JP4200843B2 - Thin film superconducting wire and manufacturing method thereof - Google Patents

Thin film superconducting wire and manufacturing method thereof Download PDF

Info

Publication number
JP4200843B2
JP4200843B2 JP2003205601A JP2003205601A JP4200843B2 JP 4200843 B2 JP4200843 B2 JP 4200843B2 JP 2003205601 A JP2003205601 A JP 2003205601A JP 2003205601 A JP2003205601 A JP 2003205601A JP 4200843 B2 JP4200843 B2 JP 4200843B2
Authority
JP
Japan
Prior art keywords
superconducting
metal
tape
layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003205601A
Other languages
Japanese (ja)
Other versions
JP2005056591A (en
Inventor
一也 大松
剛三 藤野
昌也 小西
修司 母倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003205601A priority Critical patent/JP4200843B2/en
Publication of JP2005056591A publication Critical patent/JP2005056591A/en
Application granted granted Critical
Publication of JP4200843B2 publication Critical patent/JP4200843B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高磁界発生を必要とする超電導機器などに用いられる薄膜超電導線材及びその製造方法に関する。
【0002】
【従来の技術】
従来の薄膜超電導線材は、テープ状基材の片側に中間層を装着し、その上に超電導層を配置することにより、得られていた。これらの薄膜超電導線材は、比較的高温で超電導性を示すため、窒素ガスで冷却できることから、発電機やリニアモーターカー等に有望な材料である。ところが、超電導層は薄膜のため、テープ状基材との断面比から、いくら大きな臨界超電導密度(Jc)を有するものでも、たかだか0.1〜5μm程度の超電導層に対し、テープ状基材の断面厚が10〜100μm程度あるため、トータルの電流密度は大きく得ることが出来なかった。
【0003】
その対策案として、テープの両面に超電導層を設ける手段が紹介された(特許文献1参照)。該手段によれば、金属又はセラミックス基材の両面もしくは両面と両側面に銀又は銀合金層を介して酸化物超電導体層を設け、これを焼成することにより形成するものである。ところがその製法は、銀又は銀合金のテープの片側に超電導層を設け、これを金属又はセラミックス基材のテープの両面に銀ペーストで貼り付ける方法と、若しくは基材のテープ幅の倍の幅を有する銀テープを用い、その片側に超電導層を設け、これで該基材テープをくるむ方法を取っている。確かにテープの両面に超電導層を有することになるため、テープ断面における電流密度は大きくすることが出来る。
【0004】
【特許文献1】
特開平08−212846号公報(0015,0022−0026)
【0005】
【発明が解決しようとする課題】
前記特許文献1に記載の発明では、確かに電流密度を大きくすることが出来ている。しかし、その製造においてテープの張り合わせ等、作業が煩雑である。また、そのような構成を取らざるを得ない材料の組み合わせとなっている。より簡素な製造方法と共に、その製造方法を達成すべき材料の組み合わせを課題とする。
【0006】
【課題を解決するための手段】
本発明は、テープ状金属の両面に、金属酸化膜の中間層を介して酸化物超電導層が形成されていることを特徴とする薄膜超電導線材である。このような構成により、片側のみ超電導層を有する薄膜超電導線材の約2倍の電流密度を得ることが出来る。
ここで、前記酸化物超電導層の外側に金属の層を有すると、超電導薄膜が保護され好ましい。また、前記金属の層が両面に有り、該金属の層は互いに電気的に接続されていると、表裏両面の均一性が計れ、さらに好ましい。
前記中間層は、超電導薄膜を安定して積層でき、かつ結晶方位が安定するパイロクロマ型、蛍石型、岩塩型、又はペロブスカイト型の結晶構造を有する、1種以上の金属元素を含む金属酸化物であれば、単層若しくは複層で使用できるが、好ましくは、酸化セリウム(CeO)、イットリア安定化ジルコニア(YSZ)、安定化ジルコニア、バリウムジルコネート(BaZrO)、アルミン酸ランタン(LaAlO)、GdZr、SmGdO、RE(RE;Y、ランタノイド)の群より選ばれる1種以上の単層若しくは複層からなるものが良い。また、前記中間層が、面内配向していることが超電導薄膜の結晶方位を安定化せしめるので好ましい。
特に好ましくは、YSZの層とその上のCeO層からなる中間層とするのが良い。
又、用いる前記テープ状金属がNi、Cr、Mn、Co、Fe、Pd、Au、Cu、及びAgから選ばれる金属単味、合金若しくは複合材のいずれかであると良く、該テープ状金属は、面内配向しているのが好ましい。基材となるテープ状金属が配向しているとその面に形成される中間層の配向性が向上する。
【0007】
上記に述べた本発明の薄膜超電導線材の製造方法は基材となる金属テープを用意し、以下の工程を用いて形成する特徴を有する。
a)該金属テープの両面を精密研磨する工程。
b)その表面に気相法を用いて中間層を形成する工程。
c)さらにその表面に、超電導層を形成する工程。
d)形成された超電導層への酸素導入工程。
すなわち、本発明による薄膜超電導線材の製造方法は、2つのテープを張り合わせる工程とか、くるむ工程を取らずに中間層、超電導層を形成する特徴を有する。
特に、前記中間層を形成する工程が、両面同時に形成する工程とすると、片面加工時に、他の面が酸化する等の問題を排除でき、好ましい。
また、超電導層を形成する工程が、両面同時に形成する工程とすると、工程を簡略化でき好ましい。
さらには、次の工程を加えると、超電導薄膜が保護され安定化する。
e)金属の層を形成する工程。
【0008】
ここで、前記中間層を作製する気相法が、スパッタリング法、電子ビーム法及びパルスレーザー蒸着法(PLD法)のいずれか又はその2種以上の組み合わせであるのが好ましく、また、複層の中間層とする場合には、第1の中間層に続いて第2の中間層をタンデムに積層する工程とするのが好ましい。もちろん、前記気相法は、中間層を両面同時に形成することも可能である。
また、超電導層が気相法で形成されるのが好ましい。この場合は、パルスレーザー蒸着法(PLD法)を用いるのがよい。この方法も両面同時に形成可能である。前工程で中間層を両面に形成した場合は、超電導層を片面ずつ形成しても構わない。
別に、超電導層が液相法で作製されるものでも良い。この場合は、有機金属蒸着法(MOD法)であると好ましく、両面に均一に超電導層を形成できる利点がある。
【0009】
【発明の実施の形態】
本発明は、図1の縦断面図で示すように、テープ状金属1の両面に超電導膜3を有する薄膜超電導線材4である。このような形状とすることにより、断面あたりの電流密度(Je)を片側のみの場合に比べ飛躍的に大きくすることが出来る。ただし、テープ状金属1の直上に超電導膜3を形成するのでは、臨界超電導密度(Jc)を大きくすることが出来ず、中間層2が必要となる。
この理由は、テープ状金属1が金属の多結晶から構成されており、この上に超電導膜3を形成すると、同様に多結晶の膜が出来上がる。この多結晶膜はテープの面に垂直方向への結晶軸は整うが、水平方向には揃えることが出来ない。従って、超電導性能を示すこの水平方向の結晶軸を揃えることが、Jcを大きくすることになる。
このために金属酸化物からなる中間層2を設け、該中間層2にはその上に形成する超電導膜3の結晶配向性を整える働きを持たせる。すなわち、テープ状金属1の面に中間層2を配置する際に、パルスレーザ蒸着法(PLD法)などにより、高速に中間層2を設けるが、この際に基板傾斜製膜法(ISD法)を用いれば、中間層2の配向性を調整できる。
【0010】
本発明では、この金属酸化物の中間層2をテープ状金属1の両面に有し、その表面に超電導膜3を形成せしめるため、断面あたりの電流密度(Je)を大きくできる。ちなみに金属テープ1の厚みが数十μm乃至数百μmであるのに対し、中間層2が数μm程度、超電導膜3もたかだか数μm程度の厚みであるから、断面あたりのJeは2倍とはならないが、ほぼそれに近い値となる。
【0011】
ここで用いるテープ状金属1は、出来るだけ厚みを薄くする方が、Jeを大きくすることが出来る。薄くしすぎると強度が不足し、超電導膜3の加工性及び超電導線材4としての加工特性に影響する。材料としてはNiを含む金属が好ましく、特にNi、Ni−Fe合金,Ni複合材を用いるとよい。
また、テープ状金属1の表面は、その表面に薄膜層を均一に形成する必要から、表面平滑性の値が大きいものは好ましくなく、両面を研磨調整して、表面平滑性を50nm以下とするのがよい。
【0012】
中間層2には、前述のように超電導膜3の結晶軸を整える必要性から、酸化セリウム(CeO)、イットリア安定化ジルコニア(YSZ)、安定化ジルコニア、バリウムジルコネート(BaZrO)、アルミン酸ランタン(LaAlO)、GdZr、SmGdO、RE(RE;Y、ランタノイド)などを用いるのが好ましい。
また、この中間層2は単層でも構わないが、複層構造とすることも超電導膜3の結晶軸を整えるためには好ましい手段である。特に好ましくは、第1層をYSZ膜、第2層をCeO膜とするのが好ましい。
超電導膜3にはREBCO(REBaCu7−x:RE=Y、ランタノイド)を用いるのが好ましく、特に好ましくはHoBCO,SmBCO,EuBCO,NdBCOなどである。
【0013】
なお、本発明の製造方法は、工程に特徴を有する。特に金属テープの両面研磨工程では、複数段の研磨機を互い違いに設置し、その間を通すことで、両面を順次高度の研磨面に仕上げていく点において特徴がある。その模式図を図2に示す。サプライ9から供給される金属テープ5は、複数の研磨機6で両面を研磨され、洗浄部7で表面を洗浄され、洗浄液等を乾燥部8で乾燥され、巻き取り10で収納される。ここで表面平滑度を50nm以下に調整する。
【0014】
次に、中間層を気相法を用いて形成する工程では、前記工程後の金属テープ表面に発生する酸化膜等を除去した後、スパッタリング法、電子ビーム法、パルスレーザー蒸着法等により膜を形成する。その一例として、図3に複層の中間層を両面同時に形成する模式図を示す。図3では、サプライ11から巻き取り16まで外気を遮断した状態にする。サプライ11から送り出される表面の平滑度を調整された金属テープ12を真空還元炉のような酸化膜除去装置13で表面を清浄化したのち、第1中間層形成装置14で両側から同時に膜形成することにより、テープの両面に同時に製膜させる。また、図3で示すように、中間層を複層とする際は、この膜形成装置をタンデムに並べ、第1層の製膜後、直ちに第2中間層形成装置15で続けて膜形成することにより、効率的に製膜出来る。複層の中間層が形成された金属テープ12は巻き取り16で巻き取られる。図3では、中間層形成にスパッタリング装置を例示したが、もちろん、気相法であれば、スパッタリング法、電子ビーム法、パルスレーザー蒸着法以外でも構わない。また、図3の例は、両面同時かつ複数の中間層形成方法であるが、片面ずつ形成すること、複数の中間層を別々に形成しても良い。
【0015】
ただし、この中間層を片面ずつ形成する場合、片方の面に中間層を形成する工程で、中間層が形成されない面の金属が酸化される可能性が大きい。従って、中間層は両面同時に形成する方が好ましい。又、複数の中間層を形成する場合は、少なくとも第1の中間層は両面同時に形成するのが好ましく、第2の中間層は別々に形成しても構わない。
【0016】
その後、中間層の表面に超電導層を形成する工程では、気相法と液相法が使用できる。気相法を用いる場合は、前述のPLD法を用いるのが好ましい。この場合、片面ずつ超電導層を形成することが出来る。また両面を同時に形成する場合は、図4の模式図のように、両面を同位置でエキシマレーザ21、21′によるターゲット面22、22′からのプラズマ23、23′に当てるのではなく、エキシマレーザ21,21′のように位置を多少前後しておくようにする。また、テープ面24、24′に垂直にプラズマ23,23′を当てるよりも、ISD法のように斜めにプラズマ23,23′が当たるようにすると、超電導層が結晶軸の方向を揃えて形成されるため、特に好ましい。
【0017】
また、超電導層の形成においては、前記のように両面同時に形成することが好ましいが、場合により片面ずつ形成することもある。これは、金属テープの表面に既に中間層が形成されているため、超電導層を片面だけ形成しても、形成されない逆の面が酸化による影響を受けない。また、片面に形成された超電導層は、その裏面に超電導層を形成する際に、最初の超電導層の特性を継続させる働きがある。
【0018】
このような、超電導層を片面ずつ形成させる場合には、両面同時に形成する図4の方法とは異なり、好ましい方法がある。図5及び6にその説明図を示す。図5では、サプライ31から供給される中間層か両面に形成された金属テープ30がエキシマレーザ33によるターゲット面34からのプラズマ35により超電導層をその表面に形成し、ガイドリール36,37,38を経て戻る。戻った金属テープ30は超電導層が未形成の表面であり、前記と同様にエキシマレーザ33によるターゲット面34からのプラズマ35により、その表面に超電導層を形成する。巻き取り32には両面に超電導層が形成された薄膜超電導線材が収納される。図5では片面ずつの超電導層を形成する方法であるが、1つのプロセスで完結する。
【0019】
図6はその応用例であり、中間層が両面に形成された金属テープを1つのプラズマに複数回通すことにより、超電導層を形成する方法である。エキシマレーザ33によるターゲット面34からのプラズマ35が往復する複数の金属テープ30に超導電層を形成する。この金属テープ30は同一の金属テープを裏表繰り返して用いる場合と、複数の金属テープを並列に用いる場合等、種々利用することが出来る。
【0020】
液相法を用いる場合は、有機金属折出法(MOD法)を用いるのが好ましく、超電導組成となる金属成分の有機化合物、例えば酢酸金属を水溶液にし、これをテープに塗布乾燥することによって被膜を得る。被膜をさらに加熱すれば、有機物が除去できる。
特にMOD法の場合には、簡単な設備で両面同時成膜が容易になる利点がある。
【0021】
以上により、超電導膜の層は出来るが、超電導性を示すためには酸化膜とする必要がある。以上の工程後、熱処理工程や焼成工程等の酸素導入工程を加えることにより超電導膜の配向した結晶層が得られる。
【0022】
【実施例】
以下に実施例をあげるが、本発明は実施例の内容に限定されるものではない。
(実施例1)
面内配向性が11°の幅1cm、厚さ0.1mmのNi−Fe合金テープを用意し、両面研磨して表面平滑性を原子間力顕微鏡(AFM)による測定をしたところ、20nmであった。これを高周波スパッタリング法を用いて両面にYSZ膜を形成し、その後CeOの膜を合わせて2μm形成した。この中間層の両表面にCeO膜をキャップ層としてPLD法により0.05μm製膜した。その上に高周波スパッタリング法を用いてHoBCO膜を両面に2μm製膜した。熱処理後、四端子による通電法により臨界電流を計測した結果、Ic=440A(77K、0T)、Jc=1.1MA/cm(77K、0T)となった。この結果、全断面積当たりの電流密度(Je)は、Je=約44kA/cm(77K、0T)となった。
【0023】
(実施例2)面内配向性が10°の幅1cm厚さ0.05mmのNi/ステンレス/Ni複合テープを用意し、両面研磨して表面平滑性をAFMによる測定をしたところ、20nmであった。これを電子ビーム蒸着法を用いて両面にYSZ膜を形成し、その後CeOの膜を合わせて2μm形成した。この中間層の両表面にCeO膜をキャップ層としてPLD法により0.05μm製膜した。その上に高周波スパッタリング法を用いてHoBCO膜を両面に1.5μm製膜した。熱処理後、四端子による通電法により導電性を計測した結果、Ic=350A(77K、0T)、Jc=1.25MA/cm(77K、0T)となった。この結果、Je=約70kA/cm(77K、0T)なる電流密度となった。
【0024】
(実施例3)面内配向性が12°の幅1cm厚さ0.1mmのNi−Fe合金テープを用意し、両面研磨して表面平滑性をAFMによる測定をしたところ、10nmであった。これを高周波スパッタリング法を用いて両面にYSZ膜を形成し、その後CeOの膜を合わせて2μm形成した。この中間層の両表面にCeO膜をキャップ層として電子ビーム蒸着法により0.05μm製膜した。その上にPLD法を用いてSmBCO膜を片面ずつ製膜し、結果として両面に3μm製膜した。熱処理後、四端子による通電法により導電性を計測した結果、Ic=480A(77K、0T)、Jc=0.8MA/cm(77K、0T)となった。この結果、Je=約48kA/cm(77K、0T)なる電流密度となった。
【0025】
(比較例1)面内配向性が11°の幅1cm厚さ0.1mmのNi−Fe合金テープを用意し、片面研磨して表面平滑性をAFMによる測定をしたところ、20nmであった。これを高周波スパッタリング法を用いてその面にYSZ膜を形成し、その後CeOの膜を合わせて2μm形成した。この中間層の表面にCeO膜をキャップ層としてPLD法により0.05μm製膜した。その上にPLD法を用いてHoBCO膜を2μm製膜した。熱処理後、四端子による通電法により導電性を計測した結果、Ic=240A(77K、0T)、Jc=1.2MA/cm(77K、0T)となった。この結果、Je=約24kA/cm(77K、0T)なる電流密度となった。
【0026】
(比較例2)面内配向性が10°の幅1cm厚さ0.05mmのNi/ステンレス複合テープを用意し、このNi面側を片面研磨して表面平滑性をAFMによる測定をしたところ、10nmであった。この面に高周波スパッタリング法を用いてその面にYSZ膜を形成し、その後CeOの膜を合わせて2μm形成した。この中間層の表面にCeO膜をキャップ層として電子ビーム蒸着法により0.05μm製膜した。その上にPLD法を用いてHoBCO膜を1.5μm製膜した。熱処理後、四端子による通電法により導電性を計測した結果、Ic=150A(77K、0T)、Jc=1.0MA/cm(77K、0T)となった。この結果、Je=約30kA/cm(77K、0T)なる電流密度となった。
【0027】
以上の実施例と比較例の対比により、テープ断面の電流密度(Je)は大幅に増加し、約2倍近い値を得ている。すなわち、テープの両面の超電導層を形成することにより、テープ断面における電流密度はほぼ倍に増やすことが出来る。また、本発明の製造方法によれば、従来の片面に超電導膜を形成する場合と大幅に工程を増やすことなく製造できる。
【0028】
【発明の効果】
本発明により、薄膜超電導線材における断面あたりの電流密度を飛躍的に大きくすることができ、かつ製造方法も片面超電導線材と作業性において大幅に増加することなく製造できる手段である。
【図面の簡単な説明】
【図1】 本発明の縦断面の模式図である。
【図2】 本発明の製造方法のうち、両面を精密研磨する工程の模式図である。
【図3】 本発明の製造方法のうち、中間層を形成する工程の一例である。
【図4】 本発明の製造方法のうち、超電導層を形成する工程の一例である。
【図5】 本発明の製造方法のうち、超電導層を形成する工程の別の例である。
【図6】 本発明の製造方法のうち、超電導層を形成する工程のさらなる別の例である。
【符号の説明】
1.テープ状金属
2.中間層
3.超電導膜
4.薄膜超電導線材
5.金属テープ
6.研磨機
7.洗浄部
8.乾燥部
9.サプライ
10.巻き取り
11.サプライ
12.金属テープ
13.酸化膜除去装置
14.第1中間層形成装置
15.第2中間層形成装置
16.巻き取り
21,21′.エキシマレーザ
22,22′.ターゲット面
23,23′.プラズマ
24,24′.テープ面
30.金属テープ
31.サプライ
32.巻き取り
33.エキシマレーザ
34.ターゲット面
35.プラズマ
36,37,38.ガイドリール
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thin film superconducting wire used for a superconducting device that requires generation of a high magnetic field and a method for manufacturing the same.
[0002]
[Prior art]
Conventional thin film superconducting wires have been obtained by mounting an intermediate layer on one side of a tape-like substrate and disposing the superconducting layer thereon. Since these thin film superconducting wires exhibit superconductivity at a relatively high temperature and can be cooled with nitrogen gas, they are promising materials for generators, linear motor cars, and the like. However, since the superconducting layer is a thin film, even if it has a large critical superconducting density (Jc) from the cross-sectional ratio with the tape-like base material, the superconducting layer has a tape-like base material of about 0.1 to 5 μm at most. Since the cross-sectional thickness is about 10 to 100 μm, the total current density could not be obtained.
[0003]
As a countermeasure, means for providing superconducting layers on both sides of the tape was introduced (see Patent Document 1). According to this means, an oxide superconductor layer is provided on both sides or both sides and both sides of a metal or ceramic substrate via a silver or silver alloy layer, and this is fired. However, the manufacturing method is such that a superconducting layer is provided on one side of a silver or silver alloy tape, and this is applied with a silver paste on both sides of a tape of a metal or ceramic base material, or a width double the tape width of the base material. A silver tape is used, a superconducting layer is provided on one side, and the base tape is wrapped with this. Certainly, since the superconducting layer is provided on both sides of the tape, the current density in the cross section of the tape can be increased.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 08-212846 (0015, 0022-0026)
[0005]
[Problems to be solved by the invention]
In the invention described in Patent Document 1, the current density can surely be increased. However, operations such as tape bonding are complicated in the production. Moreover, it is a combination of materials that must have such a configuration. Along with a simpler manufacturing method, a combination of materials to achieve the manufacturing method is an issue.
[0006]
[Means for Solving the Problems]
The present invention is a thin film superconducting wire characterized in that an oxide superconducting layer is formed on both sides of a tape-like metal via an intermediate layer of a metal oxide film. With such a configuration, a current density approximately twice that of a thin film superconducting wire having a superconducting layer on one side can be obtained.
Here, it is preferable to have a metal layer outside the oxide superconducting layer because the superconducting thin film is protected. Further, it is more preferable that the metal layer is provided on both surfaces, and the metal layers are electrically connected to each other, whereby the uniformity of both the front and back surfaces can be measured.
The intermediate layer is a metal oxide containing one or more metal elements having a pyrochromic, fluorite, rock salt, or perovskite crystal structure in which a superconducting thin film can be stably stacked and the crystal orientation is stable Can be used in a single layer or multiple layers, but preferably cerium oxide (CeO 2 ), yttria stabilized zirconia (YSZ), stabilized zirconia, barium zirconate (BaZrO 3 ), lanthanum aluminate (LaAlO 3) ), Gd 2 Zr 2 O 7 , SmGdO 3 , RE 2 O 3 (RE; Y, lanthanoid), or one or more monolayers or multilayers. Further, it is preferable that the intermediate layer is in-plane oriented because the crystal orientation of the superconducting thin film is stabilized.
It is particularly preferable to use an intermediate layer composed of a YSZ layer and a CeO 2 layer thereon.
The tape-shaped metal to be used may be any of a simple metal, an alloy or a composite selected from Ni, Cr, Mn, Co, Fe, Pd, Au, Cu, and Ag. In-plane orientation is preferred. When the tape-shaped metal serving as the base material is oriented, the orientation of the intermediate layer formed on the surface is improved.
[0007]
The method for producing a thin film superconducting wire of the present invention described above has a feature that a metal tape as a base material is prepared and formed using the following steps.
a) A step of precisely polishing both surfaces of the metal tape.
b) A step of forming an intermediate layer on the surface using a vapor phase method.
c) A step of forming a superconducting layer on the surface.
d) A step of introducing oxygen into the formed superconducting layer.
That is, the method for producing a thin film superconducting wire according to the present invention has a feature that an intermediate layer and a superconducting layer are formed without taking a step of bonding two tapes or a step of wrapping.
In particular, it is preferable that the step of forming the intermediate layer is a step of forming both surfaces simultaneously, since problems such as oxidation of the other surface during single-side processing can be eliminated.
Further, it is preferable that the step of forming the superconducting layer is a step of forming both surfaces at the same time because the step can be simplified.
Furthermore, when the next step is added, the superconducting thin film is protected and stabilized.
e) forming a metal layer;
[0008]
Here, the vapor phase method for producing the intermediate layer is preferably any one of a sputtering method, an electron beam method and a pulsed laser deposition method (PLD method) or a combination of two or more thereof. When the intermediate layer is used, it is preferable that the second intermediate layer is laminated in tandem following the first intermediate layer. Of course, the vapor phase method can also form both sides of the intermediate layer simultaneously.
The superconducting layer is preferably formed by a vapor phase method. In this case, it is preferable to use a pulsed laser deposition method (PLD method). This method can also be formed on both sides simultaneously. When the intermediate layer is formed on both sides in the previous step, the superconducting layer may be formed on each side.
Alternatively, the superconducting layer may be produced by a liquid phase method. In this case, the metal organic vapor deposition method (MOD method) is preferable, and there is an advantage that the superconducting layer can be uniformly formed on both surfaces.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is a thin film superconducting wire 4 having a superconducting film 3 on both surfaces of a tape-like metal 1 as shown in the longitudinal sectional view of FIG. By adopting such a shape, the current density (Je) per cross section can be dramatically increased as compared with the case of only one side. However, if the superconducting film 3 is formed directly on the tape-like metal 1, the critical superconducting density (Jc) cannot be increased, and the intermediate layer 2 is required.
This is because the tape-like metal 1 is composed of a metal polycrystal, and when the superconducting film 3 is formed thereon, a polycrystal film is similarly formed. This polycrystalline film has a crystal axis in the direction perpendicular to the surface of the tape, but cannot be aligned in the horizontal direction. Therefore, aligning this horizontal crystal axis showing the superconducting performance increases Jc.
For this purpose, an intermediate layer 2 made of a metal oxide is provided, and the intermediate layer 2 has a function of adjusting the crystal orientation of the superconducting film 3 formed thereon. That is, when the intermediate layer 2 is disposed on the surface of the tape-shaped metal 1, the intermediate layer 2 is provided at high speed by a pulse laser deposition method (PLD method) or the like. At this time, the substrate inclined film forming method (ISD method) is used. Can be used to adjust the orientation of the intermediate layer 2.
[0010]
In the present invention, since the metal oxide intermediate layer 2 is provided on both surfaces of the tape-like metal 1 and the superconducting film 3 is formed on the surface, the current density (Je) per cross section can be increased. Incidentally, since the thickness of the metal tape 1 is several tens μm to several hundreds μm, the intermediate layer 2 is about several μm and the superconducting film 3 is about several μm thick. Although it should not be, it is almost the same value.
[0011]
The tape-shaped metal 1 used here can increase Je by reducing the thickness as much as possible. If it is too thin, the strength is insufficient, which affects the processability of the superconducting film 3 and the processing characteristics of the superconducting wire 4. As a material, a metal containing Ni is preferable, and Ni, a Ni—Fe alloy, and a Ni composite material are particularly preferable.
Moreover, since it is necessary to form a thin film layer uniformly on the surface of the tape-like metal 1, one having a large surface smoothness value is not preferable, and both surfaces are polished and adjusted so that the surface smoothness is 50 nm or less. It is good.
[0012]
In the intermediate layer 2, since it is necessary to align the crystal axis of the superconducting film 3 as described above, cerium oxide (CeO 2 ), yttria-stabilized zirconia (YSZ), stabilized zirconia, barium zirconate (BaZrO 3 ), aluminum It is preferable to use lanthanum acid (LaAlO 3 ), Gd 2 Zr 2 O 7 , SmGdO 3 , RE 2 O 3 (RE; Y, lanthanoid).
The intermediate layer 2 may be a single layer, but a multilayer structure is also a preferable means for adjusting the crystal axis of the superconducting film 3. Particularly preferably, the first layer is a YSZ film and the second layer is a CeO 2 film.
It is preferable to use REBCO (REBa 2 Cu 2 O 7-x : RE = Y, lanthanoid) for the superconducting film 3, particularly preferably HoBCO, SmBCO, EuBCO, NdBCO, or the like.
[0013]
In addition, the manufacturing method of this invention has the characteristics in a process. In particular, the double-side polishing process for metal tape is characterized in that a plurality of stages of polishing machines are installed alternately and passed between them to sequentially finish both sides to a highly polished surface. The schematic diagram is shown in FIG. The metal tape 5 supplied from the supply 9 is polished on both sides by a plurality of polishing machines 6, the surface is cleaned by the cleaning unit 7, the cleaning liquid and the like are dried by the drying unit 8, and stored in the take-up 10. Here, the surface smoothness is adjusted to 50 nm or less.
[0014]
Next, in the step of forming the intermediate layer using a vapor phase method, after removing the oxide film and the like generated on the surface of the metal tape after the step, the film is formed by a sputtering method, an electron beam method, a pulse laser deposition method, or the like. Form. As an example, FIG. 3 shows a schematic diagram of forming a multilayer intermediate layer on both sides simultaneously. In FIG. 3, the outside air is blocked from the supply 11 to the take-up 16. After the surface of the metal tape 12 with adjusted surface smoothness sent from the supply 11 is cleaned with an oxide film removing device 13 such as a vacuum reduction furnace, a film is simultaneously formed from both sides by a first intermediate layer forming device 14. As a result, the film is simultaneously formed on both sides of the tape. Further, as shown in FIG. 3, when the intermediate layer is formed into a plurality of layers, the film forming apparatuses are arranged in tandem, and immediately after the first layer is formed, the second intermediate layer forming apparatus 15 continues to form a film. Thus, the film can be efficiently formed. The metal tape 12 on which the multilayer intermediate layer is formed is wound up by a winding 16. In FIG. 3, a sputtering apparatus is exemplified for forming the intermediate layer. Of course, as long as it is a vapor phase method, other methods than the sputtering method, the electron beam method, and the pulse laser deposition method may be used. The example of FIG. 3 is a method for forming a plurality of intermediate layers at the same time on both sides, but it may be formed on each side, or a plurality of intermediate layers may be formed separately.
[0015]
However, when forming this intermediate layer one side at a time, there is a high possibility that the metal on the surface where the intermediate layer is not formed is oxidized in the step of forming the intermediate layer on one surface. Therefore, it is preferable to form the intermediate layer simultaneously on both sides. When a plurality of intermediate layers are formed, it is preferable that at least the first intermediate layer is formed on both sides simultaneously, and the second intermediate layer may be formed separately.
[0016]
Thereafter, in the step of forming the superconducting layer on the surface of the intermediate layer, a vapor phase method and a liquid phase method can be used. When using the vapor phase method, the above-described PLD method is preferably used. In this case, the superconducting layer can be formed on each side. When both surfaces are formed simultaneously, as shown in the schematic diagram of FIG. 4, the both surfaces are not exposed to the plasma 23, 23 'from the target surfaces 22, 22' by the excimer lasers 21, 21 'at the same position. The position is slightly moved back and forth like the lasers 21 and 21 '. Also, if the plasma 23, 23 'is applied obliquely as in the ISD method rather than the plasma 23, 23' being applied perpendicularly to the tape surfaces 24, 24 ', the superconducting layer is formed with the crystal axis direction aligned. Therefore, it is particularly preferable.
[0017]
Further, in the formation of the superconducting layer, it is preferable to form both surfaces simultaneously as described above, but in some cases, one surface may be formed. This is because the intermediate layer is already formed on the surface of the metal tape, so that even if the superconducting layer is formed on only one side, the opposite side not formed is not affected by oxidation. In addition, the superconducting layer formed on one side has a function of continuing the characteristics of the first superconducting layer when the superconducting layer is formed on the back side.
[0018]
When such a superconducting layer is formed on each side, there is a preferred method, unlike the method of FIG. 5 and 6 are explanatory diagrams. In FIG. 5, the metal tape 30 formed on the intermediate layer or both surfaces supplied from the supply 31 forms a superconducting layer on the surface by the plasma 35 from the target surface 34 by the excimer laser 33, and guide reels 36, 37, 38. Go back through. The returned metal tape 30 has a surface on which the superconducting layer is not formed, and a superconducting layer is formed on the surface by plasma 35 from the target surface 34 by the excimer laser 33 in the same manner as described above. The take-up 32 accommodates a thin film superconducting wire having a superconducting layer formed on both sides. Although FIG. 5 shows a method of forming a superconducting layer on each side, it is completed in one process.
[0019]
FIG. 6 shows an application example thereof, which is a method of forming a superconducting layer by passing a metal tape having an intermediate layer formed on both sides through one plasma a plurality of times. Superconducting layers are formed on a plurality of metal tapes 30 on which the plasma 35 from the target surface 34 reciprocates by the excimer laser 33. The metal tape 30 can be used in various ways, for example, when the same metal tape is used repeatedly on both sides and when a plurality of metal tapes are used in parallel.
[0020]
When using the liquid phase method, it is preferable to use the organometallic folding method (MOD method), and an organic compound of a metal component that becomes a superconducting composition, for example, metal acetate is made into an aqueous solution, and this is coated on a tape and dried. Get. If the coating is further heated, organic matter can be removed.
In particular, in the case of the MOD method, there is an advantage that simultaneous film formation on both sides is facilitated with simple equipment.
[0021]
Although a superconducting film layer can be formed as described above, it is necessary to use an oxide film in order to exhibit superconductivity. After the above steps, an oriented crystal layer of the superconducting film can be obtained by adding an oxygen introduction step such as a heat treatment step or a baking step.
[0022]
【Example】
Examples are given below, but the present invention is not limited to the contents of the examples.
(Example 1)
A Ni—Fe alloy tape having an in-plane orientation of 11 ° with a width of 1 cm and a thickness of 0.1 mm was prepared, polished on both sides, and the surface smoothness was measured with an atomic force microscope (AFM). It was. A YSZ film was formed on both surfaces of this using a high frequency sputtering method, and then a CeO 2 film was formed to a thickness of 2 μm. On both surfaces of this intermediate layer, a CeO 2 film was used as a cap layer to form a 0.05 μm film by the PLD method. On top of this, a HoBCO film was formed on both sides by using a high-frequency sputtering method. After the heat treatment, the critical current was measured by an energization method using four terminals. As a result, Ic = 440A (77K, 0T) and Jc = 1.1 MA / cm 2 (77K, 0T) were obtained. As a result, the current density (Je) per total cross-sectional area was Je = about 44 kA / cm 2 (77K, 0T).
[0023]
(Example 2) A Ni / stainless / Ni composite tape having a width of 1 cm and a thickness of 0.05 mm with an in-plane orientation of 10 ° was prepared, and both surfaces were polished and the surface smoothness was measured by AFM. It was. A YSZ film was formed on both sides of this using an electron beam evaporation method, and then a CeO 2 film was formed to a thickness of 2 μm. On both surfaces of this intermediate layer, a CeO 2 film was used as a cap layer to form a 0.05 μm film by the PLD method. A HoBCO film was formed on both sides by 1.5 μm using a high frequency sputtering method. After the heat treatment, the conductivity was measured by an energization method using four terminals. As a result, Ic = 350A (77K, 0T) and Jc = 1.25 MA / cm 2 (77K, 0T) were obtained. As a result, a current density of Je = about 70 kA / cm 2 (77K, 0T) was obtained.
[0024]
(Example 3) A Ni-Fe alloy tape having a width of 1 cm and a thickness of 0.1 mm with an in-plane orientation of 12 ° was prepared, and both surfaces were polished and the surface smoothness was measured by AFM. A YSZ film was formed on both surfaces of this using a high frequency sputtering method, and then a CeO 2 film was formed to a thickness of 2 μm. On both surfaces of this intermediate layer, a CeO 2 film was used as a cap layer to form a 0.05 μm film by electron beam evaporation. A SmBCO film was formed on each side using the PLD method, and 3 μm was formed on both sides as a result. After the heat treatment, the conductivity was measured by an energization method using four terminals. As a result, Ic = 480A (77K, 0T) and Jc = 0.8 MA / cm 2 (77K, 0T). As a result, a current density of Je = about 48 kA / cm 2 (77K, 0T) was obtained.
[0025]
(Comparative Example 1) A Ni-Fe alloy tape having an in-plane orientation of 11 ° and a width of 1 cm and a thickness of 0.1 mm was prepared, polished on one side, and the surface smoothness measured by AFM was 20 nm. A YSZ film was formed on this surface by using a high frequency sputtering method, and then a CeO 2 film was formed to a thickness of 2 μm. A 0.05 μm film was formed on the surface of the intermediate layer by a PLD method using a CeO 2 film as a cap layer. A 2 μm thick HoBCO film was formed thereon using the PLD method. After the heat treatment, the conductivity was measured by an energization method using four terminals. As a result, Ic = 240A (77K, 0T) and Jc = 1.2 MA / cm 2 (77K, 0T). As a result, a current density of Je = about 24 kA / cm 2 (77K, 0T) was obtained.
[0026]
(Comparative Example 2) A Ni / stainless steel composite tape having an in-plane orientation of 10 ° in width 1 cm and thickness 0.05 mm was prepared, and this Ni surface side was polished on one side and the surface smoothness was measured by AFM. It was 10 nm. A YSZ film was formed on this surface by using a high-frequency sputtering method, and then a CeO 2 film was combined to form 2 μm. A 0.05 μm film was formed on the surface of the intermediate layer by an electron beam evaporation method using a CeO 2 film as a cap layer. A HoBCO film having a thickness of 1.5 μm was formed thereon using the PLD method. After the heat treatment, the conductivity was measured by an energization method using four terminals. As a result, Ic = 150A (77K, 0T) and Jc = 1.0 MA / cm 2 (77K, 0T) were obtained. As a result, a current density of Je = about 30 kA / cm 2 (77K, 0T) was obtained.
[0027]
By comparing the above examples and comparative examples, the current density (Je) of the cross section of the tape is greatly increased, and a value nearly doubled is obtained. That is, by forming superconducting layers on both sides of the tape, the current density in the tape cross section can be increased almost twice. Moreover, according to the manufacturing method of the present invention, it can be manufactured without greatly increasing the number of steps compared to the conventional case of forming a superconducting film on one side.
[0028]
【The invention's effect】
According to the present invention, the current density per cross section in the thin film superconducting wire can be dramatically increased, and the manufacturing method is a means that can be manufactured without significantly increasing the workability of the single-sided superconducting wire.
[Brief description of the drawings]
FIG. 1 is a schematic view of a longitudinal section of the present invention.
FIG. 2 is a schematic view of a step of precisely polishing both surfaces in the production method of the present invention.
FIG. 3 is an example of a step of forming an intermediate layer in the manufacturing method of the present invention.
FIG. 4 is an example of a process for forming a superconducting layer in the manufacturing method of the present invention.
FIG. 5 is another example of a process of forming a superconducting layer in the manufacturing method of the present invention.
FIG. 6 is still another example of the step of forming a superconducting layer in the manufacturing method of the present invention.
[Explanation of symbols]
1. Tape-like metal Intermediate layer 3. 3. Superconducting film 4. Thin film superconducting wire Metal tape6. Polishing machine 7. 7. Cleaning unit Drying section 9. Supply 10. Winding 11. Supply 12. Metal tape 13. Oxide film removing device 14. First intermediate layer forming device 15. Second intermediate layer forming device 16. Winding 21, 21 '. Excimer lasers 22, 22 '. Target surfaces 23, 23 '. Plasma 24, 24 '. Tape surface 30. Metal tape 31. Supply 32. Winding 33. Excimer laser 34. Target surface 35. Plasma 36, 37, 38. Guide reel

Claims (5)

テープ状金属の両面に、金属酸化膜の中間層を介して酸化物超電導層が形成されており、前記酸化物超電導層の外側両面に金属の層を有し、該両面の金属の層は互いに電気的に接続されていることを特徴とする薄膜超電導線材。An oxide superconducting layer is formed on both sides of the tape-shaped metal via an intermediate layer of a metal oxide film, and has metal layers on both outer sides of the oxide superconducting layer, and the metal layers on both sides are mutually connected. A thin film superconducting wire characterized by being electrically connected . 前記中間層が酸化セリウム(CeO)、イットリア安定化ジルコニア(YSZ)、安定化ジルコニア、バリウムジルコネート(BaZrO)、アルミン酸ランタン(LaAlO)、GdZr、SmGdO、RE(RE;Y、ランタノイド)の群より選ばれる1種以上の単層若しくは複層からなる請求項1に記載の薄膜超電導線材。The intermediate layer is cerium oxide (CeO 2 ), yttria stabilized zirconia (YSZ), stabilized zirconia, barium zirconate (BaZrO 3 ), lanthanum aluminate (LaAlO 3 ), Gd 2 Zr 2 O 7 , SmGdO 3 , RE The thin film superconducting wire according to claim 1, comprising one or more single layers or multiple layers selected from the group of 2 O 3 (RE; Y, lanthanoid). 前記中間層が、面内配向している請求項1又は2に記載の薄膜超電導線材。The thin film superconducting wire according to claim 1, wherein the intermediate layer is in-plane oriented. 前記テープ状金属がNi、Cr、Mn、Co、Fe、Pd、Au、Cu、及びAgから選ばれる金属単味、合金及び複合材のいずれかである請求項1乃至のいずれかに記載の薄膜超電導線材。It said tape-like metal is Ni, Cr, Mn, Co, Fe, Pd, Au, Cu, and metal plain selected from Ag, according to any one of claims 1 to 3 is either alloys and composites Thin film superconducting wire. 前記テープ状金属が、面内配向している請求項に記載の薄膜超電導線材。The thin film superconducting wire according to claim 4 , wherein the tape-shaped metal is in-plane oriented.
JP2003205601A 2003-08-04 2003-08-04 Thin film superconducting wire and manufacturing method thereof Expired - Fee Related JP4200843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003205601A JP4200843B2 (en) 2003-08-04 2003-08-04 Thin film superconducting wire and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003205601A JP4200843B2 (en) 2003-08-04 2003-08-04 Thin film superconducting wire and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005056591A JP2005056591A (en) 2005-03-03
JP4200843B2 true JP4200843B2 (en) 2008-12-24

Family

ID=34362775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003205601A Expired - Fee Related JP4200843B2 (en) 2003-08-04 2003-08-04 Thin film superconducting wire and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4200843B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111278269A (en) * 2020-02-11 2020-06-12 常州机电职业技术学院 Pneumatic transmission device of chip mounter feeder

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4794886B2 (en) * 2005-03-31 2011-10-19 古河電気工業株式会社 High-strength polycrystalline metal substrate for oxide superconductivity and oxide superconducting wire using the same
JP4411265B2 (en) * 2005-10-21 2010-02-10 財団法人国際超電導産業技術研究センター Rare earth tape-shaped oxide superconductor and method for producing the same
KR100707118B1 (en) 2005-12-27 2007-04-16 한국에너지기술연구원 Solid electrolyte thin film fabricated by eb-pvd and method thereof
JP4602911B2 (en) * 2006-01-13 2010-12-22 財団法人国際超電導産業技術研究センター Rare earth tape oxide superconductor
JP2007305386A (en) * 2006-05-10 2007-11-22 Sumitomo Electric Ind Ltd Superconducting wire rod, superconductor, superconducting apparatus, manufacturing method of the superconducting wire rod, and manufacturing method of the superconductor
JP5049530B2 (en) * 2006-08-01 2012-10-17 日本ミクロコーティング株式会社 Polishing method of tape substrate for oxide superconductor, oxide superconductor and substrate for oxide superconductor
JP5252792B2 (en) * 2006-08-25 2013-07-31 日本ミクロコーティング株式会社 Polishing method of tape substrate for oxide superconductor, oxide superconductor and substrate for oxide superconductor
DE102007024166B4 (en) * 2007-05-24 2011-01-05 Zenergy Power Gmbh A method of processing a metal substrate and using it for a high temperature superconductor
JP5009187B2 (en) * 2008-02-14 2012-08-22 住友電気工業株式会社 CeO2 thin film manufacturing method and CeO2 thin film manufacturing apparatus
KR20100065624A (en) * 2008-12-08 2010-06-17 지 . 텍 (주) Roll-to-roll sputter system for coating two sided substrate
JP2010163679A (en) * 2008-12-18 2010-07-29 Sumitomo Electric Ind Ltd Film deposition system and film deposition method for oxide thin film
JP2012119125A (en) * 2010-11-30 2012-06-21 Sumitomo Electric Ind Ltd Metal base for thin-film superconductive wire material, method of manufacturing the same, and thin-film superconductive wire material
JP5941636B2 (en) * 2011-09-08 2016-06-29 株式会社フジクラ Manufacturing method of base material for oxide superconducting conductor and manufacturing method of oxide superconducting conductor
WO2013157076A1 (en) * 2012-04-17 2013-10-24 住友電気工業株式会社 Metal base material for thin-film superconducting wire, production method therefor, and thin-film superconducting wire
EP2991126B1 (en) * 2014-08-25 2016-10-05 Theva Dünnschichttechnik GmbH Method and device for producing a high temperature superconductor
CN115261764B (en) * 2022-08-24 2023-08-25 昆山西诺巴精密模具有限公司 Aeroengine casing coating and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111278269A (en) * 2020-02-11 2020-06-12 常州机电职业技术学院 Pneumatic transmission device of chip mounter feeder
CN111278269B (en) * 2020-02-11 2021-06-08 常州机电职业技术学院 Pneumatic transmission device of chip mounter feeder

Also Published As

Publication number Publication date
JP2005056591A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
JP4200843B2 (en) Thin film superconducting wire and manufacturing method thereof
JP4041672B2 (en) Bonding high temperature superconducting coated tape
JP5101779B2 (en) Structure for high critical current superconducting tape
JP4690246B2 (en) Superconducting thin film material and manufacturing method thereof
US7463915B2 (en) Stacked filamentary coated superconductors
US7496390B2 (en) Low ac loss filamentary coated superconductors
JP2009507358A (en) High temperature superconducting wire and coil
JP5513154B2 (en) Oxide superconducting wire and manufacturing method of oxide superconducting wire
JP2008210600A (en) Rare earth system tape-shape oxide superconductor and composite substrate used for it
JP2009503792A (en) Improved structure with high critical current density in YBCO coating
WO2011132731A1 (en) Oxide superconductor and production method for same
EP2565879B1 (en) Oxide superconducting conductor and production method therefor
WO2013002372A1 (en) Re-123 superconducting wire and method for manufacturing same
JP2007220467A (en) Method of manufacturing superconductive thin-film material, superconducting apparatus, and superconductive thin-film material
JP2005044636A (en) Superconductive wire rod
JP2011258696A (en) Superconducting coil and method for manufacturing the same
JPWO2007094147A1 (en) Superconducting thin film material manufacturing method, superconducting equipment, and superconducting thin film material
JP4012772B2 (en) Oxide superconductor tape wire
JP2013030317A (en) Oxide superconducting laminated body, oxide superconducting wire material, and manufacturing method of oxide superconducting wire material
JP6009309B2 (en) Tape-like oxide superconducting wire manufacturing method
JP2011096593A (en) Method of manufacturing oxide superconducting thin film
JP6131176B2 (en) Manufacturing method of oxide superconducting wire
JP7330152B2 (en) Oxide superconductor and its manufacturing method
JP5889072B2 (en) Superconducting wire substrate manufacturing method and superconducting wire manufacturing method
JP2013037838A (en) Oxide superconductive wire material and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060314

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20060421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080929

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees