JP4205601B2 - Carbon monoxide gas sensor and method for manufacturing P-type semiconductor - Google Patents

Carbon monoxide gas sensor and method for manufacturing P-type semiconductor Download PDF

Info

Publication number
JP4205601B2
JP4205601B2 JP2004024002A JP2004024002A JP4205601B2 JP 4205601 B2 JP4205601 B2 JP 4205601B2 JP 2004024002 A JP2004024002 A JP 2004024002A JP 2004024002 A JP2004024002 A JP 2004024002A JP 4205601 B2 JP4205601 B2 JP 4205601B2
Authority
JP
Japan
Prior art keywords
carbon monoxide
type semiconductor
monoxide gas
gas sensor
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004024002A
Other languages
Japanese (ja)
Other versions
JP2005214868A (en
Inventor
一久 蓮見
弘二 菅野
博明 柳田
治 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Mikuni Corp
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp, Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Mikuni Corp
Priority to JP2004024002A priority Critical patent/JP4205601B2/en
Publication of JP2005214868A publication Critical patent/JP2005214868A/en
Application granted granted Critical
Publication of JP4205601B2 publication Critical patent/JP4205601B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、一酸化炭素ガス(COガス)を選択性良く検出する一酸化炭素ガスセンサ、及び同センサを構成するP型半導体の製造方法に関する。   The present invention relates to a carbon monoxide gas sensor that detects carbon monoxide gas (CO gas) with high selectivity, and a method of manufacturing a P-type semiconductor that constitutes the sensor.

従来、環境中のガスの検出に半導体式のガスセンサが使用されている(例えば、特許文献1参照)。このセンサは、金属酸化物からなるN型半導体と、P型半導体とを接触させた状態で高温に保ち、両半導体の接触部に環境中のガスが接触する際に、センサの抵抗値が変化すること利用してこの抵抗値変化を電気的に検出している(P−N式センサ)。   Conventionally, a semiconductor type gas sensor has been used to detect gas in the environment (for example, see Patent Document 1). This sensor keeps the N-type semiconductor made of metal oxide and P-type semiconductor in contact with each other at a high temperature, and the resistance value of the sensor changes when the environmental gas contacts the contact part of both semiconductors. This change in resistance value is detected electrically (PN sensor).

このセンサは、一酸化炭素ガス以外にメタン、エタノール、酢酸エチル等の各種有機ガスを同時に感度良く検出でき、汎用的なセンサとして好ましいものであるが、特定のガスのみを選択性良く検出する用途には向いていない。   This sensor can detect various organic gases such as methane, ethanol, and ethyl acetate in addition to carbon monoxide gas at the same time with good sensitivity, and is preferable as a general-purpose sensor. Not suitable for.

例えば、一酸化炭素ガスは、1000ppm程度存在しても、人体に重大な影響を与える有毒ガスである。従って、人体の環境安全のために一酸化炭素ガスを測定する場合は数100ppm程度の濃度の一酸化炭素ガスを検出できるセンサが必要になる。   For example, carbon monoxide gas is a toxic gas that has a significant effect on the human body even when present at about 1000 ppm. Therefore, when measuring carbon monoxide gas for the environmental safety of the human body, a sensor capable of detecting carbon monoxide gas with a concentration of about several hundred ppm is required.

従来のガスセンサは、数100ppm程度の一酸化炭素ガスを検出できる性能を備えている。しかし、上述のように従来のガスセンサは同時に有機ガスにも感応するので、有機ガスが存在する環境下においては、一酸化炭素ガスが存在しなくても、一酸化炭素ガスが存在するかのように誤動作を起す。特に、エタノール等は室内に高濃度で存在する場合があるので、これによる誤動作の機会は多くなり、正確な一酸化炭素ガスの検出が行えない問題がある。   The conventional gas sensor has a performance capable of detecting carbon monoxide gas of about several hundred ppm. However, as described above, the conventional gas sensor is also sensitive to the organic gas at the same time. Therefore, in the environment where the organic gas is present, the carbon monoxide gas is present even if the carbon monoxide gas is not present. Cause malfunction. In particular, since ethanol or the like may be present in a room at a high concentration, there are many opportunities for malfunction due to this, and there is a problem that accurate detection of carbon monoxide gas cannot be performed.

特許第3081244号(請求項1)Patent No. 3081244 (Claim 1)

本発明者らは、上記問題を解決するために種々検討している内に、N型半導体とP型半導体とを接触させて構成するP−N式センサのP型半導体にLa化合物を添加すると、一酸化炭素ガスを選択的に高感度で検出できることを見出した。更に検討をした結果、La化合物に加えて、Bi化合物を併用する場合は、更に一酸化炭素ガスの選択性を向上できることを見出した。   While the inventors have made various studies to solve the above problem, when a La compound is added to a P-type semiconductor of a PN-type sensor configured by contacting an N-type semiconductor and a P-type semiconductor. The present inventors have found that carbon monoxide gas can be selectively detected with high sensitivity. As a result of further investigation, it was found that the selectivity of carbon monoxide gas can be further improved when a Bi compound is used in combination with the La compound.

本発明は、上記発見に基づいて完成するに至ったもので、その目的とするところは、一酸化炭素ガス検出の選択性が高く、有機ガスの共存下においても正確に一酸化炭素ガス濃度を検出することのできる一酸化炭素ガスセンサ、及び同センサ製造用P型半導体の製造方法を提供することにある。   The present invention has been completed on the basis of the above discovery, and its object is to have high selectivity for detecting carbon monoxide gas, and to accurately control the concentration of carbon monoxide gas even in the presence of organic gas. An object of the present invention is to provide a carbon monoxide gas sensor that can be detected and a method for manufacturing a P-type semiconductor for manufacturing the sensor.

上記課題を達成するために、本発明は以下のように構成される。   In order to achieve the above object, the present invention is configured as follows.

〔1〕 La元素をCu元素に対して1〜10モル%含有するCuOを母材とするP型半導体と、ZnOを母材とするN型半導体とを圧接させてなる一酸化炭素ガスセンサ。   [1] A carbon monoxide gas sensor formed by press-contacting a P-type semiconductor containing CuO containing 1 to 10 mol% of La element as a base material and an N-type semiconductor containing ZnO as a base material.

〔2〕 La元素とBi元素とを、Cu元素に対してそれぞれ1〜10モル%含有するCuOを母材とするP型半導体と、ZnOを母材とするN型半導体とを圧接させてなる一酸化炭素ガスセンサ。   [2] A P-type semiconductor containing CuO containing 1 to 10 mol% of La element and Bi element as a base material and an N-type semiconductor containing ZnO as a base material, respectively. Carbon monoxide gas sensor.

〔3〕 La元素とBi元素とのモル比が6:4〜4:6である〔2〕に記載の一酸化炭素ガスセンサ。   [3] The carbon monoxide gas sensor according to [2], wherein the molar ratio of La element to Bi element is 6: 4 to 4: 6.

〔4〕 La元素が、LaOCl化合物として含有されている〔1〕乃至〔3〕の何れかに記載の一酸化炭素ガスセンサ。   [4] The carbon monoxide gas sensor according to any one of [1] to [3], wherein the La element is contained as a LaOCl compound.

〔5〕 CuOに、Cu元素に対して1〜10モル%のLa元素に相当するLaCl3又はLaOClを添加して加圧成形し、次いで酸化雰囲気中で650〜950℃で焼成する一酸化炭素ガスセンサ用P型半導体の製造方法。 [5] Carbon monoxide which is pressure-molded by adding LaCl 3 or LaOCl corresponding to 1 to 10 mol% of La element to Cu element and then firing at 650 to 950 ° C. in an oxidizing atmosphere Manufacturing method of P-type semiconductor for gas sensor.

〔6〕 CuOに、Cu元素に対して1〜10モル%のLa元素に相当するLaCl3又はLaOClと、Cu元素に対してBi元素が1〜10モル%に相当するBiCl3を添加して加圧成形し、次いで酸化雰囲気中で650〜950℃で焼成する一酸化炭素ガスセンサ用P型半導体の製造方法。 [6] to CuO, were added and LaCl 3 or LaOCl equivalent to 10 mol% of La element relative to Cu, the BiCl 3 of Bi element corresponds to 1 to 10 mol% based on Cu element A method for producing a P-type semiconductor for a carbon monoxide gas sensor, which is pressure-molded and then fired at 650 to 950 ° C. in an oxidizing atmosphere.

本発明一酸化炭素ガスセンサにおいては、N型半導体とP型半導体とを圧接させて構成するP−N式センサのP型半導体にLa化合物を添加したので、一酸化炭素ガスの検出選択性が高い。更に、La化合物に加えてBi化合物をP型半導体に添加する場合は、更に一酸化炭素ガス検出の選択性を向上できる。   In the carbon monoxide gas sensor according to the present invention, the La compound is added to the P-type semiconductor of the PN sensor configured by press-contacting the N-type semiconductor and the P-type semiconductor, so that the detection selectivity of the carbon monoxide gas is high. . Furthermore, when a Bi compound is added to the P-type semiconductor in addition to the La compound, the selectivity for detecting carbon monoxide gas can be further improved.

以下、本発明の一酸化炭素ガスセンサの一実施形態につき、図面を参照して詳細に説明する。   Hereinafter, an embodiment of the carbon monoxide gas sensor of the present invention will be described in detail with reference to the drawings.

図1(A)中、2は本発明の一酸化炭素ガスセンサの一例を示す側面図で、4及び6はアルミナ等の耐熱性及び絶縁性を有するセラミック基板である。前記セラミック基板4、6の互いに対向する面には、素子電極8、10が形成されている。   In FIG. 1A, 2 is a side view showing an example of the carbon monoxide gas sensor of the present invention, and 4 and 6 are ceramic substrates having heat resistance and insulation properties such as alumina. Element electrodes 8 and 10 are formed on the surfaces of the ceramic substrates 4 and 6 facing each other.

前記素子電極8には、P型半導体素子12が形成されている。また、前記素子電極10にはN型半導体素子14が形成されている。これらP型半導体素子12と、N型半導体素子14とは、圧接面16で、互いに圧接されている。圧接圧力は30KPa以上が好ましい。   A P-type semiconductor element 12 is formed on the element electrode 8. An N-type semiconductor element 14 is formed on the element electrode 10. The P-type semiconductor element 12 and the N-type semiconductor element 14 are in pressure contact with each other at the pressure contact surface 16. The pressing pressure is preferably 30 KPa or more.

前記セラミック基板4、6の、素子電極8、10形成面と反対面には、白金等の電気抵抗体薄膜を蛇行させて焼結したヒータ18、20が形成され、そのヒータ18、20の両端はそれぞれヒータ電極22、24、26、28に接続されている。なお、図1(B)は、上記一酸化炭素ガスセンサの平面図である。   On the surface of the ceramic substrates 4 and 6 opposite to the surface on which the device electrodes 8 and 10 are formed, heaters 18 and 20 are formed by meandering and sintering an electric resistor thin film such as platinum, and both ends of the heaters 18 and 20 are formed. Are connected to the heater electrodes 22, 24, 26, 28, respectively. FIG. 1B is a plan view of the carbon monoxide gas sensor.

上記構成の一酸化炭素ガスセンサにおいて、P型半導体素子12は、CuOを母体とする。P型半導体素子12は、更にLa元素をCu元素に対して1〜10モル%、好ましくは3〜7モル%含有する。La元素を含む化合物としては、LaOClが好ましい。La元素の添加量が1モル%未満の場合は、得られる一酸化炭素ガスセンサの一酸化炭素に対する選択性が低くなる。La元素の添加量が10モル%を超える場合は、P型半導体を製造する際の成形性が悪くなる。   In the carbon monoxide gas sensor having the above configuration, the P-type semiconductor element 12 has CuO as a base material. The P-type semiconductor element 12 further contains La element in an amount of 1 to 10 mol%, preferably 3 to 7 mol% with respect to the Cu element. As the compound containing La element, LaOCl is preferable. When the addition amount of La element is less than 1 mol%, the selectivity of the obtained carbon monoxide gas sensor to carbon monoxide is low. When the addition amount of La element exceeds 10 mol%, the moldability at the time of manufacturing a P-type semiconductor is deteriorated.

このP型半導体素子12の製造方法としては、CuOに上記計算量のLaCl3・7H2OまたはLaOClを添加して成形し、650〜950℃の酸化雰囲気下で焼成する方法が例示できる。焼成時間は10分〜1時間が好ましい。焼成することにより、La化合物はLaOClに変化していることがμ−X線回折による分析により確認されている。LaCl3は水溶性であるので、CuOに均一に分散しやすく、好ましいP型半導体原料である。これに対し、LaOClは非水溶性であるので、CuO中に均一に分散させる観点からはLaCl3に劣る。しかし、LaOClを用いる場合は、得られるセンサは選択性の高いものになる。 An example of a method for manufacturing the P-type semiconductor element 12 is a method in which the calculated amount of LaCl 3 .7H 2 O or LaOCl is added to CuO and molded, and then fired in an oxidizing atmosphere at 650 to 950 ° C. The firing time is preferably 10 minutes to 1 hour. It has been confirmed by the analysis by μ-X-ray diffraction that the La compound is changed to LaOCl by firing. Since LaCl 3 is water-soluble, it can be easily dispersed uniformly in CuO and is a preferred P-type semiconductor material. On the other hand, since LaOCl is water-insoluble, it is inferior to LaCl3 from the viewpoint of being uniformly dispersed in CuO. However, when using LaOCl, the resulting sensor is highly selective.

上記P型半導体素子12には、更にBi元素をCu元素に対して1〜10モル%、好ましくは3〜7モル%含有させても良い。Bi元素を含有させることにより、更に一酸化炭素ガスに対するセンサの検出選択性が高まる。
Bi元素を含む化合物としては、BiCl3が好ましい。Bi元素の添加量が1モル%未満の場合は、得られる一酸化炭素ガスセンサの一酸化炭素に対する選択性が低くなる。Bi元素の添加量が10モル%を超える場合は、P型半導体を製造する際の成形性が悪くなる。
The P-type semiconductor element 12 may further contain Bi element in an amount of 1 to 10 mol%, preferably 3 to 7 mol% with respect to the Cu element. By containing Bi element, the detection selectivity of the sensor with respect to carbon monoxide gas further increases.
BiCl 3 is preferred as the compound containing Bi element. When the amount of Bi element added is less than 1 mol%, the selectivity of the obtained carbon monoxide gas sensor to carbon monoxide is low. When the addition amount of Bi element exceeds 10 mol%, the moldability at the time of manufacturing a P-type semiconductor is deteriorated.

Bi元素をP型半導体素子に含有させる場合、La元素とBi元素とのモル比は6:4〜4:6が好ましい。   When the Bi element is contained in the P-type semiconductor element, the molar ratio of the La element to the Bi element is preferably 6: 4 to 4: 6.

上記N型半導体素子14は、ZnOを母材とする。N型半導体素子14の製造方法及び添加金属としては、従来公知のものが任意に採用できる。   The N-type semiconductor element 14 uses ZnO as a base material. As a method for manufacturing the N-type semiconductor element 14 and an additive metal, conventionally known ones can be arbitrarily adopted.

図2は、上記一酸化炭素ガスセンサ2を組込んだ一酸化炭素ガス測定装置の構成を示す。この測定装置を用いて一酸化炭素ガスを検出する場合につき説明する。   FIG. 2 shows a configuration of a carbon monoxide gas measuring apparatus in which the carbon monoxide gas sensor 2 is incorporated. The case where carbon monoxide gas is detected using this measuring apparatus will be described.

不図示の電源から、ヒータ電極22、24及び26、28に所定の電力が供給され、これによりヒータ18、20が発熱してセンサ2が200〜400℃に加熱される。   A predetermined power is supplied to the heater electrodes 22, 24 and 26, 28 from a power source (not shown), whereby the heaters 18, 20 generate heat and the sensor 2 is heated to 200 to 400 ° C.

一方、電源30の電力は、可変抵抗32により調整され、一酸化炭素ガスセンサ2の素子電極8、10に印加される。一酸化炭素ガスが、圧接面16近傍に接触すると、圧接面16におけるポテンシャル障壁の高さと幅が変化し、センサ2を流れる電流値が変化する。この電流値の変化を電流計34で測定することにより、一酸化炭素ガスの濃度が検出される。なお、36は素子電極に印加される電圧を測定する電圧計である。   On the other hand, the power of the power supply 30 is adjusted by the variable resistor 32 and applied to the element electrodes 8 and 10 of the carbon monoxide gas sensor 2. When carbon monoxide gas comes into contact with the vicinity of the pressure contact surface 16, the height and width of the potential barrier on the pressure contact surface 16 change, and the value of the current flowing through the sensor 2 changes. By measuring this change in the current value with the ammeter 34, the concentration of the carbon monoxide gas is detected. Reference numeral 36 denotes a voltmeter for measuring a voltage applied to the element electrode.

通常、上記構成の一酸化炭素ガスセンサの場合、印加電圧を0.1V程度に設定すると、数μAの電流が流れる。   Usually, in the case of the carbon monoxide gas sensor having the above-described configuration, when the applied voltage is set to about 0.1 V, a current of several μA flows.

実施例1
P型半導体母材としてCuO(CI化成(株)製商品名nanotecCuO)にLaCl3・7H2OをCu元素に対して5モル%混合した粉末0.25gを、直径10mm、厚さ1.0mmの円盤状にプレス成形した。成形圧力は120Mpaであった。成型品を800℃で1時間焼成し、P型半導体素子を得た。
Example 1
As a P-type semiconductor base material, CuO (trade name: nanotecCuO, manufactured by CI Kasei Co., Ltd.), 0.25 g of LaCl 3 .7H 2 O mixed with 5 mol% of Cu element, 10 mm in diameter and 1.0 mm in thickness It was press-molded into a disk shape. The molding pressure was 120 MPa. The molded product was baked at 800 ° C. for 1 hour to obtain a P-type semiconductor element.

一方、N型半導体母材原料としてZnO(CI化成(株)製の商品名nanotecZnO)粉末0.25gを、直径10mm、厚さ1.0mmの円盤状にプレス成形した。成形圧力は120Mpaであった。成型品を1000℃で1時間焼成し、N型半導体素子を得た。   On the other hand, 0.25 g of ZnO (trade name nanotecZnO manufactured by CI Kasei Co., Ltd.) powder as an N-type semiconductor base material was press-molded into a disk shape having a diameter of 10 mm and a thickness of 1.0 mm. The molding pressure was 120 MPa. The molded product was baked at 1000 ° C. for 1 hour to obtain an N-type semiconductor element.

次に、12.7x12.7x0.635mmの京セラ製アルミナ基板にスクリーン印刷によりAgペースト((株)徳力化学研究所製 シルベストP−603)を用いて素子電極パターンを印刷し、550℃で10分間焼成することにより、アルミナ基板に素子電極を形成した。   Next, a device electrode pattern was printed on a 12.7 × 12.7 × 0.635 mm Kyocera alumina substrate by screen printing using Ag paste (Sylvest P-603 manufactured by Tokoku Chemical Laboratories Co., Ltd.), and at 550 ° C. for 10 minutes. By firing, an element electrode was formed on the alumina substrate.

素子電極を形成したアルミナ基板の素子電極に上記Agペーストを塗布し、前記製造したP型半導体素子をその上に張付けた。その後、550℃で10分間焼成し、P型半導体を得た。   The Ag paste was applied to the element electrode of the alumina substrate on which the element electrode was formed, and the manufactured P-type semiconductor element was stuck thereon. Then, it baked for 10 minutes at 550 degreeC, and obtained the P-type semiconductor.

同様にして、N型半導体を得た。   Similarly, an N-type semiconductor was obtained.

最後に、上記得られたP、N型半導体を、半導体面を互いに対向させてクリップで圧接固定させ、一酸化炭素ガスセンサを得た。   Finally, the P and N type semiconductors obtained above were pressure-fixed with clips with the semiconductor surfaces facing each other to obtain a carbon monoxide gas sensor.

このセンサを、円筒型の加熱炉に挿入し、加熱炉内を260℃(=検出温度)に保ちながら表1に示す濃度の一酸化炭素ガス、エタノール、酢酸エチルガスを含む空気を加熱炉内に供給した。   This sensor is inserted into a cylindrical heating furnace, and air containing carbon monoxide gas, ethanol, and ethyl acetate gas in the concentrations shown in Table 1 is kept in the heating furnace while maintaining the heating furnace at 260 ° C. (= detection temperature). Supplied.

得られたセンサの検出感度を表1にまとめた。   The detection sensitivity of the obtained sensor is summarized in Table 1.

比較例1
P型半導体素子として、LaCl3・7H2Oを添加しない以外は実施例1と同様にしてセンサを製造した。これを用いて実施例1と同様の検出試験を行いその結果を表1に合わせて記載した。
Comparative Example 1
A sensor was manufactured in the same manner as in Example 1 except that LaCl 3 .7H 2 O was not added as a P-type semiconductor element. Using this, the same detection test as in Example 1 was performed, and the results are shown in Table 1.

比較例2
P型半導体素子として、LaCl3・7H2Oを0.1モル%添加した以外は実施例1と同様にしてセンサを製造した。これを用いて実施例1と同様の検出試験を行いその結果を表1に合わせて記載した。表1の比較例2のデータによれば、エタノール、酢酸エチルのガス検出感度が比較例1の同感度よりも若干高い。これは、センサの特性のばらつきに基づくものであり、ガス選択特性としては、比較例1と比較例2のセンサは略同等である。
Comparative Example 2
A sensor was manufactured in the same manner as in Example 1 except that 0.1 mol% of LaCl 3 .7H 2 O was added as a P-type semiconductor element. Using this, the same detection test as in Example 1 was performed, and the results are shown in Table 1. According to the data of Comparative Example 2 in Table 1, the gas detection sensitivities of ethanol and ethyl acetate are slightly higher than those of Comparative Example 1. This is based on variations in sensor characteristics, and the sensors of Comparative Example 1 and Comparative Example 2 are substantially equivalent as gas selection characteristics.

Figure 0004205601
表1中、ガス検出感度(*1)は、ΔIgas/ΔICO1000 で定義されるものである。ここで、ΔIgas=Igas−Iair、 ΔICO1000=ICO1000−Iair
但し、Iair:空気雰囲気中における検出電流値、Igas:供給ガス中における検出電流値、ICO1000:COガス1000ppm雰囲気中における検出電流値

実施例2
P型半導体素子の製造において、LaCl3・7H2Oの代りにLaOCl粉末を使用した以外は実施例1と同様に操作して一酸化炭素ガスセンサを製造した。その結果を表2に示した。

実施例3
P型半導体素子の製造において、LaCl3・7H2Oを10モル%添加する代りにLaCl3・7H2Oを5モル%と、BiCl3を5モル%添加した以外は実施例1と同様に操作して一酸化炭素ガスセンサを製造した。検出温度340℃で求めたガス検出感度を表2に示した。
Figure 0004205601
In Table 1, the gas detection sensitivity (* 1) is defined by ΔI gas / ΔI CO1000 . Here, ΔI gas = I gas −I air , ΔI CO1000 = I CO1000 −I air
Where I air : detected current value in air atmosphere, I gas : detected current value in supply gas, I CO1000 : detected current value in CO gas 1000 ppm atmosphere

Example 2
A carbon monoxide gas sensor was produced in the same manner as in Example 1 except that LaOCl powder was used instead of LaCl 3 .7H 2 O in the production of the P-type semiconductor element. The results are shown in Table 2.

Example 3
In the production of P-type semiconductor element, similarly to 5 mol% of LaCl 3 · 7H 2 O instead of adding LaCl 3 · 7H 2 O 10 mole%, except for adding BiCl 3 5 mol% from Example 1 A carbon monoxide gas sensor was manufactured by operating. Table 2 shows gas detection sensitivities determined at a detection temperature of 340 ° C.

参考例1として、実施例1の一酸化炭素ガスセンサを用いて実施例3と同様(但し検出温度260℃)の測定方法で求めたガス検出感度をあわわせて表2に示した。   As Reference Example 1, Table 2 shows the gas detection sensitivities obtained by the same measurement method as in Example 3 (however, the detection temperature is 260 ° C.) using the carbon monoxide gas sensor of Example 1.

Figure 0004205601
表2中、ガス検出感度(*2)は、ΔIgas/ΔICO500 で定義されるものである。ここで、ΔICO500=ICO500−Iair
但し、Iair:空気雰囲気中における検出電流値、Igas:供給ガス中における検出電流値、ICO500:COガス500ppm雰囲気中における検出電流値

実施例1、2、比較例1、2のデータの比較から、本発明の一酸化炭素ガスセンサは、一酸化炭素に対する選択性に優れていることが解る。
Figure 0004205601
In Table 2, the gas detection sensitivity (* 2) is defined by ΔI gas / ΔI CO500 . Where ΔI CO500 = I CO500 −I air ,
However, I air : detected current value in air atmosphere, I gas : detected current value in supply gas, I CO500 : detected current value in CO gas 500 ppm atmosphere

From the comparison of the data of Examples 1 and 2 and Comparative Examples 1 and 2, it can be seen that the carbon monoxide gas sensor of the present invention is excellent in selectivity to carbon monoxide.

また、実施例3、参考例1のデータから、P型半導体素子にLa元素に加えてBi元素を共存させると、一酸化炭素ガスの選択性が更に高まることが解る。   Further, it can be seen from the data of Example 3 and Reference Example 1 that the selectivity of the carbon monoxide gas is further enhanced when the P-type semiconductor element coexists with the Bi element in addition to the La element.

本発明の一酸化炭素ガスセンサの一例を示す(A)は概略側面図、(B)は概略平面図である。(A) which shows an example of the carbon monoxide gas sensor of this invention is a schematic side view, (B) is a schematic plan view. 一酸化炭素測定装置の回路構成の一例を示す説明図である。It is explanatory drawing which shows an example of the circuit structure of a carbon monoxide measuring apparatus.

符号の説明Explanation of symbols

2 一酸化炭素ガスセンサ
4、6 セラミック基板
8、10 素子電極
12 P型半導体素子
14 N型半導体素子
16 圧接面
18、20 ヒータ
22、24、26、28 ヒータ電極
30 電源
32 可変抵抗
34 電流計
36 電圧計
2 Carbon monoxide gas sensor 4, 6 Ceramic substrate 8, 10 Element electrode 12 P-type semiconductor element 14 N-type semiconductor element 16 Pressure contact surface 18, 20 Heater 22, 24, 26, 28 Heater electrode 30 Power supply 32 Variable resistance 34 Ammeter 36 voltmeter

Claims (6)

La元素をCu元素に対して1〜10モル%含有するCuOを母材とするP型半導体と、ZnOを母材とするN型半導体とを圧接させてなる一酸化炭素ガスセンサ。 A carbon monoxide gas sensor formed by press-contacting a P-type semiconductor containing CuO containing 1 to 10 mol% of La element with respect to Cu element as a base material and an N-type semiconductor containing ZnO as a base material. La元素とBi元素とを、Cu元素に対してそれぞれ1〜10モル%含有するCuOを母材とするP型半導体と、ZnOを母材とするN型半導体とを圧接させてなる一酸化炭素ガスセンサ。 Carbon monoxide formed by pressure-contacting a P-type semiconductor containing CuO containing 1 to 10 mol% of La element and Bi element with respect to Cu element and an N-type semiconductor containing ZnO as a base material Gas sensor. La元素とBi元素とのモル比が6:4〜4:6である請求項2に記載の一酸化炭素ガスセンサ。 The carbon monoxide gas sensor according to claim 2, wherein a molar ratio of La element to Bi element is 6: 4 to 4: 6. La元素が、LaOCl化合物として含有されている請求項1乃至3の何れかに記載の一酸化炭素ガスセンサ。 The carbon monoxide gas sensor according to any one of claims 1 to 3, wherein La element is contained as a LaOCl compound. CuOに、Cu元素に対して1〜10モル%のLa元素に相当するLaCl3又はLaOClを添加して加圧成形し、次いで酸化雰囲気中で650〜950℃で焼成する一酸化炭素ガスセンサ用P型半導体の製造方法。 P for carbon monoxide gas sensor, in which LaCl 3 or LaOCl corresponding to 1 to 10 mol% of La element is added to CuO and subjected to pressure molding, and then fired at 650 to 950 ° C. in an oxidizing atmosphere. Type semiconductor manufacturing method. CuOに、Cu元素に対して1〜10モル%のLa元素に相当するLaCl3又はLaOClと、Cu元素に対してBi元素が1〜10モル%に相当するBiCl3を添加して加圧成形し、次いで酸化雰囲気中で650〜950℃で焼成する一酸化炭素ガスセンサ用P型半導体の製造方法。 To CuO, corresponding to 10 mol% of La element relative to Cu element LaCl 3 or LaOCl and with the addition of BiCl 3 of Bi element corresponds to 1 to 10 mol% based on Cu element pressing Then, a method for manufacturing a P-type semiconductor for a carbon monoxide gas sensor, which is fired at 650 to 950 ° C. in an oxidizing atmosphere.
JP2004024002A 2004-01-30 2004-01-30 Carbon monoxide gas sensor and method for manufacturing P-type semiconductor Expired - Fee Related JP4205601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004024002A JP4205601B2 (en) 2004-01-30 2004-01-30 Carbon monoxide gas sensor and method for manufacturing P-type semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004024002A JP4205601B2 (en) 2004-01-30 2004-01-30 Carbon monoxide gas sensor and method for manufacturing P-type semiconductor

Publications (2)

Publication Number Publication Date
JP2005214868A JP2005214868A (en) 2005-08-11
JP4205601B2 true JP4205601B2 (en) 2009-01-07

Family

ID=34906828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004024002A Expired - Fee Related JP4205601B2 (en) 2004-01-30 2004-01-30 Carbon monoxide gas sensor and method for manufacturing P-type semiconductor

Country Status (1)

Country Link
JP (1) JP4205601B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112010004279T5 (en) 2009-11-05 2013-02-07 Kake Educational Institution Microcrystalline selenium gas sensitive material and gas sensor using the same
CN106770499A (en) * 2017-01-13 2017-05-31 京东方科技集团股份有限公司 Carbon monoxide transducer and preparation method thereof, control method and intelligent television
JP7272750B2 (en) 2018-02-16 2023-05-12 株式会社明電舎 Operation state determination device and operation state determination method for sewage treatment system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192375A1 (en) * 2013-05-28 2014-12-04 シャープ株式会社 Sensing system, and sensing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112010004279T5 (en) 2009-11-05 2013-02-07 Kake Educational Institution Microcrystalline selenium gas sensitive material and gas sensor using the same
US9134265B2 (en) 2009-11-05 2015-09-15 Kake Educational Institution Gas sensitive material comprising microcrystalline selenium and gas sensor using same
CN106770499A (en) * 2017-01-13 2017-05-31 京东方科技集团股份有限公司 Carbon monoxide transducer and preparation method thereof, control method and intelligent television
CN106770499B (en) * 2017-01-13 2021-05-18 京东方科技集团股份有限公司 Carbon monoxide sensor, manufacturing method and control method thereof and smart television
JP7272750B2 (en) 2018-02-16 2023-05-12 株式会社明電舎 Operation state determination device and operation state determination method for sewage treatment system

Also Published As

Publication number Publication date
JP2005214868A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
EP3081930A1 (en) Gas detection device and method thereof
WO2007122287A1 (en) Micro hotplate semiconductive gas sensor
US10571420B2 (en) Nanolaminate gas sensor and method of fabricating a nanolaminate gas sensor using atomic layer deposition
KR101734329B1 (en) Method for detecting chemical substances using impedance analysis
Park et al. Selective gas detection with catalytic filter
US10012639B1 (en) Gas-sensing apparatus with a self-powered microheater
Dutronc et al. Influence of the nature of the screen-printed electrode metal on the transport and detection properties of thick-film semiconductor gas sensors
Ratna Phani et al. Effect of additives on the response of sensors utilizing semiconducting oxide on carbon monoxide sensitivity
JP4205601B2 (en) Carbon monoxide gas sensor and method for manufacturing P-type semiconductor
US20160161443A1 (en) Gas sensor, method for manufacturing gas sensor, and method for detecting gas concentration
KR101237879B1 (en) Gas sensor
JP3903181B2 (en) Resistance oxygen sensor, oxygen sensor device using the same, and air-fuel ratio control system
JP5115411B2 (en) Thin film gas sensor
JP2002156355A (en) Gas sensor element and gas concentration measuring device having the same
KR0141771B1 (en) Gas sensor with the temperature dependency of the resistor
Yun et al. Highly sensitive and selective ammonia gas Sensor
US20080135406A1 (en) Gas Sensor
JP3669807B2 (en) Carbon monoxide detection sensor
JP2946090B2 (en) Manufacturing method of ammonia gas sensor
JP2008083007A (en) Nitrogen oxide detecting element
JP3953175B2 (en) Nitrogen oxide concentration measuring apparatus and nitrogen oxide concentration measuring method
JPH03249555A (en) Multicomponent gas sensor
KR20230147551A (en) High-sensitivity broadband hydrogen sensor
JP3966616B2 (en) CO gas sensor and manufacturing method thereof, CO gas detection method
JP4091713B2 (en) Compound gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081016

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees