JP4200537B2 - Phosphate-bound starch having high Ca solubilizing activity, oligosaccharide composition thereof, and production method thereof - Google Patents

Phosphate-bound starch having high Ca solubilizing activity, oligosaccharide composition thereof, and production method thereof Download PDF

Info

Publication number
JP4200537B2
JP4200537B2 JP05498898A JP5498898A JP4200537B2 JP 4200537 B2 JP4200537 B2 JP 4200537B2 JP 05498898 A JP05498898 A JP 05498898A JP 5498898 A JP5498898 A JP 5498898A JP 4200537 B2 JP4200537 B2 JP 4200537B2
Authority
JP
Japan
Prior art keywords
starch
phosphate
bound
oligosaccharide composition
amylase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05498898A
Other languages
Japanese (ja)
Other versions
JPH11255803A (en
Inventor
禮一郎 阪本
敏幸 木村
和宏 細谷
祥世 鈴木
潤子 坂内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp, Oji Paper Co Ltd filed Critical Oji Holdings Corp
Priority to JP05498898A priority Critical patent/JP4200537B2/en
Publication of JPH11255803A publication Critical patent/JPH11255803A/en
Application granted granted Critical
Publication of JP4200537B2 publication Critical patent/JP4200537B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Grain Derivatives (AREA)
  • Jellies, Jams, And Syrups (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はリン酸カルシウムの沈澱形成を阻害する作用、すなわちCa可溶化作用に優れたリン酸結合糖質、特にリン酸結合オリゴ糖を含みCa可溶化活性がCa可溶化係数として10以上であるオリゴ糖組成物及びそれらの製造方法、並びに前記リン酸結合オリゴ糖を生成するリン酸結合澱粉及びそれらの製造方法に関する。
【0002】
【従来の技術】
近年、カルシウムの摂取不足による国民の健康問題がクローズアップされており、高齢化社会の出現に伴う骨粗鬆症などの罹患者が急増している。しかし、食品に含まれるカルシウムの腸内における吸収が低いこともよく知られている事実である。成人男子では牛乳、炭酸カルシウム、小魚、野菜のカルシウム吸収率は53%,42%,34%,18%と言われている。
カルシウムの吸収を高める物質としてカゼインホスホペプチド(CPP)が知られている。CPPはペプチドに結合したリン酸基がカルシウムと結合することにより、カルシウムを不溶性の塩に変えないで、腸内でのカルシウムの吸収を促進するとされている(特公平3-58718号公報,内藤博,化学と生物,18, 551-558, 1980)。
【0003】
釜阪らは結合リンを含む馬鈴薯澱粉に注目し、酵素分解によってリン酸の結合したオリゴ糖を分取し、得られたリン酸結合オリゴ糖 (Phosphorylated Oligosaccharides,以下「POS」ともいう) がリン酸カルシウムの沈澱形成を阻害する作用のあることを見出した(Biosci. Biotech. Biochem., 59(8), 1412-1416, 1995;特開平8-104696号公報)。
【0004】
馬鈴薯澱粉に結合リンが含まれていることは古くから知られており、檜作らは馬鈴薯澱粉をα−アミラーゼで分解して得たリミットデキストリンをOH型アニオン交換樹脂に吸着させてから溶出し、ホスホデキストリン(Phosphodextrin)を調製している。得られたホスホデキストリンはさらにグルコアミラーゼで分解してからDEAE- Sephadex A-25 のカラムに吸着させ、洗浄によってブドウ糖を除去した後、リン酸オリゴ糖(Phosphooligosaccharide,Die Starke, 22, 338-343, 1970)を溶出して単離している。
【0005】
POSは馬鈴薯澱粉のα−アミラーゼなどによる酵素分解物から得られることは公知の事実である。しかし、従来のPOSの生産法は実験室レベルの調製法であり、工業的な製造方法は全く確立されていなかった。本発明者らは安価で大量生産が可能なPOSの製造方法について鋭意研究し、先にPOSの工業的な製造方法を発明して特許出願を行なっている(特願平8-240827)。
【0006】
本発明者らによる先願発明の製造法は、純度の極めて高いPOSが工業的に安価で大量生産される利点を有している。しかしながら、植物原料から得られる天然の澱粉に含まれる結合リンは0.1%未満と少ないため、たとえば馬鈴薯澱粉から得られるPOSの収率は1%程度である。従って、大量のPOSを製造するには化学的に合成したリン含量の多いリン酸結合澱粉の方が収率を高くすることができる点で有利である。
本発明者らは各種POSのCa可溶化作用について詳細に調べる中で、リン酸結合澱粉をα−アミラーゼのみで分解処理して得られるオリゴ糖組成物が、先願発明の方法で得たPOSに比べて極めて強いカルシウム可溶化活性を示すことを見出し、本発明を完成した。
【0007】
【発明が解決しようとする課題】
本発明者らが開発した先願発明の製造方法では、馬鈴薯澱粉をα−アミラーゼで分解処理して得られるオリゴ糖組成物を脱色処理、脱塩分離、膜処理、脱色処理して純度の高いPOSの得られることが特徴である。
しかしながら、本発明者らによる先願発明の方法では馬鈴薯澱粉から得られるPOSの収率は1%未満である。しかも、得られる純度の高いPOSのCa可溶化活性を後に詳述する方法で測定すると、Ca可溶化係数として1〜2であった。
【0008】
一方、Ca吸収促進剤として市販されているCPP II及びIII(明治製菓製)のCa可溶化活性は、Ca可溶化係数としてそれぞれ19及び79である。
また、従来技術では、純度が高く、Ca可溶化活性の高いPOSを得るにはリン酸結合澱粉をα−アミラーゼで加水分解した後、さらにグルコアミラーゼやその他の澱粉分解酵素を加えて加水分解し、結合リンを含まないブドウ糖やオリゴ糖をイオン交換樹脂などで分離してPOSの純度を高めることが必要であった。
【0009】
本発明者らは、高いCa可溶化活性を持つPOSのより簡便な製造方法を得るべく検討を進めた結果、リン酸結合澱粉を原料として、一つの酵素、即ちα−アミラーゼのみで分解処理するだけで、本発明者らによる先願発明の方法で得た純度の高いPOSに比べて10倍以上もCa可溶化活性の高いPOSを含むオリゴ糖組成物が容易に得られることを見出した。
本発明は、リン酸結合澱粉をα−アミラーゼのみで処理して得られ、かつCPP IIと同等以上のCa可溶化活性を示すPOSを含むオリゴ糖組成物及びそれらの製造方法、並びに前記オリゴ糖組成物を生成するリン酸結合澱粉及びそれらの製造方法を提供するものである。
【0010】
【課題を解決するための手段】
即ち、本発明は以下の発明を包含する。
(1) リン酸結合澱粉であって、該澱粉にα−アミラーゼのみを作用させて得られるオリゴ糖組成物のCa可溶化活性がCa可溶化係数として10以上であるリン酸結合澱粉。
(2) 全固形分重量に対して結合リンを1重量%以上含むリン酸結合澱粉であって、該澱粉にα−アミラーゼのみを作用させて得られるオリゴ糖組成物のCa可溶化活性がCa可溶化係数として10以上であるリン酸結合澱粉。
【0011】
(3) リン酸結合澱粉がリン酸エステル澱粉または尿素リン酸エステル澱粉である(1)または(2)のリン酸結合澱粉。
(4) 澱粉にリン酸及び/またはその塩を混合し糊化してから乾燥し、焙焼して得られる(1)または(2)のリン酸結合澱粉。
(5) 澱粉にリン酸及び/またはその塩を混合し、その水分を10重量%未満となるまで乾燥してから焙焼して得られる(1)〜(4)のリン酸結合澱粉。
【0012】
(6) 澱粉にリン酸及び/またはその塩を混合し糊化してから乾燥し、焙焼する(4)のリン酸結合澱粉の製造方法。
(7) 澱粉にリン酸及び/またはその塩を混合し、その水分を10重量%未満となるまで乾燥してから焙焼することを含む(5)のリン酸結合澱粉の製造方法。
(8) リン酸結合オリゴ糖を含み、Ca可溶化活性がCa可溶化係数として10以上であるオリゴ糖組成物。
(9) 平均重合度が8〜50である(8)のオリゴ糖組成物。
【0013】
(10) (1)〜(5)のリン酸結合澱粉にα−アミラーゼを作用させて得られる(8)または(9)のオリゴ糖組成物。
(11) (1)〜(5)のリン酸結合澱粉にα−アミラーゼを作用させ、次いで澱粉分解酵素を少なくとも1種作用させて得られるリン酸結合オリゴ糖を含むオリゴ糖組成物。
(12) (1)〜(5)のリン酸結合澱粉にα−アミラーゼを作用させることを含む(8)
〜(10)のオリゴ糖組成物の製造方法。
【0014】
(13) (1)〜(5)のリン酸結合澱粉にα−アミラーゼを作用させ、次いで澱粉分解酵素を少なくとも1種作用させることを含む(11)のオリゴ糖組成物の製造方法。
(14)得られたオリゴ糖組成物を脱塩して全リンに対する結合リンの割合を80%以上とすることをさらに含む(12)または(13)の方法。
(15) (1)〜(5)のリン酸結合澱粉、及び/または(8)〜(11)のオリゴ糖組成物を含む食品、飲料、糊剤、混和剤、塗料、顔料、肥料またはそれらの添加用組成物。
【0015】
【発明の実施の形態】
以下に、本発明を詳細に説明する。
本発明者らはすでに、馬鈴薯澱粉をα−アミラーゼで100℃以上の温度で分解した後、糖化酵素でリン酸が結合していないオリゴ糖を分解してPOSを生成させてから、塩基性アニオン交換樹脂やルーズRO膜、活性炭などの精製処理によって純度の高いPOS製品を製造する方法を開発し、特許出願している。
しかし、馬鈴薯澱粉に含まれる結合リンは0.05〜0.1%(全固形分重量に対するリン重量W/W%,以下同じ)でしかなく、馬鈴薯澱粉から得られるPOSの収率は1%程度である。従って、大量のPOSを製造するには化学的にリン酸基を結合したリン含量の多いリン酸結合澱粉が有利である。
【0016】
食品添加物として認可されているリン酸結合澱粉は、澱粉リン酸エステルナトリウムであり、結合リンとして0.2〜3重量%のリンを含み、遊離のリン、すなわち無機リンの含量は全体のリン(全リン)の20%以下と規定されている。本発明では、原料及びその製造方法の如何を問わず、α−アミラーゼのみで分解処理するだけでCa可溶化活性がCa可溶化係数として10以上であるPOSを含むオリゴ糖組成物及び前記オリゴ糖組成物を生成させるリン酸結合澱粉が全て対象となる。本発明で対象となるリン酸結合澱粉はリン酸エステル澱粉及び尿素リン酸エステル澱粉である。
【0017】
リン酸結合澱粉の原料となる澱粉はコーンスターチ、タピオカ澱粉、馬鈴薯澱粉など広く一般に利用されている植物起源の澱粉だけでなく、いずれの起源の澱粉でも使用することができる。
リン酸結合澱粉の合成方法は特に限定されないが、リン酸結合澱粉の合成には通常、澱粉スラリーにリン酸及び/またはその塩、及び尿素(尿素リン酸エステル澱粉合成の場合)を混合してから脱水し、乾燥・焙焼する方法、澱粉の脱水ケーキにリン酸及び/またはその塩、及び尿素(尿素リン酸エステル澱粉合成の場合)溶液を噴霧して乾燥・焙焼する方法や澱粉乾粉にリン酸及び/またはその塩、及び尿素(尿素リン酸エステル澱粉合成の場合)溶液を混合して乾燥・焙焼する方法が用いられる。
【0018】
澱粉のスラリー濃度は均一な流動性を維持する観点から、通常30〜50重量%、好ましくは35〜45重量%である。
リン酸及び/またはその塩としては、リン酸、及びリン酸一ナトリウム、リン酸二ナトリウム、リン酸三ナトリウム、トリポリリン酸ナトリウム、ピロリン酸ナトリウム、酸性ピロリン酸ナトリウム、ヘキサメタリン酸ナトリウム、酸性ヘキサメタリン酸ナトリウムなどのリン酸ナトリウム塩やリン酸一カリウム、リン酸二カリウムなどのリン酸カリウム塩やリン酸一アンモニウム、リン酸二アンモニウムなどのリン酸アンモニウム塩など広くリン酸塩が使用できる。
【0019】
リン酸及び/またはその塩の添加量はその種類によって異なるが、澱粉の重量に対して通常0.5〜240重量%であり、好ましくは5〜40重量%である。なお、尿素リン酸エステル澱粉の合成にはリン酸塩の他に尿素の添加が必要である。尿素の添加量は澱粉の重量に対して通常0.5〜240重量%であり、好ましくは5〜60重量%である。
pHを調整するために、酸、アルカリを使用することができる。酸としては塩酸、硫酸、亜硫酸などの酸を、アルカリとしてはNaOH、KOH、Ca(OH)2などを用いることができる。
【0020】
澱粉とリン酸及び/またはその塩との混合物(尿素リン酸エステル澱粉の合成の場合には尿素も含む)は水分を除くため乾燥するのが望ましい。本発明者らは乾燥後の水分が重要であることを見出した。すなわち、乾燥後の水分が低い程、Ca可溶化活性の高いリン酸結合澱粉が得られる。実際的には、乾燥後の水分は10重量%未満であることが好ましい。
焙焼の条件としては、焙焼温度が高くなるほど、焙焼時間が長くなるほど結合リンは増加するが、焙焼品の色が赤褐色となり、Ca可溶化活性は結合リンの増加に比例するとは限らない。従って、焙焼の条件は温度としては、通常100〜250℃、好ましくは130〜200℃の温度で、焙焼時間としては、通常5分〜4時間、好ましくは10〜120分の範囲で加熱するのが好ましい。
【0021】
上述の合成法以外にも、本発明者らはリン酸エステル澱粉の合成法を種々検討し、澱粉とリン酸及び/またはその塩とを混合した後、糊化・乾燥してから焙焼する方法を開発した。糊化・乾燥法としては、たとえば、澱粉スラリーにリン酸及び/またはその塩を加えて溶解した後、ドラムドライヤーで糊化・乾燥する方法や、澱粉乾粉にリン酸及び/またはその塩を加えて必要に応じて水を加えながらエクストルーダー処理して糊化・乾燥する方法などがある。
【0022】
糊化・乾燥した澱粉のリン酸及び/またはその塩との混合物を焙焼したものと、糊化しない澱粉にリン酸及び/またはその塩を加えて乾燥し、同じ条件で焙焼したものを比較すると、糊化・乾燥後焙焼して得られるリン酸結合澱粉の方がα−アミラーゼ処理でより高いCa可溶化活性を示すことが認められた。
本発明のCa可溶化活性を示すPOSを含むオリゴ糖組成物は、上述のリン酸結合澱粉をα−アミラーゼで分解して低分子化することにより得られる。低分子化により粘度が低下するため、食品などへの利用用途が大きく拡大される。本来、分解に用いる酵素は澱粉をランダムに切断するα−アミラーゼであれば全て用いることができ、当然2種以上の酵素を混合して用いることもできる。
【0023】
α−アミラーゼとしては、工業的な澱粉の分解(以下、「液化」ともいう)に多用されている耐熱性液化型α−アミラーゼ、中温性液化型α−アミラーゼ、糖化型α−アミラーゼ、糖転移酵素のCGTase(Cyclomaltodextrin glucanotransferase)やTVA(Thermoactinomyces vulgarisのα−アミラーゼ)などが使用できる。しかし、工業生産に適応した酵素としては、耐熱性の液化型α−アミラーゼが分解能力及び澱粉の溶解力において優れている。
リン酸結合澱粉にα−アミラーゼを作用させる条件は、酵素の種類により大きく異なるが、通常用いられている条件で行うことができる。用いる酵素は80〜110℃で有効に作用する耐熱性液化型α−アミラーゼが好ましく、いずれの起源のものでも使用できる。
【0024】
具体的には、細菌起源の高耐熱性α−アミラーゼであるターマミル120L(ノボノルディスク バイオインダストリー製、Bacillus licheniformis由来)、ネオスピターゼPG2(ナガセ生化学工業製、Bacillus subtilis 由来)、クライスターゼT(大和化成製、Bacillus subtilis 由来)などの市販酵素を用いることができる。
基質となるリン酸結合澱粉は10〜40重量%濃度のスラリーとし、水酸化カルシウム及び/または水酸化ナトリウムを加えて、通常pH6.0〜6.3に調整する。耐熱性α−アミラーゼは安定剤として50ppm以上のカルシウムイオンを必要とするので、pH調整用アルカリとしては水酸化カルシウムが主に使用される。
【0025】
酵素添加量は使用する酵素によって大きく異なるが、通常0.001〜0.5重量%、好ましくは0.01〜0.2重量%(対澱粉)である。反応のpHも使用する酵素によって異なるが、通常pH4〜7である。
工業生産における澱粉分解反応(液化反応)では、通常、澱粉の再結晶化を防ぐため、α−アミラーゼ添加後の反応開始温度を100〜110℃に高めて2〜15分、加圧条件で処理した後、90〜100℃の高温で30分〜5時間程度酵素分解を進めて行なっている。
【0026】
α−アミラーゼによるリン酸結合澱粉の分解は工業生産における分解反応と異なり、必ずしも100〜110℃、加圧というような厳しい分解条件を必要とはしない。結合リンの多寡によって異なるものの、結合リンが澱粉の再結晶化を防ぐ役割を果たすことから、100℃以上の厳しい反応条件は必ずしも必要ではない。しかしながら、分解反応の高温処理は分解液の濾過性を良くして操業を容易にするなどの面から好ましい。
具体的には、最終濃度として10〜40重量%となるようにリン酸結合澱粉を採取し、2.8重量%の塩化カルシウムを全量の1/100量加え、1N−NaOH溶液でpHを6.3に調節する。これに、ターマミル120Lを0.1重量%(対リン酸結合澱粉)加えて耐圧容器に移す。105℃で5分間加熱後、95℃で1時間液化反応を継続する。
【0027】
なお、ターマミル120Lによる反応では酵素添加量0.1重量%で反応温度は90〜100℃、反応時間10〜70分の範囲ではCa可溶化活性値はほとんど同じ値を示すことが明らかとなった。さらに、この反応液の反応温度を60℃に下げて、24時間反応を継続しても、Ca可溶化活性は元の活性の80〜90%を維持しており、ターマミル120Lを0.05重量%追加添加して60℃で24時間追加反応すると70%前後まで低下することが明らかとなった。
【0028】
リン酸結合澱粉をα−アミラーゼのみで処理して得られるPOSを含むオリゴ糖組成物は極めて高いCa可溶化活性を有する混合液であり、そのまま濃縮して製品となる。しかし、リン酸結合澱粉のα−アミラーゼ処理のみで得られるオリゴ糖組成物の平均重合度は8〜50であり、オリゴ糖よりもデキストリンの範疇に入る重合度を有している。通常のオリゴ糖より分子量がかなり大きいため、そのまま製品として濃縮すれば、製品の粘度が高くなって食品としての使用に制限が起こる場合もある。
【0029】
製品の粘度をさらに下げるには、α−アミラーゼも含む各種澱粉分解酵素や糖転移酵素の1種または2種以上の酵素、さらにこれら各種酵素の1種以上の酵素にα−グルコシダーゼを加えた酵素群による追加分解反応(以下、「糖化反応」ともいう)を行うことができる。なかでも、グルコアミラーゼ、β−アミラーゼ、糖化型α−アミラーゼなどの澱粉分解酵素がオリゴ糖組成物の重合度の低下に有効性の高い酵素として推奨される。
他に、単独では重合度低下作用が少ないものの、グルコアミラーゼなどとの組み合わせにより効果を示す酵素として、液化型α−アミラーゼ、CGTase(Cyclomaltodextrin glucanotransferase)、プルラナーゼ、イソアミラーゼ、TVAなどが挙げられる。
【0030】
従来技術ではPOSの低分子化を優先するため、追加分解にはグルコアミラーゼが主として使用され、さらに、枝切り酵素であるプルラナーゼやα−アミラーゼを同時に作用させている。本発明者らによる先願発明においても、耐熱性液化型α−アミラーゼで処理した後、グルコアミラーゼとプルラナーゼの混合酵素剤であるデキストロザイムを使用して低分子化を進めている。
合成したリン酸結合澱粉を液化型α−アミラーゼで分解処理して得られたオリゴ糖組成物をさらに各種澱粉分解酵素で追加分解する場合、グルコアミラーゼの市販酵素剤AMG(ノボノルディスク バイオインダストリー社製、Aspergillus niger 由来)で処理すると、オリゴ糖組成物のCa可溶化活性は追加分解前の半分程度に減少した。
【0031】
なお、試薬製剤のグルコアミラーゼ(Aspergillus niger 由来及びRhizopus niveus 由来)で処理したオリゴ糖組成物のCa可溶化活性は液化型α−アミラーゼ処理のみで得られるオリゴ糖組成物の活性の80%前後の値であった。
また、β−アミラーゼの市販酵素剤であるBBA(ジェネンコァ社製、大麦由来)や甘藷由来の試薬β−アミラーゼで処理したオリゴ糖組成物のCa可溶化活性は元の80%前後の活性が維持されていた。さらに、β−アミラーゼにα−アミラーゼを同時に作用させて低分子化反応を進めると、Ca可溶化活性は元の50%前後の活性に減少した。
【0032】
なお、β−アミラーゼで追加分解して得たオリゴ糖組成物の平均重合度は4〜8であり、グルコアミラーゼ処理で得られるものの平均重合度1〜4より大きい傾向が認められた。
澱粉分解酵素による追加分解反応は液化型α−アミラーゼ処理で得られたオリゴ糖組成物に各種酵素を1種または2種以上加えて、各酵素の最適反応条件で行われる。反応条件は酵素の種類によって大きく異なるが、通常、反応温度は40〜70℃、pHは4〜7、分解(糖化)時間は0.5〜96時間、酵素添加量はオリゴ糖組成物の固形分に対して0.0001〜1重量%である。なお、追加分解反応に用いる酵素は最初の分解で使用する液化型α−アミラーゼ処理と同時に用いることもできる。
【0033】
リン酸結合澱粉の酵素分解物には、添加酵素や分解反応で生成する凝集タンパク質や未分解澱粉など不溶性物質が含まれ、さらに中和に用いた塩類や無機リンなども不純物として含まれている。不溶性物質は濾過や膜処理で除去されるが、塩類や無機リンを除くにはイオン交換樹脂処理、ナノフィルトレーション(NF)膜処理、イオン交換膜処理などによる脱塩処理が必要である。
リン酸結合澱粉を酵素分解して得られるPOSを含むオリゴ糖組成物を脱塩処理することにより、全リンに対する無機リン比率を20%以下に減少させることができる。これにより、食品添加物として規定されているリン酸結合澱粉と同等の結合リン、無機リン含量のPOSを含むオリゴ糖組成物を得ることができる。
【0034】
以下、本発明におけるCa可溶化係数の定義と測定方法を示す。
(1)Ca可溶化活性測定試料液の調製
リン酸結合澱粉をα−アミラーゼなどの酵素で処理して得られるPOSを含むオリゴ糖組成物溶液(POS溶液、未精製)(2重量%、pH2に調整したもの)17.5gを試験管に採取し、水を加えて30gとする。5重量%のNaOH溶液でpH7.2〜7.3に合わせる。さらに、1重量%のNaOH溶液でpH7.36〜7.37に微調節してから水を加えて全量を35.0gとする。この時、pHが7.40±0.02であることを確認し、pHが外れている場合には再度、pH調整をやり直す。
【0035】
得られた1重量%のPOS溶液をCa可溶化活性測定試料液とする。
(2)リン酸カルシウム沈澱形成阻害反応
(1)で得た測定試料液を必要に応じて水で希釈してリン酸カルシウム沈澱形成阻害反応を行う。30℃の恒温槽で恒温にした15mM−リン酸緩衝液(pH7.4)1.5mlを試験管に採取し、適宜希釈した測定試料液0.3mlを加えて混合する。次いで、30℃の恒温槽で恒温にした12.5mM−CaCl2を1.2ml加えて混合し、30℃の恒温槽に入れて1時間保持する。1時間後、測定試料を15000rpmで1分間遠心分離して、上清のCa濃度を測定する。
Ca濃度はCa測定キット(和光純薬製)で測定した。対照として、希釈測定試料液の代わりに水を加えたもののCa濃度を測定し、リン酸カルシウムのみの上清Ca濃度を算出して対照1液とする。希釈測定試料液及びリン酸緩衝液の代わりに水を加えたもののCa濃度を測定して、全Ca濃度を算出して対照2液とする。
【0036】
(3)Ca可溶化係数の算出
まず、各希釈試料液のCa可溶化率を次式によって求める。
【0037】
【数1】

Figure 0004200537
【0038】
測定液中の試料濃度を横軸に取り、Ca可溶化率を縦軸に取ってグラフを作成し、Ca可溶化率が50%となる試料濃度を求める。この試料濃度(%)値の逆数をCa可溶化係数とする。
例えば、Ca可溶化活性測定時の試料の濃度が0.1%でCa可溶化率50%になった場合、Ca可溶化係数は10である。なお、Ca可溶化率は50%を挟んで50±30%の範囲で測定した試料濃度2点の直線とCa可溶化率50%の交点をCa可溶化係数算出の試料濃度とし、係数値は少数点1位以下を四捨五入して整数とする。
【0039】
表1に、各種リン酸結合澱粉の結合リン含量とCa可溶化係数を示す。
α−アミラーゼによる分解処理で高いCa可溶化活性を示すようなリン酸エステル澱粉を得るため、コーンスターチ及び馬鈴薯澱粉を原料として、反応条件を変えて結合リンが馬鈴薯澱粉の結合リン含量より多い0.5〜4重量%となるようにリン酸エステル澱粉を合成した。
表1から明らかなように、結合リン含量が1重量%以上のリン酸結合澱粉を酵素処理して得られるPOSを含むオリゴ糖組成物のCa可溶化係数は10以上である。
【0040】
【表1】
Figure 0004200537
【0041】
原料の澱粉がコーンスターチであれ、馬鈴薯澱粉であれ、結合リンが1重量%未満のリン酸エステル澱粉をα−アミラーゼで分解して生成したPOSを含む溶液のCa可溶化活性は、Ca可溶化係数として10未満であり、明治製菓製のCPP IIのCa可溶化係数19より低いものである。
結合リンの少ないリン酸エステル澱粉を原料としてα−アミラーゼ処理して得られるPOS溶液からPOS製品を得るには、生成したPOS以外の結合リン酸を持たないブドウ糖やオリゴ糖などの中性糖を除く精製操作を行わなければ、明治製菓製のCPP IIのようなCa可溶化活性の高いPOS製品を得ることはできない。
【0042】
これに対して、1重量%以上の結合リンを含むリン酸エステル澱粉のα−アミラーゼ処理により得られるオリゴ糖組成物はなんら精製純化操作をしなくとも、10〜50の高いCa可溶化係数の得られることが明らかである。
すなわち、α−アミラーゼによる酵素処理だけでCPP IIと同等以上の高いCa可溶化活性を持つオリゴ糖組成物が得られたこととなり、極めて簡便なPOSの製造方法が開発されたこととなる。
本発明で設定したCa可溶化活性測定法を用いてCa可溶化作用を有するとされる各種物質のCa可溶化係数を求めると表2のように算出された。
【0043】
【表2】
Figure 0004200537
【0044】
Ca可溶化活性の高いアルギン酸ナトリウムやペクチンは多糖であり、粘性物質であって食品としての使用に制限がある。単糖や二糖の一リン酸や二リン酸はCPP IIと同程度のCa可溶化活性を有するものの高価である。
これらに対して、リン酸エステル澱粉は食品添加物として認められており、そのまま食品に添加することができる。しかも、α−アミラーゼによって容易に低分子化されてPOSを含むオリゴ糖組成物に変換されるので、リン酸エステル澱粉をそのまま食品に加えて使用しても、加工工程中にα−アミラーゼが存在すれば高いCa可溶化活性を有するPOSを生成する。
【0045】
また、食品にα−アミラーゼが存在しなくとも、食品として咀嚼中に唾液のα−アミラーゼの作用によりリン酸エステル澱粉から高いCa可溶化活性を有するPOSが生成可能である。次いで、咀嚼だけでリン酸エステル澱粉の低分子化が不十分な場合でも、小腸では膵液のα−アミラーゼの作用により高いCa可溶化活性を有するPOSが生成する。すなわち、リン酸エステル澱粉を高分子のままで食品に添加しても、体内でPOSが生成し、高いCa可溶化活性を示すことが予想される。
【0046】
さらに、リン酸エステル澱粉を耐熱性液化型α−アミラーゼによって低分子化すれば、粘度が低く、Ca可溶化活性の高いPOSが安価に大量に生産され、食品への利用が大きく広げられることとなる。 本発明の高い活性を有するリン酸結合澱粉は食品、飲料、糊剤、混和剤、塗料、顔料、肥料などの成分として混合することができる。また、同じくリン酸結合澱粉は食品、飲料、糊剤、混和剤、塗料、顔料、肥料への添加用組成物として利用することができる。
さらに、本発明の高い活性を有するリン酸結合澱粉から得られるPOSを含むオリゴ糖組成物は食品、飲料、糊剤、混和剤、塗料、顔料、肥料などの成分として混合することができる。また、同じくPOSを含むオリゴ糖組成物は食品、飲料、糊剤、混和剤、塗料、顔料、肥料への添加用組成物として利用することができる。
【0047】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明は下記実施例により、その技術的範囲が限定されるものではない。なお、実施例中、結合リン含量の測定、Ca可溶化係数の測定、及びオリゴ糖組成物の平均重合度の測定は、各々以下の方法によって行った。
【0048】
[結合リン含量の測定]
リン含量は澱粉・関連糖質実験法(学会出版センター、中村道徳ら)に記載の方法に準じて測定した。リン酸結合澱粉のリン含量を測定するため、試料にターマミル120L(耐熱性液化型α−アミラーゼ)0.1重量%を加えて95℃,15分間加熱分解して均一な溶液を調製し、無機リンを全てオルトリン酸とするため塩酸を添加してpH2に調整してからFiske-Subbarow法で無機リンを測定した。なお、これら一連の酵素分解反応では結合リンが無機リンとして遊離しないことを確認しており、元のリン酸結合澱粉も分解生成したオリゴ糖組成物も結合リンの含量に変化はない。また、発色時に濁りが認められるものは遠心分離(3000rpm,3分間)して上清の吸光度を測定した。
全リン含量は無機リン測定時にpH2に調整した試料を湿式灰化処理し、同様に測定した。結合リン含量(重量%,対試料固形分)は(全リン含量−無機リン含量)で算出した。
【0049】
[Ca可溶化係数の測定]
上述したように、Ca可溶化活性測定試料液を調製し、リン酸カルシウム沈殿形成阻害反応を行って式(I)よりCa可溶化率を求め、Ca可溶化係数を算出した。
【0050】
[オリゴ糖組成物の平均重合度の測定]
糖含量は澱粉・関連糖質実験法(学会出版センター、中村道徳ら)に記載の方法に準じて測定し、オリゴ糖組成物の平均重合度は全糖/還元糖から求めた。リン含量測定の場合と同様にpH2に調整した試料液を適宜希釈して、全糖はフェノール−硫酸法(Dubois ら,1956)で、還元糖は Somogyi-Nelson 法(Nelson, 1944)で測定した。測定値はブドウ糖換算重量%(対試料固形分)で表示し、平均重合度は全糖/還元糖で算出した。
【0051】
実施例1
コーンスターチを含むスラリー(澱粉重量濃度40%)10kgに無水リン酸一ナトリウム2.2kgと無水リン酸二ナトリウム2.0kgを加えて溶解し(pH6.0)、濾紙で濾過して澱粉ケーキを回収した。この澱粉ケーキの全リンは3.8重量%であった。これを棚段乾燥機で水分13重量%となるまで乾燥してから一定温度に設定したオーブンで1〜3時間焙焼した。
次いで、得られたリン酸エステル澱粉をα−アミラーゼで分解してオリゴ糖組成物とするため、合成したリン酸エステル澱粉を3〜4g採取し、105℃で4時間乾燥した。放冷後、乾燥試料2gを精秤して100mlの耐圧ガラス容器に入れ、水を70g加えて、均一になるまで攪拌した。これに2.8重量%の塩化カルシウム溶液を1ml加え、1N−NaOH溶液でpHを6.3に調節した。α−アミラーゼとして、ターマミル120Lを水で10倍に希釈した液を20mg加え、耐圧ガラス容器をガス加熱した沸騰水中に置いて、時々攪拌しながら15分間加熱した。加熱終了後、放冷してから1N−塩酸溶液を加えてpHを2に調節してから水を加えて全量を100gとした(濃度2重量%)。
得られたPOSを含むオリゴ糖組成物の結合リン含量とCa可溶化係数を測定した。結果を表3に示す。
【0052】
【表3】
Figure 0004200537
【0053】
Ca可溶化係数18以上の高いCa可溶化活性を有するリン酸結合澱粉が得られた。
【0054】
実施例2
コーンスターチを含むスラリー(澱粉重量濃度40%)10kgに無水リン酸一ナトリウムと無水リン酸二ナトリウムを適宜加えてpH4.0及び2.5となるように溶解し、濾紙で濾過して澱粉ケーキを回収した。これらの澱粉ケーキの全リンは3.8重量%であった。次いで棚段乾燥機で水分13重量%となるまで乾燥してから一定温度に設定したオーブンで1時間焙焼した。
実施例1と同様に、合成したリン酸エステル澱粉からオリゴ糖組成物を調製し、結合リンとCa可溶化係数を測定した。
【0055】
【表4】
Figure 0004200537
【0056】
Ca可溶化係数20以上の高いCa可溶化活性を有するリン酸結合澱粉が得られた。
【0057】
実施例3
コーンスターチを含むスラリー(澱粉重量濃度40%)10kgに無水リン酸一ナトリウムと無水リン酸二ナトリウムの添加量を変えて溶解し(pH6.0)、濾紙で濾過して澱粉ケーキを回収した。これらの澱粉ケーキの全リンは3.8,5.9,6.3重量%であった。次いで棚段乾燥機で水分13重量%となるまで乾燥してから一定温度に設定したオーブンで1時間焙焼した。
実施例1と同様に、合成したリン酸エステル澱粉からオリゴ糖組成物を調製し、全リン、結合リンとCa可溶化係数を測定した。
【0058】
【表5】
Figure 0004200537
【0059】
Ca可溶化係数24以上の高いCa可溶化活性を有するリン酸結合澱粉が得られた。
【0060】
実施例4
馬鈴薯澱粉12.3kg(乾燥重量10.0kg)を混合機に入れ、無水リン酸一ナトリウム1.7kgと無水リン酸二ナトリウム1.2kgを溶解した液7.7kg(pH6.0)を加えて混合し、棚段乾燥機で水分15重量%となるまで乾燥した。これを一定温度に設定したオーブンで1時間焙焼した。
実施例1と同様に、合成したリン酸エステル澱粉からオリゴ糖組成物を調製し、全リン、結合リンとCa可溶化係数を測定した。
【0061】
【表6】
Figure 0004200537
【0062】
Ca可溶化係数28以上の高いCa可溶化活性を有するリン酸結合澱粉が得られた。
【0063】
実施例5
▲1▼ コーンスターチ(乾粉、水分13重量%)を10kg/Hrの流速で混合機に導入し、同時にリン酸及び尿素の混合液(リン酸5重量%、尿素18重量%)を4.35kg/Hrの流速で添加して混合した。混合後、気流乾燥機で水分10重量%となるまで乾燥した。これを130℃に設定したオーブンで30分間焙焼した。
【0064】
▲2▼ コーンスターチ(乾粉、水分13重量%)を10kg/Hrの流速で混合機に導入し、同時にリン酸及び尿素の混合液(リン酸10重量%、尿素16重量%)を4.35kg/Hrの流速で添加して混合した。混合後、気流乾燥機で水分10重量%となるまで乾燥した。これを130℃に設定したオーブンで60分間焙焼した。
実施例1と同様に、合成した尿素リン酸エステル澱粉からオリゴ糖組成物を調製し、全リン、結合リンとCa可溶化係数を測定した。
【0065】
【表7】
Figure 0004200537
【0066】
Ca可溶化係数15〜25の高いCa可溶化活性を有するリン酸結合澱粉が得られた。
【0067】
実施例6
コーンスターチ(乾粉、水分13重量%)10kgに無水リン酸一ナトリウム1.3kgと無水リン酸二ナトリウム1.1kgを加えて混合機で混合した。これを水分5重量%となるまで乾燥してから一定温度に設定したオーブンで1時間焙焼した。
実施例1と同様に、合成したリン酸エステル澱粉からオリゴ糖組成物を調製し、全リン、結合リン、Ca可溶化係数と平均重合度を測定した。
【0068】
【表8】
Figure 0004200537
【0069】
Ca可溶化係数23〜33の高いCa可溶化活性を有するリン酸結合澱粉が得られ、オリゴ糖組成物の平均重合度は17〜21であった。
【0070】
実施例7
コーンスターチ(乾粉、水分13重量%)10kgを混合機に入れ、無水リン酸一ナトリウム0.96kgと無水リン酸二ナトリウム0.86kgを水に溶解した液を徐々に加えて混合した。これを水分13重量%となるまで乾燥してから一定温度に設定したオーブンで1時間焙焼した。
実施例1と同様に、合成したリン酸エステル澱粉からオリゴ糖組成物を調製し、全リン、結合リン、Ca可溶化係数と平均重合度を測定した。
【0071】
【表9】
Figure 0004200537
【0072】
Ca可溶化係数27〜28の高いCa可溶化活性を有するリン酸結合澱粉が得られ、オリゴ糖組成物の平均重合度は10〜18であった。
【0073】
実施例8
コーンスターチ(乾粉、水分13重量%)10kgを混合機に入れ水を加えてスラリーとし、無水リン酸一ナトリウム0.88kgと無水リン酸二ナトリウム0.79kgを加えて溶解混合した。これをドラムドライヤーにかけて糊化し、水分13重量%となるまで乾燥した。次いで、一定温度に設定したオーブンで1時間焙焼した。
実施例1と同様に、合成したリン酸エステル澱粉からオリゴ糖組成物を調製し、全リン、結合リン、Ca可溶化係数と平均重合度を測定した。
【0074】
【表10】
Figure 0004200537
【0075】
Ca可溶化係数27〜40の高いCa可溶化活性を有するリン酸結合澱粉が得られ、オリゴ糖組成物の平均重合度は11〜23であった。
【0076】
実施例9
コーンスターチ(乾粉、水分13重量%)10kgを混合機に入れ水を加えてスラリーとし、無水リン酸一ナトリウム1.0kgと無水リン酸二ナトリウム0.93kgを加えて溶解混合した。これをドラムドライヤーにかけて糊化し、水分5重量%となるまで乾燥した。次いで、一定温度に設定したオーブンで1時間焙焼した。
実施例1と同様に、合成したリン酸エステル澱粉からオリゴ糖組成物を調製し、全リン、結合リン、Ca可溶化係数と平均重合度を測定した。
【0077】
【表11】
Figure 0004200537
【0078】
Ca可溶化係数42〜61の高いCa可溶化活性を有するリン酸結合澱粉が得られ、オリゴ糖組成物の平均重合度は22〜31であった。
【0079】
実施例10
コーンスターチ(乾粉、水分13重量%)10kgと無水リン酸一ナトリウム0.92kgと無水リン酸二ナトリウム0.82kgを混合してエクストルーダーに投入し、水を加えて混練混合した。吐出した混練品をカットして送風乾燥機で水分13重量%になるまで乾燥した。これを粉砕し、一定温度に設定したオーブンで1時間焙焼した。
実施例1と同様に、合成したリン酸エステル澱粉からオリゴ糖組成物を調製し、全リン、結合リン、Ca可溶化係数と平均重合度を測定した。
【0080】
【表12】
Figure 0004200537
【0081】
Ca可溶化係数36〜39の高いCa可溶化活性を有するリン酸結合澱粉が得られ、オリゴ糖組成物の平均重合度は24〜31であった。
【0082】
実施例11
コーンスターチ(乾粉、水分13量%)10kgを混合機に入れ水を加えてスラリーとし、無水リン酸一ナトリウムと無水リン酸二ナトリウムを適宜加えて溶解(pH6.0,5.3)混合した。これをドラムドライヤーにかけて糊化し、水分13重量%となるまで乾燥した。次いで、一定温度に設定したオーブンで1時間焙焼した。
実施例1と同様に、合成したリン酸エステル澱粉からオリゴ糖組成物を調製し、全リン、結合リンとCa可溶化係数を測定した。
【0083】
【表13】
Figure 0004200537
【0084】
Ca可溶化係数30〜52の高いCa可溶化活性を有するリン酸結合澱粉が得られた。
【0085】
実施例12
コーンスターチ(乾粉、水分13重量%)10kgを混合機に入れ水を加えてスラリーとし、無水リン酸一ナトリウムと無水リン酸二ナトリウムを適宜加えて溶解(pH6.0)混合した。これをドラムドライヤーにかけて糊化し、水分13重量%となるまで乾燥し、170℃に設定したオーブンで1時間焙焼してリン酸エステル澱粉を得た。合成したリン酸エステル澱粉120gにターマミル120Lを0.12gを加え、さらに10%Ca(OH)2水溶液を加えてpH6.3とした。これを105℃で5分間加圧加熱処理してから95℃で1時間液化処理した。液化液50gに各種澱粉分解酵素を対澱粉0.1%加えて、60℃(TVA IIのみ50℃)で24時間糖化処理し、得られたオリゴ糖組成物のCa可溶化活性、結合リン及び平均重合度を測定した。
【0086】
用いた澱粉分解酵素は、▲1▼大麦β−アミラーゼ(ジェネンコア社製 BBA,大麦由来)、▲2▼甘藷β−アミラーゼ(Sigma 製 試薬β−アミラーゼ,甘藷由来)、▲3▼大麦β−アミラーゼ対澱粉0.1%とプルラナーゼ(天野製薬製 プルラナーゼ「アマノ」,Klebsiella pneumoniae 由来)対澱粉0.05%の組み合わせ、▲4▼グルコアミラーゼ(ノボノルディスク バイオインダストリー製 AMG, Aspergillus niger 由来グルコアミラーゼ)、▲5▼グルコアミラーゼ(Sigma 製試薬グルコアミラーゼ,Aspergillus niger由来)、▲6▼グルコアミラーゼ(Sigma 製試薬グルコアミラーゼ,Rhizopus niveus 由来)、▲7▼ TVA II (公特開平7-25891,Thermoactinomyces vulgaris R-47 由来α−アミラーゼ)、及び▲8▼ファンガミル(ノボノルディスク バイオインダストリー製 ファンガミル, Aspergillus
oryzae 由来糖化型α−アミラーゼ)である。
【0087】
【表14】
Figure 0004200537
【0088】
澱粉分解酵素処理により、平均重合度(リン酸基の結合していない単糖やオリゴ糖を含む)1〜18に低分子化されたオリゴ糖組成物が得られ、Ca可溶化活性はCa可溶化係数として21〜45であった。
【0089】
実施例13
実施例12のリン酸エステル澱粉120g(ドラムドライヤーで糊化し、170℃で1時間焙焼して合成した)に終濃度20重量%となるように水、ターマミル120L0.12gを加え、さらに10%Ca(OH)2水溶液を加えてpH6.3とした。これを105℃で5分間加圧加熱処理してから95℃で1時間液化処理した。次いで、液化液に蓚酸を加えてpHを5.5に調節してからBBA0.12gを加えて、60℃で24時間糖化処理し、オリゴ糖組成物溶液を得た。これに塩酸を加えてpH2.5とし、不溶性物質を濾紙で除いてからNF膜処理(NTR−7410,日東電工製)で脱塩した。さらに活性炭を加えて60℃で2時間放置後、濾紙で活性炭を除いて清澄液を得てからエバポレーターで濃縮した。得られた精製オリゴ糖組成物溶液の固形分は90gであり、Ca可溶化活性はCa可溶化係数として46、結合リンは2.7重量%、無機リン比率18%、平均重合度は12であった。
【0090】
実施例14
実施例12のリン酸エステル澱粉120g(ドラムドライヤーで糊化し、170℃で1時間焙焼して合成した)に終濃度20重量%となるように水、ターマミル120L0.12gを加え、さらに10%Ca(OH)2水溶液を加えてpH6.3とした。これを105℃で5分間加圧加熱処理してから95℃で1時間液化処理した。次いで、液化液に蓚酸を加えてpHを4.5に調節してからAMG0.12gを加えて、60℃で24時間糖化処理し、オリゴ糖組成物溶液を得た。これに塩酸を加えてpH2.5とし、不溶性物質を濾紙で除いてからNF膜処理(NTR−7410,日東電工製)で脱塩した。さらに活性炭を加えて60℃で2時間放置後、濾紙で活性炭を除いて清澄液を得てからエバポレーターで濃縮した。得られた精製オリゴ糖組成物溶液の固形分は56gであり、Ca可溶化活性はCa可溶化係数として41、結合リンは3.6重量%、無機リン比率20%、平均重合度は2.6であった。
【0091】
【発明の効果】
本発明は日本人の栄養素の中で唯一不足するとして問題とされているカルシウムの吸収を促進するカルシウム可溶化作用を有する糖質の工業的な製造法を提供するものである。本発明者らによる先願発明の製造法では、純度の極めて高いPOSが工業的に安価で大量生産される利点を有しているが、馬鈴薯澱粉から得られるPOSの収率は1%程度でしかない。
本発明の方法によれば、澱粉をリン酸エステル化または尿素リン酸エステル化したリン酸結合澱粉をα−アミラーゼのみで酵素分解するだけで、なんらの精製操作を経なくとも、市販のカルシウム吸収促進剤と同等以上のCa可溶化活性を有するオリゴ糖組成物を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention has an effect of inhibiting the precipitation of calcium phosphate, that is, a phosphate-binding carbohydrate excellent in Ca-solubilization activity, in particular, an oligosaccharide having a phosphate-binding oligosaccharide and a Ca-solubilization activity of 10 or more as a Ca-solubilization coefficient. The present invention relates to a composition and a production method thereof, and a phosphate-binding starch that produces the phosphate-binding oligosaccharide and a production method thereof.
[0002]
[Prior art]
In recent years, public health problems due to insufficient intake of calcium have been highlighted, and the number of affected people such as osteoporosis accompanying the emergence of an aging society is rapidly increasing. However, it is a well-known fact that the absorption of calcium in food is low in the intestines. In adult males, the absorption rate of milk, calcium carbonate, small fish, and vegetables is said to be 53%, 42%, 34%, and 18%.
Casein phosphopeptide (CPP) is known as a substance that enhances calcium absorption. CPP is said to promote absorption of calcium in the intestine without changing calcium into an insoluble salt by binding a phosphate group bound to a peptide to calcium (Japanese Patent Publication No. 3-58718, Naito). Hiroshi, Chemistry and Biology, 18, 551-558, 1980).
[0003]
Kamasaka et al. Focused on potato starch containing bound phosphorus, fractionated oligosaccharides bound with phosphoric acid by enzymatic degradation, and the resulting phosphate-bound oligosaccharides (hereinafter also referred to as “POS”) were calcium phosphate. (Biosci. Biotech. Biochem., 59 (8), 1412-1416, 1995; JP-A-8-104696).
[0004]
It has long been known that potato starch contains bound phosphorus, and Tsukusaku et al. Adsorbed limit dextrin obtained by degrading potato starch with α-amylase after adsorbing it on an OH-type anion exchange resin, Phosphodextrin is prepared. The obtained phosphodextrin was further decomposed with glucoamylase, adsorbed on DEAE-Sephadex A-25 column, glucose was removed by washing, and then phosphoric oligosaccharide (Phosphooligosaccharide, Die Starke, 22, 338-343, 1970).
[0005]
It is a well-known fact that POS is obtained from an enzymatic degradation product of potato starch such as α-amylase. However, the conventional POS production method is a laboratory-level preparation method, and no industrial production method has been established. The present inventors have intensively studied a method for producing POS that is inexpensive and capable of mass production, and previously filed a patent application by inventing an industrial production method for POS (Japanese Patent Application No. 8-240827).
[0006]
The production method of the prior invention by the present inventors has an advantage that POS with extremely high purity is industrially inexpensive and mass-produced. However, since the bound phosphorus contained in natural starch obtained from plant raw materials is less than 0.1%, for example, the yield of POS obtained from potato starch is about 1%. Therefore, in order to produce a large amount of POS, a chemically synthesized phosphate-bound starch having a high phosphorus content is advantageous in that the yield can be increased.
While the present inventors investigated in detail the Ca solubilizing action of various POSs, an oligosaccharide composition obtained by decomposing phosphate-bound starch only with α-amylase was obtained by the POS obtained by the method of the prior invention. As a result, the present invention was completed.
[0007]
[Problems to be solved by the invention]
In the manufacturing method of the invention of the prior application developed by the present inventors, the oligosaccharide composition obtained by decomposing potato starch with α-amylase is decolorized, desalted and separated, membrane-treated, and decolorized for high purity. It is characteristic that POS is obtained.
However, in the method of the invention of the prior application by the present inventors, the yield of POS obtained from potato starch is less than 1%. Moreover, when the Ca solubilizing activity of the obtained high purity POS was measured by the method described in detail later, the Ca solubilization coefficient was 1-2.
[0008]
On the other hand, the Ca solubilizing activities of CPP II and III (manufactured by Meiji Seika Co., Ltd.) marketed as Ca absorption promoters are 19 and 79 as Ca solubilization coefficients, respectively.
Further, in the prior art, in order to obtain a POS with high purity and high Ca solubilizing activity, phosphate-bound starch is hydrolyzed with α-amylase and then further hydrolyzed with glucoamylase or other starch-degrading enzymes. It was necessary to increase the purity of POS by separating glucose and oligosaccharides that do not contain bound phosphorus with an ion exchange resin or the like.
[0009]
As a result of investigations to obtain a simpler production method of POS having high Ca solubilizing activity, the present inventors decomposed with only one enzyme, ie, α-amylase, using phosphate-bound starch as a raw material. Thus, it has been found that an oligosaccharide composition containing POS having a Ca solubilizing activity that is 10 times or more higher than that of the highly purified POS obtained by the method of the prior invention by the present inventors can be easily obtained.
The present invention provides an oligosaccharide composition containing POS obtained by treating phosphate-bound starch only with α-amylase and having a Ca solubilizing activity equivalent to or higher than that of CPP II, a method for producing them, and the oligosaccharide. Provided are phosphate-bonded starches that produce compositions and methods for their production.
[0010]
[Means for Solving the Problems]
That is, the present invention includes the following inventions.
(1) Phosphate-bound starch, a phosphate-bound starch in which the Ca solubilizing activity of the oligosaccharide composition obtained by allowing only α-amylase to act on the starch is 10 or more as the Ca solubilization coefficient.
(2) Phosphate-bound starch containing 1% by weight or more of bound phosphorus with respect to the total solid weight, and the Ca solubilizing activity of the oligosaccharide composition obtained by allowing only α-amylase to act on the starch is Ca A phosphate-bound starch having a solubilization factor of 10 or more.
[0011]
(3) The phosphate-bound starch according to (1) or (2), wherein the phosphate-bound starch is a phosphate ester starch or a urea phosphate starch.
(4) The phosphate-bonded starch according to (1) or (2), which is obtained by mixing phosphoric acid and / or a salt thereof with starch, gelatinizing, drying and baking.
(5) The phosphoric acid-bound starch of (1) to (4) obtained by mixing phosphoric acid and / or a salt thereof with starch and drying and roasting the water until the water content is less than 10% by weight.
[0012]
(6) The method for producing phosphate-bound starch according to (4), wherein phosphoric acid and / or a salt thereof are mixed in the starch, gelatinized, dried and roasted.
(7) The method for producing a phosphate-bonded starch according to (5), comprising mixing phosphoric acid and / or a salt thereof with starch, drying the resultant to a moisture content of less than 10% by weight and then baking.
(8) An oligosaccharide composition comprising a phosphate-linked oligosaccharide and having a Ca solubilization activity of 10 or more as a Ca solubilization coefficient.
(9) The oligosaccharide composition according to (8) having an average degree of polymerization of 8 to 50.
[0013]
(10) The oligosaccharide composition according to (8) or (9) obtained by allowing α-amylase to act on the phosphate-binding starch of (1) to (5).
(11) An oligosaccharide composition comprising a phosphate-linked oligosaccharide obtained by allowing α-amylase to act on the phosphate-bound starch of (1) to (5) and then causing at least one amylolytic enzyme to act.
(12) including the action of α-amylase on the phosphate-binding starch of (1) to (5) (8)
A method for producing an oligosaccharide composition according to (10).
[0014]
(13) The method for producing an oligosaccharide composition according to (11), comprising causing α-amylase to act on the phosphate-binding starch of (1) to (5) and then causing at least one amylolytic enzyme to act.
(14) The method according to (12) or (13), further comprising desalting the resulting oligosaccharide composition so that the ratio of bound phosphorus to total phosphorus is 80% or more.
(15) Foods, beverages, glues, admixtures, paints, pigments, fertilizers or the like comprising the phosphate-bonded starch of (1) to (5) and / or the oligosaccharide composition of (8) to (11) Composition for addition of
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
The present inventors have already decomposed potato starch with α-amylase at a temperature of 100 ° C. or higher, then decomposed oligosaccharides to which phosphate is not bound with saccharifying enzyme to generate POS, and then the basic anion. A method for producing a high-purity POS product by purifying a replacement resin, a loose RO membrane, activated carbon or the like has been developed and has been applied for a patent.
However, the bound phosphorus contained in the potato starch is only 0.05 to 0.1% (phosphorus weight W / W% with respect to the total solid weight, the same applies hereinafter), and the POS yield obtained from the potato starch is 1%. Degree. Therefore, a phosphate-bound starch having a high phosphorus content chemically bound to phosphate groups is advantageous for producing a large amount of POS.
[0016]
The phosphate-bound starch approved as a food additive is sodium starch phosphate ester, containing 0.2 to 3% by weight phosphorus as bound phosphorus, and the content of free or inorganic phosphorus is the total phosphorus. It is specified as 20% or less of (total phosphorus). In the present invention, an oligosaccharide composition containing POS having a Ca solubilization activity of 10 or more as a Ca solubilization coefficient by decomposing only with α-amylase regardless of the raw material and its production method and the oligosaccharide All phosphate-bound starches that produce the composition are of interest. The phosphate-binding starches that are the subject of the present invention are phosphate ester starches and urea phosphate starches.
[0017]
The starch used as the raw material for the phosphate-bound starch can be used not only from starches of plant origin such as corn starch, tapioca starch and potato starch, but also from any origin.
The method for synthesizing the phosphate-bound starch is not particularly limited, but for the synthesis of the phosphate-bound starch, usually phosphoric acid and / or a salt thereof and urea (in the case of urea phosphate ester starch synthesis) are mixed in the starch slurry. , Dehydrated, dried and roasted, sprayed phosphoric acid and / or its salt and urea (in the case of urea phosphate ester starch synthesis) solution on starch dehydrated cake, dried and roasted, and dried starch In this method, phosphoric acid and / or a salt thereof and a urea (in the case of urea phosphate ester starch synthesis) solution are mixed and dried and roasted.
[0018]
The slurry concentration of starch is usually 30 to 50% by weight, preferably 35 to 45% by weight, from the viewpoint of maintaining uniform fluidity.
Phosphoric acid and / or its salts include phosphoric acid and monosodium phosphate, disodium phosphate, trisodium phosphate, sodium tripolyphosphate, sodium pyrophosphate, sodium acid pyrophosphate, sodium hexametaphosphate, sodium acid hexametaphosphate Phosphates can be widely used, such as sodium phosphate salts such as potassium phosphate salts such as monopotassium phosphate and dipotassium phosphate, and ammonium phosphate salts such as monoammonium phosphate and diammonium phosphate.
[0019]
The addition amount of phosphoric acid and / or a salt thereof varies depending on the type, but is usually 0.5 to 240% by weight, preferably 5 to 40% by weight, based on the weight of the starch. In addition, the addition of urea in addition to phosphate is necessary for the synthesis of urea phosphate ester starch. The amount of urea added is usually 0.5 to 240% by weight, preferably 5 to 60% by weight, based on the weight of the starch.
In order to adjust pH, an acid and an alkali can be used. Acids such as hydrochloric acid, sulfuric acid, and sulfurous acid are used, and alkalis such as NaOH, KOH, and Ca (OH) 2 Etc. can be used.
[0020]
It is desirable to dry a mixture of starch and phosphoric acid and / or a salt thereof (including urea in the case of synthesis of urea phosphate starch) to remove moisture. The inventors have found that moisture after drying is important. That is, the lower the moisture after drying, the higher the phosphate-binding starch with higher Ca solubilization activity. In practice, the moisture after drying is preferably less than 10% by weight.
As the conditions for roasting, the higher the roasting temperature and the longer the roasting time, the bound phosphorus increases, but the color of the roasted product becomes reddish brown, and the Ca solubilizing activity is not always proportional to the increase in bound phosphorus. Absent. Accordingly, the baking conditions are usually 100 to 250 ° C., preferably 130 to 200 ° C., and the baking time is usually 5 minutes to 4 hours, preferably 10 to 120 minutes. It is preferable to do this.
[0021]
In addition to the synthesis method described above, the present inventors have studied various methods for synthesizing phosphate ester starch, and after mixing starch and phosphoric acid and / or a salt thereof, gelatinize and dry and then roast it. Developed a method. Examples of the gelatinization / drying method include, for example, a method in which phosphoric acid and / or a salt thereof are added to a starch slurry and dissolved, and then gelatinized and dried with a drum dryer, or phosphoric acid and / or a salt thereof is added to a starch dry powder. For example, there is a method of extruding with an addition of water as necessary and gelatinizing and drying.
[0022]
A mixture of gelatinized and dried starch with phosphoric acid and / or its salt is roasted, and starch that has not been gelatinized and dried by adding phosphoric acid and / or its salt and then roasted under the same conditions. In comparison, it was confirmed that the phosphate-bound starch obtained by gelatinization and drying and then roasting showed higher Ca solubilization activity in the α-amylase treatment.
The oligosaccharide composition containing POS exhibiting the Ca solubilizing activity of the present invention can be obtained by degrading the above-mentioned phosphate-bound starch with α-amylase to lower the molecular weight. Since the viscosity decreases due to the low molecular weight, the use for foods and the like is greatly expanded. Originally, the enzyme used for the decomposition can be any α-amylase that cuts starch randomly, and naturally two or more enzymes can be mixed and used.
[0023]
As α-amylase, heat-resistant liquefied α-amylase, mesophilic liquefied α-amylase, saccharified α-amylase, glycosyl transfer, which are frequently used for industrial starch degradation (hereinafter also referred to as “liquefaction”) An enzyme such as CGTase (Cyclomaltodextrin glucanotransferase) or TVA (Thermoactinomyces vulgaris α-amylase) can be used. However, as an enzyme adapted for industrial production, heat-resistant liquefied α-amylase is excellent in decomposing ability and starch dissolving power.
Conditions under which α-amylase is allowed to act on phosphate-bound starch vary greatly depending on the type of enzyme, but can be performed under conditions that are usually used. The enzyme to be used is preferably a heat-resistant liquefied α-amylase that works effectively at 80 to 110 ° C., and any enzyme can be used.
[0024]
Specifically, Termamyl 120L (manufactured by Novo Nordisk Bioindustry, derived from Bacillus licheniformis), Neospitase PG2 (manufactured by Nagase Seikagaku Corporation, derived from Bacillus subtilis), Christase T (Yamato) Commercially available enzymes such as Kasei, Bacillus subtilis origin) can be used.
The phosphate-binding starch as a substrate is made into a slurry having a concentration of 10 to 40% by weight, and calcium hydroxide and / or sodium hydroxide is added to adjust the pH to 6.0 to 6.3. Since thermostable α-amylase requires 50 ppm or more calcium ions as a stabilizer, calcium hydroxide is mainly used as an alkali for pH adjustment.
[0025]
The amount of enzyme added varies greatly depending on the enzyme used, but is usually 0.001 to 0.5% by weight, preferably 0.01 to 0.2% by weight (vs. starch). The pH of the reaction varies depending on the enzyme used, but is usually pH 4-7.
In the starch decomposition reaction (liquefaction reaction) in industrial production, in order to prevent recrystallization of starch, the reaction start temperature after addition of α-amylase is usually increased to 100 to 110 ° C. and treated under pressure for 2 to 15 minutes. After that, enzymatic decomposition is carried out at a high temperature of 90 to 100 ° C. for about 30 minutes to 5 hours.
[0026]
Unlike the decomposition reaction in industrial production, the decomposition of phosphate-bound starch by α-amylase does not necessarily require severe decomposition conditions such as 100 to 110 ° C. and pressure. Although depending on the amount of bound phosphorus, severe reaction conditions of 100 ° C. or higher are not necessarily required because bound phosphorus plays a role in preventing starch recrystallization. However, the high-temperature treatment of the decomposition reaction is preferable from the viewpoint of improving the filterability of the decomposition solution and facilitating the operation.
Specifically, phosphate-bound starch was collected so that the final concentration was 10 to 40% by weight, 2.8% by weight of calcium chloride was added to 1/100 of the total amount, and the pH was adjusted to 6 with 1N-NaOH solution. Adjust to .3. To this, 0.1% by weight of Termamyl 120L (based on phosphate-bound starch) is added and transferred to a pressure vessel. After heating at 105 ° C. for 5 minutes, the liquefaction reaction is continued at 95 ° C. for 1 hour.
[0027]
In the reaction with Termamyl 120L, it was revealed that the Ca solubilization activity value was almost the same in the range of the enzyme addition amount of 0.1% by weight, the reaction temperature of 90-100 ° C., and the reaction time of 10-70 minutes. . Furthermore, even if the reaction temperature of this reaction solution is lowered to 60 ° C. and the reaction is continued for 24 hours, the Ca solubilizing activity maintains 80 to 90% of the original activity, and the Termamyl 120L is 0.05 weight. It was clarified that when the addition reaction was carried out at 60 ° C. for 24 hours and the addition reaction was carried out at 60 ° C. for 24 hours, it decreased to around 70%.
[0028]
The oligosaccharide composition containing POS obtained by treating phosphate-bound starch only with α-amylase is a mixed solution having extremely high Ca solubilizing activity, and is concentrated as it is to obtain a product. However, the average degree of polymerization of the oligosaccharide composition obtained only by the α-amylase treatment of phosphate-bound starch is 8 to 50, and the degree of polymerization falls within the category of dextrin than the oligosaccharide. Since the molecular weight is considerably larger than that of ordinary oligosaccharides, if the product is concentrated as it is, the viscosity of the product becomes high and the use as a food may be restricted.
[0029]
To further reduce the viscosity of the product, one or more enzymes of various starch degrading enzymes and glycosyltransferases including α-amylase, and an enzyme obtained by adding α-glucosidase to one or more enzymes of these various enzymes An additional decomposition reaction (hereinafter also referred to as “saccharification reaction”) can be carried out by the group. Among them, amylolytic enzymes such as glucoamylase, β-amylase, and saccharified α-amylase are recommended as highly effective enzymes for reducing the degree of polymerization of the oligosaccharide composition.
In addition, liquefied α-amylase, CGTase (Cyclomaltodextrin glucanotransferase), pullulanase, isoamylase, TVA and the like can be mentioned as enzymes that exhibit an effect when combined with glucoamylase alone, although the effect of reducing the degree of polymerization alone is small.
[0030]
Since prior art prioritizes lowering the molecular weight of POS, glucoamylase is mainly used for additional degradation, and pullulanase and α-amylase, which are debranching enzymes, are simultaneously acted on. Also in the prior invention by the present inventors, after treatment with thermostable liquefied α-amylase, molecular weight reduction is being promoted using dextrozyme which is a mixed enzyme agent of glucoamylase and pullulanase.
When the oligosaccharide composition obtained by decomposing the synthesized phosphate-bound starch with liquefied α-amylase is further decomposed with various starch degrading enzymes, a commercially available enzyme agent for glucoamylase AMG (Novo Nordisk Bioindustry) Produced from Aspergillus niger), the Ca solubilizing activity of the oligosaccharide composition was reduced to about half before the additional decomposition.
[0031]
The Ca solubilization activity of the oligosaccharide composition treated with the reagent preparation glucoamylase (derived from Aspergillus niger and Rhizopus niveus) is about 80% of the activity of the oligosaccharide composition obtained only by the liquefied α-amylase treatment. Value.
In addition, the Ca solubilization activity of the oligosaccharide composition treated with BBA (manufactured by Genenkoa Co., Ltd., barley), which is a commercially available enzyme agent of β-amylase, and β-amylase derived from sweet potato is maintained at about 80% of the original activity. It had been. Furthermore, when α-amylase was allowed to act simultaneously on β-amylase to proceed with a low molecular weight reaction, the Ca solubilizing activity decreased to the original activity of about 50%.
[0032]
In addition, the average degree of polymerization of the oligosaccharide composition obtained by additional decomposition with β-amylase was 4 to 8, and a tendency to be greater than the average degree of polymerization of 1 to 4 of those obtained by glucoamylase treatment was observed.
The additional decomposition reaction with starch-degrading enzyme is performed under the optimal reaction conditions for each enzyme by adding one or more enzymes to the oligosaccharide composition obtained by the liquefied α-amylase treatment. The reaction conditions vary greatly depending on the type of enzyme, but usually the reaction temperature is 40 to 70 ° C., the pH is 4 to 7, the decomposition (saccharification) time is 0.5 to 96 hours, and the amount of enzyme added is solid of the oligosaccharide composition. 0.0001 to 1% by weight with respect to minutes. The enzyme used for the additional decomposition reaction can be used simultaneously with the liquefied α-amylase treatment used in the initial decomposition.
[0033]
Enzymatic degradation products of phosphate-bound starch contain insoluble substances such as added enzymes and aggregated proteins produced by degradation reactions and undegraded starch, and also contain salts and inorganic phosphorus used for neutralization as impurities. . Insoluble substances are removed by filtration or membrane treatment, but desalting treatment such as ion exchange resin treatment, nanofiltration (NF) membrane treatment, ion exchange membrane treatment, etc. is required to remove salts and inorganic phosphorus.
By desalting the oligosaccharide composition containing POS obtained by enzymatic decomposition of phosphate-bound starch, the ratio of inorganic phosphorus to total phosphorus can be reduced to 20% or less. Thereby, the oligosaccharide composition containing POS having bound phosphorus and inorganic phosphorus content equivalent to the phosphate-bound starch defined as a food additive can be obtained.
[0034]
Hereinafter, the definition and measurement method of the Ca solubilization coefficient in the present invention will be shown.
(1) Preparation of sample solution for measuring Ca solubilization activity
17.5 g of an oligosaccharide composition solution (POS solution, unpurified) containing POS obtained by treating phosphate-bound starch with an enzyme such as α-amylase (2% by weight, adjusted to pH 2) in a test tube Collect and add water to 30 g. Adjust to pH 7.2-7.3 with 5 wt% NaOH solution. Further, after fine-tuning to pH 7.36-7.37 with 1 wt% NaOH solution, water is added to make the total amount 35.0 g. At this time, it is confirmed that the pH is 7.40 ± 0.02, and if the pH is out, the pH adjustment is performed again.
[0035]
The obtained 1 wt% POS solution is used as a Ca solubilization activity measurement sample solution.
(2) Calcium phosphate precipitation inhibition reaction
The measurement sample solution obtained in (1) is diluted with water as necessary to carry out a calcium phosphate precipitate formation inhibition reaction. 1.5 ml of 15 mM phosphate buffer solution (pH 7.4) that has been kept in a constant temperature bath at 30 ° C. is collected in a test tube, and 0.3 ml of an appropriately diluted measurement sample solution is added and mixed. Next, 12.5 mM CaCl made constant in a 30 ° C. constant temperature bath. 2 Is added and mixed, put in a thermostatic bath at 30 ° C. and held for 1 hour. After 1 hour, the measurement sample is centrifuged at 15000 rpm for 1 minute, and the Ca concentration of the supernatant is measured.
The Ca concentration was measured with a Ca measurement kit (manufactured by Wako Pure Chemical Industries). As a control, the Ca concentration of water added in place of the diluted measurement sample solution is measured, and the supernatant Ca concentration of calcium phosphate alone is calculated and used as the control 1 solution. The Ca concentration of the diluted measurement sample solution and phosphate buffer added with water is measured, and the total Ca concentration is calculated to obtain the control 2 solution.
[0036]
(3) Calculation of Ca solubilization coefficient
First, the Ca solubilization rate of each diluted sample solution is obtained by the following equation.
[0037]
[Expression 1]
Figure 0004200537
[0038]
The sample concentration in the measurement solution is taken on the horizontal axis, the Ca solubilization rate is taken on the vertical axis, a graph is prepared, and the sample concentration at which the Ca solubilization rate is 50% is obtained. The reciprocal of this sample concentration (%) value is taken as the Ca solubilization coefficient.
For example, when the concentration of the sample at the time of measuring the Ca solubilization activity is 0.1% and the Ca solubilization rate is 50%, the Ca solubilization coefficient is 10. The Ca solubilization rate is the sample concentration for calculating the Ca solubilization coefficient at the intersection of the two sample concentration lines measured in the range of 50 ± 30% across 50% and the Ca solubilization rate of 50%, and the coefficient value is Round to the first decimal place to make an integer.
[0039]
Table 1 shows the bound phosphorus content and Ca solubilization coefficient of various phosphate-bound starches.
In order to obtain a phosphate ester starch exhibiting high Ca solubilization activity by the decomposition treatment with α-amylase, corn starch and potato starch are used as raw materials, and the reaction conditions are changed so that the bound phosphorus content is higher than the bound phosphorus content of potato starch. Phosphate ester starch was synthesized so as to be 5 to 4% by weight.
As apparent from Table 1, the Ca solubilization coefficient of the oligosaccharide composition containing POS obtained by enzymatic treatment of phosphate-bound starch having a bound phosphorus content of 1% by weight or more is 10 or more.
[0040]
[Table 1]
Figure 0004200537
[0041]
Whether the raw material starch is corn starch or potato starch, the Ca solubilization activity of the solution containing POS produced by decomposing phosphate starch with less than 1% by weight of bound phosphoric acid with α-amylase is the Ca solubilization factor. Is less than 10, and is lower than the Ca solubilization factor 19 of CPP II manufactured by Meiji Seika.
In order to obtain a POS product from a POS solution obtained from α-amylase treatment using phosphate ester starch with a low amount of bound phosphorus, neutral sugars such as glucose and oligosaccharides that do not have bound phosphate other than the generated POS are used. If the purification operation is not performed, a POS product having a high Ca solubilizing activity such as CPP II manufactured by Meiji Seika cannot be obtained.
[0042]
On the other hand, the oligosaccharide composition obtained by the α-amylase treatment of phosphate ester starch containing 1% by weight or more of bound phosphorus has a high Ca solubilization coefficient of 10 to 50 without any purification and purification operation. It is clear that it is obtained.
That is, an oligosaccharide composition having high Ca solubilizing activity equivalent to or higher than that of CPP II was obtained only by enzyme treatment with α-amylase, and an extremely simple POS production method was developed.
Table 2 shows the Ca solubilization coefficients of various substances that have a Ca solubilizing action using the Ca solubilizing activity measurement method set in the present invention.
[0043]
[Table 2]
Figure 0004200537
[0044]
Sodium alginate and pectin having a high Ca solubilizing activity are polysaccharides, are viscous substances, and have limited use as foods. Mono- and disaccharide monophosphates and diphosphates have a Ca solubilization activity comparable to that of CPP II, but are expensive.
On the other hand, phosphate starch is recognized as a food additive and can be added to food as it is. Moreover, since it is easily reduced in molecular weight by α-amylase and converted into an oligosaccharide composition containing POS, α-amylase is present in the processing step even if phosphate starch is used as it is in food. Then, POS having high Ca solubilizing activity is generated.
[0045]
Further, even when α-amylase is not present in food, POS having high Ca solubilizing activity can be generated from phosphate starch by the action of α-amylase in saliva during chewing as a food. Next, even when chewing alone is insufficient to reduce the molecular weight of phosphate ester starch, POS having high Ca solubilizing activity is produced in the small intestine by the action of α-amylase in the pancreatic juice. That is, even when phosphate ester starch is added to a food in the form of a polymer, it is expected that POS is generated in the body and exhibits high Ca solubilizing activity.
[0046]
Furthermore, if phosphate ester starch is reduced in molecular weight by heat-resistant liquefied α-amylase, POS with low viscosity and high Ca solubilizing activity can be produced in large quantities at low cost, and the use for food can be greatly expanded. Become. The phosphate-binding starch having high activity of the present invention can be mixed as a component of food, beverage, paste, admixture, paint, pigment, fertilizer and the like. Similarly, phosphate-bonded starch can be used as a composition for addition to foods, beverages, pastes, admixtures, paints, pigments, and fertilizers.
Furthermore, the oligosaccharide composition containing POS obtained from the phosphate-binding starch having high activity of the present invention can be mixed as a component of food, beverage, paste, admixture, paint, pigment, fertilizer and the like. Similarly, an oligosaccharide composition containing POS can be used as a composition for addition to foods, beverages, pastes, admixtures, paints, pigments, and fertilizers.
[0047]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, the technical scope of this invention is not limited by the following Example. In the examples, measurement of the bound phosphorus content, measurement of the Ca solubilization coefficient, and measurement of the average degree of polymerization of the oligosaccharide composition were carried out by the following methods, respectively.
[0048]
[Measurement of bound phosphorus content]
The phosphorus content was measured according to the method described in the starch and related carbohydrate experiment method (Academic Publishing Center, Michinori Nakamura et al.). In order to measure the phosphorus content of phosphate-bound starch, 0.1% by weight of Termamyl 120L (heat-resistant liquefied α-amylase) was added to the sample, and the mixture was thermally decomposed at 95 ° C. for 15 minutes to prepare a uniform solution. In order to make all the phosphoric acid orthophosphoric acid, hydrochloric acid was added to adjust the pH to 2, and then inorganic phosphorus was measured by the Fiske-Subbarow method. In this series of enzymatic degradation reactions, it was confirmed that bound phosphorus was not liberated as inorganic phosphorus, and the content of bound phosphorus in both the original phosphate-bound starch and the oligosaccharide composition produced by decomposition was unchanged. Moreover, the thing in which turbidity was recognized at the time of color development was centrifuged (3000 rpm, 3 minutes), and the light absorbency of the supernatant was measured.
The total phosphorus content was measured similarly by wet ashing a sample adjusted to pH 2 when measuring inorganic phosphorus. The bound phosphorus content (wt%, sample solid content) was calculated as (total phosphorus content-inorganic phosphorus content).
[0049]
[Measurement of Ca Solubilization Coefficient]
As described above, a Ca solubilization activity measurement sample solution was prepared, a calcium phosphate precipitation formation inhibition reaction was performed, a Ca solubilization rate was obtained from the formula (I), and a Ca solubilization coefficient was calculated.
[0050]
[Measurement of average degree of polymerization of oligosaccharide composition]
The sugar content was measured according to the method described in the starch and related sugar experiment method (Academic Press Center, Michinori Nakamura et al.), And the average degree of polymerization of the oligosaccharide composition was determined from total sugar / reducing sugar. Similar to the measurement of phosphorus content, the sample solution adjusted to pH 2 was appropriately diluted, and the total sugar was measured by the phenol-sulfuric acid method (Dubois et al., 1956), and the reducing sugar was measured by the Somogyi-Nelson method (Nelson, 1944). . The measured value was expressed as glucose-converted weight% (vs. sample solid content), and the average degree of polymerization was calculated as total sugar / reducing sugar.
[0051]
Example 1
Add 10 kg of corn starch slurry (starch weight concentration 40%) 2.2 kg anhydrous monosodium phosphate and 2.0 kg anhydrous disodium phosphate (pH 6.0), and filter with filter paper to recover the starch cake. did. The total phosphorus of this starch cake was 3.8% by weight. This was dried with a shelf dryer until the water content became 13% by weight, and then baked in an oven set at a constant temperature for 1 to 3 hours.
Subsequently, in order to decompose the obtained phosphate ester starch with α-amylase to obtain an oligosaccharide composition, 3 to 4 g of the synthesized phosphate ester starch was collected and dried at 105 ° C. for 4 hours. After standing to cool, 2 g of the dried sample was precisely weighed and placed in a 100 ml pressure-resistant glass container, and 70 g of water was added and stirred until uniform. 1 ml of a 2.8% by weight calcium chloride solution was added thereto, and the pH was adjusted to 6.3 with a 1N NaOH solution. As α-amylase, 20 mg of a solution obtained by diluting Termamyl 120L with water 10 times was added, and the pressure-resistant glass container was placed in boiling water heated with gas, and heated for 15 minutes with occasional stirring. After completion of heating, the mixture was allowed to cool, 1N hydrochloric acid solution was added to adjust the pH to 2, and water was added to make the total amount 100 g (concentration 2% by weight).
The oligosaccharide composition containing the obtained POS was measured for bound phosphorus content and Ca solubilization coefficient. The results are shown in Table 3.
[0052]
[Table 3]
Figure 0004200537
[0053]
A phosphate-bound starch having a high Ca solubilizing activity with a Ca solubilization factor of 18 or more was obtained.
[0054]
Example 2
10 kg of corn starch-containing slurry (starch weight concentration 40%) is added with anhydrous monosodium phosphate and anhydrous disodium phosphate as appropriate to dissolve to pH 4.0 and 2.5, and filtered through filter paper to obtain a starch cake. It was collected. The total phosphorus of these starch cakes was 3.8% by weight. Next, after drying with a shelf dryer until the water content became 13% by weight, it was roasted in an oven set at a constant temperature for 1 hour.
In the same manner as in Example 1, an oligosaccharide composition was prepared from the synthesized phosphate ester starch, and bound phosphorus and Ca solubilization coefficient was measured.
[0055]
[Table 4]
Figure 0004200537
[0056]
A phosphate-bound starch having a high Ca solubilization activity with a Ca solubilization factor of 20 or more was obtained.
[0057]
Example 3
The starch cake was recovered by changing the addition amount of anhydrous monosodium phosphate and anhydrous disodium phosphate (pH 6.0) to 10 kg of a slurry containing corn starch (starch weight concentration 40%), and filtering with filter paper. The total phosphorus of these starch cakes was 3.8, 5.9, and 6.3 wt%. Next, after drying with a shelf dryer until the water content became 13% by weight, it was roasted in an oven set at a constant temperature for 1 hour.
In the same manner as in Example 1, an oligosaccharide composition was prepared from the synthesized phosphate ester starch, and total phosphorus, bound phosphorus and Ca solubilization coefficient were measured.
[0058]
[Table 5]
Figure 0004200537
[0059]
A phosphate-bound starch having a high Ca solubilization activity with a Ca solubilization factor of 24 or more was obtained.
[0060]
Example 4
Add 12.3 kg of potato starch (dry weight 10.0 kg) to the mixer and add 7.7 kg (pH 6.0) of 1.7 kg of anhydrous monosodium phosphate and 1.2 kg of anhydrous disodium phosphate. They were mixed and dried with a shelf dryer until the water content was 15% by weight. This was roasted for 1 hour in an oven set at a constant temperature.
In the same manner as in Example 1, an oligosaccharide composition was prepared from the synthesized phosphate ester starch, and total phosphorus, bound phosphorus and Ca solubilization coefficient were measured.
[0061]
[Table 6]
Figure 0004200537
[0062]
A phosphate-bound starch having a high Ca solubilization activity with a Ca solubilization factor of 28 or more was obtained.
[0063]
Example 5
(1) Corn starch (dry powder, water 13% by weight) was introduced into the mixer at a flow rate of 10 kg / Hr, and at the same time, a mixture of phosphoric acid and urea (phosphoric acid 5% by weight, urea 18% by weight) was 4.35 kg / Added and mixed at a flow rate of Hr. After mixing, the mixture was dried with a flash dryer until the water content reached 10% by weight. This was roasted in an oven set at 130 ° C. for 30 minutes.
[0064]
(2) Corn starch (dry powder, water 13% by weight) was introduced into the mixer at a flow rate of 10 kg / Hr, and at the same time, a mixture of phosphoric acid and urea (phosphoric acid 10% by weight, urea 16% by weight) was 4.35 kg / Added and mixed at a flow rate of Hr. After mixing, the mixture was dried with a flash dryer until the water content became 10 wt%. This was roasted in an oven set at 130 ° C. for 60 minutes.
In the same manner as in Example 1, an oligosaccharide composition was prepared from the synthesized urea phosphate ester starch, and total phosphorus, bound phosphorus and Ca solubilization coefficient were measured.
[0065]
[Table 7]
Figure 0004200537
[0066]
A phosphate-bound starch having a high Ca solubilization activity with a Ca solubilization coefficient of 15 to 25 was obtained.
[0067]
Example 6
1.3 kg of anhydrous monosodium phosphate and 1.1 kg of anhydrous disodium phosphate were added to 10 kg of corn starch (dry powder, water 13% by weight) and mixed with a mixer. This was dried to a moisture content of 5% by weight and then baked in an oven set at a constant temperature for 1 hour.
In the same manner as in Example 1, an oligosaccharide composition was prepared from the synthesized phosphate starch, and total phosphorus, bound phosphorus, Ca solubilization coefficient and average degree of polymerization were measured.
[0068]
[Table 8]
Figure 0004200537
[0069]
A phosphate-bonded starch having a high Ca solubilization activity with a Ca solubilization coefficient of 23 to 33 was obtained, and the average degree of polymerization of the oligosaccharide composition was 17 to 21.
[0070]
Example 7
Corn starch (dry powder, water 13% by weight) 10 kg was put into a mixer, and a solution of 0.96 kg of anhydrous monosodium phosphate and 0.86 kg of anhydrous disodium phosphate in water was gradually added and mixed. This was dried to a moisture content of 13% by weight and then baked in an oven set at a constant temperature for 1 hour.
In the same manner as in Example 1, an oligosaccharide composition was prepared from the synthesized phosphate starch, and total phosphorus, bound phosphorus, Ca solubilization coefficient and average degree of polymerization were measured.
[0071]
[Table 9]
Figure 0004200537
[0072]
A phosphate-bonded starch having a high Ca solubilization activity with a Ca solubilization factor of 27 to 28 was obtained, and the average degree of polymerization of the oligosaccharide composition was 10 to 18.
[0073]
Example 8
10 kg of corn starch (dry powder, water 13% by weight) was put into a mixer to add water to make a slurry, and 0.88 kg of anhydrous monosodium phosphate and 0.79 kg of anhydrous disodium phosphate were added and dissolved and mixed. This was gelatinized by a drum dryer and dried to a moisture content of 13% by weight. Subsequently, it was baked for 1 hour in an oven set at a constant temperature.
In the same manner as in Example 1, an oligosaccharide composition was prepared from the synthesized phosphate starch, and total phosphorus, bound phosphorus, Ca solubilization coefficient and average degree of polymerization were measured.
[0074]
[Table 10]
Figure 0004200537
[0075]
A phosphate-bonded starch having a high Ca solubilization activity with a Ca solubilization coefficient of 27 to 40 was obtained, and the average degree of polymerization of the oligosaccharide composition was 11 to 23.
[0076]
Example 9
10 kg of corn starch (dry powder, water 13% by weight) was placed in a mixer to add water to form a slurry, and 1.0 kg of anhydrous monosodium phosphate and 0.93 kg of anhydrous disodium phosphate were added and dissolved and mixed. This was gelatinized by a drum dryer and dried until the water content became 5% by weight. Subsequently, it was baked for 1 hour in an oven set at a constant temperature.
In the same manner as in Example 1, an oligosaccharide composition was prepared from the synthesized phosphate ester starch, and total phosphorus, bound phosphorus, Ca solubilization coefficient and average degree of polymerization were measured.
[0077]
[Table 11]
Figure 0004200537
[0078]
A phosphate-bonded starch having a high Ca solubilization activity with a Ca solubilization coefficient of 42 to 61 was obtained, and the average degree of polymerization of the oligosaccharide composition was 22 to 31.
[0079]
Example 10
10 kg of corn starch (dry powder, 13% by weight of water), 0.92 kg of anhydrous monosodium phosphate and 0.82 kg of anhydrous disodium phosphate were mixed and put into an extruder, and water was added and kneaded and mixed. The discharged kneaded product was cut and dried with a blow dryer to a moisture content of 13% by weight. This was pulverized and roasted in an oven set at a constant temperature for 1 hour.
In the same manner as in Example 1, an oligosaccharide composition was prepared from the synthesized phosphate ester starch, and total phosphorus, bound phosphorus, Ca solubilization coefficient and average degree of polymerization were measured.
[0080]
[Table 12]
Figure 0004200537
[0081]
A phosphate-bonded starch having a high Ca solubilization activity with a Ca solubilization factor of 36 to 39 was obtained, and the average degree of polymerization of the oligosaccharide composition was 24 to 31.
[0082]
Example 11
10 kg of corn starch (dry powder, water 13% by weight) was put into a mixer to add water to make a slurry, and anhydrous monosodium phosphate and anhydrous disodium phosphate were appropriately added and dissolved (pH 6.0, 5.3) and mixed. This was gelatinized by a drum dryer and dried to a moisture content of 13% by weight. Subsequently, it was baked for 1 hour in an oven set at a constant temperature.
In the same manner as in Example 1, an oligosaccharide composition was prepared from the synthesized phosphate ester starch, and total phosphorus, bound phosphorus and Ca solubilization coefficient were measured.
[0083]
[Table 13]
Figure 0004200537
[0084]
A phosphate-bound starch having a high Ca solubilization activity with a Ca solubilization coefficient of 30 to 52 was obtained.
[0085]
Example 12
10 kg of corn starch (dry powder, water 13% by weight) was put into a mixer to add water to form a slurry, and anhydrous monosodium phosphate and anhydrous disodium phosphate were appropriately added and dissolved (pH 6.0) and mixed. This was gelatinized with a drum dryer, dried to a moisture content of 13% by weight, and baked in an oven set at 170 ° C. for 1 hour to obtain phosphate ester starch. Add 0.12 g of Termamyl 120L to 120 g of synthesized phosphate ester starch, and add 10% Ca (OH) 2 An aqueous solution was added to adjust the pH to 6.3. This was heated under pressure at 105 ° C. for 5 minutes and then liquefied at 95 ° C. for 1 hour. Various starch-degrading enzymes were added to 50 g of the liquefied liquid and 0.1% of starch was added, and saccharification was performed at 60 ° C. (TVA II only, 50 ° C.) for 24 hours. The average degree of polymerization was measured.
[0086]
The starch-degrading enzymes used were (1) barley β-amylase (Bene from Genencor, derived from barley), (2) sweet potato β-amylase (from Sigma reagent β-amylase, derived from sweet potato), and (3) barley β-amylase. Combination of 0.1% starch and pullulanase (Amano pullulanase “Amano”, Klebsiella pneumoniae derived) vs. starch 0.05%, ▲ 4 ▼ glucoamylase (AMG, Aspergillus niger derived glucoamylase from Novo Nordisk Bioindustry) (5) Glucoamylase (Sigma reagent glucoamylase, derived from Aspergillus niger), (6) Glucoamylase (Sigma reagent, glucoamylase, derived from Rhizopus niveus), (7) TVA II (Japanese Laid-Open Patent Publication No. 7-25891, Thermoactinomyces vulgaris) R-47-derived α-amylase) and (8) Fangamil (Novo Nordisk Bio-Industry Gamiru, Aspergillus
oryzae-derived saccharified α-amylase).
[0087]
[Table 14]
Figure 0004200537
[0088]
By the starch degrading enzyme treatment, an oligosaccharide composition having an average degree of polymerization (including monosaccharides and oligosaccharides to which phosphate groups are not bonded) of 1 to 18 is obtained, and the Ca solubilizing activity is Ca acceptable. The solubilization coefficient was 21 to 45.
[0089]
Example 13
To 120 g of the phosphate ester starch of Example 12 (gelatinized with a drum dryer and synthesized by baking at 170 ° C. for 1 hour), water and Termamyl 120 L 0.12 g were added to a final concentration of 20% by weight, and further 10% Ca (OH) 2 An aqueous solution was added to adjust the pH to 6.3. This was heated under pressure at 105 ° C. for 5 minutes and then liquefied at 95 ° C. for 1 hour. Next, oxalic acid was added to the liquefied solution to adjust the pH to 5.5, 0.12 g of BBA was added, and saccharification was performed at 60 ° C. for 24 hours to obtain an oligosaccharide composition solution. Hydrochloric acid was added to adjust the pH to 2.5, and insoluble materials were removed with filter paper, and then desalted by NF membrane treatment (NTR-7410, manufactured by Nitto Denko). Further, activated carbon was added and allowed to stand at 60 ° C. for 2 hours, and then the activated carbon was removed with a filter paper to obtain a clarified liquid, followed by concentration with an evaporator. The obtained purified oligosaccharide composition solution has a solid content of 90 g, a Ca solubilization activity of 46 as a Ca solubilization coefficient, a bound phosphorus of 2.7 wt%, an inorganic phosphorus ratio of 18%, and an average degree of polymerization of 12. there were.
[0090]
Example 14
To 120 g of the phosphate ester starch of Example 12 (gelatinized with a drum dryer and synthesized by baking at 170 ° C. for 1 hour), water and Termamyl 120 L 0.12 g were added to a final concentration of 20% by weight, and further 10% Ca (OH) 2 An aqueous solution was added to adjust the pH to 6.3. This was heated under pressure at 105 ° C. for 5 minutes and then liquefied at 95 ° C. for 1 hour. Next, oxalic acid was added to the liquefied solution to adjust the pH to 4.5, 0.12 g of AMG was added, and saccharification treatment was performed at 60 ° C. for 24 hours to obtain an oligosaccharide composition solution. Hydrochloric acid was added to adjust the pH to 2.5, and insoluble materials were removed with filter paper, and then desalted by NF membrane treatment (NTR-7410, manufactured by Nitto Denko). Further, activated carbon was added and allowed to stand at 60 ° C. for 2 hours, and then the activated carbon was removed with a filter paper to obtain a clarified liquid, followed by concentration with an evaporator. The resulting purified oligosaccharide composition solution has a solid content of 56 g, a Ca solubilization activity of 41 as a Ca solubilization coefficient, a bound phosphorus of 3.6 wt%, an inorganic phosphorus ratio of 20%, and an average degree of polymerization of 2. 6.
[0091]
【The invention's effect】
The present invention provides an industrial method for producing a carbohydrate having a calcium solubilizing action that promotes absorption of calcium, which is regarded as a problem among Japanese nutrients. The manufacturing method of the prior invention by the present inventors has the advantage that POS with extremely high purity is industrially inexpensive and mass-produced, but the yield of POS obtained from potato starch is about 1%. There is only.
According to the method of the present invention, a commercially available calcium-absorbing starch can be obtained by only enzymatically decomposing a phosphate-bound starch obtained by phosphate- or starch-converting starch with α-amylase without any purification operation. An oligosaccharide composition having a Ca solubilizing activity equivalent to or greater than that of the accelerator can be obtained.

Claims (11)

澱粉にリン酸及び/またはその塩を混合し糊化してからその水分を10重量%未満となるまで乾燥し、焙焼して得られる、全固形分重量に対して結合リンを1重量%以上含むリン酸結合澱粉であって、該澱粉にα−アミラーゼのみを作用させて得られるオリゴ糖組成物のCa可溶化活性がCa可溶化係数として10以上である、リン酸結合澱粉。 After starch and phosphoric acid and / or salt thereof are mixed and gelatinized, the water content is dried to less than 10% by weight and roasted to obtain 1% by weight or more of bound phosphorus based on the total solid weight. A phosphate-bonded starch comprising: an oligosaccharide composition obtained by allowing only α-amylase to act on the starch, wherein the Ca-solubilizing activity is 10 or more as a Ca-solubilization coefficient. リン酸結合澱粉がリン酸エステル澱粉または尿素リン酸エステル澱粉である請求項1記載のリン酸結合澱粉。The phosphate-bound starch according to claim 1 , wherein the phosphate-bound starch is a phosphate ester starch or a urea phosphate starch. 澱粉にリン酸及び/またはその塩を混合し糊化してからその水分を10重量%未満となるまで乾燥し、焙焼することを含む請求項1に記載のリン酸結合澱粉の製造方法。The method for producing phosphate-bonded starch according to claim 1, comprising: mixing phosphoric acid and / or a salt thereof with starch and then drying and roasting the water until the water content is less than 10% by weight . 請求項1または2に記載のリン酸結合澱粉にα−アミラーゼを作用させて得られるリン酸結合オリゴ糖を含み、Ca可溶化活性がCa可溶化係数として10以上である、カルシウムの吸収を促進するためのオリゴ糖組成物。 The phosphate-binding starch according to claim 1 or 2, which contains a phosphate- binding oligosaccharide obtained by allowing α-amylase to act, has a Ca solubilization activity of 10 or more as a Ca solubilization coefficient, and promotes calcium absorption. An oligosaccharide composition. リン酸結合澱粉に澱粉分解酵素としてα−アミラーゼのみを作用させる、請求項4に記載のオリゴ糖組成物。The oligosaccharide composition according to claim 4, wherein only α-amylase is allowed to act on the phosphate-bound starch as a amylolytic enzyme. 平均重合度が8〜50である請求項4または5に記載のオリゴ糖組成物。The oligosaccharide composition according to claim 4 or 5, wherein the average degree of polymerization is 8 to 50. 請求項1または2に記載のリン酸結合澱粉にα−アミラーゼを作用させることを含む請求項4〜6のいずれか1項に記載のオリゴ糖組成物の製造方法。The manufacturing method of the oligosaccharide composition of any one of Claims 4-6 including making (alpha) -amylase act on the phosphate coupling | bonding starch of Claim 1 or 2 . リン酸結合澱粉に澱粉分解酵素としてα−アミラーゼのみを作用させる、請求項7に記載の方法。The method according to claim 7, wherein only α-amylase is allowed to act on the phosphate-bound starch as a amylolytic enzyme. 得られたオリゴ糖組成物を脱塩して全リンに対する結合リンの割合を80%以上とすることをさらに含む請求項7または8に記載の方法。The method according to claim 7 or 8, further comprising desalting the obtained oligosaccharide composition so that the ratio of bound phosphorus to total phosphorus is 80% or more. 請求項1または2に記載のリン酸結合澱粉、及び/または請求項4〜6のいずれか1項に記載のオリゴ糖組成物を含む食品。Phosphate bound starch according to claim 1 or 2 foods comprising an oligosaccharide composition according, and / or any one of claims 4-6. 請求項1または2に記載のリン酸結合澱粉、及び/または請求項4〜6のいずれか1項に記載のオリゴ糖組成物を含む飲料。A beverage comprising the phosphate-bound starch according to claim 1 or 2 and / or the oligosaccharide composition according to any one of claims 4 to 6.
JP05498898A 1998-03-06 1998-03-06 Phosphate-bound starch having high Ca solubilizing activity, oligosaccharide composition thereof, and production method thereof Expired - Lifetime JP4200537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05498898A JP4200537B2 (en) 1998-03-06 1998-03-06 Phosphate-bound starch having high Ca solubilizing activity, oligosaccharide composition thereof, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05498898A JP4200537B2 (en) 1998-03-06 1998-03-06 Phosphate-bound starch having high Ca solubilizing activity, oligosaccharide composition thereof, and production method thereof

Publications (2)

Publication Number Publication Date
JPH11255803A JPH11255803A (en) 1999-09-21
JP4200537B2 true JP4200537B2 (en) 2008-12-24

Family

ID=12986043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05498898A Expired - Lifetime JP4200537B2 (en) 1998-03-06 1998-03-06 Phosphate-bound starch having high Ca solubilizing activity, oligosaccharide composition thereof, and production method thereof

Country Status (1)

Country Link
JP (1) JP4200537B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5100923B2 (en) * 2000-02-16 2012-12-19 雪印メグミルク株式会社 Calcium-phosphorylated starch complex and method for producing the same
JP4755333B2 (en) * 2000-11-06 2011-08-24 王子コーンスターチ株式会社 Polyvalent metal salt composition of phosphate oligosaccharide and dextrin phosphate and process for producing them
JP4729332B2 (en) * 2004-04-21 2011-07-20 王子コーンスターチ株式会社 Deashing inhibiting composition and food and drink containing the same
JP2006249316A (en) * 2005-03-11 2006-09-21 Oji Paper Co Ltd Producing method of starch phosphate
JP2007020567A (en) * 2005-06-16 2007-02-01 Oji Paper Co Ltd Phosphorylated saccharide composition and method for producing the same
JP5349744B2 (en) * 2005-12-19 2013-11-20 松谷化学工業株式会社 Mineral absorption promoter, food and feed
JP2007204456A (en) * 2006-02-06 2007-08-16 Oji Paper Co Ltd Animal growth-accelerating agent containing phosphorylated starch
JP2007217316A (en) * 2006-02-15 2007-08-30 Oji Paper Co Ltd Immunopotentiator containing phosphorylated saccharide obtained by enzymatically decomposing phosphorylated starch to have low molecular weight
JP2009007263A (en) * 2007-06-27 2009-01-15 Oji Paper Co Ltd Composition for suppressing bone density reduction
JP5371415B2 (en) * 2008-12-24 2013-12-18 王子コーンスターチ株式会社 Bone density reduction inhibiting composition
CN103554279B (en) * 2013-10-24 2016-07-27 李国桐 The composite modified starch of alternative gelatin and application

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5251481A (en) * 1975-10-23 1977-04-25 Nippon Shokuhin Kako Kk Process for preparing the nitrogen-cntaining phosphorylated starch
US4216310A (en) * 1979-04-19 1980-08-05 National Starch And Chemical Corporation Continuous process for phosphorylating starch
JPS56112901A (en) * 1980-02-13 1981-09-05 Kyoritsu Yuki Kogyo Kenkyusho:Kk Production of starch phosphate
JP3240102B2 (en) * 1994-08-11 2001-12-17 江崎グリコ株式会社 Phosphorylated sugar and method for producing the same

Also Published As

Publication number Publication date
JPH11255803A (en) 1999-09-21

Similar Documents

Publication Publication Date Title
Guzmán‐Maldonado et al. Amylolytic enzymes and products derived from starch: a review
EP0688872B1 (en) Process for preparing starchy products
JP4893980B2 (en) Branched starch, production method and use thereof
US5620873A (en) Process for preparing dextrin containing food fiber
AU665595B2 (en) Process for preparing optionally hydrogenated indigestible polysaccharides
JP4200537B2 (en) Phosphate-bound starch having high Ca solubilizing activity, oligosaccharide composition thereof, and production method thereof
JP5828589B2 (en) Industrial production method of branched glucan having cyclic structure
CA2679721A1 (en) Production of resistant starch product
CA2236558C (en) Method for the production of isomalto-oligosaccharide rich syrups
US4447532A (en) Process for the manufacture of low D.E. maltodextrins
US20080118957A1 (en) Process For The Production Of Maltodextrins And Maltodextrins
JP4753588B2 (en) Method for producing starch degradation product and white dextrin
JP2729406B2 (en) Method for producing indigestible heteropolysaccharide
US2865762A (en) Pudding mix
CN106459943A (en) Method for manufacturing a stable aqueous solution of [beta]-amylase, aqueous solution obtained and uses thereof
JP4403140B2 (en) Remineralization accelerator
JPH02100695A (en) Production of indigestible dextrin
JP2007020567A (en) Phosphorylated saccharide composition and method for producing the same
US3654081A (en) Starch liquefaction process
CN110604287A (en) A food containing starch gel
US3692580A (en) Process for the production of starch syrups
CN110343729A (en) A kind of preparation method of low DE value glucose syrup
JP2007070403A (en) Ph adjusting agent containing phosphorylated saccharide or its salt
JPS626780B2 (en)
RU2004125119A (en) METHOD FOR PRODUCING SUGARY PRODUCTS FROM STARCH-CONTAINING RAW MATERIALS

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040615

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040514

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080929

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term