JP4201016B2 - Semiconductor module and electronic device - Google Patents

Semiconductor module and electronic device Download PDF

Info

Publication number
JP4201016B2
JP4201016B2 JP2006139218A JP2006139218A JP4201016B2 JP 4201016 B2 JP4201016 B2 JP 4201016B2 JP 2006139218 A JP2006139218 A JP 2006139218A JP 2006139218 A JP2006139218 A JP 2006139218A JP 4201016 B2 JP4201016 B2 JP 4201016B2
Authority
JP
Japan
Prior art keywords
semiconductor chip
connection
electrode
semiconductor
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006139218A
Other languages
Japanese (ja)
Other versions
JP2006229251A (en
Inventor
英一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2006139218A priority Critical patent/JP4201016B2/en
Publication of JP2006229251A publication Critical patent/JP2006229251A/en
Application granted granted Critical
Publication of JP4201016B2 publication Critical patent/JP4201016B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85181Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent signal delay by directly connecting a laminated semiconductor chip, without using any wire for reducing the conductive path. <P>SOLUTION: The above signal delay can be prevented, and at the same time, packaging area can be reduced by having a substrate for connection, which includes a first projection, on whose top a first electrode for connection is established; and a second projection, which is located outward of installation region of the first projection and, at the same time, formed higher than the first projection and on whose top a second electrode for connection is established, a first semiconductor chip, which is mounted on the first electrode for connection formed on the first projection, and a second semiconductor chip, which is mounted on the second electrode for connection formed on the second projection and makes a laminated form with the first semiconductor chip. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

本発明は、半導体モジュール及び電子機器に係り、特に特に電気信号の遅延防止と小型化を図る半導体モジュール及び電子機器に関する。   The present invention relates to a semiconductor module and an electronic device, and more particularly, to a semiconductor module and an electronic device that are intended to prevent delay and reduce the size of an electric signal.

近年、電子機器の高性能化、小型化に伴って1つのパッケージ内に複数の半導体チップを配置してマルチチップパッケージとすることにより、半導体装置の高機能化と小型化とが図られている。そして、マルチチップパッケージには、複数の半導体チップを平面的に並べたものと、複数の半導体チップを厚み方向に積層したものとがある。半導体チップを平面的に並べたマルチチップパッケージは、広い実装面積を必要とするため、電子機器の小型化への寄与が小さい。このため、半導体チップを積層したスタックドMCPの開発が盛んに行われている。   2. Description of the Related Art In recent years, high performance and miniaturization of a semiconductor device have been achieved by arranging a plurality of semiconductor chips in a single package as a multi-chip package in accordance with higher performance and downsizing of electronic devices. . The multi-chip package includes a plurality of semiconductor chips arranged in a plane and a plurality of semiconductor chips stacked in the thickness direction. A multi-chip package in which semiconductor chips are arranged in a plane requires a large mounting area, and therefore contributes little to downsizing of electronic devices. For this reason, development of stacked MCPs in which semiconductor chips are stacked has been actively conducted.

従来のスタックドMCPは、例えば特開平6−37250号公報に記載されているように、積層した半導体チップを相互に電気的に接続する場合、各半導体チップの周縁部に端子部を形成し、各チップの端子間をワイヤによって接続している。このため、半導体チップ相互の電気的接続が煩雑となり、ワイヤ分だけ導通経路が長くなり、信号の遅延が生じるおそれがあった。   For example, as described in JP-A-6-37250, a conventional stacked MCP has a terminal portion formed on the periphery of each semiconductor chip when electrically connecting the stacked semiconductor chips to each other. The terminals of the chip are connected by wires. For this reason, the electrical connection between the semiconductor chips becomes complicated, the conduction path becomes longer by the amount of the wire, and there is a possibility that a signal delay occurs.

本発明は、前記従来技術の欠点を解消するためになされたもので、ワイヤを用いずに積層した半導体チップを直接接続し、導通経路の短縮により信号の遅延を防止することを目的としている。   The present invention has been made to solve the above-described drawbacks of the prior art, and has an object to directly connect stacked semiconductor chips without using wires and prevent signal delay by shortening a conduction path.

本発明に係る半導体モジュールは、頂上に第1接続用電極が設けられた第1突起と、当該第1突起の設置領域の外方に位置するとともに前記第1突起より高く形成されその頂上に第2接続用電極が設けられた第2突起と、を、有する単結晶シリコンを基材とする接続用基板と、
第1突起に形成された第1接続用電極に実装される第1半導体チップと、第2突起に形成された第2接続用電極に実装され前記第1半導体チップと積層形態をなす第2半導体チップとを有したことを特徴としている。請求項7に記載の半導体モジュールによれば、接続用基板に実装された第1半導体チップを覆うように第2半導体チップが実装されることから、実装面積の低減を図ることができる。また第1および第2半導体チップを第1および第2接続用電極に実装可能としたことから導通経路が最短となり、信号の遅延を最小限に抑えることができることはいうまでもない。

A semiconductor module according to the present invention includes a first protrusion provided with a first connection electrode on the top, and is positioned outside the installation area of the first protrusion and is higher than the first protrusion. A connection substrate based on single crystal silicon having a second protrusion provided with two connection electrodes;
A first semiconductor chip mounted on the first connection electrode formed on the first protrusion, and a second semiconductor mounted on the second connection electrode formed on the second protrusion and stacked with the first semiconductor chip And having a chip. According to the semiconductor module of the seventh aspect, since the second semiconductor chip is mounted so as to cover the first semiconductor chip mounted on the connection substrate, the mounting area can be reduced. In addition, since the first and second semiconductor chips can be mounted on the first and second connection electrodes, it is needless to say that the conduction path is the shortest and signal delay can be minimized.

本発明に記載の電子機器は、本発明の半導体モジュールを実装したことを特徴としている。本発明の電子機器によれば、信号伝達経路が最短に設定された半導体モジュールを実装していることから、電子機器においても、信号遅延の影響を少なくすることができ、もって電子機器の正確な動作を行うことができる。   The electronic device described in the present invention is characterized by mounting the semiconductor module of the present invention. According to the electronic device of the present invention, since the semiconductor module having the signal transmission path set to the shortest is mounted, the influence of the signal delay can be reduced even in the electronic device. The action can be performed.

以上説明したように本発明に係る半導体モジュールによれば、頂上に第1接続用電極が設けられた第1突起と、当該第1突起の設置領域の外方に位置するとともに前記第1突起より高く形成されその頂上に第2接続用電極が設けられた第2突起と、を、有する単結晶シリコンを基材とする接続用基板と、
第1突起に形成された第1接続用電極に実装される第1半導体チップと、第2突起に
形成された第2接続用電極に実装され前記第1半導体チップと積層形態をなす第2半導体
チップとを有したことから、上記信号の遅延防止が図れることに加え、実装面積の低減を
図れることができる。

As described above, according to the semiconductor module of the present invention, the first protrusion provided with the first connection electrode on the top, the outside of the installation area of the first protrusion, and the first protrusion A connection substrate having a single crystal silicon base material, the second protrusion having a second connection electrode formed on the top of the second protrusion;
A first semiconductor chip mounted on the first connection electrode formed on the first protrusion, and a second semiconductor mounted on the second connection electrode formed on the second protrusion and stacked with the first semiconductor chip In addition to preventing the delay of the signal, the mounting area can be reduced.

また本発明に係る電子機器によれば、前記発明の半導体モジュールを実装したことから、電子機器においても、信号遅延の影響を少なくすることができ、もって電子機器の正確な動作を行うことができる。   Further, according to the electronic device according to the present invention, since the semiconductor module of the present invention is mounted, the influence of signal delay can be reduced even in the electronic device, and the electronic device can be operated accurately. .

以下に本発明に係る半導体モジュール、及び電子機器について好適な具体的実施の形態を図面を参照して詳細に説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Preferred embodiments of a semiconductor module and an electronic device according to the invention will be described below in detail with reference to the drawings.

図1は、本実施の参考形態に係る半導体チップの構造を示す説明図であり、同図(1)は、本実施の参考形態に係る半導体チップの断面構造図であり、同図(2)は同図(1)の矢視図Aである。   FIG. 1 is an explanatory view showing the structure of a semiconductor chip according to the present embodiment, and FIG. 1A is a cross-sectional structure view of the semiconductor chip according to the present embodiment. FIG. 2 is an arrow view A in FIG.

同図に示すように本実施の参考形態に係る半導体チップ10は、単結晶シリコン12を基材としており、その表面14側には、図示しないがMOS型トランジスタや抵抗あるいは容量といった素子が形成されており、これら素子は図示しない配線を介して表面14に形成された電極16に接続されるようになっている。なお電極16は、同図(1)に示すように種類の異なる金属材料を積層させた構造となっており、本実施の参考形態においては、下層側をタングステン18とし上層側をアルミ20としている。   As shown in the figure, the semiconductor chip 10 according to the present embodiment has a single crystal silicon 12 as a base material, and an element such as a MOS transistor, a resistor or a capacitor (not shown) is formed on the surface 14 side. These elements are connected to an electrode 16 formed on the surface 14 via a wiring (not shown). The electrode 16 has a structure in which different kinds of metal materials are laminated as shown in FIG. 1A. In the present embodiment, the lower layer side is tungsten 18 and the upper layer side is aluminum 20. .

ところで電極16の下方には、単結晶シリコン12の裏面22側より前記単結晶シリコン12を貫くよう縦穴24が形成されており、当該縦穴24の先端(天井)には電極16を形成するタングステン18が露出した形態となっている。そしてこうした縦穴24においては、その斜面26および当該斜面に26に連続する単結晶シリコン12の裏面22に絶縁膜28が形成されており、導電部材が裏面22に接触しても両者の間で短絡が生じるのを防止することができるようになっている。またこうした絶縁膜28の表面には、金属配線30が引き回されており、その先端には図示しない接続用パッドが形成され、この接続用パッドに他の半導体チップ32を実装できるようになっている。   By the way, a vertical hole 24 is formed below the electrode 16 so as to penetrate the single crystal silicon 12 from the back surface 22 side of the single crystal silicon 12, and tungsten 18 forming the electrode 16 is formed at the tip (ceiling) of the vertical hole 24. Is exposed. In such a vertical hole 24, an insulating film 28 is formed on the inclined surface 26 and the back surface 22 of the single crystal silicon 12 that continues to the inclined surface 26, and even if the conductive member contacts the back surface 22, a short circuit occurs between them. Can be prevented from occurring. Further, a metal wiring 30 is routed around the surface of the insulating film 28, and a connection pad (not shown) is formed at the tip of the metal film 30, so that another semiconductor chip 32 can be mounted on the connection pad. Yes.

すなわち半導体チップ10においては、表面14側に形成された素子と導通がなされる電極16と他の半導体チップ32とは金属配線30を介して最短距離で接続がなされている。このように信号経路が最短であることから半導体チップの動作が高速になっても信号の遅延を最小限に抑えられるので安定した動作が行える。   That is, in the semiconductor chip 10, the electrode 16 that is electrically connected to the element formed on the surface 14 side and the other semiconductor chip 32 are connected through the metal wiring 30 at the shortest distance. As described above, since the signal path is the shortest, the signal delay can be minimized even when the operation of the semiconductor chip becomes high speed, so that stable operation can be performed.

また半導体チップ10における電極16を他の接続用基板(図示せず)に接続することにより、半導体チップ10と他の半導体チップ32および接続用基板との三者の間の信号経路を短くすることができるので、こうした半導体モジュールにおいても安定した動作を確保することができる。   Further, by connecting the electrode 16 in the semiconductor chip 10 to another connection substrate (not shown), the signal path between the three of the semiconductor chip 10 and the other semiconductor chip 32 and the connection substrate is shortened. Therefore, stable operation can be secured even in such a semiconductor module.

図2および図3は、本実施の参考形態に係る半導体チップ10の製造過程を示す工程説明図である。図2(1)に示すように、半導体チップ10の基材となる単結晶シリコンに素子(図示せず)を形成した後、これら素子と電気的導通を図る電極16を形成する。   2 and 3 are process explanatory views showing the manufacturing process of the semiconductor chip 10 according to the present embodiment. As shown in FIG. 2A, after elements (not shown) are formed on single crystal silicon serving as a base material of the semiconductor chip 10, an electrode 16 that is electrically connected to these elements is formed.

なお当該電極16は、タングステン18とアルミ20の2層構造になっており、タングステン20を形成した後、当該タングステン18の上層にアルミ20を形成する手順となっている。   Note that the electrode 16 has a two-layer structure of tungsten 18 and aluminum 20, and after the tungsten 20 is formed, the aluminum 20 is formed on the upper layer of the tungsten 18.

タングステン18は、まずスパッタリングによりTi膜を70〜200オングストローム、その上にTiN膜を反応性スパッタリングにより300〜1000オングストローム形成する。その後、六フッ化タングステン(WF6)を主剤ガスとするプラズマCVDを行い、表面14を高融点金属であるタングステンによって覆う。その後は、SF6とArとの混合ガスを用いたドライエッチングによってタングステンをエッチバックし、余分なタングステンを除去してタングステンを電極16の範囲内にだけ残し、当該電極16の下層となるタングステン18を形成する。なおこの余分なタングステンの除去は、エッチバックによらずにCMPによって行うようにしてもよい。   For the tungsten 18, first, a Ti film is formed in a thickness of 70 to 200 angstrom by sputtering, and a TiN film is formed thereon in a thickness of 300 to 1000 angstrom by reactive sputtering. Thereafter, plasma CVD using tungsten hexafluoride (WF6) as a main gas is performed, and the surface 14 is covered with tungsten which is a refractory metal. Thereafter, the tungsten is etched back by dry etching using a mixed gas of SF6 and Ar, the excess tungsten is removed, leaving the tungsten only within the range of the electrode 16, and the tungsten 18 which is the lower layer of the electrode 16 is removed. Form. Note that this excess tungsten may be removed by CMP without using etch back.

こうしてタングステン18を形成した後は、単結晶シリコンウェハ12自体を圧力2〜5mTorr、温度150〜300℃のアルゴン雰囲気中に配置し、Al−Cu、Al−Si−Cu、Al−Siなどをターゲットとし、DC9〜12kWの入力電力でスパッタを行い、これらのターゲットと同じ組成を有するアルミ20をタングステン18の上層に形成すればよい。   After the tungsten 18 is thus formed, the single crystal silicon wafer 12 itself is placed in an argon atmosphere at a pressure of 2 to 5 mTorr and a temperature of 150 to 300 ° C., and Al—Cu, Al—Si—Cu, Al—Si, etc. are targeted. Then, sputtering is performed with an input power of DC 9 to 12 kW, and aluminum 20 having the same composition as these targets may be formed on the upper layer of tungsten 18.

こうして単結晶シリコン12の表面14に、電極16を形成した後は、同図(2)に示すように、裏面22側よりKOH水溶液やエチレンジアミン水溶液等のエッチング液を用いて、異方性エッチングを行い縦穴24を形成する。なおこの縦穴24の斜面26は裏面22と54.74度をなす斜面で形成される(裏面22の結晶方位面は(100)面となっている)。そして裏面22において開口幅を設定することで均一の角度を有した縦穴24を形成することができる。なお異方性エッチングが進行していくと、エッチング液が電極16に達するが、ここで当該電極16はタングステン18とアルミ20の2層構造になっており、タングステン18は前記エッチング液に浸食されないことから、縦穴24ではその先端(天井)に電極16を構成するタングステン18が露出した形態となる。   After the electrode 16 is formed on the surface 14 of the single crystal silicon 12 in this way, as shown in FIG. 2B, anisotropic etching is performed using an etching solution such as a KOH aqueous solution or an ethylenediamine aqueous solution from the back surface 22 side. A vertical hole 24 is formed. The inclined surface 26 of the vertical hole 24 is formed as an inclined surface that forms 54.74 degrees with the back surface 22 (the crystal orientation plane of the back surface 22 is a (100) plane). By setting the opening width on the back surface 22, the vertical holes 24 having a uniform angle can be formed. As the anisotropic etching progresses, the etching solution reaches the electrode 16, but here the electrode 16 has a two-layer structure of tungsten 18 and aluminum 20, and the tungsten 18 is not eroded by the etching solution. Therefore, the vertical hole 24 has a form in which the tungsten 18 constituting the electrode 16 is exposed at the tip (ceiling).

そしてエッチング終了後は、同図(3)に示すように裏面側からテトラエトキシシラン(TEOS)を用いた熱CVDにて絶縁膜(SiO2)28を形成すればよい。このように単結晶シリコン12の裏面22に絶縁膜28を形成したことから、導電部材が裏面22等に接触しても短絡が生じるのを防止することができる。   After the etching is completed, an insulating film (SiO2) 28 may be formed by thermal CVD using tetraethoxysilane (TEOS) from the back side as shown in FIG. Since the insulating film 28 is formed on the back surface 22 of the single crystal silicon 12 in this way, it is possible to prevent a short circuit from occurring even when the conductive member contacts the back surface 22 or the like.

その後は、同図(4)に示すように縦穴24における天井部、すなわちタングステン18が露出するように当該タングステン18にかかる絶縁膜28の除去をフォトレジスト工程等を経て行うようにすればよい。   After that, as shown in FIG. 4 (4), the insulating film 28 on the tungsten 18 may be removed through a photoresist process or the like so that the ceiling in the vertical hole 24, that is, the tungsten 18 is exposed.

そして絶縁膜28の形成後は、図3(1)に示すように縦穴24の内側に金属膜34を形成すればよい。なおこの金属膜34の形成方法としては、単結晶シリコン12自体を、圧力2〜5mTorr、温度150〜300℃のアルゴン雰囲気中に配置し、Al−Cu、Al−Si−Cu、Al−Siなどをターゲットとし、DC9〜12kWの入力電力でスパッタを行い、これらのターゲットと同じ組成を有するアルミからなる金属膜34を形成すればよい。そして金属膜34が形成された後は、同図(2)に示すように金属配線30に相当する箇所にフォトレジスト処理にてレジスト36を残し、金属配線30の形成後は、同図(3)に示すように金属配線30の上層に形成されるレジスト36を除去すればよい。   After the formation of the insulating film 28, a metal film 34 may be formed inside the vertical hole 24 as shown in FIG. As a method of forming the metal film 34, the single crystal silicon 12 itself is placed in an argon atmosphere having a pressure of 2 to 5 mTorr and a temperature of 150 to 300 ° C., and Al—Cu, Al—Si—Cu, Al—Si, etc. And a metal film 34 made of aluminum having the same composition as these targets may be formed by sputtering with an input power of DC 9 to 12 kW. After the metal film 34 is formed, as shown in FIG. 2B, the resist 36 is left in a portion corresponding to the metal wiring 30 by a photoresist process, and after the metal wiring 30 is formed, FIG. The resist 36 formed in the upper layer of the metal wiring 30 may be removed as shown in FIG.

こうして裏面22に、金属配線30を形成した後は、当該金属配線30の先端に形成された接続用パッドに他の半導体チップ32を実装すればよい。   After the metal wiring 30 is thus formed on the back surface 22, another semiconductor chip 32 may be mounted on the connection pad formed at the tip of the metal wiring 30.

図4は、本実施の参考形態に係る半導体モジュールの第1の参考形態を示す断面説明図である。同図に示すように、半導体モジュール38は、接続用基板40と、この接続用基板40の表裏面にそれぞれ実装された半導体チップ42、44とで構成されている。なお半導体モジュール38において、半導体チップ42と半導体チップ44は、上述した半導体チップ10と同一の構造を用いているものであり、また半導体チップ42と半導体チップ44はそのサイズが異なるのみである。このため半導体チップ42と半導体チップ44の構造について重複する部分については、その説明を省略する。   FIG. 4 is an explanatory cross-sectional view showing a first reference embodiment of the semiconductor module according to the present embodiment. As shown in the figure, the semiconductor module 38 includes a connection substrate 40 and semiconductor chips 42 and 44 mounted on the front and back surfaces of the connection substrate 40, respectively. In the semiconductor module 38, the semiconductor chip 42 and the semiconductor chip 44 use the same structure as the semiconductor chip 10 described above, and the semiconductor chip 42 and the semiconductor chip 44 are only different in size. Therefore, the description of the overlapping parts of the structures of the semiconductor chip 42 and the semiconductor chip 44 is omitted.

半導体モジュール38を構成する接続用基板40は、半導体チップ42,44と同様に単結晶シリコン46を基材としており、その表面48および裏面50には接続用電極52、54が形成され、両者は金属配線56によって電気的導通が図られるようになっている。   Similar to the semiconductor chips 42 and 44, the connection substrate 40 constituting the semiconductor module 38 is based on single crystal silicon 46, and connection electrodes 52 and 54 are formed on the front surface 48 and the back surface 50, Electrical conduction is achieved by the metal wiring 56.

すなわち接続用基板40では半導体チップ42、44と同様に接続用電極52の下方には縦穴58が形成され、当該縦穴58の天井部分となる接続用電極52から引き出された金属配線56が裏面50へと延長され接続用電極54に接続された形態となっている。   That is, in the connection substrate 40, as in the semiconductor chips 42 and 44, a vertical hole 58 is formed below the connection electrode 52, and the metal wiring 56 led out from the connection electrode 52 serving as a ceiling portion of the vertical hole 58 is the back surface 50. And is connected to the connection electrode 54.

このため接続用電極52に半導体チップ42側を、そして接続用電極54に半導体チップ44側を実装することにより、半導体チップ42と半導体チップ44との間の電気的導通を、接続用基板40を介して行うことができる。このため電気的経路は最短となり、信号伝達の遅延を最小限に抑えることで半導体チップの高速化に対応させることができる。   For this reason, by mounting the semiconductor chip 42 side on the connection electrode 52 and the semiconductor chip 44 side on the connection electrode 54, the electrical continuity between the semiconductor chip 42 and the semiconductor chip 44 can be reduced. Can be done through. For this reason, the electrical path becomes the shortest, and it is possible to cope with the higher speed of the semiconductor chip by minimizing the delay of signal transmission.

なお半導体チップ42、44の動作により発熱が生じても、半導体チップ42,44および接続用基板40は同一の材料、すなわち単結晶シリコンで形成されていることから熱膨張係数が等しくなる。このため半導体モジュール38の温度が上昇しても半導体チップ42,44および接続用基板40との間にストレスが生じるのを防止することができる。   Even if heat is generated by the operation of the semiconductor chips 42 and 44, the semiconductor chips 42 and 44 and the connection substrate 40 are made of the same material, that is, single crystal silicon, so that the thermal expansion coefficients are equal. For this reason, even if the temperature of the semiconductor module 38 rises, it is possible to prevent stress from being generated between the semiconductor chips 42 and 44 and the connection substrate 40.

図5は、本実施の参考形態に係る半導体モジュール38の組立手順を示した断面説明図である。同図(1)に示すように、接続用基板40を所定の位置に設置した後は、同図(2)に示すように上方から半導体チップ42を降下させ、当該半導体チップ42の電極と、接続用基板40の表面48に設けられた接続用電極52とを突合せるようにすればよい。なお双方の接続については、本実施の形態では異方性導電性接着剤を用いることとしたが、この方法に限定されることもなくその他の方法として熱圧着接続や半田接続あるいは超音波接続などに代表される方法を用いるようにしてもよい。   FIG. 5 is a cross-sectional explanatory view showing an assembling procedure of the semiconductor module 38 according to the reference embodiment. As shown in FIG. 1A, after the connection substrate 40 is installed at a predetermined position, the semiconductor chip 42 is lowered from above as shown in FIG. The connection electrode 52 provided on the surface 48 of the connection substrate 40 may be abutted. In this embodiment, an anisotropic conductive adhesive is used for both connections. However, the present invention is not limited to this method, and other methods include thermocompression bonding, solder connection, or ultrasonic connection. You may make it use the method represented by these.

そして同図(3)に示すように接続用基板40の表面48に半導体チップ42を実装した後は、前記接続用基板40の裏面50側に半導体チップ44を実装すればよい。なお当該半導体チップ44の実装は、半導体チップ42と同様の方法を用いるようにすればよい。なお本実施の形態においては、その実装手順を、半導体チップ42を最初に実装し、その後に半導体チップ44を実装するように説明を行ったが、この形態に限定されることもなく、例えば半導体チップ44を先に接続用基板40に実装したり、あるいは当該接続用基板40に対し同時に半導体チップ42,44を実装するようにしてもよい。   After mounting the semiconductor chip 42 on the front surface 48 of the connection substrate 40 as shown in FIG. 3C, the semiconductor chip 44 may be mounted on the back surface 50 side of the connection substrate 40. The semiconductor chip 44 may be mounted using a method similar to that for the semiconductor chip 42. In the present embodiment, the mounting procedure has been described so that the semiconductor chip 42 is mounted first, and then the semiconductor chip 44 is mounted. The chip 44 may be mounted on the connection substrate 40 first, or the semiconductor chips 42 and 44 may be mounted on the connection substrate 40 simultaneously.

図6は、本実施の参考形態に係る半導体モジュール38の変形例を示す要部拡大図である。同図(1)に示すように半導体チップ42に実装されている他の半導体チップ60にあらかじめ設けられた電極62と接続用基板40に設けられた接続用電極52との間をボンディングワイヤ64で接続すれば、他の半導体チップ60と接続用基板40との間の電気的導通を半導体チップ42を介さずに行うことができる。このため他の半導体チップ60においては、直に駆動用電源ラインを接続用基板40から得ることができ、このため半導体チップ42における配線パターンの自由度を増加させることができる。また電極62を接地用(GND)の端子とし電位の安定を図るようにしたり、あるいは信号の送受をなす外部接続用の端子として用いるようにしてもよい。   FIG. 6 is a main part enlarged view showing a modification of the semiconductor module 38 according to the present embodiment. As shown in FIG. 1A, a bonding wire 64 is used between an electrode 62 provided in advance on another semiconductor chip 60 mounted on the semiconductor chip 42 and a connection electrode 52 provided on the connection substrate 40. If connected, electrical continuity between the other semiconductor chip 60 and the connection substrate 40 can be achieved without the semiconductor chip 42 being interposed. For this reason, in the other semiconductor chip 60, the driving power supply line can be obtained directly from the connection substrate 40, and therefore the degree of freedom of the wiring pattern in the semiconductor chip 42 can be increased. Alternatively, the electrode 62 may be used as a ground (GND) terminal to stabilize the potential, or may be used as an external connection terminal for transmitting and receiving signals.

また同図(2)に示すように、他の半導体チップ60の上面に電極62が無い場合には、半導体チップ42の表面電極と接続用基板40の接続用電極52との間をボンディングワイヤ64を用いて接続すればよい。   As shown in FIG. 2B, when there is no electrode 62 on the upper surface of another semiconductor chip 60, a bonding wire 64 is provided between the surface electrode of the semiconductor chip 42 and the connection electrode 52 of the connection substrate 40. The connection may be made using

図7は、本実施の参考形態に係る半導体モジュール38の変形例の組立手順を示した断面説明図である。同図(1)に示すように、接続用基板40を所定の位置に設置した後は、同図(2)に示すように上方から半導体チップ42を降下させ、当該半導体チップ42の電極と、接続用基板40の表面48に設けられた接続用電極52とを突合せる。そして接続用基板40と半導体チップ42との接続を行った後は、同図(3)に示すようにボンディングツール66を用いてボンディングワイヤ64を電極62と接続用電極52とを接続すればよい。   FIG. 7 is an explanatory cross-sectional view showing an assembly procedure of a modified example of the semiconductor module 38 according to the present embodiment. As shown in FIG. 1A, after the connection substrate 40 is installed at a predetermined position, the semiconductor chip 42 is lowered from above as shown in FIG. The connection electrode 52 provided on the surface 48 of the connection substrate 40 is brought into contact with each other. Then, after the connection substrate 40 and the semiconductor chip 42 are connected, the bonding wire 64 may be connected to the electrode 62 and the connection electrode 52 using the bonding tool 66 as shown in FIG. .

図8は、本発明の半導体モジュールの実施の形態を示す断面説明図である。同図に示すように、半導体モジュール68は、接続用基板70の表面72に第1半導体チップ74と第2半導体チップ76とを積層させた形態となっている。   FIG. 8 is a cross-sectional explanatory view showing an embodiment of a semiconductor module of the present invention. As shown in the figure, the semiconductor module 68 has a configuration in which a first semiconductor chip 74 and a second semiconductor chip 76 are stacked on a surface 72 of a connection substrate 70.

単結晶シリコン69を基材とする接続用基板70の表面72には、一対の第1突起78が形成され、これら一対の第1突起78のさらに外側には当該第1突起78よりも高さが高く形成された第2突起80が形成されている。   A pair of first protrusions 78 are formed on the surface 72 of the connection substrate 70 based on the single crystal silicon 69, and the height of the pair of first protrusions 78 is higher than the first protrusions 78. A second protrusion 80 having a high height is formed.

第1突起78の頂上には第1接続用電極82が形成されており、当該第1接続用電極82の間隔は、第1半導体チップ74に形成された第1電極84と突合せが可能なように設定されている。   A first connection electrode 82 is formed on the top of the first protrusion 78, and the interval between the first connection electrodes 82 can be matched with the first electrode 84 formed on the first semiconductor chip 74. Is set to

一方、第2突起80の頂上には第2接続用電極86が形成されており、当該第2接続用電極86の間隔は、第2半導体チップ76に形成された第2電極88と突合せが可能なように設定されている。なお第2突起の高さは、前記第1突起78に第1半導体チップ74を実装した際の高さ(第1半導体チップ74を含んだ高さ)を超えるだけの高さに設定されており、第2突起80に第2半導体チップ76を実装した際に、当該第2半導体チップ76と第1半導体チップ74とが互いに干渉しないようになっている。   On the other hand, a second connection electrode 86 is formed on the top of the second protrusion 80, and the distance between the second connection electrodes 86 can be matched with the second electrode 88 formed on the second semiconductor chip 76. It is set so that. The height of the second protrusion is set to a height that exceeds the height when the first semiconductor chip 74 is mounted on the first protrusion 78 (the height including the first semiconductor chip 74). When the second semiconductor chip 76 is mounted on the second protrusion 80, the second semiconductor chip 76 and the first semiconductor chip 74 do not interfere with each other.

このように接続用基板70の表面に第1突起78と第2突起80とを設け、これら突起に第1半導体チップ74および第2半導体チップ76を実装すれば、半導体チップ同士を積層させることが可能になるので、接続用基板70における実装面積の低減を図ることが可能になる。なお半導体チップ同士を積層させたことから互いの信号経路が短くなり、信号の遅延化を防止できることはいうまでもない。   As described above, if the first protrusion 78 and the second protrusion 80 are provided on the surface of the connection substrate 70 and the first semiconductor chip 74 and the second semiconductor chip 76 are mounted on these protrusions, the semiconductor chips can be stacked. Therefore, the mounting area of the connection substrate 70 can be reduced. Needless to say, since the semiconductor chips are stacked, the signal paths of each other are shortened and signal delay can be prevented.

図9および図10は、半導体モジュール68における接続用基板70の製造過程を示す工程説明図である。図9(1)に示すように、結晶方位面が(100)面の単結晶シリコン69の表面72において第2突起80の頂上範囲に相当する位置にレジスト90を塗布する。そしてレジスト90の塗布後は、その表面72にKOH水溶液やエチレンジアミン水溶液等のエッチング液を用いて異方性エッチングを行い、第2突起80を形成する。この状態を同図(2)に示す。そして第2突起80を形成した後は、同図(3)に示すように再度その表面にレジスト92を塗布し、KOH水溶液やエチレンジアミン水溶液等のエッチング液を用いて異方性エッチングを行う。なおレジスト92の塗布範囲は、第2突起80および一対の第2突起80の間に形成される第1突起78の頂上範囲となり、異方性エッチング終了後、すなわち第1突起78が形成された後の状態を同図(4)に示す。   FIG. 9 and FIG. 10 are process explanatory views showing the manufacturing process of the connection substrate 70 in the semiconductor module 68. As shown in FIG. 9 (1), a resist 90 is applied to a position corresponding to the top range of the second protrusion 80 on the surface 72 of the single crystal silicon 69 having a (100) crystal orientation plane. After the application of the resist 90, anisotropic etching is performed on the surface 72 using an etching solution such as a KOH aqueous solution or an ethylenediamine aqueous solution to form the second protrusions 80. This state is shown in FIG. Then, after forming the second protrusions 80, a resist 92 is again applied to the surface as shown in FIG. 3C, and anisotropic etching is performed using an etching solution such as a KOH aqueous solution or an ethylenediamine aqueous solution. The application range of the resist 92 is the top range of the first protrusion 78 formed between the second protrusion 80 and the pair of second protrusions 80. After the anisotropic etching is completed, that is, the first protrusion 78 is formed. The later state is shown in FIG.

そして図10(1)に示すように、表面72に塗布されたレジスト92を除去した後は同図(2)に示すように、第1接続用電極82および第2接続用電極86を形成する。なおこれら接続用電極は、単結晶シリコン69を圧力2〜5mTorr、温度150〜300℃のアルゴン雰囲気中に配置し、Al−Cu、Al−Si−Cu、Al−Siなどをターゲットとし、DC9〜12kWの入力電力でスパッタを行い、これらのターゲットと同じ組成を有するアルミ層を表面72に形成し、その後エッチング処理を用いて形成すればよい。   Then, as shown in FIG. 10A, after removing the resist 92 applied on the surface 72, as shown in FIG. 10B, the first connection electrode 82 and the second connection electrode 86 are formed. . These connection electrodes are composed of single crystal silicon 69 placed in an argon atmosphere having a pressure of 2 to 5 mTorr and a temperature of 150 to 300 ° C., and Al—Cu, Al—Si—Cu, Al—Si, etc. as targets, and DC 9 to Sputtering may be performed with an input power of 12 kW, an aluminum layer having the same composition as these targets may be formed on the surface 72, and then formed using an etching process.

こうして第1接続用電極82および第2接続用電極86を形成した後は、同図(3)に示すように表面72の上方より第1半導体チップ74を電極84と第1接続用電極82とを突き合わせるよう実装する。そして第1半導体チップ74の実装後は、第2半導体チップ76を電極88と第2接続用電極86とを突き合わせるように実装する。この状態を同図(4)に示す。このように第1半導体チップ74を覆うように第2半導体チップ76を実装すれば、接続用基板70上での実装面積の低減を図ることができる。   After forming the first connection electrode 82 and the second connection electrode 86 in this way, the first semiconductor chip 74 is connected to the electrode 84, the first connection electrode 82, and the upper surface 72 as shown in FIG. Implement to match. After the first semiconductor chip 74 is mounted, the second semiconductor chip 76 is mounted so that the electrode 88 and the second connection electrode 86 are abutted. This state is shown in FIG. If the second semiconductor chip 76 is mounted so as to cover the first semiconductor chip 74 in this way, the mounting area on the connection substrate 70 can be reduced.

なお本実施の形態においては、単結晶シリコンの表面の結晶方位面を(100)面として説明したが、この形態に限定されることもなく、例えば単結晶シリコンの表面の結晶方位面を(110)面とし、その断面が矩形型となるようにしてもよい。   Note that in this embodiment mode, the crystal orientation plane on the surface of single crystal silicon has been described as the (100) plane. However, the present invention is not limited to this mode. For example, the crystal orientation plane on the surface of single crystal silicon is (110). ) Surface and the cross section thereof may be rectangular.

さらに本実施の形態で説明した半導体モジュールを電子機器に用いることとすれば、信号経路の最短化が図られた半導体モジュールが電子機器に適用されるので信号遅延の少なく、動作信頼性が向上することはいうまでもない。   Furthermore, if the semiconductor module described in this embodiment is used for an electronic device, the semiconductor module with the shortest signal path is applied to the electronic device, so that there is less signal delay and operational reliability is improved. Needless to say.

本実施の参考形態に係る半導体チップの構造を示す説明図である。It is explanatory drawing which shows the structure of the semiconductor chip which concerns on this Embodiment. 本実施の参考形態に係る半導体チップ10の製造過程を示す工程説明図である。It is process explanatory drawing which shows the manufacturing process of the semiconductor chip 10 which concerns on this Embodiment. 本実施の参考形態に係る半導体チップ10の製造過程を示す工程説明図である。It is process explanatory drawing which shows the manufacturing process of the semiconductor chip 10 which concerns on this Embodiment. 本実施の参考形態に係る半導体モジュールの第1の参考形態を示す断面説明図である。It is sectional explanatory drawing which shows the 1st reference form of the semiconductor module which concerns on this Embodiment. 本実施の参考形態に係る半導体モジュール38の組立手順を示した断面説明図である。It is sectional explanatory drawing which showed the assembly procedure of the semiconductor module 38 which concerns on this Embodiment. 本実施の参考形態に係る半導体モジュール38の変形例を示す要部拡大図である。It is a principal part enlarged view which shows the modification of the semiconductor module 38 which concerns on this Embodiment. 本実施の参考形態に係る半導体モジュール38の変形例の組立手順を示した断面説明図である。It is sectional explanatory drawing which showed the assembly procedure of the modification of the semiconductor module 38 which concerns on this Embodiment. 本発明の半導体モジュールの実施の形態を示す断面説明図である。It is a section explanatory view showing an embodiment of a semiconductor module of the present invention. 本発明の半導体モジュール68における接続用基板70の製造過程を示す工程説明図である。It is process explanatory drawing which shows the manufacture process of the board | substrate 70 for a connection in the semiconductor module 68 of this invention. 本発明の半導体モジュール68における接続用基板70の製造過程を示す工程説明図である。It is process explanatory drawing which shows the manufacture process of the board | substrate 70 for a connection in the semiconductor module 68 of this invention.

符号の説明Explanation of symbols

10 半導体チップ
12 単結晶シリコン
14 表面
16 電極
18 タングステン
20 アルミ
22 裏面
24 縦穴
26 斜面
28 絶縁膜
30 金属配線
32 他の半導体チップ
34 金属膜
36 レジスト
38 半導体モジュール
40 接続用基板
42 半導体チップ
44 半導体チップ
46 単結晶シリコン
48 表面
50 裏面
52 接続用電極
54 接続用電極
56 金属配線
58 縦穴
60 他の半導体チップ
62 電極
64 ボンディングワイヤ
66 ボンディングツール
68 半導体モジュール
69 単結晶シリコン
70 接続用基板
72 表面
74 第1半導体チップ
76 第2半導体チップ
78 第1突起
80 第2突起
82 第1接続用電極
84 第1電極
86 第2接続用電極
88 第2電極
90 レジスト
92 レジスト

DESCRIPTION OF SYMBOLS 10 Semiconductor chip 12 Single crystal silicon 14 Surface 16 Electrode 18 Tungsten 20 Aluminum 22 Back surface 24 Vertical hole 26 Slope 28 Insulating film 30 Metal wiring 32 Other semiconductor chip 34 Metal film 36 Resist 38 Semiconductor module 40 Connection substrate 42 Semiconductor chip 44 Semiconductor chip 46 single crystal silicon 48 surface 50 back surface 52 connection electrode 54 connection electrode 56 metal wiring 58 vertical hole 60 other semiconductor chip 62 electrode 64 bonding wire 66 bonding tool 68 semiconductor module 69 single crystal silicon 70 connection substrate 72 surface 74 first Semiconductor chip 76 Second semiconductor chip 78 First protrusion 80 Second protrusion 82 First connection electrode 84 First electrode 86 Second connection electrode 88 Second electrode 90 Resist 92 Resist

Claims (2)

頂上に第1接続用電極が設けられた第1突起と、当該第1突起の設置領域の外方に位置するとともに前記第1突起より高く形成されその頂上に第2接続用電極が設けられた第2突起と、を、有する単結晶シリコンを基材とする接続用基板と、
第1突起に形成された第1接続用電極に実装される第1半導体チップと、第2突起に形成された第2接続用電極に実装され前記第1半導体チップと積層形態をなす第2半導体チップとを有したことを特徴とする半導体モジュール。
A first protrusion provided with a first connection electrode on the top, and located outside the first protrusion installation area and higher than the first protrusion, and a second connection electrode provided on the top. A connection substrate based on single crystal silicon having a second protrusion;
A first semiconductor chip mounted on the first connection electrode formed on the first protrusion, and a second semiconductor mounted on the second connection electrode formed on the second protrusion and stacked with the first semiconductor chip A semiconductor module comprising a chip.
請求項1記載の半導体モジュールを実装したことを特徴とする電子機器。   An electronic apparatus comprising the semiconductor module according to claim 1 mounted thereon.
JP2006139218A 2006-05-18 2006-05-18 Semiconductor module and electronic device Expired - Lifetime JP4201016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006139218A JP4201016B2 (en) 2006-05-18 2006-05-18 Semiconductor module and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006139218A JP4201016B2 (en) 2006-05-18 2006-05-18 Semiconductor module and electronic device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP37118899A Division JP3858545B2 (en) 1999-12-27 1999-12-27 Semiconductor module and electronic device

Publications (2)

Publication Number Publication Date
JP2006229251A JP2006229251A (en) 2006-08-31
JP4201016B2 true JP4201016B2 (en) 2008-12-24

Family

ID=36990259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006139218A Expired - Lifetime JP4201016B2 (en) 2006-05-18 2006-05-18 Semiconductor module and electronic device

Country Status (1)

Country Link
JP (1) JP4201016B2 (en)

Also Published As

Publication number Publication date
JP2006229251A (en) 2006-08-31

Similar Documents

Publication Publication Date Title
JP4873517B2 (en) Semiconductor device and manufacturing method thereof
JP3918935B2 (en) Manufacturing method of semiconductor device
JP4979213B2 (en) Circuit board, circuit board manufacturing method, and circuit device
JP3726579B2 (en) Semiconductor device and manufacturing method thereof
JP3858545B2 (en) Semiconductor module and electronic device
JP2004152810A (en) Semiconductor device and laminated semiconductor device
JP2007036060A (en) Semiconductor device and manufacturing method thereof
JP2001044357A (en) Semiconductor device and manufacture thereof
JP2006237594A (en) Semiconductor device and manufacturing method thereof
JP2007157844A (en) Semiconductor device, and method of manufacturing same
TWI732228B (en) Microphone package structure
US9403672B2 (en) Chip package and method of manufacturing the same
JP2008210952A (en) Manufacturing method of semiconductor device, manufacturing method of silicone interposer and manufacturing method of semiconductor module
JP2001291822A (en) Semiconductor chip and method of manufacturing the same semiconductor device and method of manufacturing the same, substrate for connection, and electronic apparatus
JP2010205921A (en) Semiconductor apparatus, and method of manufacturing semiconductor apparatus
JP2006041148A (en) Method for manufacturing semiconductor device, semiconductor device, and electronic apparatus
JP2005262382A (en) Electronic device and its manufacturing method
JP4201016B2 (en) Semiconductor module and electronic device
JP2010251707A (en) Wiring board, and semiconductor device
JP2002368027A (en) Method of manufacturing semiconductor device
JP2006196619A (en) Electronic equipment and its manufacture
JP2006041218A (en) Method for manufacturing semiconductor device, semiconductor device, and electronic apparatus
JP2004207319A (en) Semiconductor device, method for manufacturing the same circuit substrate and electronic apparatus
JP2020136573A (en) Multi-chip module, electronic apparatus and multi-chip module manufacturing method
JP2004221351A (en) Semiconductor device and its manufacturing method, circuit board, and electronic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060518

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080929

R150 Certificate of patent or registration of utility model

Ref document number: 4201016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term