JP4206545B2 - Manufacturing method of multilayer printed wiring board - Google Patents

Manufacturing method of multilayer printed wiring board Download PDF

Info

Publication number
JP4206545B2
JP4206545B2 JP3404399A JP3404399A JP4206545B2 JP 4206545 B2 JP4206545 B2 JP 4206545B2 JP 3404399 A JP3404399 A JP 3404399A JP 3404399 A JP3404399 A JP 3404399A JP 4206545 B2 JP4206545 B2 JP 4206545B2
Authority
JP
Japan
Prior art keywords
layer
hole
alignment
holes
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3404399A
Other languages
Japanese (ja)
Other versions
JP2000232267A (en
Inventor
隆 田▲舎▼
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP3404399A priority Critical patent/JP4206545B2/en
Publication of JP2000232267A publication Critical patent/JP2000232267A/en
Application granted granted Critical
Publication of JP4206545B2 publication Critical patent/JP4206545B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は移動体通信機器や携帯情報端末などの電子機器に広く用いられている多層プリント配線板の製造方法に関するものである。
【0002】
【従来の技術】
近年、電子機器の軽薄短小化、多機能化やプリント配線板に実装される電子部品の表面実装化に伴い、多層プリント配線板においても回路構成の高密度化が要求されている。従来、多層プリント配線板の層間接続には超硬ドリルを用いたNC制御加工によって貫通穴を設け、その穴壁面に銅めっきする貫通スルーホール法により行われていたが、多層プリント配線板の高密度回路構成が要求されるにつれて、層間接続を必要とされる任意の層にのみ層間接続ができるようにインナーバイアホールを設け、その穴壁面に銅めっきしたり、インナーバイアホールに導電性ペーストを充填したりするインナーバイアホール法により層間接続を行い、回路構成の高密度化を実現している。
【0003】
以下に従来の層間接続に導電ペーストを用いた4層プリント配線板の製造方法について説明する。
【0004】
図5(a)は従来の多層プリント配線板の内層基板を示す断面図であり、図5(b)は、従来の4層の多層プリント配線板を示す断面図であり、図6は従来のX線認識用インナーバイアホールを示す図である。
【0005】
図5、図6において、60はプリプレグ、60a,60cは層間絶縁用接着シシート、60bは内層基板、61,68は導電性ペーストを充填したインナーバイアホール、62,63はパターン形成時のアライメント用としてのX線認識用インナーバイアホール、64は銅はく、65,70はアライメント穴、66は内層導体回路、67は位置決めパターン、69は位置決め穴、71は外層導体回路、52b〜52eは導電性ペーストを充填したX線認識用インナーバイアホールであり、52aはアライメント穴である。
【0006】
以上のように構成された層間接続に導電性ペーストを用いた多層プリント配線板の製造方法の手順を以下に説明する。
【0007】
(1)まず、基材に樹脂を含浸した所定サイズのプリプレグ60に超硬ドリル、レーザー加工等の方法によって必要な位置に穴加工を行い、導電性ペーストを充填したインナーバイアホール61とX線認識用インナーバイアホール62,63(2層、4層)を形成した層間絶縁用接着シート60aを3枚形成する。
【0008】
(2)そのうちの1枚を図5(a)に示すように導電性ペーストを充填したインナーバイアホール61を形成した層間絶縁用接着シート60aの両側に銅箔64をセットし、熱プレス機によって加圧、加熱し銅箔とプリプレグを接着し、両面銅張積層板を形成する。
【0009】
(3)両面銅張積層板のX線認識用インナーバイアホール62(図6 52b〜52e)の形成領域より広い範囲でX線穴加工機でアライメント穴65(図652a)を加工する。
【0010】
その後この両面銅張積層板上に感光性エッチングレジストを形成し、上記のアライメント穴65を基準に露光用マスクフィルムの位置決めを行い、露光・現像にてエッチングレジストを形成し、塩化第2銅などの薬液を用いてエッチングを施し、内層導体回路66及び位置決めパターン67を形成した内層基板60bを1枚用意する。
【0011】
(4)(1)で形成した層間絶縁用接着シート60aの残り2枚の端部の所定位置に、超硬ドリル、レーザー光等の方法によって穴加工を行い位置決め穴69を形成し、層間絶縁用接着シート60cを2枚準備する。
【0012】
(5)内層基板60bの位置決めパターン69と層間絶縁用接着シート60cの位置決め穴69を基準マークとしてCCDカメラ等の認識及び位置合わせのアライメント方式により位置決めを行い、内層基板60bの外層両側に層間絶縁用接着シート60cを配置する。
【0013】
(6)さらにその両外側に銅箔を載置カシメにより仮止めし、熱圧着等の方法で仮圧着を行った後熱プレス機によって加圧・加熱し銅箔と層間絶縁用接着シート60c、及び内層基板60bを積層し、内層導体回路66を有する4層銅張積層板を形成する。
【0014】
(7)層間絶縁用接着シート60cに(1)の工程で形成されたX線認識用インナービアホール63の位置にX線穴加工機で図5(b)に示すようなアライメント穴70を加工形成する。
【0015】
(8)この4層銅張積層板上に感光性エッチングレジストを形成し、上記のアライメント穴70を基準に露光用マスクフィルムの位置決めを行い、露光・現像にてエッチングレジストを形成し、塩化第2銅などの薬液を用いてエッチングを施し、外層導体回路71を形成し、図5(a)に示すような4層の多層プリント配線板を形成する。
【0016】
(9)ソルダレジストや部品配置図及び外形加工を施し多層プリント配線板を完成する。
【0017】
【発明が解決しようとする課題】
しかしながら上記従来の方法では、層間絶縁用接着シート60cのインナーバイアホールと内層基板60bの導体回路との位置合わせ精度において、位置決め穴69と位置決めパターン67によるアライメント方式では、内層基板60b形成時の加熱積層時の歪みの影響を補正吸収できず、また層間絶縁用接着シート60cの位置決め穴69および内層基板60bのアライメント穴65の穴加工精度の確認ができないためズレ量や位置精度バラツキが大きくなるという問題点を有している。
【0018】
本発明は上記問題点を解決するためのもので、導電性ペーストを充填したインナーバイアホールと内層導体回路及び外層導体回路との位置ズレ量が低減可能である多層プリント配線板を実現し、多層プリント配線板の製造工程の歩留まりを向上させる多層プリント配線板の製造方法を提供することを目的とする。
【0019】
【課題を解決するための手段】
この問題を解決するために本発明の多層プリント配線板の製造方法は、インナーバイアホールおよび導電パターンを形成した絶縁板の周辺部分に、後で形成するアライメント穴と同等以上の径の円周上に複数個のX線認識用インナーバイアホールを設けた内層基板および外層基板を複数枚積層する方法を用いて多層プリント配線板を製造することであり、これによれば導電性ペーストで形成したインナーバイアホールと内層導体回路及び外層導体回路との位置ずれが極めて少ない多層プリント配線板が製造できる。
【0020】
【発明の実施の形態】
本発明の請求項1に記載した発明は、半硬化の絶縁樹脂層に導電性ペーストが充填されたインナーバイアホール及び前記絶縁樹脂層の周辺部分の一つの円周上に導電性ペーストが充填された複数個のX線認識用インナーバイアホールを形成する工程と、前記絶縁樹脂層の両外側に銅はくを重ね合わせて加圧加熱して内層用両面銅張積層板を形成する工程と、前記一つの円周上のX線認識用インナーバイアホールを基準に一つのアライメント穴を前記内層用両面銅張積層板にX線穴加工機にて形成する工程と、前記アライメント穴を基準として前記内層用両面銅張積層板上にエッチングレジストを形成する工程と、前記銅はくエッチングして導体回路と位置合わせマークを備えた内層材を形成する工程とを備え、前記複数個のX線認識用インナーバイアホールで形成された前記円周の径は、前記アライメント穴の径よりも大きいことを特徴とする多層プリント配線板の製造方法というもので、この方法によって反りや歪みが発生しやすい絶縁基板端部の複数個のX線認識インナーバイアホールの位置精度のバラツキを平均化し、これを基準にアライメント穴を加工することによって層間絶縁接着シートに形成した導電性ペーストを充填したインナーバイアホールと、内層導体回路および外層導体回路の位置ズレを抑制できるという作用を有する。
【0021】
また、この方法によって回路形成の位置補正が可能となり層間絶縁接着シートに形成した導電性ペーストを充填したインナーバイアホールと内層導体回路および外層導体回路の位置ズレを抑制できかつ、アライメント穴とX線認識インナーバイアホールとのズレ量も確認できるという作用を有する。
【0022】
請求項2記載の発明は、内層材を形成する工程の後、導電性ペーストが充填されたインナーバイアホール及び周辺部分の一つの円周上に導電性ペーストが充填された複数個のX線認識用インナーバイアホールを備えた層間絶縁用接着シートを準備する工程と、前記内層材の上面と下面に前記層間絶縁用接着シートを位置決めして重ね合わせ、その両外側に銅はくを重ね合わせて加圧加熱して多層用両面銅張積層板を形成する工程と、前記一つの円周上に複数個のX線認識用インナーバイアホールを基準に一つのアライメント穴を前記多層用両面銅張積層板にX線穴加工機にて形成する工程と、前記アライメント穴を基準として前記多層用両面銅張積層板上にエッチングレジストを形成する工程と、前記銅はくエッチングして導体回路を形成する工程とを備え、前記層間絶縁用接着シートの複数個のX線認識用インナーバイアホールで形成された前記円周の径は、前記多層用両面銅張積層板に形成された前記アライメント穴の径よりも大きいことを特徴とする請求項1に記載の多層プリント配線板の製造方法というものであり、内層材に設けたアライメント穴を基準に内層導体回路を、外層材に設けたアライメント穴を基準に外層導体回路を形成するため積層時のズレの影響が少なく、インナーバイアホールに対する導体回路の位置ズレを抑制できるという作用を有する。
【0023】
(実施の形態1)
本発明の一実施の形態である多層プリント配線板の製造方法について以下に説明する。
【0024】
図1,図2は本発明の実施の形態における多層プリント配線板の製造方法を示す断面図、図3は本発明の実施の形態における4層の銅張積層板の投影図、図4は本発明の実施の形態におけるX線認識用インナーバイアホールとアライメント穴との位置関係を示す図である。
【0025】
図1〜図4において、図1(a)は内層材の断面を示し、10は絶縁樹脂層、10aは内層材、11は導電性ペーストを充填したインナーバイアホール、12,13はパターン形成時のアライメント用としてのX線認識用インナーバイアホール、14,15は銅はく、図1(b)は絶縁樹脂層に設けたX線認識用インナーバイアホール12,13を基準にアライメント穴16,17を加工した時の断面であり、図1(c)は銅箔14,15をエッチングした内層導体回路18,21及び位置合わせマーク19,20を形成した時の断面図であり、図1(d),(e)は層間接着シートの断面図を示し、22,28は絶縁樹脂層10の上面、下面に重ね合わすための層間絶縁用接着シートであり、27,33は導電性ペーストを充填したインナーバイアホール、25,26,31,32はパターン形成時のアライメント用としてのX線認識用インナーバイアホール、23,24,29,30はインナーバイアホールで形成した位置合わせマークであり、図2(f)は絶縁樹脂層10と層間絶縁接着シート22,28と導電はくとしての銅はく34,35を重ね合わせた断面を示し、図2(g)は層間絶縁接着シート22,28に設けたX線認識用インナーバイアホール25,26,31,32を基準にアライメント穴36,37,38,39を加工した時の断面であり、図2(h)は銅はく34,35をエッチングした外層導体回路40,41を形成したときの断面図を示す。
【0026】
図3は4層の銅張積層板の投影図であり50aは4層の銅張積層板、50b〜50mはアライメント穴の加工時のX線認識用インナーバイアホールでの位置を示す。
【0027】
図4は図3に示すそれぞれの位置の詳細図であり、51b〜51eは導電性ペーストを充填したX線認識用インナーバイアホールであり、51aはアライメント穴を示す。
【0028】
以上のように構成された多層プリント配線板の製造方法について、以下にその工程のプロセスを説明する。
【0029】
(1)まず、アラミド不織布にエポキシ樹脂を含浸、半硬化して構成された絶縁樹脂層10に超硬ドリル、レーザー光、打ち抜き加工など任意の方法で穴加工を行い、その穴に導電性ペーストを充填し、導電性ペーストを充填したインナーバイアホール11及びパターン形成時アライメント用としてX線認識用インナーバイアホール12(図3の50e,50k)、13(図3の50b,50h)を絶縁樹脂層の周辺部分に形成する。このとき図4に示すようにX線認識用インナーバイアホール51b〜51eを形成する円周の径は、後で加工するアライメント穴径51aより大きくする。
【0030】
次に、この絶縁樹脂層10とほぼ同サイズの銅はく14,15を絶縁樹脂層10の両外側に重ね合わせカシメ、熱圧着などの任意の方法で仮固定し熱プレス機にて加圧、加熱して絶縁樹脂層10と銅はくを接着し、内層用両面銅張積層板を形成する。
【0031】
(2)次に、この内層用両面銅張積層板にアライメント露光を行う為に、内層材10に設けたX線認識用インナーバイアホール12(図3の50e,50k)、13(図3の50b,50h)を基準にアライメント穴16,17をX線穴加工機にて加工する。このとき外側に設けたX線認識用インナーバイアホールとアライメント穴との距離を測長器などで測定し穴加工時のズレがある場合は穴加工機の補正を行い精度良く穴加工を行う。
【0032】
(3)次に、この内層用両面銅張積層板の表面の銅はくを所定のエッチングレジストパターンを写真法、直接描画法など露光するときアライメント穴16,17に写真法であればフィルムの基準マークを、直接描画法であればデーター上の座標値を位置認識し一般的にアライメント法と呼ばれる方法で露光し、現像を施した後、塩化第2銅などの薬液を用いてエッチングを施し内層回路18,21を形成すると同時に、内層導体回路で形成した位置合わせマーク19,20を形成し図1(c)に示す内層材10aを得る。
【0033】
(4)次にこの内層材10aの上面、下面に重ね合わせる為の層間絶縁用接着シート18,19を形成する。このとき内層材を重ね合わせる為のインナーバイアホール23,24を設けた層間絶縁用接着シート22と、インナーバイアホール29,30を設けた層間絶縁用接着シート28にそれぞれパターン形成時アライメント用としてX線認識用インナーバイアホール25(図3の50f,50l)、26(図3の50c,50i)(上面)、31(図3の50g,50m)、32(図3の50d,50j)(下面)を各層とずらした位置かつ絶縁樹脂層の周辺部分に形成する。このとき図4に示すようにX線認識用インナーバイアホール51b〜51eを形成する円周の径は内層材と同様に後で加工するアライメント穴径51aより大きくする。
【0034】
(5)この内層材10aの上面、下面に図1(d),(e)で示す層間絶縁用接着シート22,28を内層材に設けた位置合わせマーク19,20と層間絶縁用接着シート22,28に設けた位置合わせマーク23,24,29,30を位置認識して一般にアライメント法と呼ばれる方法で内層材と層間絶縁用接着シート22,28の位置ズレが最小になるよう中心部分により位置決めし重ね合わせる。
【0035】
その後、この絶縁樹脂層10と層間絶縁用接着シート22,28とほぼ銅サイズの銅はく34,35を積層したそれらの両外側に図2(f)に示すように重ね合わせ、カシメ熱圧着などの任意の方法で仮固定し熱プレス機にて加圧、加熱して絶縁樹脂層10と銅はく34,35を接着し、4層銅張積層板を形成する。
【0036】
(6)この外層用両面銅張積層板にアライメント露光を行う為に、層間絶縁用接着シート22(上面)、28(下面)に設けたX線認識用インナーバイアホール25(図3の50f,50l)、26(図3の50c,50i)(上面)、31(図3の50g,50m)、32(図3の50d,50j)(下面)を基準にアライメント穴36,37(上面)、38,39(下面)をX線穴加工機にて加工する。このとき外側に設けたX線認識用インナーバイアホールとアライメント穴との距離を測長器などで測定し穴加工時のズレがある場合は穴加工機の補正を行い精度良く穴加工を行う。
【0037】
(7)この内層用両面銅張積層板の表面の銅はくを所定のエッチングレジストパターンを写真法、直接描画法など露光するときアライメント穴36,37(上面)、38,39(下面)に写真法であればフィルムの基準マークを、直接描画法であればデーター上の座標値を位置認識し一般的にアライメント法と呼ばれる方法で露光し、現像を施した後、塩化第2銅などの薬液を用いてエッチングを施し内層回路40,41を形成する。
【0038】
(8)そして電子部品の取付時にはんだ付けが不要な部分にソルダーレジストを形成し、表面層に金メッキなどの処理を施した後、ルータや金型、超硬ドリル、レーザーなどの任意の方法によって必要な外形形状に加工し、層間接続に導電ペーストを用いた4層の多層プリント配線板が完成する。
【0039】
本実施の形態と従来の層間絶縁用接着シートに導電性ペーストを充填したインナーバイアホール11と導体回路18,21との位置ズレ量は従来の方法で最大0.15mmであったが本実施の形態では0.05mm以内とすることができた。
【0040】
【発明の効果】
以上のように、本発明は層間接着用シートに導電性ペーストを充填した貫通穴加工時のX線認識用インナーバイアホールを絶縁基板の周辺部分に各層ずらした位置に数ヵ所複数個形成し、この複数個の中心上にそれぞれアライメント穴を加工する。加工後のアライメント穴と複数個のX線認識用インナーバイアホールとのズレ量を測長機などで確認した結果よりアライメント穴加工機の精度の向上を図り穴加工によるズレ量が低減しインナーバイアホールと導体回路との相対位置ズレを極めて少なくすることができる優れた多層配線板の製造方法を実現できるものである。
【図面の簡単な説明】
【図1】(a)本発明の実施の形態における多層プリント配線板の製造方法を示す内層材の断面図
(b)同内層材にアライメント穴を加工した時の断面図
(c)同内層導体回路を形成した時の断面図
(d)同層間接着シート(上面用)の断面図
(e)同層間接着シート(下面用)の断面図
【図2】(f)本発明の実施の形態における内層材と層間接着シートと銅はくを重ね合わせた断面図
(g)同アライメント穴を加工した時の断面図
(h)同外層導体回路を形成した時の断面図
【図3】本発明の実施の形態における4層の銅張積層板の投影図
【図4】
本発明の実施の形態におけるX線認識用インナーバイアホールとアライメント穴との位置関係を示す図
【図5】(a)従来の層間接続に導電性ペーストを用いたプリント配線板の構造を示す断面図
(b)従来の4層の多層プリント配線板の構造を示す断面図
【図6】従来のX線認識用インナーバイアホールとアライメント穴との位置関係を示す図
【符号の説明】
10 絶縁樹脂層
11 絶縁樹脂層に形成した導電性ペーストを充填したインナーバイアホール12,13 絶縁樹脂層に形成した導電性ペーストを充填したインナーバイアホールで形成したX線認識用インナーバイアホール
14,15 銅はく
16,17 内層導体回路形成用アライメント穴
18,21 内層導体回路
19,20 内層導体回路で形成した位置合わせマーク
22,28 層間絶縁用接着シート
23,24,29,30 絶縁樹脂層に形成した導電性ペーストを充填したインナーバイアホールで形成した位置合わせマーク
25,26,31,32 絶縁樹脂層に形成した導電性ペーストを充填したインナーバイアホールで形成したX線認識用インナーバイアホール
27,33 層間接着シートに形成した導電性ペーストを充填したインナーバイアホールで形成したX線認識用インナーバイアホール
34,35 銅はく
36,37,38,39 外層導体回路形成用アライメント穴
40,41 外層導体回路
50a 4層銅張積層板
50b〜50m アライメント穴加工時のX線認識用インナーバイアホールの位置
51a アライメント穴
51b〜51e X線認識用インナーバイアホール
52a アライメント穴
52b〜52e X線認識用インナーバイアホール
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a multilayer printed wiring board widely used in electronic devices such as mobile communication devices and portable information terminals.
[0002]
[Prior art]
2. Description of the Related Art In recent years, as electronic devices have become lighter, thinner, multifunctional, and surface mounted electronic components mounted on a printed wiring board, a multilayer printed wiring board is also required to have a higher circuit configuration. Conventionally, multi-layer printed wiring boards have been made by the through-through hole method in which through holes are provided by NC control processing using a carbide drill and the hole wall surface is plated with copper. As the density circuit configuration is required, an inner via hole is provided so that an interlayer connection can be made only to an arbitrary layer that requires an interlayer connection, and the hole wall surface is plated with copper, or a conductive paste is applied to the inner via hole. Interlayer connection is achieved by the inner via hole method that fills up, thereby realizing high density circuit configuration.
[0003]
A method for manufacturing a four-layer printed wiring board using a conductive paste for conventional interlayer connection will be described below.
[0004]
FIG. 5A is a sectional view showing an inner layer substrate of a conventional multilayer printed wiring board, FIG. 5B is a sectional view showing a conventional four-layer multilayer printed wiring board, and FIG. It is a figure which shows the inner via hole for X-ray recognition.
[0005]
5 and 6, 60 is a prepreg, 60a and 60c are interlayer insulating adhesive sheets, 60b is an inner substrate, 61 and 68 are inner via holes filled with conductive paste, and 62 and 63 are alignment patterns for pattern formation. X-ray recognition inner via hole, 64 is copper foil, 65 and 70 are alignment holes, 66 is an inner layer conductor circuit, 67 is a positioning pattern, 69 is a positioning hole, 71 is an outer layer conductor circuit, and 52b to 52e are conductive Is an inner via hole for X-ray recognition filled with a conductive paste, and 52a is an alignment hole.
[0006]
The procedure of the manufacturing method of the multilayer printed wiring board using the conductive paste for the interlayer connection configured as described above will be described below.
[0007]
(1) First, an inner via hole 61 filled with a conductive paste and an X-ray are formed in a prepreg 60 having a predetermined size impregnated with a resin by drilling holes at a required position by a method such as carbide drilling or laser processing. Three adhesive sheets 60a for interlayer insulation in which the inner via holes 62, 63 for recognition (two layers, four layers) are formed are formed.
[0008]
(2) One of them is set with copper foil 64 on both sides of an interlayer insulating adhesive sheet 60a having an inner via hole 61 filled with a conductive paste as shown in FIG. Pressure and heating are applied to bond the copper foil and prepreg to form a double-sided copper-clad laminate.
[0009]
(3) The alignment hole 65 (FIG. 652a) is processed with an X-ray hole processing machine in a range wider than the formation region of the X-ray recognition inner via hole 62 (FIGS. 52B to 52E) of the double-sided copper-clad laminate.
[0010]
Thereafter, a photosensitive etching resist is formed on the double-sided copper-clad laminate, the exposure mask film is positioned with reference to the alignment hole 65, the etching resist is formed by exposure and development, cupric chloride, etc. Etching is performed using the above chemical solution to prepare one inner layer substrate 60b on which the inner layer conductor circuit 66 and the positioning pattern 67 are formed.
[0011]
(4) A positioning hole 69 is formed at a predetermined position of the remaining two ends of the interlayer insulating adhesive sheet 60a formed in (1) by a method such as a carbide drill, laser light, etc. Two adhesive sheets 60c are prepared.
[0012]
(5) Using the positioning pattern 69 of the inner layer substrate 60b and the positioning hole 69 of the interlayer insulating adhesive sheet 60c as a reference mark, positioning is performed by an alignment method of recognition and alignment of a CCD camera or the like, and interlayer insulation is provided on both sides of the outer layer of the inner layer substrate 60b. An adhesive sheet 60c is disposed.
[0013]
(6) Further, the copper foil is temporarily fixed on both outer sides by caulking, and after temporarily pressing by a method such as thermocompression bonding, the copper foil and the interlayer insulating adhesive sheet 60c are pressed and heated by a heat press machine, And the inner layer board | substrate 60b is laminated | stacked and the 4 layer copper clad laminated board which has the inner layer conductor circuit 66 is formed.
[0014]
(7) An alignment hole 70 as shown in FIG. 5 (b) is formed in the interlayer insulating adhesive sheet 60c by an X-ray drilling machine at the position of the X-ray recognition inner via hole 63 formed in the step (1). To do.
[0015]
(8) A photosensitive etching resist is formed on the four-layer copper-clad laminate, the exposure mask film is positioned with reference to the alignment hole 70, and the etching resist is formed by exposure and development. Etching is performed using a chemical solution such as copper to form the outer conductor circuit 71, and a four-layer multilayer printed wiring board as shown in FIG. 5A is formed.
[0016]
(9) Finish the multilayer printed wiring board by applying solder resist, component layout and outline processing.
[0017]
[Problems to be solved by the invention]
However, in the above conventional method, in the alignment accuracy between the inner via hole of the interlayer insulating adhesive sheet 60c and the conductor circuit of the inner layer substrate 60b, the alignment method using the positioning hole 69 and the positioning pattern 67 is used for heating when forming the inner layer substrate 60b. The effect of distortion during stacking cannot be corrected and absorbed, and since it is not possible to confirm the drilling accuracy of the positioning hole 69 of the interlayer insulating adhesive sheet 60c and the alignment hole 65 of the inner layer substrate 60b, the amount of deviation and positional accuracy variation increase. Has a problem.
[0018]
The present invention has been made to solve the above problems, and realizes a multilayer printed wiring board capable of reducing the amount of positional deviation between an inner via hole filled with a conductive paste and an inner layer conductor circuit and an outer layer conductor circuit. It aims at providing the manufacturing method of the multilayer printed wiring board which improves the yield of the manufacturing process of a printed wiring board.
[0019]
[Means for Solving the Problems]
In order to solve this problem, the method of manufacturing a multilayer printed wiring board according to the present invention provides a peripheral portion of an insulating plate on which inner via holes and conductive patterns are formed on a circumference having a diameter equal to or larger than an alignment hole to be formed later. A multilayer printed wiring board is manufactured using a method of laminating a plurality of inner layer substrates and outer layer substrates provided with a plurality of inner via holes for X-ray recognition, and according to this, an inner layer formed of a conductive paste is used. A multilayer printed wiring board can be manufactured with very little misalignment between the via hole and the inner and outer layer conductor circuits.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
According to the first aspect of the present invention, an inner via hole in which a semi-cured insulating resin layer is filled with a conductive paste and a conductive paste is filled on one circumference of a peripheral portion of the insulating resin layer. Forming a plurality of inner via holes for X-ray recognition, forming a double-sided copper-clad laminate for the inner layer by superimposing copper foil on both outer sides of the insulating resin layer and pressurizing and heating, Forming an alignment hole in the inner-layer double-sided copper-clad laminate with an X-ray hole processing machine on the basis of the inner via hole for X-ray recognition on the one circumference, and using the alignment hole as a reference, A plurality of X-ray recognitions, comprising: forming an etching resist on a double-sided copper clad laminate for an inner layer; and etching the copper foil to form an inner layer material having a conductor circuit and an alignment mark. For inner A diameter of the circumference formed by a via hole is a manufacturing method of a multilayer printed wiring board characterized by being larger than a diameter of the alignment hole. Inner via hole filled with conductive paste formed on the interlayer insulating adhesive sheet by averaging the positional accuracy variation of the plurality of X-ray recognition inner via holes in the part and processing the alignment hole based on this, and inner layer It has the effect | action that the position shift of a conductor circuit and an outer layer conductor circuit can be suppressed.
[0021]
In addition, this method makes it possible to correct the position of the circuit formation, and to suppress the positional deviation between the inner via hole filled with the conductive paste formed on the interlayer insulating adhesive sheet, the inner layer conductor circuit, and the outer layer conductor circuit, and the alignment hole and the X-ray. The amount of deviation from the recognized inner via hole can be confirmed.
[0022]
According to the second aspect of the invention, after the step of forming the inner layer material, the inner via hole filled with the conductive paste and the plurality of X-ray recognitions filled with the conductive paste on one circumference of the peripheral portion Preparing an interlayer insulating adhesive sheet having an inner via hole, positioning and overlapping the interlayer insulating adhesive sheet on the upper and lower surfaces of the inner layer material, and overlaying copper foil on both outer sides thereof Forming a double-sided copper-clad laminate for multilayer by pressurizing and heating, and forming a single alignment hole on the circumference of the plurality of X-ray recognition inner via holes as a reference A step of forming an X-ray hole on the plate, a step of forming an etching resist on the double-sided copper-clad laminate for the multilayer on the basis of the alignment hole, and etching the copper to form a conductor circuit. And the diameter of the circumference formed by a plurality of inner via holes for X-ray recognition of the adhesive sheet for interlayer insulation is the diameter of the alignment hole formed in the double-sided copper-clad laminate for multilayers The multilayer printed wiring board manufacturing method according to claim 1, wherein the inner layer conductor circuit is based on the alignment hole provided in the inner layer material, and the alignment hole provided in the outer layer material is used as a reference. Since the outer layer conductor circuit is formed, the influence of the deviation at the time of lamination is small, and the positional deviation of the conductor circuit with respect to the inner via hole can be suppressed.
[0023]
(Embodiment 1)
The manufacturing method of the multilayer printed wiring board which is one embodiment of this invention is demonstrated below.
[0024]
1 and 2 are sectional views showing a method of manufacturing a multilayer printed wiring board according to an embodiment of the present invention, FIG. 3 is a projected view of a four-layer copper-clad laminate according to an embodiment of the present invention, and FIG. It is a figure which shows the positional relationship of the inner via hole for X-ray recognition and alignment hole in embodiment of invention.
[0025]
1 to 4, FIG. 1 (a) shows a cross section of an inner layer material, 10 is an insulating resin layer, 10a is an inner layer material, 11 is an inner via hole filled with conductive paste, and 12 and 13 are during pattern formation. X-ray recognition inner via holes 14 and 15 for copper alignment, and FIG. 1B shows alignment holes 16 and 13 based on the X-ray recognition inner via holes 12 and 13 provided in the insulating resin layer. FIG. 1C is a cross-sectional view when the inner layer conductor circuits 18 and 21 and the alignment marks 19 and 20 formed by etching the copper foils 14 and 15 are formed. d) and (e) are sectional views of the interlayer adhesive sheet, 22 and 28 are interlayer insulating adhesive sheets for overlapping the upper and lower surfaces of the insulating resin layer 10, and 27 and 33 are filled with conductive paste. Inner Via holes 25, 26, 31, and 32 are X-ray recognition inner via holes for alignment during pattern formation, and 23, 24, 29, and 30 are alignment marks formed by the inner via holes. f) shows a cross section in which the insulating resin layer 10, the interlayer insulating adhesive sheets 22 and 28, and the copper foils 34 and 35 as conductive foils are overlapped, and FIG. 2 (g) is provided on the interlayer insulating adhesive sheets 22 and 28. FIG. 2 (h) is a cross-sectional view when the alignment holes 36, 37, 38, 39 are processed with reference to the inner via holes 25, 26, 31, 32 for X-ray recognition. FIG. Sectional drawing when forming the outer-layer conductor circuits 40 and 41 which were made is shown.
[0026]
FIG. 3 is a projection view of a four-layer copper-clad laminate, where 50a is a four-layer copper-clad laminate, and 50b to 50m are positions in an inner via hole for X-ray recognition when processing an alignment hole.
[0027]
FIG. 4 is a detailed view of each position shown in FIG. 3, 51b to 51e are X-ray recognition inner via holes filled with conductive paste, and 51a is an alignment hole.
[0028]
The process of the process is demonstrated below about the manufacturing method of the multilayer printed wiring board comprised as mentioned above.
[0029]
(1) First, an insulating resin layer 10 formed by impregnating and semi-curing an epoxy resin into an aramid non-woven fabric is subjected to drilling by any method such as carbide drill, laser light, punching, etc., and conductive paste is put in the hole And the inner via hole 11 filled with the conductive paste and the inner via hole 12 for X-ray recognition (50e, 50k in FIG. 3) and 13 (50b, 50h in FIG. 3) for alignment during pattern formation are insulated resins. Formed in the peripheral part of the layer. At this time, as shown in FIG. 4, the diameter of the circumference forming the X-ray recognition inner via holes 51b to 51e is made larger than the alignment hole diameter 51a to be processed later.
[0030]
Next, copper foils 14 and 15 having substantially the same size as the insulating resin layer 10 are overlapped on both outer sides of the insulating resin layer 10 and temporarily fixed by any method such as caulking or thermocompression bonding, and then pressed by a hot press. Then, the insulating resin layer 10 and the copper foil are bonded by heating to form a double-sided copper clad laminate for the inner layer.
[0031]
(2) Next, in order to perform alignment exposure on this double-sided copper clad laminate for inner layer, X-ray recognition inner via holes 12 (50e, 50k in FIG. 3), 13 (FIG. 3) provided in the inner layer material 10 50b, 50h) is used as a reference to process the alignment holes 16, 17 with an X-ray hole processing machine. At this time, the distance between the inner via hole for X-ray recognition provided on the outside and the alignment hole is measured with a length measuring device or the like, and if there is a deviation during drilling, the drilling machine is corrected to perform drilling with high accuracy.
[0032]
(3) Next, when exposing the copper foil on the surface of the double-sided copper clad laminate for inner layer to a predetermined etching resist pattern such as photographic method, direct drawing method, etc. If the fiducial mark is a direct drawing method, the coordinate value on the data is recognized, exposed by a method generally called alignment method, developed, and then etched using a chemical such as cupric chloride. Simultaneously with the formation of the inner layer circuits 18 and 21, the alignment marks 19 and 20 formed with the inner layer conductor circuit are formed to obtain the inner layer material 10a shown in FIG.
[0033]
(4) Next, interlayer insulating adhesive sheets 18 and 19 are formed to overlap the upper and lower surfaces of the inner layer material 10a. At this time, the interlayer insulating adhesive sheet 22 provided with the inner via holes 23 and 24 for overlaying the inner layer material and the interlayer insulating adhesive sheet 28 provided with the inner via holes 29 and 30 are respectively used for alignment during pattern formation. Inner via holes 25 for line recognition (50f, 50l in FIG. 3), 26 (50c, 50i in FIG. 3) (upper surface), 31 (50g, 50m in FIG. 3), 32 (50d, 50j in FIG. 3) (lower surface) ) At a position shifted from each layer and in the peripheral portion of the insulating resin layer. At this time, as shown in FIG. 4, the diameter of the circumference forming the inner via holes 51b to 51e for X-ray recognition is made larger than the alignment hole diameter 51a to be processed later in the same manner as the inner layer material.
[0034]
(5) The alignment marks 19 and 20 provided with the interlayer insulating adhesive sheets 22 and 28 shown in FIGS. 1D and 1E on the upper and lower surfaces of the inner layer material 10a and the interlayer insulating adhesive sheet 22 , 28 is used to recognize the position of the alignment marks 23, 24, 29, 30 and is positioned by the central portion so that the positional deviation between the inner layer material and the interlayer insulating adhesive sheets 22, 28 is minimized by a method generally called an alignment method. And superimpose.
[0035]
Thereafter, the insulating resin layer 10, the interlayer insulating adhesive sheets 22 and 28, and the copper foils 34 and 35 having substantially the same size as the copper are laminated on both outer sides as shown in FIG. The insulating resin layer 10 and the copper foils 34 and 35 are bonded by temporary fixing by an arbitrary method such as pressurization and heating with a hot press machine to form a four-layer copper-clad laminate.
[0036]
(6) In order to perform alignment exposure on this double-sided copper clad laminate for outer layer, an inner via hole 25 for X-ray recognition (50f, FIG. 3) provided on the interlayer insulating adhesive sheets 22 (upper surface) and 28 (lower surface). 50l), 26 (50c, 50i in FIG. 3) (upper surface), 31 (50g, 50m in FIG. 3), 32 (50d, 50j in FIG. 3) (lower surface), alignment holes 36, 37 (upper surface), 38 and 39 (lower surface) are processed by an X-ray hole processing machine. At this time, the distance between the inner via hole for X-ray recognition provided on the outside and the alignment hole is measured with a length measuring device or the like, and if there is a deviation during drilling, the drilling machine is corrected to perform drilling with high accuracy.
[0037]
(7) When exposing the copper foil on the surface of the double-sided copper clad laminate for inner layer to a predetermined etching resist pattern such as photographic method and direct drawing method, the alignment holes 36, 37 (upper surface), 38, 39 (lower surface) If it is a photographic method, the reference mark of the film is recognized, and if it is a direct drawing method, the coordinate value on the data is recognized and exposed by a method generally called an alignment method. Etching is performed using a chemical solution to form inner layer circuits 40 and 41.
[0038]
(8) After solder resist is formed on the parts that do not require soldering when electronic parts are mounted and the surface layer is treated with gold plating, etc., by any method such as router, mold, carbide drill, laser, etc. A four-layer multilayer printed wiring board using a conductive paste for interlayer connection is completed by processing into the required outer shape.
[0039]
In this embodiment and the conventional interlayer insulating adhesive sheet, the positional deviation between the inner via hole 11 in which the conductive paste is filled and the conductor circuits 18 and 21 is 0.15 mm at the maximum by the conventional method. The form could be within 0.05 mm.
[0040]
【The invention's effect】
As described above, the present invention forms a plurality of X-ray-recognizing inner via holes at a position shifted from each layer in the peripheral portion of the insulating substrate when processing through-holes filled with conductive paste in an interlayer adhesive sheet, An alignment hole is formed on each of the plurality of centers. As a result of confirming the amount of deviation between the alignment hole after machining and multiple inner via holes for X-ray recognition with a length measuring machine, etc., the accuracy of the alignment hole machine is improved and the amount of deviation due to hole machining is reduced, resulting in an inner via It is possible to realize an excellent method for manufacturing a multilayer wiring board capable of extremely reducing the relative positional deviation between the hole and the conductor circuit.
[Brief description of the drawings]
1A is a cross-sectional view of an inner layer material showing a method for manufacturing a multilayer printed wiring board according to an embodiment of the present invention; FIG. 1B is a cross-sectional view when an alignment hole is machined in the inner layer material; Sectional view when a circuit is formed (d) Sectional view of the same interlayer adhesive sheet (for the upper surface) (e) Sectional view of the same interlayer adhesive sheet (for the lower surface) FIG. 2 (f) (f) in the embodiment of the present invention Cross-sectional view of inner layer material, interlayer adhesive sheet and copper foil superimposed (g) Cross-sectional view when alignment hole is processed (h) Cross-sectional view when outer-layer conductor circuit is formed [FIG. 3] FIG. 4 is a projected view of a four-layer copper-clad laminate in the embodiment.
The figure which shows the positional relationship of the inner via hole for X-ray recognition and alignment hole in embodiment of this invention. [FIG. 5] (a) Section which shows the structure of the printed wiring board which used the electrically conductive paste for the conventional interlayer connection FIG. 6B is a cross-sectional view showing the structure of a conventional four-layer multilayer printed wiring board. FIG. 6 is a diagram showing the positional relationship between a conventional X-ray recognition inner via hole and an alignment hole.
DESCRIPTION OF SYMBOLS 10 Insulating resin layer 11 Inner via hole 12 and 13 filled with the conductive paste formed in the insulating resin layer X-ray recognition inner via hole 14 formed with the inner via hole filled with the conductive paste formed in the insulating resin layer, 15 Copper foil 16, 17 Inner layer conductor circuit forming alignment holes 18, 21 Inner layer conductor circuits 19, 20 Alignment marks 22 and 28 formed by inner layer conductor circuits Interlayer insulating adhesive sheets 23, 24, 29, 30 Insulating resin layer Alignment marks 25, 26, 31, 32 formed by inner via holes filled with conductive paste formed on the inner via hole for X-ray recognition formed by inner via holes filled with conductive paste formed on the insulating resin layer 27,33 Inner filled with conductive paste formed on interlayer adhesive sheet Inner via holes 34, 35 for copper X-ray recognition formed by ear holes 36, 37, 38, 39 Alignment holes 40, 41 for forming outer layer conductor circuits 50a, outer layer conductor circuits 50a, four layer copper clad laminates 50b-50m X-ray recognition inner via hole position 51a Alignment holes 51b to 51e X-ray recognition inner via hole 52a Alignment holes 52b to 52e X-ray recognition inner via hole

Claims (2)

  1. 半硬化の絶縁樹脂層に導電性ペーストが充填されたインナーバイアホール及び前記絶縁樹脂層の周辺部分の一つの円周上に導電性ペーストが充填された複数個のX線認識用インナーバイアホールを形成する工程と、
    前記絶縁樹脂層の両外側に銅はくを重ね合わせて加圧加熱して内層用両面銅張積層板を形成する工程と、
    前記一つの円周上のX線認識用インナーバイアホールを基準に一つのアライメント穴を前記内層用両面銅張積層板にX線穴加工機にて形成する工程と、
    前記アライメント穴を基準として前記内層用両面銅張積層板上にエッチングレジストを形成する工程と、
    前記銅はくエッチングして導体回路と位置合わせマークを備えた内層材を形成する工程とを備え、
    前記複数個のX線認識用インナーバイアホールで形成された前記円周の径は、前記アライメント穴の径よりも大きいことを特徴とする多層プリント配線板の製造方法。
    An inner via hole filled with a conductive paste in a semi-cured insulating resin layer and a plurality of X-ray recognition inner via holes filled with a conductive paste on one circumference of the peripheral portion of the insulating resin layer Forming, and
    A step of forming a double-sided copper-clad laminate for an inner layer by superimposing copper foil on both outer sides of the insulating resin layer and pressurizing and heating;
    Forming an alignment hole in the double-sided copper-clad laminate for inner layer with an X-ray hole processing machine based on the inner via hole for X-ray recognition on the one circumference;
    Forming an etching resist on the double-sided copper clad laminate for inner layer with reference to the alignment hole;
    And a step of etching the copper foil to form an inner layer material having a conductor circuit and an alignment mark,
    A method of manufacturing a multilayer printed wiring board, wherein a diameter of the circumference formed by the plurality of X-ray recognition inner via holes is larger than a diameter of the alignment hole.
  2. 内層材を形成する工程の後、
    導電性ペーストが充填されたインナーバイアホール及び周辺部分の一つの円周上に導電性ペーストが充填された複数個のX線認識用インナーバイアホールを備えた層間絶縁用接着シートを準備する工程と、
    前記内層材の上面と下面に前記層間絶縁用接着シートを位置決めして重ね合わせ、その両外側に銅はくを重ね合わせて加圧加熱して多層用両面銅張積層板を形成する工程と、
    前記一つの円周上に複数個のX線認識用インナーバイアホールを基準に一つのアライメント穴を前記多層用両面銅張積層板にX線穴加工機にて形成する工程と、
    前記アライメント穴を基準として前記多層用両面銅張積層板上にエッチングレジストを形成する工程と、前記銅はくエッチングして導体回路を形成する工程とを備え、
    前記層間絶縁用接着シートの複数個のX線認識用インナーバイアホールで形成された前記円周の径は、前記多層用両面銅張積層板に形成された前記アライメント穴の径よりも大きいことを特徴とする請求項1に記載の多層プリント配線板の製造方法。
    After the step of forming the inner layer material,
    Providing an interlayer insulating adhesive sheet having an inner via hole filled with a conductive paste and a plurality of X-ray recognition inner via holes filled with a conductive paste on one circumference of a peripheral portion; ,
    Positioning and overlaying the interlayer insulation adhesive sheet on the upper and lower surfaces of the inner layer material, overlaying copper foil on both outer sides and pressurizing and heating to form a multilayer double-sided copper-clad laminate,
    Forming one alignment hole in the multilayer double-sided copper-clad laminate with an X-ray hole processing machine based on a plurality of X-ray recognition inner via holes on the one circumference;
    A step of forming an etching resist on the double-sided copper-clad laminate for multilayers based on the alignment hole, and a step of forming a conductor circuit by etching the copper foil,
    The diameter of the circumference formed by the plurality of X-ray recognition inner via holes of the interlayer insulating adhesive sheet is larger than the diameter of the alignment hole formed in the multilayer double-sided copper-clad laminate. The manufacturing method of the multilayer printed wiring board of Claim 1 characterized by the above-mentioned.
JP3404399A 1999-02-12 1999-02-12 Manufacturing method of multilayer printed wiring board Expired - Fee Related JP4206545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3404399A JP4206545B2 (en) 1999-02-12 1999-02-12 Manufacturing method of multilayer printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3404399A JP4206545B2 (en) 1999-02-12 1999-02-12 Manufacturing method of multilayer printed wiring board

Publications (2)

Publication Number Publication Date
JP2000232267A JP2000232267A (en) 2000-08-22
JP4206545B2 true JP4206545B2 (en) 2009-01-14

Family

ID=12403302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3404399A Expired - Fee Related JP4206545B2 (en) 1999-02-12 1999-02-12 Manufacturing method of multilayer printed wiring board

Country Status (1)

Country Link
JP (1) JP4206545B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100576486C (en) * 2005-05-20 2009-12-30 筑波精工株式会社 Electrostatic holding apparatus and the electrostatic tweezers that uses it

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4094286B2 (en) * 2000-12-19 2008-06-04 住友ベークライト株式会社 Alignment method
JP2002314249A (en) * 2001-04-11 2002-10-25 Mitsubishi Electric Corp Method for manufacturing multilayer substrate
CN101543144B (en) * 2007-03-14 2012-12-05 松下电器产业株式会社 Recognition mark, and circuit substrate manufacturing method
JP5347888B2 (en) * 2009-10-08 2013-11-20 パナソニック株式会社 Manufacturing method of multilayer printed wiring board
CN103813640A (en) * 2012-11-12 2014-05-21 北大方正集团有限公司 All printed circuit board and manufacturing method thereof
JP6332665B2 (en) * 2012-12-28 2018-05-30 日立化成株式会社 Manufacturing method of multilayer wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100576486C (en) * 2005-05-20 2009-12-30 筑波精工株式会社 Electrostatic holding apparatus and the electrostatic tweezers that uses it

Also Published As

Publication number Publication date
JP2000232267A (en) 2000-08-22

Similar Documents

Publication Publication Date Title
KR101024166B1 (en) Circuit board and manufacturing method thereof
KR20040053734A (en) Flex rigid print circuit printed board and manufacturing method thereof
JP2004327510A (en) Copper-plated laminated board for multilayered printed wiring board, multilayered printed wiring board and method of manufacturing the same
US20060180344A1 (en) Multilayer printed wiring board and process for producing the same
JPH0575269A (en) Manufacture of multilayer printed-wiring board
WO2010113448A1 (en) Manufacturing method for circuit board, and circuit board
KR100751470B1 (en) Multilayer board and its manufacturing method
JP2008258357A (en) Rigid flexible board and manufacturing method thereof
JP4206545B2 (en) Manufacturing method of multilayer printed wiring board
JP2004214393A (en) Method for producing multilayer wiring board
JP2006324378A (en) Multilayer printed wiring board and its manufacturing process
JP2005109299A (en) Multilayer wiring board and its manufacturing method
KR100895241B1 (en) Method for manufacturing substrate for package
KR20010005137A (en) Method of manufacturing multi-layer printed circuit board
JP5359757B2 (en) Multi-layer printed wiring board position recognition mark
JP2009049444A (en) Method of manufacturing multilayer circuit board
JP2008258358A (en) Rigid flexible board and manufacturing method thereof
KR101887754B1 (en) Rigid flexible circuit board manufacturing method
JP3471616B2 (en) Manufacturing method of multilayer printed wiring board
JP2003115661A (en) Method of manufacturing multilayer circuit board
JP2004079703A (en) Multilayer substrate and manufacturing method of same
JP3923408B2 (en) Manufacturing method of multilayer printed wiring board
JP4637389B2 (en) Manufacturing method of multilayer wiring board
JP3904401B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP2007335630A (en) Flexible rigid printed wiring board, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060130

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081007

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees