JP4202718B2 - High frequency electromagnetic casting mold for continuous casting of molten metal - Google Patents

High frequency electromagnetic casting mold for continuous casting of molten metal Download PDF

Info

Publication number
JP4202718B2
JP4202718B2 JP2002313294A JP2002313294A JP4202718B2 JP 4202718 B2 JP4202718 B2 JP 4202718B2 JP 2002313294 A JP2002313294 A JP 2002313294A JP 2002313294 A JP2002313294 A JP 2002313294A JP 4202718 B2 JP4202718 B2 JP 4202718B2
Authority
JP
Japan
Prior art keywords
mold
tubular body
casting
cooling water
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002313294A
Other languages
Japanese (ja)
Other versions
JP2004148323A (en
Inventor
健 井上
寿 山名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002313294A priority Critical patent/JP4202718B2/en
Publication of JP2004148323A publication Critical patent/JP2004148323A/en
Application granted granted Critical
Publication of JP4202718B2 publication Critical patent/JP4202718B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、溶融金属を連続鋳造する際に用いる高周波電磁界鋳造鋳型に関し、特に製作費が低廉となる高周波電磁界鋳造鋳型に関するものである。
【0002】
【従来の技術】
溶融金属の連続鋳造にあたっては、鋳片表面の性状改善等の目的で鋳型内のメニスカス部に高周波磁場を印加して鋳造する方法が知られている(例えば「鉄と鋼」Vol.80(1994) No.9 第711〜716頁)(非特許文献1参照)。この方式では、高周波磁場を鋳型内のメニスカス部に浸透させ易くする為に、縦方向にスリットを形成した金属製鋳型を用いる必要があり、この鋳型の周囲に電磁コイルを配置する。尚該鋳型は当然のことながら冷却構造とする。
【0003】
図8はこの種の連続鋳造装置を例示する要部断面図であり、鋳型1には複数のスリット3が縦方向に形成され、この鋳型1の周囲に高周波コイル2が配置される。尚鋳型壁内の冷却構造については、図示を省略している。隣接する上記縦スリット3同士の間隔は、磁束密度の減衰率を50%以下に抑える為に140mm以下とするのが良く、一方、鋳型壁内に冷却構造を形成するには10mm以上にすることが望まれる。またスリット3の幅は、スリットの加工性,磁束密度の減衰抑制効果及び溶湯漏れ防止の観点から0.2〜0.5mm程度が望ましいとされている(特開平4−178247号公報)(特許文献1参照)。スリット3の長さは、磁場の浸透性の観点から鋳型へのコイル巻回縦方向長さの1.5倍以上が好ましいとされている。尚図中、4は溶融金属供給用の浸積ノズル、Pはモールドパウダー、Mは溶融金属、Mは凝固殻である。
【0004】
ところで上記の様な高周波電磁界鋳造鋳型の冷却構造としては、鋳型がスリットで分断されていることから、このスリットで分断された各セグメント内にそれぞれ冷却用水路を設ける必要があり、例えば特開平6−190509号公報や特開平10−156489号公報に、各セグメント内部をそれぞれ冷却水が通過する構造のものが記載されている(特許文献2,3参照)。更に特許第2611559号公報には、1つのセグメント内部において上下方向にループを画いて往復する冷却水用通路を形成したものが示され(特許文献4参照)、特開平7−204789号公報には、内側を冷却水往路、外側を冷却水復路とした2重管路を、1つのセグメント内に設けたものが開示されている(特許文献5参照)。
【0005】
【非特許文献1】
「鉄と鋼」Vol.80(1994) No.9 第711〜716頁
【特許文献1】
特開平4−178247号公報
【特許文献2】
特開平6−190509号公報
【特許文献3】
特開平10−156489号公報
【特許文献4】
特許第2611559号公報
【特許文献5】
特開平7−204789号公報
【特許文献6】
特開2000−246397号公報
【0006】
【発明が解決しようとする課題】
この様に鋳型を水冷構造とするには個々のセグメント内に冷却用水路を形成しなければならないところ、個々のセグメントは小さいものであるから、冷却用水路の形成にあたって多くの手間と費用を要するという問題がある。
【0007】
なお、高周波磁場を印加しないタイプのビレット用小断面鋳型では、図9[図9の(a)はビレット用小断面鋳型の正面図、(b)は(a)に示すA−A線断面図]に示す如く、厚さ10mm程度の銅製チューブ61(スリットなし)を鋳型とし(この様な管状の鋳型は一般にチュブラーモールドと呼ばれている)、これ自身には冷却用水路を設けず、銅製チューブ61の外側に筒状のジャケット63を配置し、銅製チューブ61とジャケット63の間(冷却水路62)に冷却水を通して鋳型を冷却する構造としており、この場合、上記銅製チューブ61は引き抜き加工法によって一体成形で製造できるということもあり、製作費用が安く上がるという利点がある。加えて継ぎ目なく一体成形できるから鋳型の強度及び耐久性に対する信頼性も高く、また組立鋳型の様に銅板を組み合わせてこれを支持するといった連結固定構造も不要であるから、鋳型周辺設備を簡略化できる利点も有する。
【0008】
しかし高周波磁場を印加する手法を採用する場合には、前述の如く鋳型にスリットを設けて複数のセグメントに分割することが不可欠であり、仮に上記銅製チューブ61に単純にスリットを形成するだけでは、スリットから鋳型内側に冷却水が漏出する。従って漏水を防止するには、結局のところ上記従来例の様にセグメント毎にそれぞれ冷却用水路を設けることになり、構造が複雑で、鋳型作製に多くの手間と費用を要することとなる。加えて内部に冷却構造を形成できる程に厚肉の銅製チューブは、引き抜き加工によって製造すること自体が困難であり、この為、従来では先ず銅塊から肉厚の鋳型を削り出し、そしてこの肉厚鋳型に冷却水路を削り込むという方法で製造せざるを得ず、多くの手数と費用を要する。更に湾曲鋳型の場合では、鋳型に沿って湾曲する冷却水路を削り込むことは技術的にほぼ不可能であることから、図10(a)[湾曲鋳型における冷却水路65の配置を説明する為の概略断面図]に示す様に、非常に肉厚の鋳型1を削り出してこれに垂直の冷却水路65を削り込む手法を採用することになるが、この手法も決して容易なものではなく、垂直鋳型の場合(図10(b):垂直鋳型における冷却水路65の配置を説明する為の概略断面図)に比べてより加工操作は困難となる。
【0009】
なお高周波磁場ではなく、低周波磁場を与える鋳造方法も提案されている。この方法も高周波磁場の場合と同様に鋳型内のメニスカス部に磁場を印加するものであるが、低周波磁場を用いる場合は、元々磁場の減衰が少ないので、鋳型に縦スリットを多く設ける必要がなく、従って小さなセグメントを形成する訳ではないので、冷却水路形成の為の細かな細工は不要である。低周波磁場を用いた鋳造方式の鋳型として、例えば特開2000−246397号公報にスラブ用の組立鋳型が開示されている(特許文献6参照)。尚スラブ用の鋳型は比較的大型であるので組立鋳型が用いられるが、組立鋳型は次に示す様な理由から高周波磁場を用いた鋳造方式への適性を欠く。
【0010】
即ち組立鋳型では各パーツをボルト等によって固定しなければならないが、この場合は鋳型を外側から支持する為の周辺設備が必要となる。そしてこれら鋳型周辺設備の周囲に磁場印加用のコイルを設置することになるため、コイルから印加された磁場の影響で周辺設備までも加熱される。殊に高周波磁場の場合は金属に対する加熱力が大きいので、周辺設備までも水冷構造にしなければならず、設備全体が非常に複雑化し、製作費用が嵩むことになる。この様なことから高周波磁場を印加して鋳造する方式に組立鋳型を適用することは、実際には不可能である。
【0011】
本発明は以上の点に鑑みてなされたもので、各セグメント内に冷却用水路を有するスリット付きの鋳型でありながらも、引抜加工法を採用して簡便且つ廉価に製造することのできる連続鋳造用高周波電磁界鋳造鋳型を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明に係る溶融金属の連続鋳造用高周波電磁界鋳造鋳型(以下、高周波鋳型と称することがある)は、鋳型内面を構成する管状体と、該管状体の外周面に当接されて鋳型外面を構成する外装部材とが、組み付けられたものであり、前記管状体及び前記外装部材が、これらに相対応して貫通するスリットを、鋳造方向に沿っ複数本備えると共に、前記管状体と前記外装部材の境界部の一方側または両方に跨った凹溝を備えており、該凹溝が前記スリットを回避して鋳造方向に沿い、且つ前記スリットで分割されたセグメントを渡って形成され、該凹溝部を冷却用水路としたものであることを要旨とする。
【0013】
上記管状体や外装部材はそれ自体の構造が単純であり、従ってこれらの製造法としては、引抜加工により製造した管状物や板状物にスリットや凹溝を形成するだけで、上記管状体,外装部材となる。そしてこれらを合わせることにより上記凹溝が密閉流路となり、この凹溝部を冷却用水路とすることができる。この様にして各セグメント内に冷却水路を有する高周波鋳型を簡単に得ることができ、従って製造コストが低減する。
【0014】
上記凹溝としては、上述の様にスリットを回避して鋳造方向に沿って形成するのが良く、スリットを回避する理由は、仮に凹溝がスリットと交叉すると、この交叉部において冷却水路(凹溝部)が開口した状態となり、鋳型内側に冷却水が漏出することになるからである。また鋳造方向に沿った凹溝とする理由は、スリットにより細かく分割されたセグメント内部を効率良く冷却することができるからであり、その態様としては、鋳造方向に沿って1本の凹溝を直線状に形成したものの他、2本以上の凹溝であっても良く、或いは直線状の凹溝が鋳造方向を往復する様にUターンして形成されたものであっても良い。また蛇行する凹溝が鋳造方向に沿って形成されたもの(つまり蛇行するラインが全体として鋳造方向に沿って形成されたもの)であっても良い。
【0015】
加えて隣接するセグメント間を架け渡す様にして凹溝を形成しても良く(例えば図4の(b)参照)、この場合は架け渡されたセグメントに渡って冷却水が巡る(架け渡された凹溝内を伝う様に流れる)ことになるから、セグメント毎に冷却水の給・排出口を設ける必要がなくなり、給・排出口の数を少なくすることができる。
【0016】
また管状体と外装部材を単にボルト等により結合するだけであると、凹溝内の冷却水が管状体と外装部材の当接面の間に滲んで漏れ出す懸念があるが、前記凹溝に沿ってパッキン(例えばOリング)を配する様にすれば、漏れ出しを有効に防止することができ、好ましい。
【0017】
更に、前記管状体と前記外装部材をボルトにより結合する場合は、前記凹溝に近接した箇所にボルトを締結する構成にすることが好ましい。ちなみに、前述の如く当該鋳型に高周波磁場を印加すると、金属製鋳型の部分だけでなくボルトも昇温することになるが、冷却用水路となる凹溝の近接位置でボルト締結する構成にしておけば、ボルトの過熱も阻止できるからである。
【0018】
加えて前記高周波鋳型は、ビレット用の鋳型であることが好ましい態様として挙げられる。その理由は、スラブ用鋳型の様に大型の鋳型では、上記管状体自体も大型となって、引抜加工による製造が困難になるが、ビレット用鋳型は元々小型であるから、管状体や外装部材の基になる長尺素材を引抜加工によって容易に製造できるからである。
【0019】
【発明の実施の形態】
<実施形態1>
図1は本発明の実施形態1に係る高周波鋳型10及び高周波コイル2(一部破断して表している)を示す斜視図であり、図2の(a)はこの鋳型10の上方部分を示す正面図で、(b)は(a)に示すA−A線断面図である。尚この鋳型はビレット用のものである。
【0020】
高周波鋳型10は、断面四角形の銅製管状体11の外周面に4枚の銅製外装部材12をボルト13によって組付けた構造であり、管状体11の内壁面が鋳型内面となる。鋳型10には鋳造方向(鋳片引抜方向)に沿って複数本のスリット15が形成されており、このスリット15は上記管状体11と上記外装部材12を貫通して一続きのスリットとなっている。また鋳型10の周囲にはスリット15の位置に高周波コイル2が配置されている。鋳型10の各セグメント10aの内部には冷却用水路16がそれぞれ形成されており、鋳型10の下方部に冷却水の排水孔14が設けられている。
【0021】
次に実施形態1の高周波鋳型10の製造方法について述べる。図3(a),(b)は、実施形態1の鋳型10における管状体11の製造方法を説明する為の斜視図であり、図4の(a)は管状体11の正面図で、(b)は(a)に示すB−B線断面図、(c)は(a)に示すC−C線断面図である。また図5は1枚の外装部材12の斜視図である。
【0022】
先ず引抜加工により断面四角形の銅製管状物18を製造する(図3の(a))。この管状物18の厚みは、引抜加工が可能で且つ凹溝を形成し得るに十分な厚みであれば良く、鋳型の10の強度や材質に応じて任意に設定すると良い。次にこの管状物18に対し、高周波コイル2の配置箇所に対応する位置に複数本のスリット15aを形成すると共に、冷却用水路16となる凹溝17を外面側に形成することにより、管状体11とする(図3の(b),図4)。尚上記凹溝17は、スリット15aと交差しない様に(スリット15aと平行にする)、且つ1つのセグメント内を往路、隣のセグメント内を復路として、スリット15aの間を渡る様に形成する(図4(a),(c)に示す様に、凹溝17はセグメント内を直線状に進み、管状体11の上方部分でUターンする)。また管状体11にはボルト用取付部13aを形成する。
【0023】
他方、引抜加工によって銅製の板状物を製造し、これに上記管状体11のスリット15aと対応した同じ位置にスリット15bを形成し、また冷却水排水孔14、及びボルト用取付孔13bを形成して、外装部材12とする。尚排水孔14は凹溝17の一方の下端17aに対応させて設ける。また管状体11下端に開口した凹溝17の他方の下端17bを冷却水供給孔24とする。
【0024】
次いで上記凹溝17に沿ってOリング19を配置すると共に、管状体11外周の4面にそれぞれ外装部材12(4枚)を当接させ、ボルト13で固定することにより鋳型10が完成する(図1)。尚ボルト13の取付位置は凹溝17に近接しており、凹溝17を通る冷却水によってボルト13も冷却される位置となっている。またOリング19により凹溝17内の冷却水の漏出が防止される。またスリット15aとスリット15bは同位置に形成されているから、一続きのスリット15となる。この鋳型10の冷却にあたっては、供給孔24から冷却水を供給し、凹溝17部分を冷却水路として冷却水を這わすことによりセグメントを冷却し、排水孔14から排出する。
【0025】
この様に本実施形態1の鋳型10の製造手法では、安価な引抜加工を採用することができ、鋳型完成までの加工や組み付け作業も簡単であるから、高周波鋳型10を低廉に得ることができる。例えば従来から汎用されている様な削り出し加工に比べると、鋳型製作費用を1/5程度にまで低減することができる。また垂直鋳型でなく湾曲鋳型の場合であっても簡単に製造することができ、つまり先ず湾曲した管状物(図3(a)に示す管状物18を湾曲させたものに相当する)にスリットを形成すると共に外面側に凹溝を掘って管状体とし、他方湾曲した板状物にスリットを形成して外装部材とし、これら管状体と外装部材を合わせるだけで湾曲鋳型を得ることができる。
【0026】
<実施形態2>
図6の(a)は本発明の実施形態2に係る高周波鋳型20の上方部分を示す正面図で、(b)は(a)に示すD−D線断面図である。
【0027】
上記実施形態1では、断面矩形の管状体11における1つの面に当接させる外装部材12を、1枚もので構成した例を示したが、本実施形態2では、1つの面に当接させる外装部材22を2枚で構成している。そして2枚の外装部材22の分割箇所は中央のスリット15位置に対応させている。即ち管状体11の1つの面に形成された3つのスリット15aのうち、中央のスリット15aの箇所に上記2枚の外装部材22同士の隣接箇所22sが位置し、この隣接箇所22sに隙間を設けることにより、中央のスリット15を形成している。この様に外装部材22の隣接箇所22sをスリット15の位置に合わせることにより、外装部材22への中央のスリット15bの形成を省略することができる。加えて外装部材の1枚あたりの大きさを小さくすることができるので、外装部材22の変形量を小さくすることにより水漏れ防止を図ることができ、有利である。尚他の構成は上記実施形態1と同様である。
【0028】
本実施形態2の場合も、引抜加工を採用して安価に鋳型20を製造することができる。
【0029】
参考例
図7の(a)は参考例に係る高周波鋳型における管状体31の上方部分を示す正面図で、(b)は(a)に示すE−E線断面図である。
【0030】
上記実施形態1では凹溝17(冷却用水路)が1つのセグメント内を往路、他のセグメント内を復路として形成されたものを示したが、本参考例では、凹溝37を細いものとして1つのセグメント内で往復させる様に形成したものである。そしてこの細い凹溝37により細い冷却用水路が形作られることになる。尚参考例における他の構成は上記実施形態1と同じである。
【0031】
この様に凹溝37が細いものであっても、管状体31の製造工程自体は上記実施形態1と同様に簡単であり、つまり引抜加工で得た管状物の表面に溝を掘るだけで済む。よって管状体31の製作が簡単で且つ外装部材の際作も簡単であるから、高周波鋳型を安価に製造することができる。
【0032】
以上の様に本発明に係る高周波鋳型に関し、代表例を示す図面を参照しつつ具体的に説明したが、本発明はもとより図示例に限定される訳ではなく、前記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。
【0033】
例えば上記実施形態では管状体や外装部材として銅製のものを挙げたが、これに限るものではなく、例えばセラミックの様に高周波磁場中でジュール熱を発しない物質等であっても良い。尚銅製のものは熱伝導率が高いので、冷却用水路(凹溝)内の冷却水によって効率良く冷却される。
【0034】
また上記実施形態では管状体に凹溝を設ける構成のものを示したが、外装部材に凹溝を形成してこれを冷却用水路としても良く、或いは管状体と外装部材の両方に凹溝を形成したものであっても良い。
【0035】
<実験>
前記実施形態1及び実施形態2として示した高周波鋳型10,20を用いて、0.12%C鋼を連続鋳造し、鋳型の評価を行った。鋳造条件としては、鋳造速度が1.6m/分と2.0m/分の2条件、磁場周波数が10kHzと20kHzの2条件、印加磁場強度が100ガウス,200ガウス,300ガウスの3条件で行った。
【0036】
その結果、実施形態1,実施形態2のいずれの高周波鋳型についても、得られた鋳片には冷却不良に起因する悪影響は認められず、また管状体や外装部材の過熱による設備の損傷や、冷却水の漏れ出しは認められなかった。この様に簡単な製造手法により得られた高周波鋳型あっても、従来の鋳型と比べて遜色のないものであった。
【0037】
【発明の効果】
以上の様に本発明に係る高周波鋳型は、個々のセグメント内に冷却用水路を有する構造でありながらも、安価な引抜加工法を採用して簡単に製造することができ、製作費用が安く済む。
【図面の簡単な説明】
【図1】本発明の実施形態1に係る連続鋳造用高周波電磁界鋳造鋳型及び高周波コイルを示す斜視図。
【図2】(a)は実施形態1の高周波鋳型の上方部分を示す正面図、(b)は(a)に示すA−A線断面図。
【図3】実施形態1の高周波鋳型における管状体の製造方法を説明する為の斜視図。
【図4】(a)は実施形態1の管状体の正面図、(b)は(a)に示すB−B線断面図、(c)は(a)に示すC−C線断面図。
【図5】実施形態1の高周波鋳型における1枚の外装部材の斜視図。
【図6】(a)は本発明の実施形態2に係る高周波鋳型20の上方部分を示す正面図、(b)は(a)に示すD−D線断面図。
【図7】 (a)は参考例に係る高周波鋳型における管状体31の上方部分を示す正面図、
(b)は(a)に示すE−E線断面図。
【図8】高周波電磁界鋳造における連続鋳造装置を示す要部断面図。
【図9】高周波磁場を印加しないタイプのビレット用小断面鋳型の正面図、(b)は(a)に示すA−A線断面図。
【図10】(a)は湾曲鋳型における冷却水路の配置を説明する為の概略断面図、(b)は垂直鋳型における冷却水路の配置を説明する為の概略断面図。
【符号の説明】
2 高周波コイル
10,20 高周波鋳型
11,31 管状体
12,22 外装部材
13 ボルト
15,15a,15b スリット
16 冷却用水路
17,37 凹溝
19 Oリング
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-frequency electromagnetic casting mold used for continuous casting of molten metal, and more particularly to a high-frequency electromagnetic casting mold that can be manufactured at low cost.
[0002]
[Prior art]
In continuous casting of molten metal, a method of casting by applying a high-frequency magnetic field to a meniscus portion in a mold for the purpose of improving the properties of the slab surface is known (for example, “Iron and Steel” Vol. 80 (1994 No. 9 pp. 711 to 716) (see Non-Patent Document 1). In this method, in order to make the high-frequency magnetic field easily penetrate into the meniscus portion in the mold, it is necessary to use a metal mold in which a slit is formed in the vertical direction, and an electromagnetic coil is disposed around the mold. Of course, the mold has a cooling structure.
[0003]
FIG. 8 is a cross-sectional view of an essential part illustrating this type of continuous casting apparatus. A plurality of slits 3 are formed in the mold 1 in the vertical direction, and the high-frequency coil 2 is disposed around the mold 1. The cooling structure in the mold wall is not shown. The interval between the adjacent vertical slits 3 should be 140 mm or less in order to keep the attenuation rate of magnetic flux density to 50% or less, while it should be 10 mm or more to form a cooling structure in the mold wall. Is desired. The width of the slit 3 is preferably about 0.2 to 0.5 mm from the viewpoint of slit workability, the effect of suppressing the attenuation of magnetic flux density, and prevention of molten metal leakage (Japanese Patent Laid-Open No. 4-178247) (patent) Reference 1). The length of the slit 3 is preferably at least 1.5 times the length of the coil wound in the vertical direction from the viewpoint of magnetic field permeability. During Naozu, 4 immersion nozzle for molten metal supply, P is mold powder, is M L is the molten metal, M S is solidified shell.
[0004]
By the way, as a cooling structure of the high frequency electromagnetic field casting mold as described above, since the mold is divided by a slit, it is necessary to provide a cooling water channel in each segment divided by the slit. JP-A-190509 and JP-A-10-156489 describe a structure in which cooling water passes through each segment (see Patent Documents 2 and 3). Further, Japanese Patent No. 2611559 discloses a cooling water passage that reciprocates in a vertical direction in one segment (see Patent Document 4), and Japanese Patent Application Laid-Open No. 7-204789 discloses. In addition, there is disclosed a structure in which a double pipe line having an inside as a cooling water forward path and an outside as a cooling water return path is provided in one segment (see Patent Document 5).
[0005]
[Non-Patent Document 1]
"Iron and Steel" Vol.80 (1994) No.9 pp.711-716 [Patent Document 1]
JP-A-4-178247 [Patent Document 2]
JP-A-6-190509 [Patent Document 3]
JP-A-10-156489 [Patent Document 4]
Japanese Patent No. 2611559 [Patent Document 5]
Japanese Patent Laid-Open No. 7-204789 [Patent Document 6]
Japanese Patent Laid-Open No. 2000-246397 [0006]
[Problems to be solved by the invention]
In this way, in order to make the mold into a water cooling structure, cooling channels must be formed in individual segments. However, since each segment is small, it takes a lot of labor and cost to form the cooling channel. There is.
[0007]
In addition, in the small cross-section mold for billets that does not apply a high-frequency magnetic field, FIG. 9 [FIG. 9A is a front view of the small cross-section mold for billets, and FIG. ], A copper tube 61 (no slit) having a thickness of about 10 mm is used as a mold (such a tubular mold is generally called a tuber mold), which is not provided with a cooling water channel and is made of copper. A cylindrical jacket 63 is arranged outside the tube 61, and the mold is cooled by passing cooling water between the copper tube 61 and the jacket 63 (cooling water channel 62). In this case, the copper tube 61 is drawn. Can be manufactured by integral molding, and there is an advantage that the manufacturing cost increases. In addition, since it can be integrally molded without any joints, it is highly reliable for the strength and durability of the mold, and it is not necessary to connect and secure a copper plate in combination with an assembled mold, simplifying the mold peripheral equipment. It also has the advantage that it can
[0008]
However, when adopting a method of applying a high-frequency magnetic field, it is indispensable to provide a slit in the mold and divide it into a plurality of segments as described above. By simply forming a slit in the copper tube 61, Cooling water leaks from the slit to the inside of the mold. Therefore, in order to prevent water leakage, after all, a cooling water channel is provided for each segment as in the above-described conventional example, the structure is complicated, and much labor and cost are required for mold production. In addition, a copper tube that is so thick that a cooling structure can be formed inside is difficult to manufacture by drawing itself. Therefore, conventionally, a thick mold is first cut out from a copper lump, It must be manufactured by cutting the cooling water channel into a thick mold, which requires a lot of work and cost. Further, in the case of a curved mold, it is technically impossible to cut a cooling water channel that curves along the mold, so FIG. 10A [for explaining the arrangement of the cooling water channel 65 in the curved mold] As shown in the schematic cross-sectional view], a method is adopted in which a very thick mold 1 is cut out and a cooling water channel 65 is cut into the vertical direction, but this method is also not easy. Compared with the casting mold (FIG. 10B: schematic sectional view for explaining the arrangement of the cooling water channel 65 in the vertical casting mold), the machining operation becomes more difficult.
[0009]
A casting method that provides a low-frequency magnetic field instead of a high-frequency magnetic field has also been proposed. This method also applies a magnetic field to the meniscus portion in the mold as in the case of a high-frequency magnetic field. However, when a low-frequency magnetic field is used, the attenuation of the magnetic field is originally low, so it is necessary to provide many vertical slits in the mold. Therefore, since a small segment is not formed, a fine work for forming the cooling water channel is not necessary. As a casting mold using a low-frequency magnetic field, for example, Japanese Unexamined Patent Publication No. 2000-246397 discloses an assembly mold for a slab (see Patent Document 6). Since the slab mold is relatively large, an assembly mold is used. However, the assembly mold lacks suitability for a casting method using a high-frequency magnetic field for the following reasons.
[0010]
That is, in the assembly mold, each part must be fixed with a bolt or the like. In this case, peripheral equipment for supporting the mold from the outside is required. Since a coil for applying a magnetic field is installed around the mold peripheral equipment, the peripheral equipment is also heated by the influence of the magnetic field applied from the coil. In particular, in the case of a high frequency magnetic field, since the heating power for the metal is large, the peripheral equipment must also be water-cooled, and the whole equipment becomes very complicated and the manufacturing cost increases. For this reason, it is actually impossible to apply an assembly mold to a method of casting by applying a high-frequency magnetic field.
[0011]
The present invention has been made in view of the above points, and for continuous casting, which is a mold with a slit having a cooling water channel in each segment, but can be easily and inexpensively manufactured by using a drawing method. An object is to provide a high-frequency electromagnetic casting mold.
[0012]
[Means for Solving the Problems]
A high frequency electromagnetic field casting mold for continuous casting of molten metal (hereinafter sometimes referred to as a high frequency mold) according to the present invention includes a tubular body constituting an inner surface of the mold, and an outer surface of the mold in contact with the outer peripheral surface of the tubular body. an exterior member constituting the can, which has been assembled, the tubular body and the outer member, a slit penetrating phases corresponding to these, together comprising a plurality of along the casting direction, the said tubular body has a groove extending over one side or both of the boundary portion of the exterior member, have along the casting direction concave grooves to avoid the slit, is formed and over the segments divided by said slit, The gist of the invention is that the concave groove is a cooling water channel.
[0013]
The tubular body and the exterior member have a simple structure. Therefore, as a manufacturing method thereof, the tubular body, the plate-shaped body, and the tubular body, It becomes an exterior member. And by combining these, the said ditch | groove becomes a sealed flow path, and this ditch | groove part can be used as a cooling water channel. In this way, a high-frequency mold having a cooling water channel in each segment can be easily obtained, thus reducing manufacturing costs.
[0014]
The groove is preferably formed along the casting direction while avoiding the slit as described above. The reason for avoiding the slit is that if the groove intersects the slit, the cooling water channel (recess This is because the groove portion) is in an open state, and cooling water leaks into the mold. The reason why the groove is formed along the casting direction is that the inside of the segment finely divided by the slit can be efficiently cooled. As an aspect thereof, one groove is formed linearly along the casting direction. In addition to the groove formed in the shape, two or more grooves may be formed, or a straight groove may be formed by making a U-turn so as to reciprocate in the casting direction. Further, the meandering concave groove may be formed along the casting direction (that is, the meandering line may be formed along the casting direction as a whole).
[0015]
In addition, a groove may be formed so as to bridge between adjacent segments (see, for example, FIG. 4B). In this case, the cooling water circulates (bridges) over the bridged segments. Therefore, it is not necessary to provide a cooling water supply / discharge port for each segment, and the number of supply / discharge ports can be reduced.
[0016]
Further, if the tubular body and the exterior member are simply coupled with a bolt or the like, there is a concern that the cooling water in the recessed groove may leak and leak between the contact surfaces of the tubular body and the exterior member. If packing (for example, an O-ring) is arranged along, it is possible to effectively prevent leakage, which is preferable.
[0017]
Furthermore, when connecting the said tubular body and the said exterior member with a volt | bolt, it is preferable to set it as the structure which fastens a volt | bolt in the location close | similar to the said ditch | groove. By the way, when a high frequency magnetic field is applied to the mold as described above, the temperature of the bolts as well as the metal mold part is increased, but if the bolt is fastened at a position close to the concave groove serving as a cooling water channel, This is because overheating of the bolt can also be prevented.
[0018]
In addition, it is preferable that the high-frequency mold is a billet mold. The reason is that in the case of a large mold such as a slab mold, the tubular body itself is also large and difficult to manufacture by drawing, but the billet mold is originally small, so that the tubular body and the exterior member This is because it is possible to easily manufacture a long material which is the basis of the above by drawing.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
<Embodiment 1>
FIG. 1 is a perspective view showing a high-frequency mold 10 and a high-frequency coil 2 (partially broken) according to Embodiment 1 of the present invention, and FIG. It is a front view, (b) is the sectional view on the AA line shown to (a). This mold is for billets.
[0020]
The high-frequency mold 10 has a structure in which four copper exterior members 12 are assembled with bolts 13 on the outer peripheral surface of a copper tubular body 11 having a square cross section, and the inner wall surface of the tubular body 11 serves as the inner surface of the mold. A plurality of slits 15 are formed in the mold 10 along the casting direction (the slab drawing direction). The slits 15 pass through the tubular body 11 and the exterior member 12 to form a continuous slit. Yes. A high frequency coil 2 is disposed around the mold 10 at the position of the slit 15. A cooling water channel 16 is formed inside each segment 10 a of the mold 10, and a cooling water drain hole 14 is provided in a lower portion of the mold 10.
[0021]
Next, a method for manufacturing the high-frequency mold 10 of Embodiment 1 will be described. FIGS. 3A and 3B are perspective views for explaining a method for manufacturing the tubular body 11 in the mold 10 of the first embodiment, and FIG. 4A is a front view of the tubular body 11. (b) is the BB sectional view taken on the line (a), (c) is the CC sectional view taken on the line (a). FIG. 5 is a perspective view of one exterior member 12.
[0022]
First, a copper tubular product 18 having a square cross section is manufactured by drawing ((a) of FIG. 3). The thickness of the tubular object 18 may be any thickness as long as it can be drawn and can form a concave groove, and may be arbitrarily set according to the strength and material of the mold 10. Next, a plurality of slits 15a are formed in the tubular object 18 at a position corresponding to the place where the high-frequency coil 2 is disposed, and a concave groove 17 serving as a cooling water channel 16 is formed on the outer surface side. ((B) of FIG. 3, FIG. 4). The concave groove 17 is formed so as not to intersect with the slit 15a (in parallel with the slit 15a), and to cross between the slits 15a, with one segment as a forward path and the adjacent segment as a return path ( As shown in FIGS. 4 (a) and 4 (c), the groove 17 advances linearly in the segment and makes a U-turn at the upper portion of the tubular body 11). The tubular body 11 is formed with a bolt mounting portion 13a.
[0023]
On the other hand, a copper plate is manufactured by drawing, and a slit 15b is formed in the same position corresponding to the slit 15a of the tubular body 11, and a cooling water drain hole 14 and a bolt mounting hole 13b are formed. Thus, the exterior member 12 is obtained. The drain hole 14 is provided so as to correspond to one lower end 17 a of the concave groove 17. The other lower end 17 b of the concave groove 17 opened at the lower end of the tubular body 11 is a cooling water supply hole 24.
[0024]
Next, the O-ring 19 is disposed along the concave groove 17, and the exterior member 12 (four sheets) is brought into contact with the four outer circumferential surfaces of the tubular body 11 and fixed with the bolts 13 to complete the mold 10 ( FIG. 1). The mounting position of the bolt 13 is close to the concave groove 17, and the bolt 13 is also cooled by the cooling water passing through the concave groove 17. Further, the O-ring 19 prevents the leakage of the cooling water in the concave groove 17. Moreover, since the slit 15a and the slit 15b are formed in the same position, it becomes a continuous slit 15. In cooling the mold 10, cooling water is supplied from the supply hole 24, and the segment is cooled by using the concave groove 17 as a cooling water passage to cool the segment, and is discharged from the drain hole 14.
[0025]
As described above, in the method for manufacturing the mold 10 according to the first embodiment, an inexpensive drawing process can be adopted, and the process and assembly work up to completion of the mold are simple, so that the high-frequency mold 10 can be obtained at a low cost. . For example, the mold manufacturing cost can be reduced to about 1/5 as compared with a conventional machining process. Further, even if it is a curved mold instead of a vertical mold, it can be easily manufactured. That is, first, a slit is formed in a curved tubular product (corresponding to a curved tubular product 18 shown in FIG. 3A). A curved mold can be obtained simply by forming a concave body on the outer surface side to form a tubular body, and forming a slit in a curved plate-shaped object to form an exterior member, and combining these tubular body and exterior member.
[0026]
<Embodiment 2>
6A is a front view showing an upper portion of the high-frequency mold 20 according to Embodiment 2 of the present invention, and FIG. 6B is a sectional view taken along the line DD shown in FIG.
[0027]
In the first embodiment, the example in which the exterior member 12 to be brought into contact with one surface of the tubular body 11 having a rectangular cross section is configured by one sheet is shown, but in the second embodiment, the outer member 12 is brought into contact with one surface. The exterior member 22 is composed of two sheets. And the division | segmentation location of the two exterior members 22 is made to respond | correspond to the center slit 15 position. That is, among the three slits 15a formed on one surface of the tubular body 11, the adjacent portion 22s between the two exterior members 22 is located at the central slit 15a, and a gap is provided in the adjacent portion 22s. Thus, the central slit 15 is formed. In this way, by forming the adjacent portion 22s of the exterior member 22 at the position of the slit 15, the formation of the central slit 15b in the exterior member 22 can be omitted. In addition, since the size of each exterior member can be reduced, water leakage can be prevented by reducing the deformation amount of the exterior member 22, which is advantageous. Other configurations are the same as those of the first embodiment.
[0028]
Also in the case of the second embodiment, the mold 20 can be manufactured at a low cost by employing the drawing process.
[0029]
< Reference example >
FIG. 7A is a front view showing an upper portion of the tubular body 31 in the high-frequency mold according to the reference example , and FIG. 7B is a cross-sectional view taken along line EE shown in FIG.
[0030]
The first embodiment in groove 17 (cooling canals) is forward of the one segment, it showed that formed within the other segments as a return path, in the present reference example, one as a thin recessed groove 37 of the It is formed so as to reciprocate within the segment. A thin cooling water channel is formed by the thin concave groove 37. Other configurations in the reference example are the same as those in the first embodiment.
[0031]
Even if the concave groove 37 is thin like this, the manufacturing process itself of the tubular body 31 is as simple as that of the first embodiment, that is, it is only necessary to dig a groove on the surface of the tubular product obtained by the drawing process. . Therefore, since the production of the tubular body 31 is easy and the work of the exterior member is also simple, the high-frequency mold can be manufactured at a low cost.
[0032]
As described above, the high-frequency mold according to the present invention has been specifically described with reference to the drawings showing typical examples. However, the present invention is not limited to the illustrated examples, and can be applied to the above-described purpose. The present invention can be carried out with appropriate modifications, all of which are included in the technical scope of the present invention.
[0033]
For example, in the above embodiment, the tubular body and the exterior member are made of copper. However, the present invention is not limited to this, and a material that does not generate Joule heat in a high-frequency magnetic field such as ceramic may be used. In addition, since the thing made from copper has high heat conductivity, it is efficiently cooled with the cooling water in a cooling water channel (concave groove).
[0034]
Moreover, although the thing of the structure which provides a tubular body with a ditch | groove was shown in the said embodiment, a ditch | groove may be formed in an exterior member and this may be used as a cooling water channel, or a ditch | groove is formed in both a tubular body and an exterior member. It may be what you did.
[0035]
<Experiment>
Using the high-frequency molds 10 and 20 shown as Embodiments 1 and 2, 0.12% C steel was continuously cast, and the molds were evaluated. As casting conditions, the casting speed is 1.6 m / min and 2.0 m / min, two magnetic field frequencies are 10 kHz and 20 kHz, and the applied magnetic field strength is 100 gauss, 200 gauss, and 300 gauss. It was.
[0036]
As a result, for any high-frequency molds of Embodiments 1 and 2, no adverse effects due to poor cooling are observed in the obtained slab, and damage to equipment due to overheating of the tubular body or exterior member, No leakage of cooling water was observed. Even a high-frequency mold obtained by such a simple manufacturing method was inferior to a conventional mold.
[0037]
【The invention's effect】
As described above, the high-frequency mold according to the present invention has a structure having a cooling water channel in each segment, but can be easily manufactured by using an inexpensive drawing method, and the manufacturing cost is low.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a high frequency electromagnetic casting mold and a high frequency coil for continuous casting according to Embodiment 1 of the present invention.
2A is a front view showing an upper portion of the high-frequency mold of Embodiment 1, and FIG. 2B is a cross-sectional view taken along line AA shown in FIG.
3 is a perspective view for explaining a method for manufacturing a tubular body in the high-frequency mold of Embodiment 1. FIG.
4A is a front view of the tubular body of the first embodiment, FIG. 4B is a cross-sectional view taken along the line BB shown in FIG. 4A, and FIG. 4C is a cross-sectional view taken along the line CC shown in FIG.
5 is a perspective view of one exterior member in the high-frequency mold of Embodiment 1. FIG.
6A is a front view showing an upper portion of a high-frequency mold 20 according to Embodiment 2 of the present invention, and FIG. 6B is a sectional view taken along the line DD shown in FIG.
FIG. 7A is a front view showing an upper part of a tubular body 31 in a high-frequency mold according to a reference example ;
(B) is the EE sectional view taken on the line shown to (a).
FIG. 8 is a cross-sectional view of an essential part showing a continuous casting apparatus in high frequency electromagnetic field casting.
FIG. 9 is a front view of a small cross-section mold for billets that does not apply a high-frequency magnetic field, and (b) is a cross-sectional view taken along line AA shown in (a).
10A is a schematic cross-sectional view for explaining the arrangement of cooling water channels in the curved mold, and FIG. 10B is a schematic cross-sectional view for explaining the arrangement of cooling water channels in the vertical mold.
[Explanation of symbols]
2 High-frequency coils 10 and 20 High-frequency molds 11 and 31 Tubular bodies 12 and 22 Exterior member 13 Bolts 15, 15a and 15b Slit 16 Cooling water channels 17 and 37 Groove 19

Claims (2)

連続鋳造用高周波電磁界鋳造鋳型において、
該鋳型は、鋳型内面を構成する管状体と、該管状体の外周面に当接されて鋳型外面を構成する外装部材とが、組み付けられたものであり
前記管状体及び前記外装部材は、これらに相対応して貫通するスリットを、鋳造方向に沿っ複数本備えると共に、
前記管状体と前記外装部材の境界部の一方側または両方に跨った凹溝を備えており、
該凹溝が、前記スリットを回避して鋳造方向に沿い、且つ前記スリットで分割されたセグメントを渡って形成され、該凹溝部を冷却用水路としたものであることを特徴とする溶融金属の連続鋳造用高周波電磁界鋳造鋳型。
In high frequency electromagnetic casting mold for continuous casting,
The template is for a tubular body constituting the mold inner surface, and the exterior member constituting the contact has been mold outer surface to the outer peripheral surface of the tubular body, assembled,
The tubular body and the exterior member are provided with a plurality of slits penetrating correspondingly thereto along the casting direction,
Comprising a groove extending over one side or both of the boundary between the tubular body and the exterior member ;
Concave grooves, have along the casting direction to avoid the slit, is formed and over the segments divided by the slits, the molten metal, characterized in that is obtained by the concave grooves and the cooling canals High frequency electromagnetic casting mold for continuous casting.
前記連続鋳造鋳型がビレット用の鋳型である請求項1に記載の溶融金属の連続鋳造用高周波電磁界鋳造鋳型。  The high frequency electromagnetic field casting mold for continuous casting of molten metal according to claim 1, wherein the continuous casting mold is a mold for billets.
JP2002313294A 2002-10-28 2002-10-28 High frequency electromagnetic casting mold for continuous casting of molten metal Expired - Fee Related JP4202718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002313294A JP4202718B2 (en) 2002-10-28 2002-10-28 High frequency electromagnetic casting mold for continuous casting of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002313294A JP4202718B2 (en) 2002-10-28 2002-10-28 High frequency electromagnetic casting mold for continuous casting of molten metal

Publications (2)

Publication Number Publication Date
JP2004148323A JP2004148323A (en) 2004-05-27
JP4202718B2 true JP4202718B2 (en) 2008-12-24

Family

ID=32457950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002313294A Expired - Fee Related JP4202718B2 (en) 2002-10-28 2002-10-28 High frequency electromagnetic casting mold for continuous casting of molten metal

Country Status (1)

Country Link
JP (1) JP4202718B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA94784C2 (en) * 2009-07-20 2011-06-10 Частное Акционерное Общество «Пиллар» Device for producing of ingots of multicrystal silicon by induction
AT512433B1 (en) * 2012-01-30 2017-08-15 Primetals Technologies Austria GmbH CONTINUOUS COIL FOR THE CONTINUOUS CASTING OF A STRING WITH A BILL OR PRE-BLOCK PROFILE
CN111570736B (en) * 2020-04-21 2022-07-01 中冶南方连铸技术工程有限责任公司 Crystallizer with water blocking structure

Also Published As

Publication number Publication date
JP2004148323A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
JP4610548B2 (en) Tubular mold for continuous casting
CN1978091B (en) Tubular crystallizer for continuous casting metal
KR100586282B1 (en) Twin roll casting
BRPI0612791B1 (en) CYLINDER SHIRT AND METHOD FOR MANUFACTURING IT
TW200300713A (en) Mold-pipe for continuously casting metals
US6367539B1 (en) Crystalliser for continuous casting
JP4202718B2 (en) High frequency electromagnetic casting mold for continuous casting of molten metal
JPH0130578B2 (en)
KR100518330B1 (en) A casting roll of twin roll strip caster
JP2922252B2 (en) Mold for continuous casting equipment
JP2004268061A (en) Cooling structure for core pin, and casting method using the structure
WO2007068687A2 (en) Crystallizer
JPS5931415B2 (en) Hollow tube manufacturing method and device
JPH1071455A (en) Method and apparatus for continuously casting metallic strip
JPH03291148A (en) Dummy bar for drawing billet and continuous casting method
KR20000049145A (en) Continuous casting mould
KR100674617B1 (en) Casting roll for twin-roll strip caster
JPH0638592Y2 (en) Cooling channel internal casting mold
JP3886774B2 (en) Continuous casting mold considering slab casting radius change due to shrinkage and continuous casting equipment using the same
JP4181904B2 (en) Continuous casting mold
JP2746282B2 (en) Mold for horizontal continuous casting equipment
JPH0557407A (en) Method for continuously casting steel
KR20030037844A (en) Nozzle of continuous casting machine
JPH05293592A (en) Casting method into metallic mold
JPS61172656A (en) Hollow water cooled roll for continuous casting device of thin sheet

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081009

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees