publication Critical patent/JP2006257883A/en
Application granted granted Critical
Publication of JP4207010B2 publication Critical patent/JP4207010B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M65/00Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
    • F02M65/005Measuring or detecting injection-valve lift, e.g. to determine injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、エンジンに燃料を噴射供給する燃料噴射装置に関する。   The present invention relates to a fuel injection device that injects and supplies fuel to an engine.

〔従来の技術〕
従来から、エンジンの状態に応じた目標圧力で燃料が蓄圧されるように燃料の供給を受けるコモンレールを備え、このコモンレールを介してエンジンに燃料を噴射供給する蓄圧式の燃料噴射装置が知られている。
[Conventional technology]
2. Description of the Related Art Conventionally, there has been known a pressure accumulation type fuel injection device that includes a common rail that receives supply of fuel so that fuel is accumulated at a target pressure corresponding to the state of the engine, and that injects fuel to the engine via the common rail. Yes.

近年、噴射応答性の向上や噴霧微粒化の促進等を目的として、蓄圧式の燃料噴射装置では、装置内における燃料の高圧化が進んでいる。そして、高圧化に応じて、コモンレールに蓄圧された燃料の実圧力(実レール圧)を正確に減圧するための減圧制御に対する信頼性向上の要求が高まっている。   2. Description of the Related Art In recent years, in a pressure accumulation type fuel injection device, the pressure of fuel in the device has been increased for the purpose of improving injection response and promoting atomization of spray. As the pressure increases, there is an increasing demand for improved reliability for pressure reduction control for accurately reducing the actual pressure (actual rail pressure) of fuel accumulated in the common rail.

従来の燃料噴射装置は、実レール圧の減圧制御に関し、開弁してコモンレールから燃料を逃すことで、実レール圧を減圧する減圧弁と、所定の減圧特性を用いて減圧弁に与える指令値を算出し減圧弁に出力することで、減圧弁の動作を制御するレール圧制御手段とを備える。この減圧特性とは、例えば、単位時間当たりの減圧弁からの燃料の逃し量と実レール圧との相関を示すものである。そして、レール圧制御手段は、計測された実レール圧をこの減圧特性に当てはめることで逃し量等を推定し、この推定に基づいて指令値を算出する。   The conventional fuel injection device relates to pressure reduction control of the actual rail pressure, and opens a valve to release fuel from the common rail, thereby reducing the actual rail pressure and a command value given to the pressure reduction valve using a predetermined pressure reduction characteristic. Is calculated and output to the pressure reducing valve to provide rail pressure control means for controlling the operation of the pressure reducing valve. This pressure reduction characteristic indicates, for example, the correlation between the amount of fuel escaped from the pressure reducing valve per unit time and the actual rail pressure. The rail pressure control means estimates the escape amount by applying the measured actual rail pressure to this pressure reduction characteristic, and calculates a command value based on this estimation.

〔従来技術の不具合〕
ところで、減圧弁は、ソレノイドへの通電により発生する磁気吸引力を利用して、可動子を固定子の方に磁気吸引することで、コモンレールの内部を逃し流路に対して開放するノーマリクローズ型である。このため、開弁動作の異常判定は、従来から実施されていたが、閉弁動作の異常判定は、ほとんど検討されていない。また、閉弁動作に異常が発生しても、安全側に状態が移行する(つまり、コモンレールから過剰に燃料が逃され実レール圧(すなわち、噴射圧力)が低下することで、エンジンが停止する)ので、閉弁動作の異常判定に対する需要は小さいものであった。
[Problems with conventional technology]
By the way, the pressure reducing valve uses a magnetic attraction generated by energizing the solenoid to magnetically attract the mover toward the stator, thereby allowing the common rail to escape and open to the flow path. It is a type. For this reason, the abnormality determination of the valve opening operation has been conventionally performed, but the abnormality determination of the valve closing operation is hardly studied. In addition, even if an abnormality occurs in the valve closing operation, the state shifts to the safe side (that is, the engine is stopped by excessively releasing fuel from the common rail and reducing the actual rail pressure (ie, injection pressure)). Therefore, the demand for abnormality determination of the valve closing operation is small.

しかし、コモンレールから過剰に燃料が逃され、実レール圧が目標圧力よりも過剰に低い状態で噴射が行われると、噴霧が充分に微粒化されずエミッション悪化の虞が高まる。そして、近年の高圧化に伴い、より高圧の目標圧力による噴霧微粒化を前提として噴射制御等が行われている状況では、実レール圧の過剰低下によるエミッション悪化の虞は、ますます高いものになっている。   However, if fuel is escaped excessively from the common rail and injection is performed in a state where the actual rail pressure is excessively lower than the target pressure, the spray is not sufficiently atomized and the risk of emission deterioration increases. With the recent increase in pressure, in situations where injection control is performed on the premise of atomization with a higher target pressure, the risk of worsening emissions due to excessive reduction of the actual rail pressure becomes even higher. It has become.

さらに、近年の故障時退避走行に対する関心の高まりから、実レール圧が過剰に低下してエンジンが停止する前に、退避走行用に制御モードを切り替えるための判定方法等に関して需要が高まっている。そして、減圧弁の閉弁動作の異常判定は、退避走行へ切り替えるための判定方法の1つとして、利用することができる。   Furthermore, due to the recent increase in interest in evacuation travel at the time of failure, there is an increasing demand for a determination method for switching the control mode for evacuation travel before the actual rail pressure decreases excessively and the engine stops. The abnormality determination of the valve closing operation of the pressure reducing valve can be used as one of the determination methods for switching to the retreat travel.

なお、減圧弁の性能向上を目的として、可動子を開弁方向に駆動するためのソレノイドと、閉弁方向に駆動するためのソレノイドとを備えた減圧弁が考えられている(例えば、特許文献1参照)。しかし、この減圧弁の性能向上の目的は、制御可能な圧力領域を拡大することであり、上記のような閉弁動作の異常判定を実施することではない。
特開2004−11448号公報
For the purpose of improving the performance of the pressure reducing valve, a pressure reducing valve including a solenoid for driving the mover in the valve opening direction and a solenoid for driving in the valve closing direction has been considered (for example, Patent Documents). 1). However, the purpose of improving the performance of the pressure reducing valve is to expand the controllable pressure range, and not to perform the abnormality determination of the valve closing operation as described above.
JP 2004-11448 A

本発明は、上記の問題点を解決するためになされたものであり、その目的は、減圧弁を開弁させ燃料を逃すことで、実レール圧を減圧することができる燃料噴射装置において、減圧弁の閉弁動作に異常が発生しているか否かを判定できるようにすることにある。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a fuel injection device capable of reducing the actual rail pressure by opening the pressure reducing valve and letting out the fuel. It is to be able to determine whether or not an abnormality has occurred in the valve closing operation.

〔請求項1の手段〕
請求項1に記載の燃料噴射装置は、エンジンの状態に応じた目標圧力で燃料が蓄圧されるように燃料の供給を受けるコモンレールを備え、コモンレールを介してエンジンに燃料を噴射供給するものである。また、開弁してコモンレールから燃料を逃すことで、コモンレールに蓄圧された燃料の実圧力を減圧する減圧弁と、減圧弁に与える指令値を算出し減圧弁に出力することで、実圧力が目標圧力に略一致するように減圧弁の動作を制御するレール圧制御手段と、減圧弁の開弁に起因する実圧力の最大降下量を示す最大逃し減圧量を、減圧弁からの燃料の逃し量が減圧弁の性能規格の上限にあると仮定することにより推定する最大逃し減圧量推定手段と、レール圧制御手段の実行に伴う実圧力の降下量を示す実減圧量が、減圧弁の開弁以外の減圧要因から推定される他減圧量と最大逃し減圧量との和である判定減圧量以上になったときに、減圧弁の閉弁動作に異常が発生していると判断する閉弁異常判定手段とを備える。
[Means of Claim 1]
The fuel injection device according to claim 1 includes a common rail that receives the supply of fuel so that the fuel is accumulated at a target pressure corresponding to the state of the engine, and the fuel is injected and supplied to the engine via the common rail. . Moreover, the actual pressure is reduced by opening the valve and releasing the fuel from the common rail to reduce the actual pressure of the fuel accumulated in the common rail, and calculating the command value given to the pressure reducing valve and outputting it to the pressure reducing valve. Rail pressure control means that controls the operation of the pressure reducing valve so that it substantially matches the target pressure, and the maximum relief pressure reduction amount that indicates the maximum amount of actual pressure drop due to the opening of the pressure reducing valve, the fuel release from the pressure reducing valve The maximum relief pressure reduction amount estimation means that is estimated by assuming that the amount is at the upper limit of the performance specification of the pressure reduction valve, and the actual pressure reduction amount that indicates the amount of decrease in actual pressure due to the execution of the rail pressure control means A valve closing that determines that an abnormality has occurred in the valve closing operation of the pressure reducing valve when the pressure reducing amount is equal to or greater than the judgment pressure reducing amount that is the sum of the other pressure reducing amount estimated from the pressure reducing factors other than the valve and the maximum relief pressure reducing amount. An abnormality determination means.

減圧弁の閉弁動作に異常が発生すると、減圧弁の性能規格の上限以上の逃し量で、減圧弁を通じて燃料が逃される。よって、上記のように、逃し量が減圧弁の性能規格の上限にあると仮定したときの最大逃し減圧量に、減圧弁の開弁以外の減圧要因から推定される他減圧量を加算した判定減圧量を閾値として用いれば、高精度に閉弁動作の異常判定を行うことができる。   When an abnormality occurs in the valve closing operation of the pressure reducing valve, fuel is released through the pressure reducing valve with a relief amount that exceeds the upper limit of the performance standard of the pressure reducing valve. Therefore, as described above, the determination is made by adding the additional decompression amount estimated from the decompression factor other than the opening of the decompression valve to the maximum relief decompression amount when the relief amount is assumed to be the upper limit of the performance standard of the decompression valve. If the amount of reduced pressure is used as a threshold value, the abnormality determination of the valve closing operation can be performed with high accuracy.

なお、最大逃し減圧量、実減圧量、他減圧量や判定減圧量のように減圧量と称する物理量は、圧力の次元を有する物理量として算出できるが、燃料の弾性率や粘性の次元を有する物理量として算出することもできる。そして、後記する最大リーク減圧量および推定減圧量も同様である。   Note that physical quantities called decompression quantities, such as maximum relief decompression quantity, actual decompression quantity, other decompression quantity, and judgment decompression quantity, can be calculated as physical quantities having a pressure dimension, but physical quantities having fuel elastic modulus and viscosity dimensions. Can also be calculated as The same applies to the maximum leak pressure reduction amount and the estimated pressure reduction amount described later.

〔請求項2の手段〕
請求項2に記載の燃料噴射装置は、コモンレールと連通し、コモンレールに蓄圧された燃料をエンジンの気筒内に噴射するインジェクタを備える。また、実圧力は、インジェクタから燃料がリークすることでも減圧され、閉弁異常判定手段は、インジェクタからの燃料のリークに起因する実圧力の最大降下量を示す最大リーク減圧量を、インジェクタからの燃料のリーク量がインジェクタの性能規格の上限にあると仮定することにより推定し、他減圧量とする。
[Means of claim 2]
According to a second aspect of the present invention, the fuel injection device includes an injector that communicates with the common rail and injects fuel accumulated in the common rail into a cylinder of the engine. In addition, the actual pressure is reduced by fuel leaking from the injector, and the valve closing abnormality determining means determines the maximum leak pressure reduction amount indicating the maximum drop in actual pressure due to the fuel leak from the injector from the injector. Estimated by assuming that the amount of fuel leakage is at the upper limit of the performance standard of the injector, and set it as the other decompression amount.

インジェクタはコモンレールと連通しているため、インジェクタからの燃料のリーク量は、実減圧量に大きな影響を及ぼす。そこで、他減圧量として、インジェクタからの燃料のリーク量がインジェクタの性能規格の上限にあると仮定したときの最大リーク減圧量を用いれば、さらに高精度に閉弁動作の異常判定を行うことができる。   Since the injector communicates with the common rail, the amount of fuel leakage from the injector greatly affects the actual decompression amount. Therefore, if the maximum leak pressure reduction amount when assuming that the fuel leak amount from the injector is at the upper limit of the performance standard of the injector is used as the other pressure reduction amount, the abnormality determination of the valve closing operation can be performed with higher accuracy. it can.

〔請求項3の手段〕
請求項3に記載の燃料噴射装置における閉弁異常判定手段は、エンジンが停止する時に実行される。
エンジンが停止する時(いわゆる、イグニッションオフ時)は、確実に、無噴射かつ減圧実行状態であり、減圧弁の開弁以外の減圧要因(例えば、インジェクタからの燃料のリーク)による他減圧量は、極めて予測しやすい。よって、イグニッションオフ時に、閉弁異常判定手段を実行すれば、さらに高精度に閉弁動作の異常判定を行うことができる。
[Means of claim 3]
The valve closing abnormality determining means in the fuel injection device according to claim 3 is executed when the engine stops.
When the engine is stopped (so-called ignition off), it is sure that there is no injection and pressure reduction is being performed, and the amount of other pressure reduction due to a pressure reduction factor (for example, fuel leakage from the injector) other than the valve opening is Very easy to predict. Therefore, if the valve closing abnormality determining means is executed when the ignition is off, the abnormality of the valve closing operation can be determined with higher accuracy.

〔請求項4の手段〕
請求項4に記載の燃料噴射装置における最大リーク減圧量は、インジェクタの内部の摺動部を通して燃料がリークする静的リークに起因する実圧力の最大降下量を示す。
イグニッションオフ時には、静的リークにより、インジェクタから燃料がリークすると考えられ、背圧制御における燃料の給排のように、意図的なリークである動的リークは、リーク要因として考慮する必要性が低いと考えられる。よって、イグニッションオフ時に閉弁動作の異常判定を行う場合には、リーク要因として静的リークを取り上げることで、判定精度を向上できるとともに、動的リークのような他のリーク要因を考慮しないことで、マイコン等の演算負荷を低減することができる。
[Means of claim 4]
The maximum leak pressure reduction amount in the fuel injection device according to claim 4 indicates the maximum amount of actual pressure drop due to static leak in which fuel leaks through the sliding portion inside the injector.
When ignition is turned off, it is considered that fuel leaks from the injector due to static leaks, and dynamic leaks that are intentional leaks, such as fuel supply and discharge in back pressure control, are less likely to be considered as leak factors. it is conceivable that. Therefore, when performing an abnormal determination of the valve closing operation when the ignition is off, it is possible to improve the determination accuracy by taking static leaks as a leak factor and not to consider other leak factors such as dynamic leaks. The calculation load of a microcomputer or the like can be reduced.

〔請求項5の手段〕
請求項5に記載の燃料噴射装置におけるレール圧制御手段は、逃し量と実圧力との相関を示す減圧特性に基づき、指令値を算出する。
これにより、減圧弁は実レール圧に応じて動作を変えることができる。
[Means of claim 5]
The rail pressure control means in the fuel injection device according to claim 5 calculates the command value based on the pressure reduction characteristic indicating the correlation between the relief amount and the actual pressure.
Thus, the operation of the pressure reducing valve can be changed according to the actual rail pressure.

〔請求項6の手段〕
請求項6に記載の燃料噴射装置は、実減圧量と、減圧特性により推定した推定減圧量との差に応じて、減圧特性を修正する減圧特性修正手段を備え、閉弁異常判定手段は、減圧特性修正手段の実行により減圧特性が修正された後に実行される。
減圧特性修正手段により、減圧特性は、個々の減圧弁の製品における逃し量の偏り方に応じて、製品ごとに修正され、個々の製品の制御に適したものに変化していく。この結果、減圧弁の性能規格の上限にある逃し量も、製品ごとに修正できるので、個々の製品に適した最大逃し減圧量を算出できるようになる。
以上により、閉弁動作の異常判定を行う際、減圧弁の製品ごとに、個々の製品に適した閾値(判定減圧量)を設定できる。
[Means of claim 6]
According to a sixth aspect of the present invention, the fuel injection device includes a pressure reduction characteristic correcting unit that corrects the pressure reduction characteristic in accordance with a difference between the actual pressure reduction amount and the estimated pressure reduction amount estimated from the pressure reduction characteristic. This is executed after the decompression characteristic is corrected by the execution of the decompression characteristic correcting means.
The decompression characteristics correction means corrects the decompression characteristics for each product in accordance with how the escape amount in each product of the decompression valve is biased, and changes it to one suitable for control of each product. As a result, the amount of relief that is at the upper limit of the performance specification of the pressure reducing valve can be corrected for each product, so that the maximum amount of relief pressure reduced for each product can be calculated.
As described above, when the abnormality determination of the valve closing operation is performed, a threshold value (determination decompression amount) suitable for each product can be set for each product of the pressure reducing valve.

〔請求項7の手段〕
請求項7に記載の燃料噴射装置における指令値は、減圧弁が開弁している期間を示す開指令期間であり、閉弁異常判定手段は、実減圧量が判定減圧量以上であるときに、減圧特性に基づき算出された開指令期間よりも短い仮開指令期間を減圧弁に与えることで生じる実減圧量に応じて、減圧弁の閉弁動作に異常が発生しているか否かを判断する。
これにより、閉弁動作の異常判定の確認を行うことができる。すなわち、仮開指令期間に基づく減圧弁の動作により生じる実減圧量が、予想される減圧量よりも大きい場合は、確実に閉弁動作に異常が発生していると判断することができる。なお、予想される減圧量とは、例えば、仮開指令期間を減圧弁に与えたときの実減圧量を、閉弁異常が発生していないと仮定して予想した減圧量である。
[Means of Claim 7]
The command value in the fuel injection device according to claim 7 is an open command period that indicates a period during which the pressure reducing valve is open, and the valve closing abnormality determining means is configured such that the actual pressure reducing amount is equal to or greater than the determined pressure reducing amount. Determine whether there is an abnormality in the valve closing operation of the pressure reducing valve according to the actual pressure reducing amount generated by giving the pressure reducing valve a temporary opening command period shorter than the opening command period calculated based on the pressure reducing characteristics. To do.
As a result, it is possible to check the abnormality determination of the valve closing operation. That is, when the actual pressure reduction amount generated by the operation of the pressure reducing valve based on the temporary opening command period is larger than the expected pressure reduction amount, it can be reliably determined that an abnormality has occurred in the valve closing operation. Note that the expected amount of pressure reduction is, for example, the amount of pressure reduction predicted when the actual pressure reduction amount when the provisional opening command period is given to the pressure reducing valve is assumed that no valve closing abnormality has occurred.

〔請求項8の手段〕
請求項8に記載の燃料噴射装置は、コモンレールに燃料を加圧して供給する燃料供給ポンプを備え、閉弁異常判定手段は、燃料供給ポンプによる燃料の供給量が、減圧弁の閉弁動作が正常である時よりも所定量以上に増加していると判定できるときに、減圧弁の閉弁動作に異常が発生していると判断する。
燃料供給ポンプによる燃料の供給量が、減圧弁の閉弁動作が正常である時よりも所定量以上に増加しているにもかかわらず、実減圧量が大きいという状態は、減圧弁に閉弁動作の異常が発生している可能性が極めて高い。そこで、「燃料供給ポンプによる燃料の供給量が、減圧弁の閉弁動作が正常である時よりも所定量以上に増加していると判定できる」という条件を判定条件に加えることで、さらに閉弁動作の異常について判定精度を向上することができる。
[Means of Claim 8]
The fuel injection device according to claim 8 includes a fuel supply pump that pressurizes and supplies fuel to the common rail, and the valve closing abnormality determining means is configured such that the amount of fuel supplied by the fuel supply pump is equal to the valve closing operation of the pressure reducing valve. When it can be determined that the amount has increased by a predetermined amount or more than when it is normal, it is determined that an abnormality has occurred in the valve closing operation of the pressure reducing valve.
Even though the amount of fuel supplied by the fuel supply pump has increased by more than a predetermined amount compared to when the pressure-reducing valve is closed normally, a state where the actual pressure-reducing amount is large is closed by the pressure-reducing valve. It is very likely that an abnormal operation has occurred. Therefore, by adding the condition that “the amount of fuel supplied by the fuel supply pump is increased to a predetermined amount or more than when the valve closing operation of the pressure reducing valve is normal” to the determination condition, the condition is further closed. It is possible to improve the determination accuracy for abnormal valve operation.

最良の形態1の燃料噴射装置は、エンジンの状態に応じた目標圧力で燃料が蓄圧されるように燃料の供給を受けるコモンレールを備え、コモンレールを介してエンジンに燃料を噴射供給するものである。
そして、燃料噴射装置は、開弁してコモンレールから燃料を逃すことで、コモンレールに蓄圧された燃料の実圧力を減圧する減圧弁と、減圧弁に与える指令値を算出し減圧弁に出力することで、実圧力が目標圧力に略一致するように減圧弁の動作を制御するレール圧制御手段と、減圧弁の開弁に起因する実圧力の最大降下量を示す最大逃し減圧量を、減圧弁からの燃料の逃し量が減圧弁の性能規格の上限にあると仮定することにより推定する最大逃し減圧量推定手段と、レール圧制御手段の実行に伴う実圧力の降下量を示す実減圧量が、減圧弁の開弁以外の減圧要因から推定される他減圧量と最大逃し減圧量との和である判定減圧量以上になったときに、減圧弁の閉弁動作に異常が発生していると判断する閉弁異常判定手段とを備える。
The fuel injection device of the best mode 1 is provided with a common rail that receives the supply of fuel so that the fuel is accumulated at a target pressure corresponding to the state of the engine, and the fuel is injected and supplied to the engine via the common rail.
The fuel injection device opens the valve and releases the fuel from the common rail, thereby reducing the actual pressure of the fuel accumulated in the common rail, and calculating a command value to be given to the pressure reducing valve and outputting the command value to the pressure reducing valve. The rail pressure control means for controlling the operation of the pressure reducing valve so that the actual pressure substantially matches the target pressure, and the maximum relief pressure reducing amount indicating the maximum amount of actual pressure drop due to the opening of the pressure reducing valve The maximum relief pressure reduction amount estimation means that is estimated by assuming that the fuel escape amount from the upper limit of the performance specification of the pressure reducing valve and the actual pressure reduction amount that indicates the amount of decrease in the actual pressure due to the execution of the rail pressure control means are An abnormality has occurred in the closing operation of the pressure reducing valve when the pressure reducing amount exceeds the judgment pressure reducing amount that is the sum of the other pressure reducing amount estimated from the pressure reducing factors other than the opening of the pressure reducing valve and the maximum relief pressure reducing amount. And a valve closing abnormality determining means for determining.

また、燃料噴射装置は、コモンレールと連通し、コモンレールに蓄圧された燃料をエンジンの気筒内に噴射するインジェクタを備える。また、実圧力は、インジェクタから燃料がリークすることでも減圧され、閉弁異常判定手段は、インジェクタからの燃料のリークに起因する実圧力の最大降下量を示す最大リーク減圧量を、インジェクタからの燃料のリーク量がインジェクタの性能規格の上限にあると仮定することにより推定し、他減圧量とする。   The fuel injection device includes an injector that communicates with the common rail and injects fuel accumulated in the common rail into a cylinder of the engine. In addition, the actual pressure is reduced by fuel leaking from the injector, and the valve closing abnormality determining means determines the maximum leak pressure reduction amount indicating the maximum drop in actual pressure due to the fuel leak from the injector from the injector. Estimated by assuming that the amount of fuel leakage is at the upper limit of the performance standard of the injector, and set it as the other decompression amount.

また、閉弁異常判定手段は、エンジンが停止する時に実行される。そして、最大リーク減圧量は、インジェクタの内部の摺動部を通して燃料がリークする静的リークに起因する実圧力の最大降下量を示すものである。   The valve closing abnormality determining means is executed when the engine stops. The maximum leak pressure reduction amount indicates the maximum amount of actual pressure drop caused by static leak in which fuel leaks through the sliding portion inside the injector.

また、レール圧制御手段は、逃し量と実圧力との相関を示す減圧特性に基づき、指令値を算出する。そして、燃料噴射装置は、実減圧量と、減圧特性により推定した推定減圧量との差に応じて、減圧特性を修正する減圧特性修正手段を備え、閉弁異常判定手段は、減圧特性修正手段の実行により減圧特性が修正された後に実行される。   Further, the rail pressure control means calculates a command value based on a pressure reduction characteristic indicating a correlation between the relief amount and the actual pressure. The fuel injection device includes a decompression characteristic correcting unit that corrects the decompression characteristic according to a difference between the actual decompression amount and the estimated decompression amount estimated by the decompression characteristic, and the valve closing abnormality determining unit includes the decompression characteristic correcting unit. This is executed after the decompression characteristic is corrected by the execution of.

また、指令値は、減圧弁が開弁している期間を示す開指令期間であり、閉弁異常判定手段は、実減圧量が判定減圧量以上であるときに、減圧特性に基づき算出された開指令期間よりも短い仮開指令期間を減圧弁に与えることで生じる実減圧量に応じて、減圧弁の閉弁動作に異常が発生しているか否かを判断する。   The command value is an open command period indicating a period during which the pressure reducing valve is open, and the valve closing abnormality determining means is calculated based on the pressure reducing characteristic when the actual pressure reducing amount is equal to or greater than the determined pressure reducing amount. It is determined whether an abnormality has occurred in the valve closing operation of the pressure reducing valve according to the actual pressure reducing amount generated by giving the pressure reducing valve a temporary opening command period shorter than the opening command period.

また、燃料噴射装置は、コモンレールに燃料を加圧して供給する燃料供給ポンプを備え、閉弁異常判定手段は、燃料供給ポンプによる燃料の供給量が、減圧弁の閉弁動作が正常である時よりも所定量以上に増加していると判定できるときに、減圧弁の閉弁動作に異常が発生していると判断する。   In addition, the fuel injection device includes a fuel supply pump that pressurizes and supplies fuel to the common rail, and the valve closing abnormality determining means is configured to supply fuel by the fuel supply pump when the valve closing operation of the pressure reducing valve is normal. When it can be determined that the pressure has increased to a predetermined amount or more, it is determined that an abnormality has occurred in the valve closing operation of the pressure reducing valve.

〔実施例1の構成〕
実施例1の燃料噴射装置1の構成を、図1ないし図5を用いて説明する。
燃料噴射装置1は、図1に示すように、エンジン(図示せず)の状態に応じた目標圧力で燃料が蓄圧されるように燃料の供給を受けるコモンレール3を備え、コモンレール3を介してエンジンに燃料を噴射供給するものである。
[Configuration of Example 1]
A configuration of the fuel injection device 1 according to the first embodiment will be described with reference to FIGS. 1 to 5.
As shown in FIG. 1, the fuel injection device 1 includes a common rail 3 that receives supply of fuel so that fuel is accumulated at a target pressure corresponding to a state of an engine (not shown). The fuel is injected and supplied.

この燃料噴射装置1は、コモンレール3のほかに、燃料タンク4から燃料を汲み上げ加圧してコモンレール3に供給する燃料供給ポンプ5、エンジンに搭載され、コモンレール3に蓄圧された燃料を気筒内に噴射するインジェクタ6、コモンレール3に蓄圧された燃料の実圧力(実レール圧)を減圧する減圧弁7、各種センサから入力される検出値に基づいて、燃料供給ポンプ5に与えるポンプ指令値、インジェクタ6に与えるインジェクタ指令値、減圧弁7に与える減圧弁指令値等を算出し、指令信号として出力するマイコン8、マイコン8から出力される指令信号に応じて駆動電流や印加電圧を燃料供給ポンプ5、インジェクタ6、減圧弁7等に与える各種の駆動回路等により構成されている。   In addition to the common rail 3, this fuel injection device 1 is mounted on an engine, a fuel supply pump 5 that pumps fuel from a fuel tank 4, pressurizes and supplies the fuel to the common rail 3, and injects fuel accumulated in the common rail 3 into the cylinder. Injector 6 for reducing the actual pressure of the fuel accumulated in the common rail 3 (actual rail pressure), a pump command value to be supplied to the fuel supply pump 5 based on detection values input from various sensors, and the injector 6 The injector command value given to the pressure reducing valve 7, the pressure reducing valve command value given to the pressure reducing valve 7, etc. are calculated and output as a command signal, and the drive current and applied voltage are supplied to the fuel supply pump 5 according to the command signal output from the microcomputer 8 It is composed of various drive circuits and the like given to the injector 6, the pressure reducing valve 7, and the like.

ここで、各種の駆動回路とは、減圧弁7に駆動電流を与える減圧弁駆動回路12、インジェクタ6に駆動電流や印加電圧を与えるインジェクタ駆動回路13、燃料供給ポンプ5に駆動電流を与えるポンプ駆動回路14等である。   Here, the various drive circuits are: a pressure reducing valve driving circuit 12 for supplying a driving current to the pressure reducing valve 7, an injector driving circuit 13 for supplying a driving current and an applied voltage to the injector 6, and a pump driving for supplying a driving current to the fuel supply pump 5. Circuit 14 or the like.

コモンレール3は、燃料供給ポンプ5の吐出口と高圧配管15を介して接続され、高圧の燃料の供給を受けて燃料を高圧状態で蓄圧するとともに、各インジェクタ6のインレットと高圧配管16を介して接続され、実レール圧の燃料を各インジェクタ6に供給する。すなわち、コモンレール3は、高圧の燃料を蓄圧する蓄圧容器として機能するとともに、高圧の燃料を各インジェクタ6に分配する分配容器として機能する。また、実レール圧は、コモンレール3の一端に装着されたレール圧センサ17により検出され、その検出値は、レール圧検出信号としてマイコン8に出力される。   The common rail 3 is connected to the discharge port of the fuel supply pump 5 through a high-pressure pipe 15, receives the supply of high-pressure fuel, accumulates the fuel in a high-pressure state, and passes through the inlet of each injector 6 and the high-pressure pipe 16. The fuel of the actual rail pressure is connected and supplied to each injector 6. That is, the common rail 3 functions as a pressure accumulation container that accumulates high-pressure fuel, and also functions as a distribution container that distributes high-pressure fuel to the injectors 6. Further, the actual rail pressure is detected by a rail pressure sensor 17 attached to one end of the common rail 3, and the detected value is output to the microcomputer 8 as a rail pressure detection signal.

燃料供給ポンプ5は、燃料タンク4から汲み上げた燃料をコモンレール3の目標圧力(目標レール圧)に応じて調量する吸入調量弁19、吸入調量弁19で調量された燃料を加圧して高圧配管15に吐出する高圧ポンプ(図示せず)を有する。すなわち、吸入調量弁19には、マイコン8からポンプ駆動回路14を介して、ポンプ指令値としてのポンプ駆動電流が与えられる。ポンプ指令値は、実レール圧が目標レール圧に略一致するように算出される。そして、ポンプ指令値に基づく大きさの電流が吸入調量弁19のソレノイド(図示せず)に通電されることで、吸入調量弁19の弁開度が調節され、目標レール圧に応じた調量が行われる。   The fuel supply pump 5 pressurizes the fuel pumped from the fuel tank 4 according to the target pressure (target rail pressure) of the common rail 3 and the fuel metered by the suction metering valve 19. And a high pressure pump (not shown) for discharging to the high pressure pipe 15. That is, a pump drive current as a pump command value is given to the intake metering valve 19 from the microcomputer 8 via the pump drive circuit 14. The pump command value is calculated so that the actual rail pressure substantially matches the target rail pressure. Then, a current having a magnitude based on the pump command value is energized to a solenoid (not shown) of the suction metering valve 19 so that the valve opening degree of the suction metering valve 19 is adjusted, and according to the target rail pressure. Metering is performed.

インジェクタ6は、高圧配管16が接続されてコモンレール3と連通するとともに、気筒内に燃料を噴射する噴射ノズル21、噴射ノズル21を作動させる電磁弁22等により構成されている。なお、インジェクタ6は、気筒数と同数だけ備えられている(図1には1つだけ図示する)。   The injector 6 is connected to the common rail 3 through a high-pressure pipe 16 connected thereto, and includes an injection nozzle 21 for injecting fuel into the cylinder, an electromagnetic valve 22 for operating the injection nozzle 21, and the like. The number of injectors 6 is the same as the number of cylinders (only one is shown in FIG. 1).

噴射ノズル21は、図2に示すように、噴孔24を開閉するニードル状の弁体25(以下、噴射弁体25と呼ぶ)を有する。噴射弁体25は、高圧配管16およびボディ26に設けられた高圧流路27を介してコモンレール3から溜まり部28に供給された燃料の圧力により、噴孔24を開く方向(開孔側)に付勢されるとともに、噴射弁体25の反噴孔側に配設されるスプリング29、およびコマンドピストン30から伝達される背圧により噴孔24を閉じる方向(閉孔側)に付勢される。   As shown in FIG. 2, the injection nozzle 21 has a needle-like valve body 25 (hereinafter referred to as an injection valve body 25) that opens and closes the injection hole 24. The injection valve body 25 opens the injection hole 24 in the direction (opening side) by the pressure of the fuel supplied from the common rail 3 to the accumulation portion 28 via the high pressure flow path 27 provided in the high pressure pipe 16 and the body 26. At the same time, the spring 29 disposed on the side opposite to the injection hole of the injection valve body 25 and the back pressure transmitted from the command piston 30 are urged in the direction of closing the injection hole 24 (closed side). .

ここで、背圧とは、背圧室31に供給された燃料の圧力であり、背圧室31は、噴射弁体25の反噴孔側で、コマンドピストン30により下方を閉鎖されて形成されている。背圧室31は、高圧配管16およびオリフィス32を介してコモンレール3と連通しており、コモンレール3から燃料の供給を受けることで背圧が上昇する。なお、コモンレール3からの燃料供給はオリフィス32により制限を受ける。また、背圧室31は、電磁弁22の弁体36により開放されることで、オリフィス37を介して燃料が排出され背圧が低下する。なお、オリフィス32、37は、オリフィス37からの排出量がオリフィス32からの供給量よりも大きくなるように設けられている。   Here, the back pressure is the pressure of the fuel supplied to the back pressure chamber 31, and the back pressure chamber 31 is formed on the side opposite to the injection hole of the injection valve body 25 and closed downward by the command piston 30. ing. The back pressure chamber 31 communicates with the common rail 3 through the high-pressure pipe 16 and the orifice 32, and the back pressure increases by receiving fuel supply from the common rail 3. The fuel supply from the common rail 3 is restricted by the orifice 32. Further, the back pressure chamber 31 is opened by the valve body 36 of the electromagnetic valve 22, so that fuel is discharged through the orifice 37 and the back pressure is reduced. The orifices 32 and 37 are provided such that the discharge amount from the orifice 37 is larger than the supply amount from the orifice 32.

電磁弁22は、磁気吸引力を受けて背圧室31を開放する方向(開室側)に変位する弁体36、高電圧の印加および定電流の通電を受け、弁体36を開室側に変位させるとともに開室側で保持する磁気吸引力を発生するソレノイド38、背圧室31を閉鎖する方向(閉室側)に、弁体36を付勢するスプリング39等により構成されている。   The electromagnetic valve 22 receives a magnetic attraction force and is displaced in a direction (opening side) to open the back pressure chamber 31, and receives a high voltage and a constant current to open the valve body 36 on the opening side. And a solenoid 38 that generates a magnetic attractive force that is held on the opening side and a spring 39 that biases the valve body 36 in a direction in which the back pressure chamber 31 is closed (closed side).

電磁弁22には、マイコン8からインジェクタ駆動回路13を介して、インジェクタ指令値としての噴射開始時期および噴射期間が与えられる。これらのインジェクタ指令値は、エンジンの状態に応じた時期に、エンジンの状態に応じた量の燃料が噴射されるように算出される。そして、噴射開始時期および噴射期間に基づいて、マイコン8からインジェクタ駆動回路13に指令信号が出力され、この指令信号に応じてインジェクタ駆動回路13は、高電圧をソレノイド38に印加するとともに所定の定電流をソレノイド38に通電させる。これにより、エンジンの状態に応じた時期に、エンジンの状態に応じた量の燃料が噴射される。   The electromagnetic valve 22 is given an injection start time and an injection period as an injector command value from the microcomputer 8 via the injector drive circuit 13. These injector command values are calculated so that an amount of fuel corresponding to the state of the engine is injected at a time corresponding to the state of the engine. A command signal is output from the microcomputer 8 to the injector drive circuit 13 based on the injection start timing and the injection period. In response to this command signal, the injector drive circuit 13 applies a high voltage to the solenoid 38 and a predetermined constant value. Current is passed through solenoid 38. Thus, an amount of fuel corresponding to the engine state is injected at a time according to the engine state.

すなわち、ソレノイド38に高電圧が印加され、引き続き定電流の通電が行われると、弁体36が開室側に変位して背圧室31が開放され、この開放状態が続くので、背圧室31からの排出量が背圧室31への供給量よりも大きくなり背圧が低下する。これにより、噴射弁体25に対し開孔側に作用する付勢力(溜まり部28の燃料圧力による付勢力)の方が、閉孔側に作用する付勢力(背圧による付勢力およびスプリング29による付勢力)よりも強くなる。この結果、噴射弁体25が開孔側に変位して噴孔24が開放され噴射が行われる。   That is, when a high voltage is applied to the solenoid 38 and a constant current is continuously applied, the valve body 36 is displaced to the open side and the back pressure chamber 31 is opened, and this open state continues. The discharge amount from 31 becomes larger than the supply amount to the back pressure chamber 31, and the back pressure decreases. As a result, the biasing force acting on the opening side with respect to the injection valve body 25 (the biasing force due to the fuel pressure of the reservoir portion 28) is applied to the biasing force acting on the closing hole side (the biasing force due to the back pressure and the spring 29). It becomes stronger than the urging force. As a result, the injection valve body 25 is displaced to the opening side, the injection hole 24 is opened, and injection is performed.

やがて、ソレノイド38への通電が停止すると、弁体36が閉室側に変位して背圧室31が閉鎖され、背圧室31からの排出が停止するので、オリフィス32からの燃料の供給により背圧が上昇する。これにより、噴射弁体25に対し閉孔側に作用する付勢力の方が、開孔側に作用する付勢力よりも強くなる。この結果、噴射弁体25が閉孔側に変位して噴孔24が閉鎖され噴射が停止される。   When the energization of the solenoid 38 is eventually stopped, the valve body 36 is displaced toward the closed chamber side, the back pressure chamber 31 is closed, and the discharge from the back pressure chamber 31 is stopped. Pressure rises. Thereby, the urging force acting on the closed hole side with respect to the injection valve body 25 becomes stronger than the urging force acting on the opening side. As a result, the injection valve body 25 is displaced to the closed hole side, the injection hole 24 is closed, and the injection is stopped.

また、電磁弁22には、噴射に用いられなかったインジェクタ6内の余剰燃料を低圧配管41にリークするためのリークポート42が設けられている。ここで、リークする燃料には、静的リークに起因する燃料と動的リークに起因する燃料とがある。   In addition, the solenoid valve 22 is provided with a leak port 42 for leaking excess fuel in the injector 6 that has not been used for injection into the low-pressure pipe 41. Here, the leaking fuel includes a fuel caused by a static leak and a fuel caused by a dynamic leak.

静的リークとは、インジェクタ6の内部の摺動部を通して燃料がリークすることであり、例えば、溜まり部28の燃料が、ボディ26と噴射弁体25との摺動部からリークしたり、背圧室31の燃料が、ボディ26とコマンドピストン30との摺動部からリークしたりすることである。そして、溜まり部28および背圧室31からリークした燃料は、噴射弁体25とコマンドピストン30との間に形成されスプリング29を収容するスプリング室43に流入し、ボディ26に設けられる低圧流路44、電磁弁22に設けられる低圧流路45を経てリークポート42から低圧配管41にリークする。   The static leak means that the fuel leaks through the sliding portion inside the injector 6. For example, the fuel in the reservoir portion 28 leaks from the sliding portion between the body 26 and the injection valve body 25 or the back. The fuel in the pressure chamber 31 leaks from the sliding portion between the body 26 and the command piston 30. The fuel leaking from the reservoir 28 and the back pressure chamber 31 flows into a spring chamber 43 formed between the injection valve body 25 and the command piston 30 and containing the spring 29, and is provided in the low pressure passage provided in the body 26. 44, leaks from the leak port 42 to the low-pressure pipe 41 through the low-pressure channel 45 provided in the electromagnetic valve 22.

動的リークとは、背圧を低下させるために背圧室31から燃料を排出するときのように、インジェクタ指令値を電磁弁22に与えるなどの意図的な操作により、燃料がリークすることである。そして、背圧室31からオリフィス37を介して排出された燃料は、低圧流路45で静的リークによる燃料と合流しリークポート42から低圧配管41にリークする。   The dynamic leak is a fuel leak caused by an intentional operation such as giving an injector command value to the electromagnetic valve 22 as in the case of discharging the fuel from the back pressure chamber 31 in order to reduce the back pressure. is there. Then, the fuel discharged from the back pressure chamber 31 through the orifice 37 merges with the fuel due to static leak in the low pressure channel 45 and leaks from the leak port 42 to the low pressure pipe 41.

減圧弁7は、コモンレール3の他端に装着され、開弁してコモンレール3から低圧配管48に燃料を逃すことで実レール圧を減圧するものである。この減圧弁7は、図3に示すように、コモンレール3と低圧配管48との間を連通または遮断することで開弁動作または閉弁動作をするボール状の弁体49、弁体49に当接するとともに磁気吸引力を受けて開弁側に変位する可動子50、駆動電流の通電を受け、可動子50を開弁側に変位させる磁気吸引力を発生するソレノイド51、ソレノイド51への通電により励磁され可動子50を磁気吸引する固定子52、可動子50と固定子52との間に配設され、可動子50を閉弁側に付勢するスプリング53等により構成されている。   The pressure reducing valve 7 is attached to the other end of the common rail 3 and is opened to release the fuel from the common rail 3 to the low pressure pipe 48 to reduce the actual rail pressure. As shown in FIG. 3, the pressure reducing valve 7 is in contact with a ball-shaped valve body 49 and a valve body 49 that are opened or closed by communicating or blocking between the common rail 3 and the low-pressure pipe 48. The movable element 50 that contacts and displaces to the valve opening side upon receiving a magnetic attraction force, the solenoid 51 that generates a magnetic attraction force that receives the energization of the driving current and displaces the movable element 50 to the valve opening side, and the energization of the solenoid 51 A stator 52 that is excited and magnetically attracts the mover 50, a spring 53 that is disposed between the mover 50 and the stator 52, and biases the mover 50 toward the valve closing side, and the like.

減圧弁7には、マイコン8から減圧弁駆動回路12を介して、減圧弁指令値が与えられる。この減圧弁指令値は、減圧弁7が開弁している期間を示す開指令期間であり、ソレノイド51に通電が行われる期間を示すものである。この減圧弁指令値(開指令期間)は、実レール圧と目標レール圧との差に応じて算出される。そして、開指令期間に基づいて、マイコン8から減圧弁駆動回路12に指令信号が出力され、この指令信号に応じて減圧弁駆動回路12は、ソレノイド51に駆動電流を通電させる。これにより、減圧弁7が開弁してコモンレール3から低圧配管48に燃料が逃され、実レール圧が低下する。   A pressure reducing valve command value is given to the pressure reducing valve 7 via the pressure reducing valve drive circuit 12 from the microcomputer 8. The pressure reducing valve command value is an open command period indicating a period during which the pressure reducing valve 7 is open, and indicates a period during which the solenoid 51 is energized. This pressure reducing valve command value (open command period) is calculated according to the difference between the actual rail pressure and the target rail pressure. Then, based on the open command period, a command signal is output from the microcomputer 8 to the pressure reducing valve drive circuit 12, and the pressure reducing valve drive circuit 12 energizes the solenoid 51 in accordance with this command signal. As a result, the pressure reducing valve 7 is opened, fuel is released from the common rail 3 to the low pressure pipe 48, and the actual rail pressure is reduced.

なお、低圧配管48は、インジェクタ6からリークした燃料が流入する低圧配管41に接続され、コモンレール3から逃された燃料は、インジェクタ6からリークした燃料とともに、燃料タンク4に戻る。   The low pressure pipe 48 is connected to a low pressure pipe 41 into which the fuel leaked from the injector 6 flows, and the fuel released from the common rail 3 returns to the fuel tank 4 together with the fuel leaked from the injector 6.

マイコン8は、制御処理および演算処理を行うCPU、各種プログラムおよびデータを記憶するROM、RAM、EEPROMおよびバックアップRAM等の記憶手段、入力回路、出力回路等により構成される周知構造のコンピュータである。そして、レール圧センサ17等の各種センサから入力される検出値に基づいて、ポンプ指令値、インジェクタ指令値、減圧弁指令値等を算出し、指令信号として各駆動回路に出力する。   The microcomputer 8 is a computer having a known structure including a CPU that performs control processing and arithmetic processing, storage means such as a ROM, RAM, EEPROM, and backup RAM that store various programs and data, an input circuit, an output circuit, and the like. Then, based on detection values input from various sensors such as the rail pressure sensor 17, a pump command value, an injector command value, a pressure reducing valve command value, and the like are calculated and output to the respective drive circuits as command signals.

以上の構成により、燃料噴射装置1では、実レール圧がエンジンの状態に応じた目標レール圧に略一致するように、燃料供給ポンプ5からの燃料の供給量、および減圧弁7からの燃料の逃し量が制御される。また、燃料噴射装置1では、エンジンの状態に応じた時期に、エンジンの状態に応じた量の燃料が噴射されるように、インジェクタ6による噴射開始時期および噴射期間が制御される。この結果、実レール圧が目標レール圧に略一致するとともに、実レール圧に相当する噴射圧力で各気筒内に燃料が噴射され、エンジンの状態に応じた運転が行われる。   With the above configuration, in the fuel injection device 1, the amount of fuel supplied from the fuel supply pump 5 and the amount of fuel from the pressure reducing valve 7 are adjusted so that the actual rail pressure substantially matches the target rail pressure corresponding to the state of the engine. The amount of escape is controlled. Further, in the fuel injection device 1, the injection start timing and the injection period by the injector 6 are controlled so that an amount of fuel according to the engine state is injected at a time according to the engine state. As a result, the actual rail pressure substantially coincides with the target rail pressure, and fuel is injected into each cylinder at an injection pressure corresponding to the actual rail pressure, and an operation corresponding to the state of the engine is performed.

続いて、マイコン8および減圧弁駆動回路12による実レール圧の減圧制御、および減圧弁7の閉弁動作の異常判定について説明する。
マイコン8および減圧弁駆動回路12は、実レールが目標レール圧に略一致するように減圧弁7の動作を制御するレール圧制御手段として機能する。この制御は、減圧弁7からの燃料の逃し量(以下、逃し量と呼ぶ)と実レール圧との相関を示す減圧特性に基づき、減圧弁指令値としての開指令期間を算出し減圧弁7に出力することで実行される。
Next, the actual rail pressure reduction control by the microcomputer 8 and the pressure reducing valve drive circuit 12 and the abnormality determination of the valve closing operation of the pressure reducing valve 7 will be described.
The microcomputer 8 and the pressure reducing valve drive circuit 12 function as rail pressure control means for controlling the operation of the pressure reducing valve 7 so that the actual rail substantially matches the target rail pressure. This control calculates the open command period as the pressure reducing valve command value based on the pressure reducing characteristic indicating the correlation between the amount of fuel escaped from the pressure reducing valve 7 (hereinafter referred to as the amount of escape) and the actual rail pressure. It is executed by outputting to.

すなわち、マイコン8は、逃し量と実レール圧との相関を示す減圧特性を記憶するとともに、この減圧特性に基づき開指令期間を算出する。つまり、減圧特性は、図4に示すように、開指令期間と実レール圧との相関であり、さらに、開指令期間とは、例えば、実レール圧が単位圧力だけ減圧するのに必要な減圧弁7の開弁時間に相当するものであり、単位時間当たりの逃し量に相当するものである。そして、マイコン8は、算出された開指令期間に基づいて指令信号を合成し減圧弁駆動回路12に出力し、減圧弁駆動回路12は、この指令信号に応じて駆動電流をソレノイド51に通電させ減圧弁7を開弁させる。   That is, the microcomputer 8 stores a decompression characteristic indicating a correlation between the relief amount and the actual rail pressure, and calculates an open command period based on the decompression characteristic. That is, as shown in FIG. 4, the pressure reduction characteristic is a correlation between the opening command period and the actual rail pressure. Further, the opening command period is, for example, a pressure reduction required for the actual rail pressure to be reduced by a unit pressure. This corresponds to the valve opening time of the valve 7 and corresponds to the amount of escape per unit time. Then, the microcomputer 8 synthesizes a command signal based on the calculated opening command period and outputs it to the pressure reducing valve drive circuit 12, and the pressure reducing valve drive circuit 12 supplies a drive current to the solenoid 51 in accordance with this command signal. The pressure reducing valve 7 is opened.

また、マイコン8は、減圧弁7の開弁に起因する実レール圧の最大降下量を示す最大逃し減圧量を推定する最大逃し減圧量推定手段として機能する。最大逃し減圧量推定手段は、減圧弁7からの逃し量が減圧弁7の性能規格の上限にあると仮定して、最大逃し減圧量を推定する。すなわち、最大逃し減圧量推定手段は、性能規格上限の逃し量で減圧弁7から燃料が逃された場合に、減圧弁7の開弁に起因する実レール圧の降下量に相当する物理量を、最大逃し減圧量として算出するものである。ここで、逃し量の性能規格上限は、実レール圧に応じて変化するので、レール圧センサ17からの検出値に基づいて算出される。   Further, the microcomputer 8 functions as a maximum relief pressure reduction amount estimating means for estimating a maximum relief pressure reduction amount indicating the maximum drop amount of the actual rail pressure due to the opening of the pressure reduction valve 7. The maximum relief decompression amount estimation means estimates the maximum relief decompression amount on the assumption that the relief amount from the decompression valve 7 is at the upper limit of the performance standard of the decompression valve 7. That is, when the fuel is released from the pressure reducing valve 7 with the amount of relief of the upper limit of the performance standard, the maximum relief pressure reducing amount estimating means calculates a physical quantity corresponding to the amount of decrease in the actual rail pressure due to the opening of the pressure reducing valve 7 This is calculated as the maximum relief pressure reduction amount. Here, since the performance standard upper limit of the escape amount changes according to the actual rail pressure, it is calculated based on the detection value from the rail pressure sensor 17.

なお、最大逃し減圧量等の減圧量と称する物理量は、圧力の次元を有する物理量として算出できるが、燃料の弾性率や粘性の次元を有する物理量として算出することもできる。そして、後記する実減圧量、他減圧量、判定減圧量、最大リーク減圧量および推定減圧量も同様である。   Note that a physical quantity called a decompression amount such as a maximum relief decompression amount can be calculated as a physical quantity having a pressure dimension, but can also be calculated as a physical quantity having a fuel elastic modulus or viscosity dimension. The same applies to the actual decompression amount, other decompression amount, determination decompression amount, maximum leak decompression amount, and estimated decompression amount, which will be described later.

また、マイコン8は、減圧弁7の閉弁動作に異常が発生しているか否かを判定する閉弁異常判定手段として機能する(以下、「閉弁動作の異常」を「閉弁異常」と呼ぶ)。この閉弁異常判定手段は、レール圧制御手段の実行に伴う実レール圧の降下量を示す実減圧量が判定減圧量以上になったときに、減圧弁7に閉弁異常が発生していると判断する。ここで、判定減圧量とは、最大逃し減圧量と他減圧量との和であり、閉弁異常判定の閾値となるものである。また、他減圧量とは、減圧弁7の開弁以外の減圧要因から推定される減圧量である。   Further, the microcomputer 8 functions as a valve closing abnormality determining means for determining whether or not an abnormality has occurred in the valve closing operation of the pressure reducing valve 7 (hereinafter, “abnormality of the valve closing operation” is referred to as “valve closing abnormality”). Call). The valve closing abnormality determining means has a valve closing abnormality in the pressure reducing valve 7 when the actual pressure reducing amount indicating the amount of decrease in the actual rail pressure due to the execution of the rail pressure control means becomes equal to or greater than the determined pressure reducing amount. Judge. Here, the determined pressure reduction amount is the sum of the maximum relief pressure reduction amount and the other pressure reduction amount, and serves as a threshold value for the valve closing abnormality determination. The other decompression amount is a decompression amount estimated from a decompression factor other than the opening of the decompression valve 7.

また、マイコン8は、実減圧量と、減圧特性により推定した推定減圧量との差に応じて、減圧特性を修正する減圧特性修正手段としても機能している。そして、閉弁異常判定手段は、減圧特性修正手段の実行により減圧特性が修正された後に、実行される。すなわち、閉弁異常判定手段は、減圧特性が修正されたことを確認した後に、閉弁異常の発生の有無を判断する。   The microcomputer 8 also functions as a decompression characteristic correcting unit that corrects the decompression characteristic in accordance with the difference between the actual decompression amount and the estimated decompression amount estimated from the decompression characteristic. Then, the valve closing abnormality determining means is executed after the pressure reducing characteristic is corrected by the execution of the pressure reducing characteristic correcting means. That is, the valve closing abnormality determining means determines whether or not the valve closing abnormality has occurred after confirming that the pressure reducing characteristic has been corrected.

また、マイコン8は、他減圧量として、インジェクタ6の燃料リークに起因する実レール圧の最大降下量を示す最大リーク減圧量を推定する。最大リーク減圧量は、インジェクタ6からの燃料のリーク量がインジェクタ6の性能規格の上限にあると仮定することにより推定される。また、最大リーク減圧量の推定は、燃料噴射装置1における燃料収支に基づき、実レール圧やエンジン回転数等を変動因子として行われる。   Further, the microcomputer 8 estimates the maximum leak pressure reduction amount indicating the maximum drop amount of the actual rail pressure due to the fuel leak of the injector 6 as the other pressure reduction amount. The maximum leak pressure reduction amount is estimated by assuming that the fuel leak amount from the injector 6 is at the upper limit of the performance standard of the injector 6. Further, the estimation of the maximum leak pressure reduction amount is performed based on the fuel balance in the fuel injection device 1 with the actual rail pressure, the engine speed, etc. as the variable factors.

なお、本実施例の閉弁異常判定手段は、エンジンが停止する時(イグニッションオフ時)に実行されるので、最大リーク減圧量は、静的リークに起因する実レール圧の降下量に相当する減圧量として算出される。   In addition, since the valve closing abnormality determination means of this embodiment is executed when the engine stops (when the ignition is off), the maximum leak pressure reduction amount corresponds to the amount of decrease in the actual rail pressure caused by static leak. Calculated as the amount of pressure reduction.

また、閉弁異常判定手段は、減圧弁7に閉弁異常が発生していると判断するための追加条件として、さらに、燃料供給ポンプ5による燃料の供給量が、減圧弁7の閉弁動作が正常である時よりも所定量以上に増加しているか否かを判定する。そして、この追加条件が満たされるときに、減圧弁7に閉弁異常が発生していると判断する。   Further, the valve closing abnormality determining means is further provided with an additional condition for determining that the valve closing abnormality has occurred in the pressure reducing valve 7. It is determined whether or not the amount has increased by a predetermined amount or more than when it is normal. When this additional condition is satisfied, it is determined that a valve closing abnormality has occurred in the pressure reducing valve 7.

また、閉弁異常判定手段は、減圧弁7に閉弁異常が発生していると判断するための確認処理として、仮開指令期間を減圧弁7に与えることで生じる実減圧量に応じて、減圧弁7に閉弁異常が発生しているか否かを判定する。仮開指令期間は、減圧特性に基づき算出された正規の開指令期間よりも短い開指令期間である。なお、この処理は、閉弁異常が生じていることの確認であるため、実減圧量が判定減圧量以上であるときに実行される。   Further, the valve closing abnormality determining means, as a confirmation process for determining that the valve closing abnormality has occurred in the pressure reducing valve 7, according to the actual pressure reducing amount generated by giving the temporary opening command period to the pressure reducing valve 7, It is determined whether or not a valve closing abnormality has occurred in the pressure reducing valve 7. The temporary opening command period is an opening command period that is shorter than the normal opening command period calculated based on the pressure reduction characteristics. Since this process is confirmation that a valve closing abnormality has occurred, it is executed when the actual pressure reduction amount is greater than or equal to the determined pressure reduction amount.

〔実施例1の制御方法〕
実施例1の制御方法を、図5に示すフローチャートを用いて説明する。
まず、ステップS1で、減圧弁7の閉弁異常を判定することが可能な条件(判定条件)が成立したか否かを判定する。この判定条件とは、エンジンの状態がイグニッションオフ時のように確実に無噴射かつ減圧実行状態にあること、および減圧特性修正手段の実行により減圧特性が修正されたことをマイコン8が確認していることなどである。そして、判定条件が成立したら(YES)、ステップS2に進み、判定条件が成立しなかったら(NO)、処理を終了する。
[Control Method of Example 1]
A control method according to the first embodiment will be described with reference to a flowchart shown in FIG.
First, in step S <b> 1, it is determined whether or not a condition (determination condition) that can determine whether the pressure reducing valve 7 is closed is satisfied. The determination condition is that the microcomputer 8 confirms that the engine is surely in the non-injection and decompression execution state as when the ignition is off, and that the decompression characteristic is corrected by the execution of the decompression characteristic correcting means. And so on. If the determination condition is satisfied (YES), the process proceeds to step S2. If the determination condition is not satisfied (NO), the process is terminated.

次に、ステップS2で、実レール圧の初期値を計測する。この計測は、レール圧センサ17からマイコン8に入力されるレール圧検出信号を用いて、マイコン8により行われる。そして、ステップS3で、所定時間が経過したか否かを判定し、所定時間が経過したら(YES)、ステップS4に進み、実レール圧の最終値を初期値と同様にして計測する。ステップS3で、所定時間が経過しない間(NO)、処理は進まない。なお、この所定時間は、少なくとも、レール圧制御手段による処理が実行されて新たな開指令期間が算出されるとともに、新たな開指令期間に基づく開弁が実行されるまでに要する時間よりも長く設定されている。   Next, in step S2, the initial value of the actual rail pressure is measured. This measurement is performed by the microcomputer 8 using a rail pressure detection signal input from the rail pressure sensor 17 to the microcomputer 8. In step S3, it is determined whether or not a predetermined time has elapsed. If the predetermined time has elapsed (YES), the process proceeds to step S4, and the final value of the actual rail pressure is measured in the same manner as the initial value. In step S3, the process does not proceed while the predetermined time has not elapsed (NO). Note that this predetermined time is at least longer than the time required for the processing by the rail pressure control means to be executed to calculate a new opening command period and to perform valve opening based on the new opening command period. Is set.

次に、ステップS5で、実レール圧の初期値と実レール圧の最終値との差、すなわち、レール圧制御手段の実行に伴う実レール圧の降下量を求め、この降下量に基づき実減圧量を算出する。そして、ステップS6で、最大逃し減圧量を推定する。この推定は、減圧弁7からの逃し量が減圧弁7の性能規格の上限にあると仮定して行われる。ここで、逃し量の性能規格上限は、減圧特性と同様の傾向を示しながら実レール圧に応じて変化するので、実レール圧の初期値および減圧特性を用いて算出することができる。   Next, in step S5, the difference between the initial value of the actual rail pressure and the final value of the actual rail pressure, that is, the amount of decrease in the actual rail pressure associated with the execution of the rail pressure control means is obtained. Calculate the amount. In step S6, the maximum escape pressure reduction amount is estimated. This estimation is performed on the assumption that the escape amount from the pressure reducing valve 7 is at the upper limit of the performance standard of the pressure reducing valve 7. Here, since the performance standard upper limit of the escape amount changes according to the actual rail pressure while exhibiting the same tendency as the decompression characteristic, it can be calculated using the initial value of the actual rail pressure and the decompression characteristic.

さらに、ステップS7で、最大リーク減圧量を推定する。この推定は、インジェクタ6からの燃料のリーク量がインジェクタ6の性能規格の上限にあると仮定して行われる。ここで、リーク量の性能規格上限は、燃料噴射装置1における燃料収支に基づき、実レール圧やエンジン回転数等を変動因子として算出することができる。つまり、実レール圧の初期値等を、燃料収支から定められる各種相関式等に当てはめることで、リーク量の性能規格上限を算出することができる。そして、ステップS8で、最大逃し減圧量と最大リーク減圧量との和を算出し、その和を判定減圧量とする。   In step S7, the maximum leak pressure reduction amount is estimated. This estimation is performed on the assumption that the amount of fuel leakage from the injector 6 is at the upper limit of the performance standard of the injector 6. Here, the performance specification upper limit of the leak amount can be calculated based on the fuel balance in the fuel injection device 1 with the actual rail pressure, the engine speed, and the like as the variation factors. That is, by applying the initial value of the actual rail pressure or the like to various correlation equations determined from the fuel balance, the upper limit of the performance standard for the leak amount can be calculated. In step S8, the sum of the maximum relief pressure reduction amount and the maximum leak pressure reduction amount is calculated, and the sum is set as the determination pressure reduction amount.

次に、ステップS9で、実減圧量が判定減圧量以上であるか否かを判定する。そして、実減圧量が判定減圧量以上であれば(YES)、ステップS10に進み、実減圧量が判定減圧量未満であれば(NO)、処理を終了する。   Next, in step S9, it is determined whether or not the actual reduced pressure amount is greater than or equal to the determined reduced pressure amount. If the actual decompression amount is equal to or greater than the determination decompression amount (YES), the process proceeds to step S10. If the actual decompression amount is less than the determination decompression amount (NO), the process ends.

次に、ステップS10で、燃料供給ポンプ5による燃料の供給量が、減圧弁7の閉弁動作が正常である時よりも所定量以上に増加しているか否かを判定する。この条件は、減圧弁7に閉弁異常が発生していると判断するための追加条件である。   Next, in step S10, it is determined whether or not the amount of fuel supplied by the fuel supply pump 5 is increased by a predetermined amount or more than when the valve closing operation of the pressure reducing valve 7 is normal. This condition is an additional condition for determining that a valve closing abnormality has occurred in the pressure reducing valve 7.

この追加条件を満たすか否かの判定は、ポンプ指令値に対して閾値を設定し、ポンプ指令値と閾値とを比較することで行うことができる。例えば、吸入調量弁19が、ソレノイドへの通電が行われていないときに全閉となるノーマリクローズ型である場合、ポンプ指令値が閾値以上であれば、追加条件が満たされていると判定できる。また、吸入調量弁19が、ソレノイドへの通電が行われていないときに全開となるノーマリオープン型である場合、ポンプ指令値が閾値以下であれば、追加条件が満たされていると判定できる。   The determination as to whether or not this additional condition is satisfied can be made by setting a threshold value for the pump command value and comparing the pump command value with the threshold value. For example, when the intake metering valve 19 is a normally closed type that is fully closed when the solenoid is not energized, the additional condition is satisfied if the pump command value is equal to or greater than the threshold value. Can be judged. Further, when the suction metering valve 19 is a normally open type that is fully opened when the solenoid is not energized, it is determined that the additional condition is satisfied if the pump command value is equal to or less than the threshold value. it can.

さらに、追加条件を満たすか否かの判定は、例えば、ポンプ指令値が限界値に固定されているか否か、または限界値近傍で推移しているか否かを判断することで行うことができる。例えば、吸入調量弁19がノーマリクローズ型である場合、ポンプ指令値が、吸入調量弁19の弁開度が上限になるような値(指令上限値)に固定されている、または指令上限値近傍で推移しているときには、追加条件が満たされていると判定できる。また、吸入調量弁19がノーマリオープン型である場合、ポンプ指令値が、吸入調量弁19の弁開度が下限になるような値(指令下限値)に固定されている、または指令下限値近傍で推移しているときには、追加条件が満たされていると判定できる。   Further, the determination as to whether or not the additional condition is satisfied can be made, for example, by determining whether or not the pump command value is fixed at the limit value or whether or not the pump command value is changing near the limit value. For example, when the intake metering valve 19 is a normally closed type, the pump command value is fixed to a value (command upper limit value) such that the valve opening degree of the intake metering valve 19 becomes the upper limit, or the command When transitioning in the vicinity of the upper limit value, it can be determined that the additional condition is satisfied. When the intake metering valve 19 is a normally open type, the pump command value is fixed to a value (command lower limit value) such that the valve opening degree of the intake metering valve 19 becomes the lower limit, or the command When transitioning near the lower limit value, it can be determined that the additional condition is satisfied.

そして、燃料供給ポンプ5による燃料の供給量が、減圧弁7の閉弁動作が正常である時よりも所定量以上に増加していると判定されたら(YES)、ステップS11に進み、減圧弁7の閉弁動作が正常である時よりも所定量以上に増加していないと判定されたら(NO)、処理を終了する。   If it is determined that the amount of fuel supplied by the fuel supply pump 5 has increased by a predetermined amount or more compared to when the valve closing operation of the pressure reducing valve 7 is normal (YES), the process proceeds to step S11, and the pressure reducing valve If it is determined that the valve closing operation 7 has not increased more than a predetermined amount as compared with the normal time (NO), the process is terminated.

次に、ステップS11で、仮開指令期間を減圧弁7に与えることで生じる実減圧量に応じて、減圧弁7に閉弁異常が発生しているか否かを判断する。この処理は、減圧弁7に閉弁異常が発生していると判断するための確認処理である。この確認処理は、例えば、仮開指令期間をゼロとして減圧弁7に与えることで実行できる。すなわち、仮開指令期間をゼロとして減圧弁7に与えることで、開弁すべき指令が実質的に与えられていないにもかかわらず、実減圧量の発生が確認されれば、閉弁異常が生じていることが確認できる。そして、閉弁異常の発生を確認できたら(YES)、ステップS12に進み、閉弁異常の発生が確定する。また、閉弁異常の発生を確認できなかったら(NO)、処理を終了する。   Next, in step S <b> 11, it is determined whether a valve closing abnormality has occurred in the pressure reducing valve 7 according to the actual pressure reducing amount generated by giving the temporary opening command period to the pressure reducing valve 7. This process is a confirmation process for determining that a valve closing abnormality has occurred in the pressure reducing valve 7. This confirmation process can be executed, for example, by giving the temporary opening command period to the pressure reducing valve 7 as zero. That is, by giving the provisional opening command period to zero to the pressure reducing valve 7, if the generation of the actual pressure reducing amount is confirmed even though the command to be opened is not substantially given, the valve closing abnormality is It can be confirmed that it has occurred. If the occurrence of the valve closing abnormality can be confirmed (YES), the process proceeds to step S12, and the occurrence of the valve closing abnormality is confirmed. If the occurrence of valve closing abnormality cannot be confirmed (NO), the process is terminated.

〔実施例1の効果〕
実施例1の燃料噴射装置1では、マイコン8が、減圧弁7の開弁に起因する実レール圧の最大降下量を示す最大逃し減圧量を、逃し量が減圧弁7の性能規格の上限にあると仮定することにより推定する最大逃し減圧量推定手段、およびレール圧制御手段の実行に伴う実レール圧の降下量を示す実減圧量が、減圧弁7の開弁以外の減圧要因から推定される他減圧量と最大逃し減圧量との和である判定減圧量以上になったときに、減圧弁7に閉弁異常が発生していると判断する閉弁異常判定手段として機能する。
[Effect of Example 1]
In the fuel injection device 1 according to the first embodiment, the microcomputer 8 sets the maximum relief pressure reduction amount indicating the maximum drop amount of the actual rail pressure due to the opening of the pressure reducing valve 7 to the upper limit of the performance standard of the pressure reducing valve 7. The actual pressure reduction amount indicating the amount of decrease in the actual rail pressure due to the execution of the maximum relief pressure reduction amount estimating means and the rail pressure control means estimated by assuming that there is an estimated pressure reduction factor other than the opening of the pressure reducing valve 7 is estimated. It functions as a valve closing abnormality determining means for determining that a valve closing abnormality has occurred in the pressure reducing valve 7 when the pressure reducing amount is equal to or greater than the determined pressure reducing amount which is the sum of the other pressure reducing amount and the maximum relief pressure reducing amount.

減圧弁7に閉弁異常が発生すると、減圧弁7の性能規格の上限以上の逃し量で、減圧弁7を通じて燃料が逃される。よって、上記のように、逃し量が減圧弁7の性能規格の上限にあると仮定したときの最大逃し減圧量に、減圧弁7の開弁以外の減圧要因から推定される他減圧量を加算した判定減圧量を閾値として用いれば、高精度に閉弁異常の判定を行うことができる。   When the valve closing abnormality occurs in the pressure reducing valve 7, the fuel is released through the pressure reducing valve 7 with a release amount that is equal to or greater than the upper limit of the performance standard of the pressure reducing valve 7. Therefore, as described above, the other decompression amount estimated from the decompression factor other than the opening of the decompression valve 7 is added to the maximum relief decompression amount when the relief amount is assumed to be the upper limit of the performance standard of the decompression valve 7. If the determined pressure reduction amount is used as a threshold value, it is possible to determine the valve closing abnormality with high accuracy.

また、閉弁異常判定手段は、インジェクタ6の燃料リークによる実レール圧の最大降下量を示す最大リーク減圧量を、リーク量がインジェクタ6の性能規格の上限にあると仮定することにより推定し、他減圧量とする。
インジェクタ6はコモンレール3に連通しているため、インジェクタ6からの燃料のリーク量は、実減圧量に大きな影響を及ぼす。そこで、他減圧量として、インジェクタ6からの燃料のリーク量がインジェクタ6の性能規格の上限にあると仮定したときの最大リーク減圧量を用いれば、さらに高精度に閉弁異常の判定を行うことができる。
Further, the valve closing abnormality determining means estimates the maximum leak pressure reduction amount indicating the maximum drop amount of the actual rail pressure due to the fuel leak of the injector 6 by assuming that the leak amount is at the upper limit of the performance standard of the injector 6, Other reduced pressure amount.
Since the injector 6 communicates with the common rail 3, the amount of fuel leakage from the injector 6 greatly affects the actual amount of pressure reduction. Therefore, if the maximum leak pressure reduction amount when assuming that the fuel leak amount from the injector 6 is at the upper limit of the performance standard of the injector 6 is used as the other pressure reduction amount, the valve closing abnormality can be determined with higher accuracy. Can do.

また、閉弁異常判定手段は、イグニッションオフ時に実行される。
イグニッションオフ時は、確実に、無噴射かつ減圧実行状態であり、減圧弁7の開弁以外の減圧要因(例えば、インジェクタ6からの燃料のリーク)による他減圧量は、極めて予測しやすい。よって、イグニッションオフ時に、閉弁異常判定手段を実行すれば、さらに高精度に閉弁異常の判定を行うことができる。
The valve closing abnormality determining means is executed when the ignition is off.
When the ignition is turned off, there is no injection and the pressure is reduced. The other pressure reduction due to a pressure reduction factor (for example, fuel leakage from the injector 6) other than the opening of the pressure reducing valve 7 is extremely predictable. Therefore, if the valve closing abnormality determining means is executed when the ignition is off, the valve closing abnormality can be determined with higher accuracy.

また、最大リーク減圧量は、インジェクタ6の内部の摺動部を通して燃料がリークする静的リークに起因する実レール圧の最大降下量を示す。
イグニッションオフ時には、静的リークにより、インジェクタ6から燃料がリークすると考えられ、動的リークは、リーク要因として考慮する必要性が低いと考えられる。よって、イグニッションオフ時に閉弁異常の判定を行う場合には、リーク要因として静的リークを取り上げることで、判定精度を向上できるとともに、動的リークのような他のリーク要因を考慮しないことで、マイコン8の演算負荷を低減することができる。
The maximum leak pressure reduction amount indicates the maximum amount of actual rail pressure drop caused by static leak in which fuel leaks through the sliding portion inside the injector 6.
When the ignition is off, it is considered that the fuel leaks from the injector 6 due to static leak, and the dynamic leak is considered to be less necessary to be considered as a leak factor. Therefore, when determining the valve closing abnormality at the time of ignition off, by taking up static leak as a leak factor, it is possible to improve the determination accuracy and not considering other leak factors such as dynamic leak, The calculation load of the microcomputer 8 can be reduced.

また、レール圧制御手段は、逃し量と実レール圧との相関を示す減圧特性に基づき、減圧弁7に与える減圧弁指令値を算出する。
これにより、減圧弁7は実レール圧に応じて動作を変えることができる。
Further, the rail pressure control means calculates a pressure reducing valve command value to be given to the pressure reducing valve 7 based on a pressure reducing characteristic indicating a correlation between the relief amount and the actual rail pressure.
Thus, the operation of the pressure reducing valve 7 can be changed according to the actual rail pressure.

また、閉弁異常判定手段は、減圧特性修正手段の実行により減圧特性が修正された後に、実行される。
減圧特性修正手段により、減圧特性は、減圧弁7の製品個々の逃し量の偏り方に応じて、製品ごとに修正され、個々の製品の制御に適したものに変化していく。この結果、減圧弁7の性能規格の上限の逃し量も、製品ごとに修正できるので、個々の製品に適した最大逃し減圧量を算出できるようになる。
以上により、減圧弁7の閉弁異常の判定を行う際に、個々の製品に適した逃し量の性能規格上限を設定できる。
The valve closing abnormality determining means is executed after the decompression characteristic is corrected by the execution of the decompression characteristic correcting means.
The pressure reduction characteristic is corrected for each product by the pressure reduction characteristic correcting means, and is changed to one suitable for control of each product according to the bias of the individual release amount of the pressure reducing valve 7. As a result, since the upper limit escape amount of the performance standard of the pressure reducing valve 7 can be corrected for each product, the maximum escape pressure reduction amount suitable for each product can be calculated.
As described above, when determining whether the pressure reducing valve 7 is closed abnormally, it is possible to set a performance standard upper limit of the escape amount suitable for each product.

また、閉弁異常判定手段は、実減圧量が判定減圧量以上であるときに、減圧特性に基づき算出された開指令期間よりも短い仮開指令期間を減圧弁7に与えることで生じる実減圧量に応じて、減圧弁7の閉弁動作に異常が発生しているか否かを判断する。
これにより、閉弁異常の発生の確認を行うことができる。すなわち、仮開指令期間に基づく減圧弁7の動作により生じる実減圧量が、予想される減圧量よりも大きい場合は、確実に閉弁異常が発生していると判断することができる。
In addition, the valve closing abnormality determining means provides the actual pressure reduction caused by giving the pressure reducing valve 7 a temporary opening command period shorter than the opening command period calculated based on the pressure reducing characteristic when the actual pressure reducing amount is equal to or larger than the determined pressure reducing amount. It is determined whether or not an abnormality has occurred in the valve closing operation of the pressure reducing valve 7 according to the amount.
Thereby, it is possible to confirm the occurrence of the valve closing abnormality. That is, when the actual pressure reduction amount generated by the operation of the pressure reducing valve 7 based on the temporary opening command period is larger than the expected pressure reduction amount, it can be determined that the valve closing abnormality has surely occurred.

また、閉弁異常判定手段は、燃料供給ポンプ5による燃料の供給量が、減圧弁7の閉弁動作が正常である時よりも所定量以上に増加していると判定できるときに、減圧弁7に閉弁異常が発生していると判断する。
燃料供給ポンプ5による燃料の供給量が、減圧弁7の閉弁動作が正常である時よりも所定量以上に増加しているにもかかわらず実減圧量が大きいという状態は、減圧弁7に閉弁異常が発生している可能性が極めて高い。そこで、「燃料供給ポンプ5による燃料の供給量が、減圧弁7の閉弁動作が正常である時よりも所定量以上に増加していると判定できる」という条件を判定条件に加えることで、さらに閉弁異常の判定について精度を向上することができる。
Further, the valve closing abnormality determining means determines that the amount of fuel supplied by the fuel supply pump 5 has increased to a predetermined amount or more than when the valve closing operation of the pressure reducing valve 7 is normal. 7 determines that a valve closing abnormality has occurred.
A state in which the actual pressure reduction amount is large although the fuel supply amount by the fuel supply pump 5 is increased by a predetermined amount or more than when the valve closing operation of the pressure reducing valve 7 is normal is indicated in the pressure reducing valve 7. The possibility that a valve closing abnormality has occurred is extremely high. Therefore, by adding a condition that “the amount of fuel supplied by the fuel supply pump 5 can be determined to be greater than or equal to a predetermined amount compared to when the valve closing operation of the pressure reducing valve 7 is normal” to the determination condition, Furthermore, it is possible to improve the accuracy of the determination of the valve closing abnormality.

〔変形例〕
本実施例では最大リーク減圧量を推定する際に静的リークのみを考慮したが、インジェクタ6に、いわゆる「空打ち駆動」を行わせることで実レール圧を減圧する場合等には、動的リークを考慮してもよい。なお、空打ち駆動とは、電磁弁22による背圧室31の開放から噴射弁体25による噴孔24の開放に至るまでの時間(噴射遅延時間)よりも短い噴射期間をインジェクタ6に与えることで、実質的に噴射を行わせず背圧の給排のみを行わせて実レール圧を低下させることである。
[Modification]
In this embodiment, only static leak is considered when estimating the maximum leak pressure reduction amount. However, when the actual rail pressure is reduced by causing the injector 6 to perform so-called “blank driving”, dynamic Leakage may be considered. The idle driving means that the injector 6 is given an injection period shorter than the time from the opening of the back pressure chamber 31 by the electromagnetic valve 22 to the opening of the injection hole 24 by the injection valve body 25 (injection delay time). Thus, the actual rail pressure is lowered by causing only the back pressure to be supplied and discharged without substantially performing injection.

また、本実施例のフローチャートでは、燃料供給ポンプ5による燃料の供給量が、減圧弁7の閉弁動作が正常である時よりも所定量以上に増加しているか否かの判定(以下、燃料供給ポンプ5からの供給量の確認と呼ぶ)、および仮開指令期間による確認を、実減圧量と判定減圧量との大小判定後に行ったが、これらをステップS1の判定条件に加え、最初に行うようにしてもよい。すなわち、燃料供給ポンプ5からの供給量の確認、仮開指令期間による確認、および実減圧量と判定減圧量との大小判定を行う順序は、必要に応じて、随時、変更できる。また、燃料供給ポンプ5からの供給量の確認、および仮開指令期間による確認は必要に応じて省略してもよい。   Further, in the flowchart of the present embodiment, it is determined whether or not the amount of fuel supplied by the fuel supply pump 5 has increased by a predetermined amount or more than when the valve closing operation of the pressure reducing valve 7 is normal (hereinafter referred to as fuel). The confirmation of the supply amount from the supply pump 5 and the confirmation by the temporary opening command period were performed after the actual pressure reduction amount and the determination pressure reduction amount were determined to be large or small. You may make it perform. That is, the order in which the supply amount from the fuel supply pump 5 is confirmed, the confirmation during the temporary opening command period, and the actual pressure reduction amount and the determination pressure reduction amount are determined can be changed as needed. Further, the confirmation of the supply amount from the fuel supply pump 5 and the confirmation during the temporary opening command period may be omitted as necessary.

本実施例の減圧弁7は、ソレノイド51への通電、非通電に応じたオンオフ方式で開弁または閉弁するものであったが、このような形態に限定されない。例えば、減圧弁7を、デューティ制御により弁開度を調節できる可変開度方式とし、この可変開度方式の減圧弁に本発明を適用することもできる。この場合、減圧特性には、弁開度を変動因子として加えることができる。   Although the pressure reducing valve 7 of the present embodiment opens or closes by an on / off method according to energization or non-energization of the solenoid 51, it is not limited to such a form. For example, the pressure reducing valve 7 may be a variable opening type that can adjust the valve opening degree by duty control, and the present invention can be applied to this variable opening type pressure reducing valve. In this case, the valve opening degree can be added as a variation factor to the decompression characteristics.

また、本実施例の減圧弁7は、マイコン8から出力される指令信号に応じて、減圧弁駆動回路12が駆動電流をソレノイド51に通電させることで、開弁するものであったが、このような形態に限定されない。例えば、減圧弁駆動回路12を設けずに、所定の電源からソレノイド51に、直接、駆動電流を通電させるようにしてもよい。   Further, the pressure reducing valve 7 of this embodiment is opened by the pressure reducing valve drive circuit 12 energizing the solenoid 51 in accordance with a command signal output from the microcomputer 8. It is not limited to such a form. For example, the drive current may be directly applied to the solenoid 51 from a predetermined power source without providing the pressure reducing valve drive circuit 12.

また、本実施例のフローチャートでは、所定時間の経過前後で実レール圧を計測し、それらの差(降下量)に基づいて実減圧量を算出したが、実レール圧を所定量だけ低減するのに要する時間を計測し、この時間計測値を用いて実減圧量を算出してもよい。   In the flowchart of the present embodiment, the actual rail pressure is measured before and after the elapse of a predetermined time, and the actual pressure reduction amount is calculated based on the difference (the amount of descent). However, the actual rail pressure is reduced by a predetermined amount. It is also possible to measure the time required to calculate the actual decompression amount using this time measurement value.

燃料噴射装置の全体構成図である。1 is an overall configuration diagram of a fuel injection device. インジェクタの構成図である。It is a block diagram of an injector. 減圧制御を説明する説明図である。It is explanatory drawing explaining pressure reduction control. 減圧特性を示す特性図である。It is a characteristic view which shows a pressure reduction characteristic. 閉弁異常判定手段、最大逃し減圧量推定手段および最大リーク減圧量推定手段による処理を示すフローチャートである。It is a flowchart which shows the process by a valve closing abnormality determination means, the maximum relief pressure reduction amount estimation means, and the maximum leak pressure reduction amount estimation means.

符号の説明Explanation of symbols

1 燃料噴射装置
3 コモンレール
5 燃料供給ポンプ
6 インジェクタ
7 減圧弁
8 マイコン(レール圧制御手段、最大逃し減圧量推定手段、閉弁異常判定手段、減圧特性修正手段)
12 減圧弁駆動回路(レール圧制御手段)
DESCRIPTION OF SYMBOLS 1 Fuel injection apparatus 3 Common rail 5 Fuel supply pump 6 Injector 7 Pressure reducing valve 8 Microcomputer (Rail pressure control means, maximum relief pressure reducing amount estimating means, valve closing abnormality determining means, pressure reducing characteristic correcting means)
12 Pressure reducing valve drive circuit (rail pressure control means)

Claims (8)

エンジンの状態に応じた目標圧力で燃料が蓄圧されるように燃料の供給を受けるコモンレールを備え、このコモンレールを介して前記エンジンに燃料を噴射供給する燃料噴射装置において、
開弁して前記コモンレールから燃料を逃すことで、前記コモンレールに蓄圧された燃料の実圧力を減圧する減圧弁と、
前記減圧弁に与える指令値を算出し前記減圧弁に出力することで、前記実圧力が前記目標圧力に略一致するように前記減圧弁の動作を制御するレール圧制御手段と、
前記減圧弁の開弁に起因する前記実圧力の最大降下量を示す最大逃し減圧量を、前記減圧弁からの燃料の逃し量が前記減圧弁の性能規格の上限にあると仮定することにより推定する最大逃し減圧量推定手段と、
前記レール圧制御手段の実行に伴う前記実圧力の降下量を示す実減圧量が、前記減圧弁の開弁以外の減圧要因から推定される他減圧量と前記最大逃し減圧量との和である判定減圧量以上になったときに、前記減圧弁の閉弁動作に異常が発生していると判断する閉弁異常判定手段とを備えることを特徴とする燃料噴射装置。
In a fuel injection device that includes a common rail that receives supply of fuel so that fuel is accumulated at a target pressure corresponding to the state of the engine, and that supplies fuel to the engine through the common rail,
A pressure reducing valve for reducing the actual pressure of the fuel accumulated in the common rail by opening the valve and releasing the fuel from the common rail;
Rail pressure control means for controlling the operation of the pressure reducing valve so that the actual pressure substantially matches the target pressure by calculating a command value to be given to the pressure reducing valve and outputting the command value to the pressure reducing valve;
Estimating the maximum relief pressure reduction amount indicating the maximum pressure drop due to the opening of the pressure reducing valve by assuming that the fuel escape amount from the pressure reducing valve is at the upper limit of the performance standard of the pressure reducing valve Means for estimating the maximum relief pressure reduction amount,
The actual pressure reduction amount indicating the amount of decrease in the actual pressure accompanying the execution of the rail pressure control means is the sum of the other pressure reduction amount estimated from a pressure reduction factor other than the opening of the pressure reducing valve and the maximum relief pressure reduction amount. A fuel injection device comprising: a valve closing abnormality determining unit that determines that an abnormality has occurred in the valve closing operation of the pressure reducing valve when the determination pressure reducing amount is exceeded.
請求項1に記載の燃料噴射装置において、
前記コモンレールと連通し、前記コモンレールに蓄圧された燃料を前記エンジンの気筒内に噴射するインジェクタを備え、
前記実圧力は、前記インジェクタから燃料がリークすることでも減圧され、
前記閉弁異常判定手段は、前記インジェクタからの燃料のリークに起因する前記実圧力の最大降下量を示す最大リーク減圧量を、前記インジェクタからの燃料のリーク量が前記インジェクタの性能規格の上限にあると仮定することにより推定し、前記他減圧量とすることを特徴とする燃料噴射装置。
The fuel injection device according to claim 1,
An injector that communicates with the common rail and injects fuel accumulated in the common rail into a cylinder of the engine;
The actual pressure is also reduced by fuel leaking from the injector,
The valve closing abnormality determining means sets a maximum leak pressure reduction amount indicating a maximum drop amount of the actual pressure due to a fuel leak from the injector, and a fuel leak amount from the injector as an upper limit of the performance standard of the injector. A fuel injection device characterized in that it is estimated by assuming that it is present, and the other decompression amount is set.
請求項2に記載の燃料噴射装置において、
前記閉弁異常判定手段は、前記エンジンが停止する時に実行されることを特徴とする燃料噴射装置。
The fuel injection device according to claim 2, wherein
The fuel injection device, wherein the valve closing abnormality determining means is executed when the engine is stopped.
請求項3に記載の燃料噴射装置において、
前記最大リーク減圧量は、前記インジェクタの内部の摺動部を通して燃料がリークする静的リークに起因する前記実圧力の最大降下量を示すことを特徴とする燃料噴射装置。
The fuel injection device according to claim 3, wherein
The maximum leak pressure reduction amount indicates a maximum drop amount of the actual pressure caused by a static leak in which fuel leaks through a sliding portion inside the injector.
請求項1に記載の燃料噴射装置において、
前記レール圧制御手段は、前記逃し量と前記実圧力との相関を示す減圧特性に基づき、前記指令値を算出することを特徴とする燃料噴射装置。
The fuel injection device according to claim 1,
The rail pressure control means calculates the command value based on a pressure reduction characteristic indicating a correlation between the relief amount and the actual pressure.
請求項5に記載の燃料噴射装置において、
前記実減圧量と、前記減圧特性により推定した推定減圧量との差に応じて、前記減圧特性を修正する減圧特性修正手段を備え、
前記閉弁異常判定手段は、前記減圧特性修正手段の実行により前記減圧特性が修正された後に実行されることを特徴とする燃料噴射装置。
The fuel injection device according to claim 5, wherein
In accordance with a difference between the actual decompression amount and the estimated decompression amount estimated by the decompression characteristic, the decompression characteristic correcting means for correcting the decompression characteristic is provided,
The fuel injection device according to claim 1, wherein the valve closing abnormality determining means is executed after the pressure reducing characteristic is corrected by execution of the pressure reducing characteristic correcting means.
請求項5に記載の燃料噴射装置において、
前記指令値は、前記減圧弁が開弁している期間を示す開指令期間であり、
前記閉弁異常判定手段は、前記実減圧量が前記判定減圧量以上であるときに、前記減圧特性に基づき算出された開指令期間よりも短い仮開指令期間を前記減圧弁に与えることで生じる前記実減圧量に応じて、前記減圧弁の閉弁動作に異常が発生しているか否かを判断することを特徴とする燃料噴射装置。
The fuel injection device according to claim 5, wherein
The command value is an open command period indicating a period during which the pressure reducing valve is open,
The valve closing abnormality determining means is generated by giving the pressure reducing valve a temporary opening command period shorter than the opening command period calculated based on the pressure reducing characteristic when the actual pressure reducing amount is equal to or larger than the determined pressure reducing amount. According to the actual pressure reduction amount, it is determined whether or not an abnormality has occurred in the valve closing operation of the pressure reducing valve.
請求項1ないし請求項7に記載の燃料噴射装置において、
前記コモンレールに燃料を加圧して供給する燃料供給ポンプを備え、
前記閉弁異常判定手段は、前記燃料供給ポンプによる燃料の供給量が、前記減圧弁の閉弁動作が正常である時よりも所定量以上に増加していると判定できるときに、前記減圧弁の閉弁動作に異常が発生していると判断することを特徴とする燃料噴射装置。
The fuel injection device according to any one of claims 1 to 7,
A fuel supply pump that pressurizes and supplies fuel to the common rail;
When the valve closing abnormality determining means can determine that the amount of fuel supplied by the fuel supply pump has increased to a predetermined amount or more than when the valve closing operation of the pressure reducing valve is normal, the pressure reducing valve It is determined that an abnormality has occurred in the valve closing operation of the fuel injection device.
JP2005072357A 2005-03-15 2005-03-15 Fuel injection device Expired - Fee Related JP4207010B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005072357A JP4207010B2 (en) 2005-03-15 2005-03-15 Fuel injection device
DE102006000117.6A DE102006000117B4 (en) 2005-03-15 2006-03-14 Fuel injection system that monitors an error in the operation of a pressure reducing valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005072357A JP4207010B2 (en) 2005-03-15 2005-03-15 Fuel injection device

Publications (2)

Publication Number Publication Date
JP2006257883A JP2006257883A (en) 2006-09-28
JP4207010B2 true JP4207010B2 (en) 2009-01-14

Family

ID=37097440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005072357A Expired - Fee Related JP4207010B2 (en) 2005-03-15 2005-03-15 Fuel injection device

Country Status (2)

Country Link
JP (1) JP4207010B2 (en)
DE (1) DE102006000117B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270511A (en) * 2008-05-08 2009-11-19 Toyota Motor Corp Device and method for diagnosing abnormality of fuel system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2116711B1 (en) 2008-05-08 2013-01-09 Toyota Jidosha Kabushiki Kaisha Malfunction diagnostic device and malfunction diagnostic method for fuel system
JP4930454B2 (en) * 2008-05-20 2012-05-16 株式会社デンソー Fuel supply control device and fuel supply system using the same
JP5454522B2 (en) 2011-07-11 2014-03-26 トヨタ自動車株式会社 Engine abnormality detection device
JP6330516B2 (en) * 2014-06-27 2018-05-30 トヨタ自動車株式会社 Abnormality judgment device for weight reduction valve
JP6197775B2 (en) * 2014-09-30 2017-09-20 トヨタ自動車株式会社 Abnormality judgment device for weight reduction valve
JP6197776B2 (en) * 2014-09-30 2017-09-20 トヨタ自動車株式会社 Abnormality judgment device for weight reduction valve
JP6172469B2 (en) * 2014-09-30 2017-08-02 トヨタ自動車株式会社 Abnormality judgment device for weight reduction valve
DE102016220123B4 (en) * 2016-10-14 2018-05-09 Continental Automotive Gmbh Method and device for plausibilizing the functionality of a high-pressure sensor of a fuel injection system of a motor vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19908352A1 (en) 1999-02-26 2000-08-31 Bosch Gmbh Robert Fuel injection method for an internal combustion engine
DE10020627A1 (en) 2000-04-27 2001-11-08 Bosch Gmbh Robert Method for operating a fuel supply system for an internal combustion engine, in particular a motor vehicle
JP2004011448A (en) 2002-06-04 2004-01-15 Nippon Soken Inc Decompression regulating valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270511A (en) * 2008-05-08 2009-11-19 Toyota Motor Corp Device and method for diagnosing abnormality of fuel system
JP4525793B2 (en) * 2008-05-08 2010-08-18 トヨタ自動車株式会社 Abnormality diagnosis apparatus and abnormality diagnosis method for fuel system

Also Published As

Publication number Publication date
DE102006000117B4 (en) 2018-12-20
JP2006257883A (en) 2006-09-28
DE102006000117A1 (en) 2006-11-30

Similar Documents

Publication Publication Date Title
JP4207010B2 (en) Fuel injection device
JP4321342B2 (en) Common rail fuel injection system
US8539934B2 (en) Injection abnormality detection method and common rail fuel injection control system
US9938924B2 (en) Control device and control method for fuel injection valve
JP2006200478A (en) Fuel injection device
US7171944B1 (en) High-pressure fuel pump control device for internal combustion
JP4363280B2 (en) Fuel injection device
JP2006291843A (en) Fuel injection device
JP2015059427A (en) Fuel injection control method and common rail type fuel injection control device
JP5454522B2 (en) Engine abnormality detection device
JP2013256888A (en) Rail pressure control method and common rail type fuel injection control device
JP5306109B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method for pressure sensor, and accumulator fuel injection apparatus
JP2006242091A (en) Fuel injection device
CN109154243B (en) Fuel injection valve energization control method and common rail type fuel injection control device
JP2011247123A (en) Device for diagnosis of failure in fuel temperature sensor, and accumulator fuel injection device
JP4415894B2 (en) Fuel injection device
JP5545823B2 (en) Control device for accumulator fuel injector
JP2009250144A (en) Pressure control solenoid valve driving method in common-rail fuel injection control device and common-rail fuel injection control device
JP6686508B2 (en) Internal combustion engine and fuel injection control method for internal combustion engine
JP2006002698A (en) Fuel injection device
JP2007077967A (en) Fuel injection device
JP2013217277A (en) Fuel kinematic viscosity calculation method, and common rail type fuel injection control device
JP2005155421A (en) Fuel injection device for internal combustion engine
JP7175849B2 (en) Pressure accumulation type fuel injection control device and control method for pressure accumulation type fuel injection control device
JP6094464B2 (en) Fuel injection control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081007

R150 Certificate of patent or registration of utility model

Ref document number: 4207010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees