JP4201129B2 - Mud pressure shield method - Google Patents

Mud pressure shield method Download PDF

Info

Publication number
JP4201129B2
JP4201129B2 JP2003307978A JP2003307978A JP4201129B2 JP 4201129 B2 JP4201129 B2 JP 4201129B2 JP 2003307978 A JP2003307978 A JP 2003307978A JP 2003307978 A JP2003307978 A JP 2003307978A JP 4201129 B2 JP4201129 B2 JP 4201129B2
Authority
JP
Japan
Prior art keywords
mud
soil
excavated
pressure
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003307978A
Other languages
Japanese (ja)
Other versions
JP2005076284A (en
Inventor
富士桜 倭
憲一 小幡
宏明 石井
三郎 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Tachibana Material Co Ltd
Original Assignee
Kao Corp
Tachibana Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp, Tachibana Material Co Ltd filed Critical Kao Corp
Priority to JP2003307978A priority Critical patent/JP4201129B2/en
Publication of JP2005076284A publication Critical patent/JP2005076284A/en
Application granted granted Critical
Publication of JP4201129B2 publication Critical patent/JP4201129B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

この発明は、泥土加圧シールド工法のシールド工法の掘削対象土が、シルト、粘土分が多い土質である場合に好適な泥土加圧シールド工法に関する。   The present invention relates to a mud pressurizing shield method suitable when the soil to be excavated by the mud pressurizing shield method is soil with a high silt and clay content.

泥土加圧シールド工法は、例えば非特許文献1に示すように、カッターウィングの後部に隔壁を設けて作泥土室とし、カッターで掘削された土砂に作泥土材を注入して練混ぜ翼で強力に練り混ぜて、掘削土砂を不透水性と塑性流動性を持つ泥土に変換し、これを作泥土室内とスクリューコンベア内に充満させ、この状態を維持してシールドジャッキの推進により作泥土室内の泥土に泥土圧を発生させ、切羽の土圧と地下水圧に対向し、シールド機の推進量と排土量のバランスを図りながら掘進する工法である。即ち、この工法では、シールド機が掘進するとき、作泥土室の隔壁に取り付けた特殊など土圧計により泥土圧を常時測定し、泥土圧=静止土圧+地下水圧の式を満足させるようにシールドジャッキ速度、スクリューコンベア回転数を調整することにより切羽を安定させ、地山の変化を最小限に抑え、また、地山の地下水を泥土の不透水性とスクリューコンベアの山留め作用により確実な湧水防止を図ることができる。   For example, as shown in Non-Patent Document 1, the mud pressurizing shield method is provided with a partition wall at the rear part of the cutter wing to form a mud clay chamber, and the mud mud material is poured into the earth and sand excavated by the cutter and powerful with a mixing blade. The excavated sediment is converted into a mud with imperviousness and plastic fluidity, and this is filled in the mud chamber and the screw conveyor. This is a construction method in which mud pressure is generated in the mud, facing the earth pressure of the face and the groundwater pressure, and digging while balancing the propulsion amount of the shield machine and the amount of soil discharged. In other words, in this construction method, when the shield machine digs up, the mud pressure is constantly measured by a special earth pressure gauge attached to the bulkhead of the mud soil chamber, and shielded so that the formula mud pressure = static earth pressure + groundwater pressure is satisfied. By adjusting the jack speed and screw conveyor rotation speed, the face is stabilized and changes in the natural ground are minimized, and the groundwater in the natural ground is surely springed by the imperviousness of mud and the retaining action of the screw conveyor. Prevention can be achieved.

泥土加圧シールド工法協会編集 「泥土加圧シールド工法:積算資料」 平成5年4月号Edited by the Mud Pressurized Shield Construction Association “Muddy Pressurized Shield Method: Accumulated Materials” April, 1993 issue

ところで、この泥土加圧シールド工法で地山粘土を掘削する場合であって、掘削対象断面に対し、粘土・シルト分(0.074mm以下の土質粒度)が多い場合、特に30%以上(泥土加圧シールド協会による「濃度及び注入率の算定式」に基づく。)含まれる場合には、掘削効率が著しく低下し、また、掘削土砂を土砂圧送ポンプで排土する場合にも、圧送ポンプが故障したり、配管が閉塞し、さらには土砂圧送を再開したときに、ポンプ圧が急激に上昇して故障し易い、といったトラブルが発生する、という問題を有していた。   By the way, when excavating natural clay with this mud pressure shield method, when there is a lot of clay and silt (soil grain size of 0.074 mm or less) with respect to the cross section to be excavated, especially 30% or more (mud addition) Based on the “Calculation formula of concentration and injection rate” by the Pressure Shield Association.) When included, the excavation efficiency is significantly reduced, and when the excavated sediment is discharged with the sediment pump, Or when the piping is blocked, and when sediment transport is resumed, there is a problem that the pump pressure is suddenly increased and a failure is likely to occur.

このような問題を解決するために、多量の加水を行うことが考えられるが、この場合には、粘性土は忽ち液状化(泥水)状態となり、切り羽土圧が安定せず、地盤が脆弱化し易く、また、液状化した掘削土を圧送した場合、配管内上部にエアーが溜まってエアーハンマー現象による騒音が発生する、という課題を有しているため、この加水方式も好ましいとはいえない。   In order to solve such a problem, it is conceivable to add a large amount of water. In this case, however, the viscous soil is in a liquefied (muddy water) state, the face pressure is not stable, and the ground is weak. This hydration method is also not preferable because it has a problem that when it is easily liquefied and when liquefied excavated soil is pumped, air accumulates in the upper part of the pipe and noise is generated due to the air hammer phenomenon. .

さらに、当該工法では、掘削土塑性流動化の助成や面盤への粘性土の付着防止及び掘削土の搬出を容易にすることを目的として、水や高分子系の添加剤をシールド機の面板や隔壁内及びスクリューコンベアに形成された注入口から注入したり、掘削土砂の坑外搬出設備として土砂圧送ポンプ方式を採用している現場においては、圧送距離延長及び閉塞防止を目的として圧送管壁の摩擦抵抗低減のために注水リングを介して水を注入しているが、掘削土砂の搬出、圧送が容易にできるという理由から過大な添加剤を注入することは残土処分量の増加に繋がるため好ましくない。   Furthermore, in this construction method, water and polymer additives are added to the face plate of the shield machine for the purpose of subsidizing plastic fluidization of excavated soil, preventing adhesion of viscous soil to the face plate, and facilitating unloading of excavated soil. In order to extend the pumping distance and prevent clogging at the site where the pumping system is used for injecting from the injection port formed in the bulkhead and the screw conveyor, or for excavating earth and sand. In order to reduce frictional resistance, water is injected through the water injection ring, but injecting excessive additives for the reason that it is easy to carry out and pump out excavated earth and sand leads to an increase in the amount of residual soil disposal. It is not preferable.

この発明は、かかる知見に基づき創案されたものであって、その目的とするところは、泥土加圧シールド工法の掘削対象土が、シルト、粘土分が多い場合、特に、全土量の30%を超える土質で、粘着性が著しい土質である場合であっても、掘削効率を向上させることができると共に、チャンバー内での付着を減少させて泥土の均等化を図ることができ、また、排土の圧送距離を延長させることができるとともに、排土を液状化させることなく、排土のボリュームを減少させ、かつ、エアーハンマー現象の発生を抑制して圧送時の騒音の発生を防止することができる泥土加圧シールド工法を提供しようとするものである。   The present invention was devised based on such knowledge, and the object of the invention is that when the soil to be excavated by the mud pressure pressurizing method is a lot of silt and clay, especially 30% of the total amount of soil. Excavation efficiency can be improved even when the soil is overly cohesive and very sticky, and mud soil can be equalized by reducing adhesion in the chamber. It is possible to extend the pumping distance, reduce the volume of the soil without liquefying the soil, and suppress the occurrence of the air hammer phenomenon to prevent noise during pumping. It is intended to provide a mud pressure shield method that can be used.

本発明者等が、従来技術の課題を詳細に検討したところ、粘土・シルト分(0.074mm以下の土質粒度)が多い場合、特に30%以上(泥土加圧シールド協会による「濃度及び注入率の算定式」に基づく。)含まれる場合には、粘性土が持つコロイド粒子の電気化学的作用により、コロイド粒子が連鎖的に絡み合って非常に強く結びつくことから、付着力(粘着力)が急激に増加し、シールド機の面盤(カッターピット)やチャンバー内、或はスクリューコンベア等に付着し易くなり、掘削効率が著しく低下し、また、掘削土砂を土砂圧送ポンプで排土する場合にも、粘性土が圧送配管内で付着して配管抵抗が急激に上昇するため、圧送ポンプが故障したり、配管が閉塞するといったトラブルに結びつくことがわかった。また、上記圧送ポンプよる連続加圧によって生じる配管内圧密脱水による配管閉塞や、土砂圧送停止時間中における配管内のコロイド粒子の水分吸収によって掘削土の流動性が低下し、土砂圧送を再開したときに、ポンプ圧が急激に上昇して故障し易くなることもわかった。  When the present inventors examined the problems of the prior art in detail, when there is a large amount of clay and silt (soil particle size of 0.074 mm or less), especially 30% or more (concentration and injection rate by the Mud Pressurizing Shield Association) If it is included, the adhesive action (adhesive force) is rapidly increased because the colloidal particles are entangled in a chain and are very strongly linked by the electrochemical action of the colloidal particles in the clay. It is easy to adhere to the face plate (cutter pit) of the shield machine, the chamber, or the screw conveyor, and the excavation efficiency is remarkably lowered. Also, when excavating sediment is discharged with a sediment pump. It was found that viscous soil adheres inside the pressure feed pipe and the pipe resistance increases rapidly, leading to troubles such as failure of the pressure feed pump and blockage of the pipe. In addition, when the fluidity of the excavated soil is reduced due to blockage of the pipe due to consolidation dehydration in the pipe caused by continuous pressurization by the above-mentioned pumping pump, or the water absorption of colloidal particles in the pipe during the sediment pumping stop time, and sediment pumping is resumed In addition, it was also found that the pump pressure suddenly increased and it was easy to break down.

そこで、本発明者等は、粘性土掘削では、過剰の水分添加をすることなく上記のコロイド連鎖を解消し、粘性泥土中のコロイド粒子の付着力を低減する観点から、粘性泥土に適した添加剤を検討した結果、上記目的を達成する新規な泥土加圧シールド工法を見出した。   Therefore, the present inventors, in the case of viscous soil excavation, is suitable for viscous mud from the viewpoint of eliminating the above colloidal chain without adding excessive water and reducing the adhesion of colloidal particles in the viscous mud. As a result of investigating the agent, a new mud pressure shield construction method that achieves the above-mentioned purpose was found.

即ち、本発明はカッターで掘削されたシルトや粘土分が多い土質の土砂に作泥土材を注入して練り混ぜて泥土にし、これをカッター後部の作泥土室内に充填し、作泥土室内に発生する泥土圧により掘進する泥土加圧シールド工法であって、上記作泥土材中に、下記一般式(化1)からなるカチオン界面活性剤を含有させることを特徴とする泥土加圧シールド工法に係る。 That is, in the present invention, the mud material is poured into the silt and sand having a large amount of silt and clay excavated by the cutter, kneaded to make mud, and this is filled in the mud chamber in the rear of the cutter and generated in the mud chamber. A mud pressurizing shield method that excavates by mud pressure, and includes a cationic surfactant consisting of the following general formula (Chemical Formula 1) in the mud material: .

さらに、本発明は、前記泥土加圧シールド工法であって、前記一般式(化1)が、ラウリルトリメチルアンモニウムクロライド、セチルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、ジステアリルジメチルアンモニウムクロライドの一種以上を含むカチオン界面活性剤とするのが望ましい。  Furthermore, the present invention is the mud pressure shield method, wherein the general formula (Chemical Formula 1) includes one or more of lauryltrimethylammonium chloride, cetyltrimethylammonium chloride, stearyltrimethylammonium chloride, and distearyldimethylammonium chloride. It is desirable to use a cationic surfactant.

本発明にあっては、添加剤として、電気化学的作用を有するカチオン界面活性剤を用いるので、付着力が高い粘性土のコロイド粒子にカチオンが吸着して、コロイド粒子同士を反発させるように作用して、粘性土の粘性を低減させることができる。また、粘性土にカチオン界面活性剤を吸着させ、掘削土の表面が疎水化されることによって粘性土の膨潤が抑制されるとともに、シールド機への付着を大幅に低減させることができる。   In the present invention, a cationic surfactant having an electrochemical action is used as an additive, so that the cation is adsorbed on colloidal particles of viscous soil having a high adhesive force and repels the colloidal particles. Thus, the viscosity of the clay can be reduced. In addition, the cationic surfactant is adsorbed on the viscous soil, and the surface of the excavated soil is hydrophobized, so that the swelling of the viscous soil is suppressed and adhesion to the shield machine can be greatly reduced.

さらに、本発明にあっては、このカチオン界面活性剤は、切削された土塊状の粘性土の水分浸透性が低いにも拘わらず、シールド機面盤への付着が低減されることから切削効率が大幅に向上させることができる。   Furthermore, in the present invention, this cationic surfactant reduces cutting efficiency because it reduces adhesion to the shield machine face plate despite the low moisture permeability of the cut clay-like viscous soil. Can be greatly improved.

また、本発明に係るカチオン界面活性剤を用いることで、加水注入していた従来の工法と比較して、少ない注水量で、排粘性土を液状化させることなく、その付着力を大幅に低減することができ、泥土加圧シールド工法の施工時における掘削・推進効率を大幅に向上させることができると共に、排粘性土の配管圧送効率も向上させることができ、しかも、排粘性土を液状化させることなく硬めの状態で圧送することができるので、排土のボリュームを減少させ、かつ、エアーハンマー減少の発生を抑制して圧送時の騒音の発生を防止することができる。  In addition, by using the cationic surfactant according to the present invention, compared to the conventional method of water injection, the adhesion force is significantly reduced with less water injection and without liquefying the clay soil. The excavation and propulsion efficiency during construction of the mud mud pressure shield method can be greatly improved, and the piping pumping efficiency of the waste clay can be improved, and the waste clay is liquefied. Since it can be pumped in a hard state without causing it to occur, it is possible to reduce the volume of the soil, and to suppress the occurrence of air hammer reduction, thereby preventing the generation of noise during pumping.

本発明に係る特定カチオン界面活性剤は、粘制土への吸着性の観点から、一般式(化1)が、ラウリルトリメチルアンモニウムクロライド、セチルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、ジステアリルジメチルアンモニウムクロライド等の一種以上を混合することが好ましい。  The specific cationic surfactant according to the present invention is represented by the general formula (Chemical Formula 1) from the viewpoint of adsorptivity to clayey soil, lauryltrimethylammonium chloride, cetyltrimethylammonium chloride, stearyltrimethylammonium chloride, distearyldimethylammonium chloride. It is preferable to mix one or more of these.

さらに具体的には、本発明に係るカチオン活性剤は、ラウリルトリメチルアンモニウムクロライドとして花王株式会社製のコータミン24Pを、セチルトリメチルアンモニウムクロライドを用いる場合には花王株式会社製のコータミン60Wを、ステアリルトリメチルアンモニウムクロライドを用いる場合には花王株式会社製のコータミン86Pを、ジステアリルジメチルアンモニウムクロライドを用いる場合には花王株式会社製のコータミンD86Pを、セチルトリメチルアンモニウムクロライドとステアリルトリメチルアンモニウムクロライドの混合物を用いる場合には花王株式会社製のコータミン86Wを用いることができる。   More specifically, the cationic activator according to the present invention includes Cotamin 24P manufactured by Kao Corporation as lauryltrimethylammonium chloride, Coatamine 60W manufactured by Kao Corporation when cetyltrimethylammonium chloride is used, and stearyltrimethylammonium chloride. In the case of using chloride, Cotamin 86P manufactured by Kao Corporation, in the case of using distearyldimethylammonium chloride, Cotamin D86P manufactured by Kao Corporation, and in the case of using a mixture of cetyltrimethylammonium chloride and stearyltrimethylammonium chloride. Cotamin 86W manufactured by Kao Corporation can be used.

本発明に係るカチオン界面活性剤をシールド掘削工法に用いる場合には、水100重量部に対して本実施例1品を1〜5重量部程度混合した水溶液を作液したものを使用することが好ましい。   When the cationic surfactant according to the present invention is used in the shield excavation method, it is necessary to use an aqueous solution prepared by mixing about 1 to 5 parts by weight of the product of Example 1 with respect to 100 parts by weight of water. preferable.

本発明に係る工法の好ましい態様を説明する。本発明に使用されるシールド機は、カッター、作泥土室、シールドジャッキ及び泥土排出用コンベアから構成されることが好ましい。  A preferred embodiment of the construction method according to the present invention will be described. The shield machine used in the present invention is preferably composed of a cutter, a mud chamber, a shield jack, and a mud discharge conveyor.

地山、地盤等からカッターで土砂を掘削し、掘削された土砂に作泥土材を注入して練り混ぜ泥土に変換し、これを作泥土室に充填し、シールドジャッキの推力により作泥土室に泥土圧を発生させ、掘進するのが代表的な機構である。  The soil is excavated from the ground, ground, etc. with a cutter, mud material is poured into the excavated soil, kneaded and converted into mud, filled into the mud chamber, and put into the mud chamber by the thrust of the shield jack. A typical mechanism is to generate mud pressure and excavate.

ここに、泥土とは掘削土砂と作泥土材の混練物で、不透水性と塑性流動性を有するものである。   Here, the mud is a kneaded material of excavated earth and mud material, and has water impermeability and plastic fluidity.

カッターは、面盤方式、スポーク方式等があり、粘性土の付着の観点から、付着面積の小さいスポーク方式が好ましい。  The cutter includes a face plate method, a spoke method, and the like, and a spoke method with a small adhesion area is preferable from the viewpoint of adhesion of viscous soil.

作泥土室は、カッターで掘削された土砂の泥土流動性の観点から、作泥土室内での滞留部分の少ない形状が好ましい。  From the viewpoint of mud fluidity of the earth and sand excavated by the cutter, the mud chamber is preferably in a shape with few staying portions in the mud chamber.

カッターで掘削しながらカッター背後の作泥土室で作泥土材と土砂を十分混練することが好ましく、かかる場合、カッター後部に練り混ぜ翼が設置されていることが好ましい。  It is preferable to sufficiently knead the mud material and earth and sand in the mud chamber behind the cutter while excavating with the cutter. In such a case, it is preferable that a mixing blade is installed at the rear part of the cutter.

作泥土材は、カッターの中央のフィッシュテール部位、スポーク部位、作泥土室部位等から掘削土砂に注入することが好ましく、均一分散、付着低減の観点から、より多くの箇所より注入することが特に好ましい。  It is preferable to inject the mud material into the excavated soil from the fishtail part, spoke part, mud soil chamber part, etc. in the center of the cutter, and in particular from the viewpoint of uniform dispersion and reduction of adhesion, preferable.

・実験例1
(1)粘性土
神奈川県川崎市の現場粘性土を基準に、加水及び添加剤3種類を用いて濃度、添加率を表1のように設定し、株式会社機動技研製の回転式摩擦抵抗測定機を用いて、摩擦抵抗の比較試験を行った。
現場試料土の採取場所 神奈川県川崎市大師付近 GL−15m
土質 シルト混じり粘土
含水比 39.4%
粘着力 Cuu 0.067N/mm2
この実験例で用いられる回転式摩擦係数測定機は、図2と図3に示すように、試験体を円盤状とし、これを回転運動させることにより牽引時の摩擦抵抗を測定する。詳細な構成は次の通りである。
・駆動部 回転スヒ゜ート゛ 0〜0.7p.m
・計測器部 本体 ロードセルデジタル秤
最大測定力 20kgf
・形状寸法 下部試験体枠 外径 φ170mm
上部試験体枠 外径 φ146mm、内径 φ46mm
・重量 試験体枠 3.5kg (上部、下部一組)
(2)作泥土材
所定の固形分濃度の水溶液を作泥土材とした。作泥土材1は、水だけである。
・ Experimental example 1
(1) Viscous soil Based on on-site viscous soil in Kawasaki City, Kanagawa Prefecture, the concentration and addition rate are set as shown in Table 1 using three types of water and additives, and rotational friction resistance measurement made by Kido Giken Co., Ltd. A friction resistance comparison test was performed using a machine.
On-site sample soil collection location near Daishi, Kawasaki City, Kanagawa GL-15m
Soil Water content of clay mixed with silt 39.4%
Adhesive strength Cuu 0.067N / mm2
As shown in FIGS. 2 and 3, the rotary friction coefficient measuring machine used in this experimental example has a test piece in a disk shape, and measures the frictional resistance during towing by rotating it. The detailed configuration is as follows.
・ Drive section Rotation speed 0-0.7p. m
・ Measurement unit body Load cell digital scale
Maximum measuring force 20kgf
・ Shape dimensions Lower specimen frame outer diameter φ170mm
Upper specimen frame outer diameter φ146mm, inner diameter φ46mm
・ Weight frame 3.5kg (one set of upper and lower parts)
(2) Mudstone material An aqueous solution having a predetermined solid content concentration was used as a mud material. The clay material 1 is only water.

Figure 0004201129
Figure 0004201129

図1と図2は、この実験に用いた摩擦抵抗試験器の概略的な構成を示しており、図1は平面図を、図2は断面図である。   1 and 2 show a schematic configuration of the frictional resistance tester used in this experiment. FIG. 1 is a plan view and FIG. 2 is a cross-sectional view.

表3は、上記構成からなる摩擦抵抗試験器により評価した結果を示している。尚、評価基準は、摩擦抵抗の低い測定値を高く評価した。
作泥土材なしで添加率0%の摩擦抵抗値を100とした場合、各作泥土材と添加率毎に摩擦抵抗の減少程度を表2のように評価した。
Table 3 shows the results of evaluation using a frictional resistance tester having the above-described configuration. In addition, the evaluation criteria evaluated highly the measured value with low frictional resistance.
Table 2 shows the degree of reduction in frictional resistance for each mud soil material and addition rate, assuming that the friction resistance value at 0% addition rate without the mud soil material is 100.

Figure 0004201129
Figure 0004201129

Figure 0004201129
添加率:現場資料土の容量に対する作泥土材の添加容量の比率
Figure 0004201129
Rate of addition: Ratio of the added capacity of mud material to the capacity of on-site data soil

上記実験からも明らかなように、単に水を加えてコロイド連鎖を解消するよりも、本発明に係る作泥土材4を用いた方が、摩擦抵抗が明らかに低減されるのがわかる。   As is clear from the above experiment, it can be seen that the frictional resistance is clearly reduced by using the mud clay material 4 according to the present invention rather than simply adding water to eliminate the colloidal chain.

・実験例2
次に、図3に示すモデルを用いて、土砂圧送ポンプによる泥土加圧シールド工法で掘削された掘削土砂を、加水及び添加剤を用いて比較実験を行い、各圧送ポンプの吐出圧力を測定した。その結果を表4に示す。
場所 神奈川県川崎市大師付近 GL−15m
土質 シルト混じり粘土
含水比 39.4%
粘着力 Cuu 0.067N/mm2
図3中、ポンプP0とポンプP1間及びポンプP1とポンプP2間の距離は400mであり、ポンプP2とポンプPE間は425mに設定されており、配管は8Bサイズのものを使用した。また、比較例1、2、4、6の吐出圧力は、測定しなかった。
・ Experimental example 2
Next, using the model shown in FIG. 3, the excavated earth and sand excavated by the mud pressurizing shield method using the earth and sand pressure pump was compared with water and additives, and the discharge pressure of each pressure pump was measured. . The results are shown in Table 4.
Location GL-15m near Daishi, Kawasaki City, Kanagawa Prefecture
Soil Clay water content 39.4%
Adhesive strength Cuu 0.067N / mm2
In FIG. 3, the distance between the pump P0 and the pump P1 and between the pump P1 and the pump P2 is 400 m, the distance between the pump P2 and the pump PE is set to 425 m, and the piping of 8B size is used. Moreover, the discharge pressure of Comparative Examples 1, 2, 4, and 6 was not measured.

Figure 0004201129
添加率:掘削対象土の容量に対する作泥土材の容量添加率の比率
Figure 0004201129
Rate of addition: Ratio of volume addition rate of mud material to volume of excavated soil

上記実験結果からも明らかなように、本実施例1品を加えて圧送した場合、水を加えて圧送した場合や、従来のポリカルボン酸或はポリアクリル酸高分子を加えて圧送した場合と比べて、各圧送ポンプの吐出圧力は小さく、圧送ポンプへの負荷を低く抑えることができる。また、この負荷低減は、本実施例1品を10%よりも20%といった具合に、多く添加する方が効果が上がることがわかる。 As is clear from the experimental results, when the product of Example 1 was added and pumped, when water was added and pumped, or when a conventional polycarboxylic acid or polyacrylic acid polymer was added and pumped In comparison, the discharge pressure of each pump is small, and the load on the pump can be kept low. In addition, it can be seen that this load reduction is more effective when a large amount of Example 1 product is added, such as 20% rather than 10%.

本発明は、粘着性が著しい場合も含む土質を掘削対象とする泥土加圧シールド工法に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used in a mud pressure shield method for excavating soil quality including cases where the tackiness is remarkable.

この発明に係る泥土加圧シールド工法により掘削された掘削土砂の付着力比較試験に用いられる摩擦抵抗試験器の概略的な構成を示す平面図である。It is a top view which shows schematic structure of the frictional resistance tester used for the adhesive force comparison test of the excavated earth and sand excavated by the mud pressure pressurization shield method which concerns on this invention. 同摩擦抵抗試験器の断面図である。It is sectional drawing of the same frictional resistance tester. この発明に係る泥土加圧シールド工法により掘削された掘削土砂を圧送ポンプで圧送し排土する装置のモデル図である。It is a model figure of the apparatus which pumps and excavates excavated earth and sand excavated by the mud pressure pressurization shield method concerning this invention with a pump.

Claims (2)

カッターで掘削されたシルトや粘土分が多い土質の土砂に作泥土材を注入して練り混ぜて泥土にし、これをカッター後部の作泥土室内に充填し、作泥土室内に発生する泥土圧により掘進する泥土加圧シールド工法であって、上記作泥土材中に、下記一般式(化1)からなるカチオン界面活性剤を含有させることを特徴とする泥土加圧シールド工法。
Figure 0004201129
上記一般式(化1)中、R1は炭素数1〜18飽和又は不飽和のアルキル基を表し、R2はベンジル基又は炭素数10〜18飽和又は不飽和のアルキル基を表す。
The mud material is poured into the silt and sand with a lot of clay and excavated by the cutter, kneaded to make mud, and this is filled in the mud chamber in the rear of the cutter, and is dug by the mud pressure generated in the mud chamber. A mud pressurizing shield method, wherein a cationic surfactant composed of the following general formula (Chemical Formula 1) is contained in the mud clay material.
Figure 0004201129
In the general formula (Chemical Formula 1), R1 represents a saturated or unsaturated alkyl group having 1 to 18 carbon atoms, and R2 represents a benzyl group or a saturated or unsaturated alkyl group having 10 to 18 carbon atoms.
前記一般式(化1)が、ラウリルトリメチルアンモニウムクロライド、セチルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、ジステアリルジメチルアンモニウムクロライドの一種以上を含むカチオン界面活性剤である請求項1に記載の泥土加圧シールド工法。 The mud pressure shield according to claim 1, wherein the general formula (Chemical Formula 1) is a cationic surfactant containing at least one of lauryltrimethylammonium chloride, cetyltrimethylammonium chloride, stearyltrimethylammonium chloride, and distearyldimethylammonium chloride. Construction method.
JP2003307978A 2003-08-29 2003-08-29 Mud pressure shield method Expired - Fee Related JP4201129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003307978A JP4201129B2 (en) 2003-08-29 2003-08-29 Mud pressure shield method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003307978A JP4201129B2 (en) 2003-08-29 2003-08-29 Mud pressure shield method

Publications (2)

Publication Number Publication Date
JP2005076284A JP2005076284A (en) 2005-03-24
JP4201129B2 true JP4201129B2 (en) 2008-12-24

Family

ID=34410580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003307978A Expired - Fee Related JP4201129B2 (en) 2003-08-29 2003-08-29 Mud pressure shield method

Country Status (1)

Country Link
JP (1) JP4201129B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6113449B2 (en) * 2012-09-28 2017-04-12 株式会社フジタ Mud pressure shield method and mud pressure shield machine

Also Published As

Publication number Publication date
JP2005076284A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
Gharahbagh et al. Experimental study of the effect of conditioning on abrasive wear and torque requirement of full face tunneling machines
CN110566211B (en) Earth pressure shield muck flow plasticity improvement method suitable for sandy gravel stratum
CN106245622A (en) A kind of firming agent and the hydraulic fill foundation method for rapidly reinforcing of barged-in fill line-blending
CA2827111C (en) Submerged void filling
JP4201129B2 (en) Mud pressure shield method
JP4905394B2 (en) Excavator
TWI535930B (en) Earth and sand discharging apparatus of earth pressure balanced shield machine
CN111455978A (en) Pile forming method for section steel cement-soil stirring wall in pebble bed
JP6830632B2 (en) Treatment method of mud generated by mud pressure shield method
CN100595390C (en) River and pool back filling method by piling builders rubbish
CN113062744B (en) Method for improving water-rich sandy pebble stratum shield construction residue soil and shield construction method
JP2011202355A (en) Method for creating underground structure with standard bubble stabilizing liquid
JP4276815B2 (en) Civil lubricants containing powder lubricant
JP4555911B2 (en) Low noise, low vibration sediment pump additive and sediment pump pumping method
JP2014070405A (en) Slurry pressure shield method and slurry pressure shield machine
JP7133816B2 (en) Disposal method of mud generated by the mud pressure shield construction method
JP2004346737A (en) Tunnel excavating method
JPH10169365A (en) Method of shield tunneling method for weak soil and drilling-fluid additive
TW201713844A (en) Propulsion apparatus
JP2020051243A (en) Water stoppage method and mud-added material
JP5670683B2 (en) Backfill injection system and method
CN215860193U (en) Screw machine and waste residue discharge system
JP2001207436A (en) Slurry composition
JPH09165995A (en) Slurry excavation method
JP4012697B2 (en) Bentonite slurry and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080619

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081001

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees