JP4755333B2 - Polyvalent metal salt composition of phosphate oligosaccharide and dextrin phosphate and process for producing them - Google Patents

Polyvalent metal salt composition of phosphate oligosaccharide and dextrin phosphate and process for producing them Download PDF

Info

Publication number
JP4755333B2
JP4755333B2 JP2000338136A JP2000338136A JP4755333B2 JP 4755333 B2 JP4755333 B2 JP 4755333B2 JP 2000338136 A JP2000338136 A JP 2000338136A JP 2000338136 A JP2000338136 A JP 2000338136A JP 4755333 B2 JP4755333 B2 JP 4755333B2
Authority
JP
Japan
Prior art keywords
pos
phosphate
solution
polyvalent metal
pdn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000338136A
Other languages
Japanese (ja)
Other versions
JP2002145893A (en
Inventor
禮一郎 阪本
敏幸 木村
伸夫 魚津
Original Assignee
王子コーンスターチ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王子コーンスターチ株式会社 filed Critical 王子コーンスターチ株式会社
Priority to JP2000338136A priority Critical patent/JP4755333B2/en
Publication of JP2002145893A publication Critical patent/JP2002145893A/en
Application granted granted Critical
Publication of JP4755333B2 publication Critical patent/JP4755333B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cosmetics (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Detergent Compositions (AREA)
  • Fertilizers (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Non-Alcoholic Beverages (AREA)
  • Saccharide Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は水溶性の高いリン酸オリゴ糖及び/又はリン酸デキストリンの多価金属塩類組成物とその製造方法に関するものであり、食品、飲料、飼料、肥料、金属補給剤、金属吸収促進剤、口腔衛生剤、化粧品、洗剤等の製品分野で利用されるものである。
【0002】
【従来の技術】
国民栄養調査によれば、全ての栄養素の中でCaのみが所要量に達していないとされており、日本人の高齢化が進む中で、骨粗鬆症や虫歯などCa不足による健康問題が大きい社会問題としてクローズアップされている。さらに食品に含まれるCaの腸内での吸収率がかなり低いことも知られている。従って、吸収率の高いCa塩の形態が重要視され、クエン酸とリンゴ酸の混合物のCa塩が腸内での吸収率が高いとして特定保健用食品に認定されている。また、腸内でのCaの吸収を促進する物質としてミルク・カゼインの分解物であるCPP(Casein PhosphoPeptide)も特定保健用食品に認定されて利用されている。
【0003】
本発明者らはCaの吸収促進が期待されるリン酸オリゴ糖(Phosphorylated Oligosaccharides, 以下POSと称する)に注目し、その工業的な製造法(特開平10-84985)や高いCa可溶化活性を有するPOSやリン酸デキストリン(Phosphorylated Dextrin, 以下PDNと称する)及びそれらの製造法(特開平11-255803)について開示している。なお、一般にぶどう糖などからなる多糖では、重合度2〜10の糖はオリゴ糖、重合度10よりも大きいものはデキストリンと称されている。
【0004】
POS及びPDNは腸内でのCa吸収促進の指標となるCa可溶化活性を有することから、Ca吸収促進物質として期待されているものの、その塩の形態がNaやKなどの一価金属塩では、むしろCaなどの二価金属を奪い取るため、逆に二価金属の体内への吸収を阻害するように作用する可能性も指摘されている。また、POSのNaやK等の一価金属塩を用いた場合のラットによる動物実験では、in vitroでは腸管でのCa吸収促進効果が認められたものの、in vivoではPOSがCaの吸収促進に有意差を示さなかった例も報告されている(応用糖質科学会誌, 43, p.535, 1996)。
【0005】
従って、Ca可溶化活性を有するPOS/PDNであっても、塩の形態が一価の金属塩では、必ずしもCaの吸収を促進するとは限らないことを示しており、POS/PDNをCa塩の形態で使用することが重要であると思われる。また、Ca塩の形態であれば、それ自身、Ca強化剤としての利用が可能である。
【0006】
本発明者らも、これらの情勢を踏まえて、特開平10-84985ではPOSのCa塩の製造方法を提示している。しかしながら、POS/PDNのNa塩溶液にCa(OH)2やCaCO3を添加すると中性付近で沈殿の生じることが判明した。沈殿生成の原因は不明であるがこのような沈殿が形成されると沈殿の除去が困難であり、例えば、除菌のための濾過精製処理ができないなど、POS/PDNの製造に支障をきたすこととなる。さらに、沈殿物の形成は清涼飲料などの透明性を要求される食品分野での利用が困難となる。
【0007】
【発明が解決しようとする課題】
本発明は、水溶性で沈殿を形成しない、濾過性に優れたPOS及び/又はPDNのCa塩等の多価金属塩類組成物を製造する方法と、水溶性の高いPOS及び/又はPDNの多価金属塩類組成物を提供するものである。
【0008】
【課題を解決するための手段】
本発明者らはPOS及び/又はPDNの食品素材としての価値を高めるため、Ca塩などの多価金属塩を製造すべく、鋭意研究の結果、以下に示すような水溶性に富んで多価金属含量の多いPOS及び/又はPDNの製造方法やPOS及び/又はPDNの多価金属塩類組成物の開発に成功した。
【0009】
すなわち、本発明は以下の発明を包含する。
(1)リン酸オリゴ糖及び/又はリン酸デキストリンをアニオン交換樹脂に吸着させ、次いで多価金属の塩化物溶液で溶出することを特徴とするリン酸オリゴ糖及び/又はリン酸デキストリンの多価金属塩類組成物の製造方法。
(2)リン酸オリゴ糖及び/又はリン酸デキストリンを含む溶液に多価金属の塩化物を加えることを特徴とするリン酸オリゴ糖及び/又はリン酸デキストリンの多価金属塩類組成物の製造方法。
【0010】
(3)多価金属の塩化物を加える前、又は加えた後にリン酸オリゴ糖及び/又はリン酸デキストリンを含む溶液のpHを5以下とすることを特徴とする前記(2)に記載の製造方法。
(4)多価金属がカルシウム、マグネシウム及び鉄からなる群から選択される少なくとも1種である前記(1)〜(3)のいずれかに記載の製造方法。
【0011】
(5)リン酸オリゴ糖及び/又はリン酸デキストリンをアニオン交換樹脂に吸着させ、次いで多価金属の塩化物溶液で溶出して得られるリン酸オリゴ糖及び/又はリン酸デキストリンの多価金属塩類組成物。
(6)リン酸オリゴ糖及び/又はリン酸デキストリンを含む溶液に多価金属の塩化物を加えて得られるリン酸オリゴ糖及び/又はリン酸デキストリンの多価金属塩類組成物。
(7)前記(5)又は(6)に記載のリン酸オリゴ糖及び/又はリン酸デキストリンの多価金属塩類組成物を含む食品、飲料、飼料、肥料、金属補給剤、金属吸収促進剤、口腔衛生剤、化粧品又は洗剤。
【0012】
【発明の実施の形態】
以下に本発明を詳細に説明する。
POS及びPDNはそれぞれリン酸基の結合したオリゴ糖及びデキストリンであり、一般にオリゴ糖は糖鎖の重合度が2〜10、デキストリンは重合度が10より大きいものをいう。POS及びPDNは、通常、リン酸が結合した澱粉(リン酸結合澱粉)を酵素や酸で分解することで製造される。前記澱粉としては、コーンスターチ、小麦澱粉等の種子澱粉やタピオカ澱粉、馬鈴薯澱粉等の根茎類の澱粉など広く一般に利用されている植物起源の澱粉だけでなく、いずれの起源の澱粉でも使用することができる。
【0013】
リン酸結合澱粉には、馬鈴薯澱粉のようにもともとリン酸基を有している天然のリン酸結合澱粉の他に、化学合成によって、例えば上記澱粉のリン酸化反応より澱粉にリン酸基を導入したリン酸結合澱粉がある。なお、食品添加物として認められているリン酸結合澱粉は結合リン0.2〜3.0%、無機リン(遊離のリン酸)は全リンの20%以内という規定がある。
【0014】
本発明で用いられるPOS及びPDNは、先にも述べたように、通常、前記リン酸結合澱粉を酵素や酸で分解することで製造される。リン酸結合澱粉からPOSやPDNを製造する方法は公知であり、例えば以下のようにして製造できる。
【0015】
<馬鈴薯澱粉原料からのPOS及びPDNの製造>
馬鈴薯澱粉の場合には0.05〜0.1%のリンが結合リンとして存在することが知られている。馬鈴薯澱粉はこのように含まれる結合リンが少なく、酵素分解、つまり液化・糖化反応で生成したPOSは糖化液全糖中の1%程度である。よって工業的にPOSを製造するには特開平10-84985に開示されているように、馬鈴薯澱粉を液化、糖化した後、濾過、活性炭処理、イオン交換処理を行い、アニオン交換樹脂に吸着したPOSを苛性ソーダ等で溶出させている。これにより純度の高いPOS溶液が得られる。
【0016】
<化学合成リン酸結合澱粉からのPOS及びPDNの製造>
結合リンの高いリン酸結合澱粉は食品添加物として認められており、化学合成で得られるリン酸結合澱粉を原料とする場合は、特開平11-255803で開示しているようにリン酸結合澱粉をα−アミラーゼで分解すれば、高いCa可溶化活性を有するPOS及び/又はPDNを得ることができる。この場合、平均重合度10〜50の軽度な分解度で酵素反応を停止すると粘度の高いPDNが得られる。より製品の粘度を下げるには、さらにβ-アミラーゼ、グルコアミラーゼなどの糖化酵素で低分子化を進めて、POSを得ることができる。得られたPOS、PDNを含む溶液は、必要に応じて活性炭処理、脱塩処理などの通常の精製処理技術により純度を高くすることができる。脱塩処理の方法としては、イオン交換樹脂処理、イオン交換膜処理、ナノフィルトレーション(NF)膜処理などが用いられる。
【0017】
なお、無機リンが全リンの20%以上ある場合は、脱塩処理により無機リンを20%以下とすれば食品添加物の規格を満足することができる。
ところで、通常得られるPOS及び/又はPDNは、例えば工業的な糖化製品の製造に用いられる方法では、馬鈴薯澱粉の糖化液中に含まれるPOS及び/又はPDNをアニオン交換樹脂に吸着させ、再生剤のNaOHで溶出させるためNa塩となっている。また、化学合成のリン酸結合澱粉を分解して得られるPOS及び/又はPDNも、食品添加物のリン酸結合澱粉がNa塩しか認められていないこともありNa塩となっているものがほとんどである。
【0018】
先に述べたように、POS及び/又はPDNをCa塩とすることができれば、食品のCa補給剤として利用できるだけでなく、Ca吸収促進作用や歯の再石灰化作用など食品として極めて価値の高い利用の可能性が開かれる。しかしながら、先願特許(特開平11-255803)に開示しているように、POSのCa塩を製造する際の薬品として、Ca(OH)2やCaCO3を用いると、白い沈殿が生じて精製が困難であった。従って、Na塩からCa塩に置換することが容易ではなく、沈殿が生じない範囲で処理するためCa含量の多いPOSを製造することが極めて難しい状態であった。
【0019】
先願特許(特開平10-84985)に開示しているように、アニオン交換樹脂に吸着したPOS及び/又はPDNを溶出させる際、もう一つの目的が樹脂の再生であるため、溶出液としてNaOHを用いている。しかし、NaOHでPOSを溶出すると、無機リンや着色物質が共に溶出することとなり、純度が低下する。従って、活性炭による脱色やNF膜処理による脱塩など精製負担が大きくなっていた。
【0020】
そこで、本発明者らは種々検討したところ、NaClやCaCl2などの金属塩化物溶液を適切な濃度で用いると、POS及び/又はPDNが無機リンや着色物質と分離して溶出した。しかも、CaCl2等の多価金属の塩化物溶液で溶出すると多価金属塩の形態で、なおかつ水溶性の状態で溶出して沈殿を形成しないことを見出した。
以下に、POS及び/又はPDNからそのCa塩等の多価金属塩類組成物を得る方法について説明する。
【0021】
本発明で用いることのできるPOS及びPDNとしては、その分子内に少なくとも1個のリン酸基を有するもので、かつ水溶性であれば特に制限されないが、平均重合度2〜1000、結合リン0.05〜5%のものが好ましく、平均重合度4〜50、結合リン0.1〜3%のものが更に好ましい。また、カチオン交換樹脂に通してNa、K等を除去し、脱塩したPOS及び/又はPDNを使用するのが好ましい。
【0022】
まず最初に、POS及び/又はPDNを含む溶液をアニオン交換樹脂に通液して、POS及び/又はPDNをアニオン交換樹脂に吸着させる。本発明で用いることのできるアニオン交換樹脂としては、強塩基性アニオン交換樹脂又は弱塩基性アニオン交換樹脂のいずれでも使用することができるが、弱塩基性アニオン交換樹脂を使用するのがより好ましい。そのようなアニオン交換樹脂として、例えば、三菱化学製ダイヤイオンWA30やバイエル社製レバチットMP64WS等が挙げられる。
【0023】
次に、アニオン交換樹脂に吸着させたPOS及び/又はPDNを多価金属の塩化物溶液で溶出する。
本明細書でいう「多価金属」とは、二価以上の陽イオンになりうる金属のことをいう。本発明で用いることのできる多価金属としては、Ca、Mg、Zn、Cu 等の二価金属、Fe等の三価金属が挙げられ、その中でも特にCa、Mg、Feが好ましい。
【0024】
さらにこの場合、多価金属の塩化物とは水溶液中で金属イオンと塩化物イオンが共に存在するものを示し、多価金属の水酸化物、酸化物、炭酸塩、硫酸塩等を塩酸で溶解したものも多価金属の塩化物として含まれる。
また、溶出に使用する多価金属の塩化物溶液は各金属塩化物をそのまま水に溶解して使用するのが好ましいが、多価金属の塩化物溶液中に多価金属の含量を超えない範囲で一価の金属が含まれていても許容される。
【0025】
アニオン交換樹脂から多価金属の塩化物溶液で溶出したPOS及び/又はPDNの多価金属塩類組成物溶液は脱色や脱塩などの精製操作を行うことが好ましい。例えば、上記溶液をNF膜により濃縮し、得られる濃縮液を活性炭処理することにより無機リンやNaの含量、着色度を更に低下させることができる。また、このような精製操作を行わなくとも、このまま除菌濾過してから濃縮して液状の製品とすることができる。また、40〜60Bxまで濃縮してから、スプレードライヤーにかけて粉末の製品とすることもできる。
【0026】
POS及び/又はPDNをアニオン交換樹脂に吸着させてから多価金属の塩化物溶液で多価金属塩類組成物を溶出する方法を示したが、POS及び/又はPDNの溶液に多価金属塩化物を加えてNF膜やイオン交換膜などで脱塩処理しても、同様な多価金属塩類組成物を得ることができる。
【0027】
これによりPOS及び/又はPDNを容易に好ましいCa塩などの多価金属の塩にすることができる。しかも、沈殿を生成することなく水溶性に優れた多価金属塩が得られる。さらに、得られるPOS及び/又はPDNの多価金属塩類組成物中のNa含量も用いた多価金属の含量より少なくすることができ、必要に応じて1/10とすることができる。勿論、溶出液として多価金属塩化物であるMgCl2やFeCl3の水溶液を使用すれば、POS及び/又はPDNのMg塩やFe塩の組成物を製造することができる。
【0028】
なお、上記のようにPOS及び/又はPDNをアニオン交換樹脂に吸着させて多価金属の塩化物溶液で溶出する場合は、原料として用いるPOS及び/又はPDNはカチオン交換樹脂等を通してNa等を除去して脱塩したものを用いることが好ましい。しかしながら、例えば、原料として化学合成リン酸結合澱粉を用いる場合、前述のように食品添加物として認められる化学合成リン酸結合澱粉の製造方法では全てNa塩として生成し、さらに結合リンが多いこともあり脱塩に要するイオン交換樹脂の量が極めて多くなる。
【0029】
そこで、本発明者らは、上記のような脱塩処理を行わなくてもPOS及び/又はPDNの多価金属塩類組成物を製造する方法について検討したところ、POS及び/又はPDNの溶液にCaCl2等の多価金属の塩化物溶液を加えることによりPOS及び/又はPDNの多価金属塩類組成物を製造できることを見出した。以下に、その製造方法について説明する。
【0030】
従来法としては、POS及び/又はPDNやそのNa塩等の溶液に多価金属のアルカリやその塩類の溶液、例えばCa(OH)2やCaCO3溶液を添加してCa、Mg、Fe等の多価金属塩に置換するものが知られている。しかし、これらのアルカリや塩類を添加すると、前述のように白い沈殿が発生するため精製が困難であった。
【0031】
例えば、従来法ではPOS溶液をpH2付近からCa(OH)2でpH5.5程度まで中和すると濁りが発生した。この場合、POS溶液の濁度は、pH5.5, 30Bxにおける720nmでの吸光度(1cmセル)は0.866であり、Caに対するNaの比率、すなわち、Ca/Na比は0.5程度であった。又、一度、濁りが発生すると、POSを1Bx程度まで希釈しても濁りが消失しなかった。さらに、濁りが発生する前のPOS溶液は0.45μmの除菌フィルターに通液したものが、濁り発生後には、POS溶液は同じ除菌フィルターにほとんど通液できなくなる現象も経験している。
【0032】
これに対して、本発明者らは、本発明のように置換に用いる薬品をCaCl2のような多価金属の塩化物に変換すると、白濁の生成が抑制されることを見出した。本発明の方法では、例えば、アニオン交換樹脂に吸着したPOSをCaCl2で溶出した場合において、濁度は0.078であって濁りは認められなかった。さらに、Ca/Na比は13 であって、極めてCa含量の多いPOS多価金属塩組成物が得られた。
【0033】
POS及び/又はPDNの溶液に多価金属の塩化物溶液を添加する前に、必要に応じてPOS及び/又はPDNの溶液中に存在する無機リンやNaイオンなどを少なくしておくとCaの置換率が高くなる。例えば、POS及び/又はPDNの溶液をイオン交換樹脂やイオン交換膜、NF膜、活性炭等で処理することにより精製度を高めて、POS及び/又はPDNの溶液中の無機リン含量を全リンの20%以内に減らしてから多価金属の塩化物溶液を添加することもできる。多価金属塩化物の添加量は、例えば、Ca塩にする場合はCaとしてPOS溶液の全リンに対して通常0.5〜1.5当量、好ましくは0.8〜1.2当量となるようにCaCl2を添加する。
【0034】
また、多価金属の塩化物溶液を添加する前、又は添加した後にPOS及び/又はPDNの溶液に酸を加えてpHを5以下、好ましくはpH1.5〜4に調整することにより、多価金属の置換率を高めることができる。前記酸としては、鉱酸が好ましく、塩酸、硫酸が更に好ましい。
さらに、精製する前にPOS及び/又はPDNの溶液のpHを5以下、好ましくはpH1.5〜4に調整することによりCa塩等の多価金属の置換率がより高められる。
【0035】
以上の操作により、POS及び/又はPDNの塩の形態がNa等の一価金属塩からCa等の多価金属塩に置換され、POS及び/又はPDNの多価金属塩類組成物を製造することができる。必要に応じてpHを5〜7に調整してもよく、中和剤として、通常、NaOHを用いるが、代わりにKOHを使用することも可能である。Mg塩を作る場合は、CaCl2の代わりにMgCl2を使用し、鉄塩を作る場合は、FeCl3を使用して同様の操作を行い、POS及び/又はPDNの多価金属塩類組成物を製造することができる。
【0036】
得られたPOS及び/又はPDNの多価金属塩類組成物溶液をこのまま濃縮して製品とすることができる。さらに、脱色処理や脱塩処理を行って純度を高くすることもできる。精製の方法としては、活性炭処理、イオン交換処理、膜処理など、通常の処理方法が使用される。また、POS及び/又はPDNの多価金属塩類組成物溶液をスプレードライヤー等で乾燥して粉末とすることもできる。
【0037】
本発明の方法により得られるPOS及び/又はPDNの多価金属塩類組成物は水溶性に優れており、Ca、Mg、Fe等の多価金属塩を可溶化させるので、本発明の組成物を食品、飲料、飼料、肥料、金属補給剤、金属吸収促進剤、化粧品等に配合することにより生体への多価金属の吸収を促進したり、保水性を維持することが可能となる。また、本発明の組成物は緩衝作用により歯のカルシウム溶出を抑制したり、カルシウムが歯に沈着することによって歯の再石灰化を促進する効果が期待されるので、本発明の組成物を含む口腔衛生剤を提供できる。さらに、本発明の組成物を含む洗剤は金属の沈着が原因と考えられる汚れに対して効果的である。
【0038】
【実施例】
以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
[試験例1](馬鈴薯澱粉からのPOS/PDNの調製)
(馬鈴薯澱粉の液化・糖化)
水と馬鈴薯澱粉を混合して澱粉濃度30重量%のスラリー 270kg を調製し、消石灰を添加してpH 6.3に調整した。次いで、耐熱性α−アミラーゼ(商品名ターマミル 120L ノボノルディスク バイオインダストリー社製)を対澱粉0.05重量%添加してジェットクッカーに導入した。クッキングの温度を105℃、圧力を1kg/cm2(ゲージ圧)に保持してから高温滞留塔に導き、加圧下、105℃で5分間保持した後、熟成槽に移して95℃にて2時間保持することによって液化を行った。得られた液化液を減圧下で60℃に冷却した後、シュウ酸を添加してpH4.5に調節した。引き続いてグルコアミラーゼとプルラナーゼの混合製剤(商品名デキストロザイムプラスL ノボノルディスク バイオインダストリー社製)を対澱粉0.1重量%添加して60℃、40時間保持することで澱粉の分解反応を行った。
【0039】
(馬鈴薯澱粉糖化液の精製)
得られた馬鈴薯澱粉の糖化液をフィルタープレスにて濾過し、清澄液を粒状活性炭を充填した脱色塔に通液して脱色した。得られた糖液を強酸性カチオン交換樹脂(レバチットS-100WS)、弱塩基性アニオン交換樹脂(レバチットMP64-WS)、強酸性カチオン交換樹脂(レバチットSP-112WS)、強塩基性アニオン交換樹脂(レバチットMP-600)に順次通液した。通液終了後、樹脂塔に純水を通液して糖液を押し出した。
【0040】
(アニオン交換樹脂からのPOSの溶出)
アニオン交換樹脂に吸着したPOSの溶出は強塩基性アニオン交換樹脂、弱塩基性アニオン交換樹脂の順に40℃に加温した4重量%の苛性ソーダ溶液を通液することで行った。通液速度は強塩基性アニオン交換樹脂でSV=3、弱塩基性アニオン交換樹脂ではSV=2で行った。溶出液量が樹脂容量の1.0倍の溶出液画分から回収を始め、樹脂容量の1.7倍までを回収して、平均重合度4、結合リン3.4 重量%(固形分当たり)、無機リン0.6 重量%(固形分当たり)の固形分13重量%を含むPOSのNa塩溶液5.8kgが得られた。
【0041】
[試験例2](化学合成リン酸結合澱粉からのPOS/PDNの調製)
(リン酸結合澱粉の調製)
コーンスターチを含むスラリ−(澱粉重量濃度40%)200kgに無水リン酸一ナトリウム25kgを添加して溶解し、エッシャー脱水機にて澱粉ケーキを回収した。これをフラッシュドライヤーで水分10%まで乾燥してから熱風温度170℃の棚段乾燥機にて2時間焙焼した。得られたリン酸結合澱粉の全リン、結合リンはそれぞれ3.4、2.8%であった。
【0042】
(リン酸結合澱粉からPDNの調製)
前記リン酸結合澱粉10kgを20重量%の濃度で溶解し、酵素の安定剤としてCaが50ppm以上になるように消石灰を添加後、苛性ソーダでpHを6.0に調整した。次いで耐熱性α-アミラーゼのターマミル120Lを対澱粉0.05重量%添加し、95℃に加熱して2時間保持した。加熱終了後、室温まで冷却した。引き続き、塩酸でpH3.0に調節して反応を停止した。平均重合度12、結合リン2.6重量%(固形分当たり)、無機リン0.8重量%(固形分当たり)の固形分20重量%を含むPDN溶液50kgが得られた。
【0043】
(リン酸結合澱粉からPOSの調製)
前記リン酸結合澱粉10kgを原料として、前述と同様にPDN溶液を調製し、塩酸を加えてpH 5.5に調整してから、カビ由来のα-アミラーゼ(商品名 ファンガミル ノボノルディスク バイオインダストリー社製)を対澱粉0.02重量%添加して60℃で、24時間反応させた。24時間後塩酸でpHを3.0に調整して反応を停止し、室温まで冷却した。平均重合度6、結合リン2.5重量%(固形分当たり)、無機リン0.9重量%(固形分当たり)の固形分20重量%を含むPOS溶液50kgが得られた。
【0044】
[実施例1]
試験例1の方法で国産馬鈴薯澱粉500kgを分解し、得られた糖液(POSを含む)を精製後、アニオン交換樹脂に通液してPOSを吸着させた。POSの溶出は次のように行った。まず、樹脂容量と同量の0.55重量%のCaCl2溶液、次いで、樹脂容量の2倍の1.1重量% CaCl2溶液を通液し、さらに樹脂容量の2倍の4重量%NaOH溶液の順に通液して溶出させた。図1に示すように、溶液の回収はPOSが溶出し始める溶出液量が樹脂容量の1.6倍の画分から始め、溶出液量が樹脂容量の2.4倍までの画分を回収した。その後に着色物質や無機リンが溶出し始めるので、回収したPOS画分に含まれる着色成分や無機リンは少ないものとなる。1重量%程度の濃度のCaCl2溶液で溶出することにより、POSと不純物である着色物質や無機リンを効果的に分離することができる。得られたPOS溶液を0.45μmのサニタリーフィルター(ロキテクノ社製)で除菌濾過後、薄膜式のエバポレーターで50Bxまで濃縮し、スプレードライヤー(NIRO社製)にかけ、入口温度; 180℃、出口温度; 110℃、アトマイザー回転数; 22000rpmの条件で乾燥してPOSのCa塩組成物粉末3kgを得た。本製品の平均重合度は4であり、乾燥固形分当たり、結合リン、無機リン、Ca、Naはそれぞれ3.6、0.05、5.3、0.4重量%であった。
【0045】
[実施例2]
実施例1と同様にCaCl2溶液で溶出したPOS溶液(7Bx, pH 6.0)45kgを食塩阻止率50%のNF膜(日東電工社製 NTR-7450)で15Lまで濃縮した。引き続いて膜濃縮液に粉末活性炭(三倉化成製 PM-KIと同PM-SXの等量混合物)160gを添加し、50℃で2時間、撹拌しながら保持後、No.131濾紙(東洋濾紙社製)で粉末活性炭を除去した。この液を0.45μmのサニタリーフィルターで除菌濾過し、薄膜式のエバポレーターにて73Bxまで濃縮し、POSのCa塩組成物溶液3.5kgを得た。本製品の平均重合度は4であり、乾燥固形分当たり、結合リン、無機リン、Ca、Naはそれぞれ3.6、0.02、4.8、0.2重量%であった。
【0046】
[実施例3]
試験例1により調製したPOSのNa塩溶液(Bx13,pH 6.0)60kgに粉末活性炭390gを添加し、50℃で2時間、撹拌しながら保持した。次いで、No.131濾紙で粉末活性炭を除去した。この活性炭処理液にCaCl2・2H2O 1.4kgを溶解し、サニタリーフィルターで除菌濾過後、スプレードライヤーで粉末化してPOSのCa塩組成物粉末6kgを得た。本製品の平均重合度は4であり、乾燥固形分当たり、結合リン、無機リン、Ca、Naはそれぞれ3.6、0.5、4.0、3.9重量%であった。
【0047】
[実施例4]
試験例1の方法で調製したPOSのNa塩溶液(Bx13,pH 6.0)60kgに塩酸を加えて pH 5.0に調整してから、実施例3と同様に活性炭処理、濾過を行った。得られたPOS液に、CaCl2・2H2O 1.4kgを水30Lに溶解したものを添加した。次いで、NF膜(NTR-7450)で30Lまで濃縮し、サニタリーフィルターで除菌濾過後、薄膜式エバポレーターで72Bxまで濃縮してPOSのCa塩組成物溶液6kgを得た。本製品の平均重合度は4であり、乾燥固形分当たり、結合リン、無機リン、Ca、Naはそれぞれ3.6、0.4、3.0、2.0重量%であった。
【0048】
[実施例5]
試験例1の方法で調製したPOSのNa塩溶液(Bx13,pH 6.0)60kgに塩酸を加えて pH 2.5に調整してから、実施例3と同様に活性炭処理、濾過を行った。得られたPOS溶液に、CaCl2・2H2O 1.4kgを水30Lに溶解したものを添加後、4%NaOHでpH 5.5に調整した。得られたPOS溶液をNF膜(NTR-7450)で30Lまで濃縮した。引き続き、膜処理濃縮液30Lに水30Lを添加し、同じNF膜で30Lまで濃縮する操作を2回繰り返した。膜処理後の液をサニタリーフィルターで除菌濾過し、スプレードライヤーで粉末化してPOSのCa塩組成物粉末6kgを得た。本製品の平均重合度は4であり、乾燥固形分当たり、結合リン、無機リン、Ca、Naはそれぞれ3.6、0.35、3.2、1.6重量%であった。
【0049】
[実施例6]
試験例1の方法で調製したPOSのNa塩溶液(Bx13,pH 6.0)60kgに塩酸を加えて pH 3.0に調整してから、実施例3と同様に活性炭処理、濾過を行った。得られたPOS液をNF膜(NTR-7450)で20Lまで濃縮した。引き続き膜濃縮液20Lに、MgCl2・6H2O 2.1kgを水20Lに溶解したものを添加し、4%NaOHでpH 5.5に調整した。これを同じNF膜で20Lまで濃縮した。この後、サニタリーフィルターで除菌濾過し、薄膜式エバポレーターで72Bxまで濃縮してPOSのMg塩組成物溶液8kgを得た。本製品の平均重合度は 4 であり、乾燥固形分当たり、結合リン、無機リン、Mg、Naはそれぞれ3.6、0.2、3.0、1.7重量%であった。
【0050】
[実施例7]
試験例1の方法で調製したPOSのNa塩溶液(Bx13,pH 6.0)60kgに塩酸を加えて pH 3.0に調整してから、実施例3と同様に活性炭処理、濾過を行った。得られたPOS液をNF膜(NTR-7450)で20Lまで濃縮した。引き続き膜濃縮液20LにFeCl3・6H2O 2.77kgを水20Lに溶解したものを添加し、4%NaOHでpH 5.5に調整した。次いで同じNF膜で20Lまで濃縮し、膜濃縮液に水20Lを添加し、20Lまで膜で濃縮する操作を2回繰り返した。この液を同様にサニタリーフィルターで濾過後、スプレードライヤーで乾燥し、POSのFe塩組成物粉末6kgを得た。本製品の平均重合度は4であり、乾燥固形分当たり、結合リン、無機リン、Fe、Naはそれぞれ3.6、0.15、3.2、1.5重量%であった。
【0051】
[実施例8]
試験例2の方法で調整したPDN溶液(20重量%)50kgに粉末活性炭300gを加えて50℃、1時間撹拌しながら保持した。これに水50Lを添加して2倍に希釈し、セラミックフィルターで濾過した。濾過液を食塩阻止率30%のNF膜(日東電工NTR-7430)で30Lまで濃縮した。引き続いて、膜処理液30Lに、CaCl2・2H2O 1.15kgを純水30Lに溶解したものを添加し、4%NaOHでpH 6.5に調整した。これをNF膜(NTR-7450)で30Lまで濃縮した。この後、膜濃縮液に水30Lを加水して、さらに膜で30Lに濃縮する操作を3回繰り返した。これをサニタリーフィルターで濾過後、スプレードライヤーで乾燥し、PDNのCa塩組成物粉末6kgを得た。本製品の平均重合度は15であり、乾燥固形分当たり、結合リン、無機リン、Ca、Naはそれぞれ2.8、0.5、4.0、1.1%であった。
【0052】
[実施例9]
試験例2の方法で調整したPDN溶液(20重量%)50kgを実施例8と同様に活性炭処理、濾過、NF膜処理した。引き続いて膜処理液30Lに食添用MgCl2・6H2O 1.6kgを水30Lに溶解したものを添加して、4%NaOHでpH 6.0に調整した。さらに、膜濃縮液30Lに純水30Lを添加して膜で30Lまで濃縮する操作を2回繰り返した。サニタリーフィルターで濾過後、同様にスプレードライヤーで乾燥し、PDNのMg塩組成物粉末6kgを得た。本製品の平均重合度は15であり、乾燥固形分当たり、結合リン、無機リン、Mg、Naはそれぞれ2.8、0.5、2.5、1.3%であった。
【0053】
[実施例10]
試験例2の方法で調製したPOS溶液(20重量%)50kgを実施例8と同様に活性炭処理、濾過、NF膜処理した。引き続いて膜処理液30Lに食添用CaCl2・2H2O 1.15kgを水30Lに溶解したものを添加して、4%NaOHでpH 6.0に調整した。さらに、膜濃縮液30Lに純水30Lを添加して膜で30Lまで濃縮する操作を2回繰り返した。サニタリーフィルターで濾過後、同様にスプレードライヤーで乾燥し、POSのCa塩組成物粉末6kgを得た。本製品の平均重合度は7であり、乾燥固形分当たり、結合リン、無機リン、Ca、Naはそれぞれ2.8、0.5、3.4、1.3%であった。
【0054】
【発明の効果】
本発明により、水溶性に優れたリン酸オリゴ糖及び/又はリン酸デキストリンの多価金属塩類組成物を提供できる。また、本発明により沈殿を形成することなくリン酸オリゴ糖及び/又はリン酸デキストリンの多価金属塩類組成物を製造することができる。さらに、本発明のリン酸オリゴ糖及び/又はリン酸デキストリンの多価金属塩類組成物はCa、Mg、Feなどの多価金属塩類を多く含むことができ、それらの多価金属の生体への吸収を高めた製品を提供できる。特に、水溶性のCa剤は有機酸やペプチド製品が開発されているが、味質に優れた糖質で水溶性のCa剤は少なく、広く、食品、飲料、飼料、肥料、金属補給剤、金属吸収促進剤、口腔衛生剤、化粧品、洗剤などの製品分野で利用が期待される。
また、本発明の方法によれば、多価金属の含有量を大幅に増加することができ、Ca、Mg、Feなど多価金属の強化剤、供給剤としての有効性も高くなるなど食品素材としての価値を高めることができる。
【図面の簡単な説明】
【図1】アニオン交換樹脂からCaCl2溶液でPOSを溶出した場合における各溶出液画分の性状を示した図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a highly water-soluble phosphate oligosaccharide and / or dextrin phosphate polyvalent metal salt composition and a method for producing the same, food, beverage, feed, fertilizer, metal supplement, metal absorption promoter, It is used in product fields such as oral hygiene agents, cosmetics, and detergents.
[0002]
[Prior art]
According to the National Nutrition Survey, it is said that only the amount of Ca in all nutrients has not reached the required amount. As the Japanese population is aging, social problems such as osteoporosis and dental caries are serious due to lack of Ca. As close up. Furthermore, it is also known that the absorption rate of Ca contained in food is very low. Therefore, the form of Ca salt with high absorption rate is regarded as important, and Ca salt of a mixture of citric acid and malic acid is certified as a food for specified health use as having high absorption rate in the intestine. As a substance that promotes absorption of Ca in the intestine, CPP (Casein PhosphoPeptide), which is a degradation product of milk and casein, is also certified as a food for specified health use.
[0003]
The present inventors pay attention to phosphorylated oligosaccharides (hereinafter referred to as POS) that are expected to promote the absorption of Ca, and have an industrial production method (Japanese Patent Laid-Open No. 10-84985) and high Ca solubilizing activity. POS and dextrin phosphate (Phosphorylated Dextrin, hereinafter referred to as PDN) and a method for producing them (Japanese Patent Laid-Open No. 11-255803) are disclosed. In general, in polysaccharides such as glucose, sugars having a polymerization degree of 2 to 10 are called oligosaccharides, and those having a polymerization degree of more than 10 are called dextrins.
[0004]
POS and PDN have Ca solubilization activity that is an index for promoting Ca absorption in the intestine, and thus are expected as Ca absorption promoting substances. However, the salt forms are monovalent metal salts such as Na and K. On the contrary, it has been pointed out that it may act to inhibit the absorption of the divalent metal into the body because it deprives the divalent metal such as Ca. In addition, in animal experiments with rats using monovalent metal salts such as Na and K of POS, Ca absorption promotion effect in the intestinal tract was recognized in vitro, but POS promotes Ca absorption in vivo. Cases that did not show a significant difference were also reported (Journal of Applied Glycoscience, 43 , p.535, 1996).
[0005]
Therefore, even if it is POS / PDN which has Ca solubilization activity, it has shown that a monovalent metal salt does not necessarily promote Ca absorption, and POS / PDN is not converted to Ca salt. It seems important to use it in the form. Moreover, if it is a form of Ca salt, it can be used as a Ca reinforcing agent.
[0006]
In light of these circumstances, the present inventors have also proposed a method for producing a POS Ca salt in JP-A-10-84985. However, Na (POS) / PDN salt solution contains Ca (OH) 2 And CaCO Three It was found that precipitation occurred in the vicinity of neutrality by adding. The cause of precipitate formation is unknown, but when such a precipitate is formed, it is difficult to remove the precipitate. For example, it cannot be filtered and purified for sterilization, which may hinder POS / PDN production. It becomes. Furthermore, the formation of precipitates makes it difficult to use in the food field where transparency such as soft drinks is required.
[0007]
[Problems to be solved by the invention]
The present invention relates to a method for producing a polyvalent metal salt composition such as a POS and / or PDN Ca salt which is water-soluble and does not form a precipitate and has excellent filterability, and a highly water-soluble POS and / or PDN. A valent metal salt composition is provided.
[0008]
[Means for Solving the Problems]
In order to increase the value of POS and / or PDN as a food material, the present inventors have conducted extensive research to produce a polyvalent metal salt such as a Ca salt. We have succeeded in developing a method for producing POS and / or PDN having a high metal content and a polyvalent metal salt composition of POS and / or PDN.
[0009]
That is, the present invention includes the following inventions.
(1) Adsorbing phosphate oligosaccharide and / or dextrin phosphate on an anion exchange resin and then eluting with a chloride solution of polyvalent metal, polyvalent phosphate oligosaccharide and / or dextrin phosphate A method for producing a metal salt composition.
(2) A method for producing a polyvalent metal salt composition of phosphoric oligosaccharide and / or dextrin, characterized by adding a polyvalent metal chloride to a solution containing phosphoric oligosaccharide and / or dextrin phosphate .
[0010]
(3) The production according to (2) above, wherein the pH of the solution containing the oligosaccharide phosphate and / or dextrin phosphate is adjusted to 5 or less before or after adding the polyvalent metal chloride. Method.
(4) The production method according to any one of (1) to (3), wherein the polyvalent metal is at least one selected from the group consisting of calcium, magnesium and iron.
[0011]
(5) Phosphoric oligosaccharides and / or polyvalent metal salts of phosphate dextrin obtained by adsorbing phosphate oligosaccharides and / or dextrin phosphate on an anion exchange resin and then eluting with a polyvalent metal chloride solution Composition.
(6) A polyvalent metal salt composition of phosphate oligosaccharide and / or dextrin phosphate obtained by adding a polyvalent metal chloride to a solution containing phosphate oligosaccharide and / or dextrin phosphate.
(7) Foods, beverages, feeds, fertilizers, metal supplements, metal absorption promoters, comprising the oligosaccharide sugar phosphate and / or dextrin phosphate polyvalent metal salt composition according to (5) or (6) above, Oral hygiene, cosmetics or detergent.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
POS and PDN are oligosaccharide and dextrin to which a phosphate group is bonded, respectively. Generally, oligosaccharide has a sugar chain polymerization degree of 2 to 10, and dextrin has a polymerization degree higher than 10. POS and PDN are usually produced by decomposing starch bound with phosphate (phosphate-bound starch) with an enzyme or acid. As the starch, not only starches of plant origin such as seed starch such as corn starch and wheat starch, and starch of rhizomes such as tapioca starch and potato starch, but also starch of any origin can be used. it can.
[0013]
In addition to natural phosphate-bound starch that originally has phosphate groups like potato starch, phosphate-bound starch introduces phosphate groups into the starch by chemical synthesis, for example, by the phosphorylation reaction of the above starch. Phosphate-bound starch. In addition, phosphate binding starch recognized as a food additive has a regulation that bound phosphorus is 0.2 to 3.0% and inorganic phosphorus (free phosphoric acid) is within 20% of total phosphorus.
[0014]
As described above, the POS and PDN used in the present invention are usually produced by decomposing the phosphate-bound starch with an enzyme or acid. Methods for producing POS and PDN from phosphate-bound starch are known and can be produced, for example, as follows.
[0015]
<Production of POS and PDN from potato starch raw materials>
In the case of potato starch, it is known that 0.05 to 0.1% of phosphorus is present as bound phosphorus. Potato starch contains a small amount of bound phosphorus, and POS produced by enzymatic degradation, that is, liquefaction / saccharification reaction, is about 1% of the total saccharified sugar. Therefore, in order to manufacture POS industrially, as disclosed in JP-A-10-84985, potato starch is liquefied and saccharified, followed by filtration, activated carbon treatment, ion exchange treatment, and POS adsorbed on an anion exchange resin. Is eluted with caustic soda. As a result, a highly pure POS solution is obtained.
[0016]
<Production of POS and PDN from chemically synthesized phosphate-binding starch>
Phosphate-bonded starch with high bound phosphorus is recognized as a food additive. When using phosphate-bound starch obtained by chemical synthesis as a raw material, phosphate-bound starch as disclosed in JP-A-11-255803 POS and / or PDN having a high Ca solubilizing activity can be obtained by decomposing with an α-amylase. In this case, a PDN having a high viscosity can be obtained by stopping the enzyme reaction with a mild degree of degradation having an average degree of polymerization of 10 to 50. In order to further reduce the viscosity of the product, POS can be obtained by further reducing the molecular weight with saccharifying enzymes such as β-amylase and glucoamylase. The obtained POS and PDN-containing solution can be increased in purity by ordinary purification treatment techniques such as activated carbon treatment and desalting treatment as necessary. Examples of the desalting treatment include ion exchange resin treatment, ion exchange membrane treatment, and nanofiltration (NF) membrane treatment.
[0017]
When inorganic phosphorus is 20% or more of the total phosphorus, the standard for food additives can be satisfied if the inorganic phosphorus is 20% or less by desalting.
By the way, the POS and / or PDN usually obtained is a regenerant by adsorbing the POS and / or PDN contained in the saccharified solution of potato starch on an anion exchange resin, for example, in a method used for manufacturing an industrial saccharified product. Since it is eluted with NaOH, it becomes Na salt. In addition, POS and / or PDN obtained by decomposing chemically synthesized phosphate-bonded starch is almost always Na salt because phosphate salt of food additive may only have Na salt. It is.
[0018]
As described above, if POS and / or PDN can be made into Ca salt, it can be used as a Ca supplement for food, and it is extremely valuable as a food such as Ca absorption promoting action and tooth remineralization action. The possibility of use is opened. However, as disclosed in a prior patent (Japanese Patent Laid-Open No. 11-255803), as a chemical for producing a Ca salt of POS, Ca (OH) 2 And CaCO Three When was used, a white precipitate was formed and purification was difficult. Therefore, it is not easy to replace the Na salt with the Ca salt, and it has been extremely difficult to produce POS with a large Ca content because the treatment is performed in a range where precipitation does not occur.
[0019]
As disclosed in a prior patent (JP-A-10-84985), when eluting POS and / or PDN adsorbed on an anion exchange resin, another purpose is to regenerate the resin. Is used. However, when POS is eluted with NaOH, both inorganic phosphorus and colored substances are eluted, resulting in a decrease in purity. Therefore, purification burdens such as decolorization by activated carbon and desalination by NF membrane treatment have been increased.
[0020]
Therefore, the present inventors have made various studies and found that NaCl and CaCl. 2 When a metal chloride solution such as POS was used at an appropriate concentration, POS and / or PDN separated and eluted from inorganic phosphorus and colored substances. Moreover, CaCl 2 It was found that when eluted with a chloride solution of a polyvalent metal such as a polyvalent metal salt, it is eluted in a water-soluble state and does not form a precipitate.
Hereinafter, a method for obtaining a polyvalent metal salt composition such as a Ca salt from POS and / or PDN will be described.
[0021]
The POS and PDN that can be used in the present invention are not particularly limited as long as they have at least one phosphate group in the molecule and are water-soluble, but the average degree of polymerization is 2 to 1000, the bound phosphorus 0.05 ~ 5% is preferable, and an average degree of polymerization of 4 to 50 and bound phosphorus of 0.1 to 3% is more preferable. Further, it is preferable to use POS and / or PDN which has been desalted by removing Na, K and the like through a cation exchange resin.
[0022]
First, a solution containing POS and / or PDN is passed through an anion exchange resin to adsorb POS and / or PDN onto the anion exchange resin. As an anion exchange resin that can be used in the present invention, either a strong basic anion exchange resin or a weak basic anion exchange resin can be used, but it is more preferable to use a weak basic anion exchange resin. Examples of such anion exchange resins include Diaion WA30 manufactured by Mitsubishi Chemical Corporation and Levacit MP64WS manufactured by Bayer.
[0023]
Next, POS and / or PDN adsorbed on the anion exchange resin are eluted with a polyvalent metal chloride solution.
As used herein, “polyvalent metal” refers to a metal that can be a divalent or higher cation. Examples of the polyvalent metal that can be used in the present invention include divalent metals such as Ca, Mg, Zn, and Cu, and trivalent metals such as Fe. Among these, Ca, Mg, and Fe are particularly preferable.
[0024]
Furthermore, in this case, the polyvalent metal chloride means that both metal ions and chloride ions exist in the aqueous solution, and the polyvalent metal hydroxide, oxide, carbonate, sulfate, etc. are dissolved in hydrochloric acid. These are also included as chlorides of polyvalent metals.
The polyvalent metal chloride solution used for elution is preferably used by dissolving each metal chloride in water as it is, but the polyvalent metal chloride solution does not exceed the polyvalent metal content. Even if a monovalent metal is contained, it is acceptable.
[0025]
The POS and / or PDN polyvalent metal salt composition solution eluted from the anion exchange resin with a polyvalent metal chloride solution is preferably subjected to a purification operation such as decolorization and desalting. For example, the content of the inorganic phosphorus and Na and the degree of coloring can be further reduced by concentrating the solution with an NF membrane and treating the resulting concentrate with activated carbon. Moreover, even if it does not perform such refinement | purification operation, it can sterilize and filter as it is, and can concentrate and make it a liquid product. Moreover, after concentrating to 40-60Bx, it can also be made into a powdered product by spray-drying.
[0026]
The method of eluting a polyvalent metal salt composition with a polyvalent metal chloride solution after adsorbing the POS and / or PDN on the anion exchange resin was shown. However, the polyvalent metal chloride was dissolved in the POS and / or PDN solution. A similar polyvalent metal salt composition can be obtained by adding desalination to an NF membrane or an ion exchange membrane.
[0027]
Thereby, POS and / or PDN can be easily converted into a salt of a polyvalent metal such as a preferable Ca salt. And the polyvalent metal salt excellent in water solubility is obtained, without producing | generating precipitation. Furthermore, the Na content in the obtained POS and / or PDN polyvalent metal salt composition can also be made lower than the polyvalent metal content used, and can be reduced to 1/10 if necessary. Of course, MgCl which is polyvalent metal chloride as eluent 2 Or FeCl Three If an aqueous solution of POS is used, a composition of Mg salt or Fe salt of POS and / or PDN can be produced.
[0028]
When POS and / or PDN is adsorbed on an anion exchange resin and eluted with a polyvalent metal chloride solution as described above, POS and / or PDN used as a raw material removes Na and the like through a cation exchange resin. It is preferable to use a salt that has been desalted. However, for example, when chemically synthesized phosphate-bonded starch is used as a raw material, the method for producing chemically-synthesized phosphate-bonded starch, which is recognized as a food additive as described above, is all produced as a Na salt, and may have a lot of bound phosphorus. There is an extremely large amount of ion exchange resin required for desalting.
[0029]
Therefore, the present inventors examined a method for producing a polyvalent metal salt composition of POS and / or PDN without performing the desalting treatment as described above, and CaCl was added to the solution of POS and / or PDN. 2 It has been found that a polyvalent metal salt composition of POS and / or PDN can be produced by adding a chloride solution of a polyvalent metal such as. Below, the manufacturing method is demonstrated.
[0030]
Conventional methods include POS and / or PDN and its sodium salt solution in a solution of alkali metal or its salt such as Ca (OH). 2 And CaCO Three A solution is known that is replaced with a polyvalent metal salt such as Ca, Mg, or Fe by adding a solution. However, when these alkalis and salts are added, a white precipitate is generated as described above, and thus purification is difficult.
[0031]
For example, in the conventional method, the POS solution is Ca (OH) from around pH 2. 2 When neutralized to about 5.5, turbidity occurred. In this case, as for the turbidity of the POS solution, the absorbance at 720 nm (1 cm cell) at pH 5.5 and 30 Bx was 0.866, and the ratio of Na to Ca, that is, the Ca / Na ratio was about 0.5. Once turbidity occurred, the turbidity did not disappear even when POS was diluted to about 1Bx. In addition, the POS solution before turbidity has passed through a 0.45 μm sterilization filter, but after turbidity, the POS solution has also experienced a phenomenon in which almost no POS solution can pass through the same sterilization filter.
[0032]
On the other hand, the present inventors used a chemical used for substitution as in the present invention as CaCl. 2 It has been found that the formation of white turbidity is suppressed when converted to a polyvalent metal chloride such as In the method of the present invention, for example, POS adsorbed on an anion exchange resin is converted into CaCl2. 2 In the case of elution, the turbidity was 0.078 and no turbidity was observed. Furthermore, a POS polyvalent metal salt composition having a Ca / Na ratio of 13 and a very high Ca content was obtained.
[0033]
Before adding the polyvalent metal chloride solution to the POS and / or PDN solution, reducing the amount of inorganic phosphorus, Na ions, etc. present in the POS and / or PDN solution as required The replacement rate increases. For example, by treating the POS and / or PDN solution with an ion exchange resin, ion exchange membrane, NF membrane, activated carbon, etc., the degree of purification is increased, and the inorganic phosphorus content in the POS and / or PDN solution is reduced to the total phosphorus content. It is also possible to add the polyvalent metal chloride solution after reducing it to within 20%. The amount of polyvalent metal chloride added is, for example, CaCl so that the Ca salt is usually 0.5 to 1.5 equivalents, preferably 0.8 to 1.2 equivalents of Ca as the total phosphorus in the POS solution. 2 Add.
[0034]
In addition, by adding acid to the POS and / or PDN solution before or after adding the polyvalent metal chloride solution and adjusting the pH to 5 or less, preferably pH 1.5-4, The metal substitution rate can be increased. As said acid, a mineral acid is preferable and hydrochloric acid and a sulfuric acid are still more preferable.
Further, by adjusting the pH of the POS and / or PDN solution to 5 or less, preferably pH 1.5 to 4 before purification, the substitution rate of the polyvalent metal such as Ca salt can be further increased.
[0035]
By the above operation, the POS and / or PDN salt form is replaced with a polyvalent metal salt such as Ca from a monovalent metal salt such as Na to produce a POS and / or PDN polyvalent metal salt composition. Can do. If necessary, the pH may be adjusted to 5 to 7, and NaOH is usually used as a neutralizing agent, but KOH can be used instead. When making Mg salt, use CaCl 2 Instead of MgCl 2 Use FeCl to make iron salt Three POS and / or PDN polyvalent metal salt composition can be produced by using the same procedure.
[0036]
The obtained POS and / or PDN polyvalent metal salt composition solution can be concentrated as it is to obtain a product. Furthermore, the purity can be increased by performing a decolorization treatment or a desalting treatment. As a purification method, usual treatment methods such as activated carbon treatment, ion exchange treatment, membrane treatment and the like are used. Moreover, the polyvalent metal salt composition solution of POS and / or PDN can be dried with a spray dryer or the like to form a powder.
[0037]
The polyvalent metal salt composition of POS and / or PDN obtained by the method of the present invention is excellent in water solubility and solubilizes polyvalent metal salts such as Ca, Mg, Fe, etc. By blending in foods, beverages, feeds, fertilizers, metal supplements, metal absorption promoters, cosmetics, etc., it becomes possible to promote absorption of polyvalent metals into the living body and maintain water retention. In addition, the composition of the present invention includes the composition of the present invention because it is expected to suppress tooth calcium elution by buffering action and promote the remineralization of teeth by the deposition of calcium on the teeth. An oral hygiene agent can be provided. Furthermore, the detergent comprising the composition of the present invention is effective against soiling that is believed to be due to metal deposition.
[0038]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to these examples.
[Test Example 1] (Preparation of POS / PDN from potato starch)
(Liquefaction and saccharification of potato starch)
Water and potato starch were mixed to prepare 270 kg of a slurry having a starch concentration of 30% by weight, and slaked lime was added to adjust the pH to 6.3. Next, 0.05 wt% of thermostable α-amylase (trade name Termamyl 120L Novo Nordisk Bioindustry) was added to the starch cooker. Cooking temperature 105 ° C, pressure 1kg / cm 2 After being held at (gauge pressure), it was led to a high-temperature residence tower, held under pressure at 105 ° C. for 5 minutes, then transferred to an aging tank and held at 95 ° C. for 2 hours for liquefaction. The obtained liquefied liquid was cooled to 60 ° C. under reduced pressure, and oxalic acid was added to adjust to pH 4.5. Subsequently, 0.1% by weight of starch mixed with glucoamylase and pullulanase (trade name dextrozyme plus L Novo Nordisk Bioindustry) was added to the starch, and the starch was decomposed by holding at 60 ° C. for 40 hours. .
[0039]
(Purification of potato starch saccharified solution)
The obtained potato starch saccharified solution was filtered with a filter press, and the clarified solution was passed through a decolorization tower filled with granular activated carbon to be decolorized. The resulting sugar solution was made into a strongly acidic cation exchange resin (Lebatit S-100WS), a weakly basic anion exchange resin (Lebatit MP64-WS), a strongly acidic cation exchange resin (Lebatit SP-112WS), and a strongly basic anion exchange resin ( Levacit MP-600) was sequentially passed through. After the end of the flow, pure water was passed through the resin tower to push out the sugar solution.
[0040]
(Elution of POS from anion exchange resin)
The elution of POS adsorbed on the anion exchange resin was carried out by passing a 4% by weight caustic soda solution heated to 40 ° C. in the order of a strong base anion exchange resin and a weak base anion exchange resin. The flow rate was SV = 3 for strong basic anion exchange resin and SV = 2 for weak basic anion exchange resin. Begin recovery from the eluate fraction whose eluate volume is 1.0 times the resin volume, recover up to 1.7 times the resin volume, average polymerization degree 4, bound phosphorus 3.4 wt% (per solid content), inorganic phosphorus 0.6 wt% 5.8 kg of POS Na salt solution containing 13 wt% solids (per solid) was obtained.
[0041]
[Test Example 2] (Preparation of POS / PDN from chemically synthesized phosphate-bound starch)
(Preparation of phosphate-bound starch)
25 kg of anhydrous monosodium phosphate was added to and dissolved in 200 kg of a slurry containing corn starch (starch weight concentration 40%), and the starch cake was recovered with an Escher dehydrator. This was dried to a moisture of 10% with a flash dryer and then roasted for 2 hours in a shelf dryer with a hot air temperature of 170 ° C. The total phosphate and bound phosphorus in the resulting phosphate-bound starch were 3.4 and 2.8%, respectively.
[0042]
(Preparation of PDN from phosphate-bound starch)
10 kg of the phosphate-bound starch was dissolved at a concentration of 20% by weight, slaked lime was added so that Ca was 50 ppm or more as an enzyme stabilizer, and the pH was adjusted to 6.0 with caustic soda. Next, 120 L of thermostable α-amylase Termamyl was added to 0.05% by weight of starch, heated to 95 ° C. and held for 2 hours. After the heating, it was cooled to room temperature. Subsequently, the reaction was stopped by adjusting the pH to 3.0 with hydrochloric acid. A 50 kg PDN solution containing an average degree of polymerization of 12, solid phosphorus of 2.6% by weight (per solids) and inorganic phosphorus of 0.8% by weight (per solids) of 20% by weight was obtained.
[0043]
(Preparation of POS from phosphate-bound starch)
Using 10 kg of the phosphate-bound starch as a raw material, a PDN solution is prepared in the same manner as described above, adjusted to pH 5.5 by adding hydrochloric acid, and then mold-derived α-amylase (trade name, manufactured by Whangamil Novo Nordisk Bioindustry) Was added at 0.02% by weight to starch and reacted at 60 ° C. for 24 hours. After 24 hours, the reaction was stopped by adjusting the pH to 3.0 with hydrochloric acid and cooled to room temperature. A 50 kg POS solution containing an average degree of polymerization of 6, solid phosphorus of 2.5% by weight (per solid) and inorganic phosphorus of 0.9% by weight (per solid) of 20% by weight was obtained.
[0044]
[Example 1]
500 kg of domestically produced potato starch was decomposed by the method of Test Example 1, and the resulting sugar solution (including POS) was purified and then passed through an anion exchange resin to adsorb POS. POS was eluted as follows. First, 0.55 wt% CaCl in the same amount as the resin capacity 2 Solution, then 1.1 wt% CaCl twice the resin volume 2 The solution was passed through and further eluted in the order of a 4 wt% NaOH solution twice the resin volume. As shown in FIG. 1, recovery of the solution started from a fraction in which the amount of eluate from which POS began to elute was 1.6 times the resin volume, and a fraction in which the amount of eluate was 2.4 times the resin volume was collected. Thereafter, coloring substances and inorganic phosphorus begin to elute, so that the coloring components and inorganic phosphorus contained in the collected POS fraction are small. CaCl at a concentration of about 1% by weight 2 By elution with a solution, it is possible to effectively separate POS and impurities such as colored substances and inorganic phosphorus. The obtained POS solution was sterilized by filtration with a 0.45 μm sanitary filter (manufactured by Loki Techno), concentrated to 50 Bx with a thin film evaporator, applied to a spray dryer (manufactured by NIRO), inlet temperature; 180 ° C., outlet temperature; Drying was performed under the conditions of 110 ° C., atomizer rotation speed: 22000 rpm, and 3 kg of POS Ca salt composition powder was obtained. The average polymerization degree of this product was 4, and the bound phosphorus, inorganic phosphorus, Ca, and Na were 3.6, 0.05, 5.3, and 0.4% by weight, respectively, per dry solid content.
[0045]
[Example 2]
CaCl as in Example 1 2 45 kg of POS solution (7Bx, pH 6.0) eluted with the solution was concentrated to 15 L with an NF membrane (NTR-7450, manufactured by Nitto Denko Corporation) having a salt rejection of 50%. Subsequently, 160 g of powdered activated carbon (equivalent mixture of PM-KI and PM-SX made by Mikura Kasei Co., Ltd.) was added to the membrane concentrate and kept at 50 ° C for 2 hours with stirring, then No. 131 filter paper (Toyo Roshi Kaisha, Ltd.) Powdered activated carbon was removed. This solution was sterilized and filtered with a 0.45 μm sanitary filter, and concentrated to 73 Bx with a thin film evaporator to obtain 3.5 kg of a POS Ca salt composition solution. The average polymerization degree of this product was 4, and the bound phosphorus, inorganic phosphorus, Ca and Na were 3.6, 0.02, 4.8 and 0.2% by weight, respectively, per dry solid content.
[0046]
[Example 3]
To 60 kg of POS Na salt solution (Bx13, pH 6.0) prepared in Test Example 1, 390 g of powdered activated carbon was added and held at 50 ° C. with stirring for 2 hours. Subsequently, the powdered activated carbon was removed with No. 131 filter paper. In this activated carbon treatment liquid, 2 ・ 2H 2 1.4 kg of O was dissolved, sterilized and filtered with a sanitary filter, and powdered with a spray dryer to obtain 6 kg of POS Ca salt composition powder. The average polymerization degree of this product was 4, and the bound phosphorus, inorganic phosphorus, Ca, and Na were 3.6, 0.5, 4.0, and 3.9% by weight, respectively, per dry solid content.
[0047]
[Example 4]
After adjusting the pH to 5.0 by adding hydrochloric acid to 60 kg of POS Na salt solution (Bx13, pH 6.0) prepared by the method of Test Example 1, it was treated with activated carbon and filtered in the same manner as in Example 3. To the obtained POS solution, CaCl 2 ・ 2H 2 A solution prepared by dissolving 1.4 kg of O in 30 L of water was added. Next, the solution was concentrated to 30 L with an NF membrane (NTR-7450), sterilized and filtered with a sanitary filter, and then concentrated to 72 Bx with a thin film evaporator to obtain 6 kg of a POS Ca salt composition solution. The average polymerization degree of this product was 4, and the bound phosphorus, inorganic phosphorus, Ca, and Na were 3.6, 0.4, 3.0, and 2.0% by weight, respectively, per dry solid content.
[0048]
[Example 5]
Hydrochloric acid was added to 60 kg of POS Na salt solution (Bx13, pH 6.0) prepared by the method of Test Example 1 to adjust the pH to 2.5, and then activated carbon treatment and filtration were performed in the same manner as in Example 3. To the obtained POS solution, add CaCl 2 ・ 2H 2 After adding 1.4 kg of O dissolved in 30 L of water, the pH was adjusted to 5.5 with 4% NaOH. The obtained POS solution was concentrated to 30 L with an NF membrane (NTR-7450). Subsequently, the operation of adding 30 L of water to 30 L of the membrane treatment concentrate and concentrating to 30 L with the same NF membrane was repeated twice. The liquid after membrane treatment was sterilized and filtered with a sanitary filter, and powdered with a spray dryer to obtain 6 kg of POS Ca salt composition powder. The average polymerization degree of this product was 4, and the bound phosphorus, inorganic phosphorus, Ca, and Na were 3.6, 0.35, 3.2, and 1.6% by weight, respectively, per dry solid content.
[0049]
[Example 6]
Hydrochloric acid was added to 60 kg of POS Na salt solution (Bx13, pH 6.0) prepared by the method of Test Example 1 to adjust to pH 3.0, and then activated carbon treatment and filtration were performed in the same manner as in Example 3. The obtained POS solution was concentrated to 20 L with an NF membrane (NTR-7450). Continue to add 20 mg of membrane concentrate to MgCl 2 ・ 6H 2 A solution prepared by dissolving 2.1 kg of O in 20 L of water was added, and the pH was adjusted to 5.5 with 4% NaOH. This was concentrated to 20 L with the same NF membrane. Thereafter, the bacteria were filtered by a sanitary filter and concentrated to 72 Bx by a thin film evaporator to obtain 8 kg of a POS Mg salt composition solution. The average polymerization degree of this product was 4, and the bound phosphorus, inorganic phosphorus, Mg, and Na were 3.6, 0.2, 3.0, and 1.7% by weight, respectively, per dry solid content.
[0050]
[Example 7]
Hydrochloric acid was added to 60 kg of POS Na salt solution (Bx13, pH 6.0) prepared by the method of Test Example 1 to adjust to pH 3.0, and then activated carbon treatment and filtration were performed in the same manner as in Example 3. The obtained POS solution was concentrated to 20 L with an NF membrane (NTR-7450). Continue with FeCl in membrane concentrate 20L Three ・ 6H 2 A solution prepared by dissolving 2.77 kg of O in 20 L of water was added, and the pH was adjusted to 5.5 with 4% NaOH. Next, the operation of concentrating to 20 L with the same NF membrane, adding 20 L of water to the membrane concentrate, and concentrating with 20 M to the membrane were repeated twice. This liquid was similarly filtered through a sanitary filter and then dried with a spray dryer to obtain 6 kg of POS Fe salt composition powder. The average polymerization degree of this product was 4, and the bound phosphorus, inorganic phosphorus, Fe, and Na were 3.6, 0.15, 3.2, and 1.5% by weight, respectively, per dry solid content.
[0051]
[Example 8]
300 g of powdered activated carbon was added to 50 kg of the PDN solution (20 wt%) prepared by the method of Test Example 2 and held at 50 ° C. for 1 hour with stirring. To this was added 50 L of water to dilute it twice and filtered through a ceramic filter. The filtrate was concentrated to 30 L with an NF membrane (Nitto Denko NTR-7430) with a salt rejection of 30%. Subsequently, 30L of the membrane treatment solution was added to CaCl 2 ・ 2H 2 A solution prepared by dissolving 1.15 kg of O in 30 L of pure water was added, and the pH was adjusted to 6.5 with 4% NaOH. This was concentrated to 30 L with an NF membrane (NTR-7450). Thereafter, the operation of adding 30 L of water to the membrane concentrate and further concentrating to 30 L with the membrane was repeated three times. This was filtered with a sanitary filter and then dried with a spray dryer to obtain 6 kg of PDN Ca salt composition powder. The average polymerization degree of this product was 15, and the bound phosphorus, inorganic phosphorus, Ca and Na were 2.8, 0.5, 4.0 and 1.1% per dry solid content, respectively.
[0052]
[Example 9]
50 kg of PDN solution (20 wt%) prepared by the method of Test Example 2 was treated with activated carbon, filtered and treated with NF membrane in the same manner as in Example 8. Subsequently, MgCl for food addition to 30 L of membrane treatment solution 2 ・ 6H 2 A solution prepared by dissolving 1.6 kg of O in 30 L of water was added and adjusted to pH 6.0 with 4% NaOH. Furthermore, the operation of adding 30 L of pure water to 30 L of the membrane concentrate and concentrating to 30 L with the membrane was repeated twice. After filtration through a sanitary filter, the product was similarly dried with a spray dryer to obtain 6 kg of PDN Mg salt composition powder. The average polymerization degree of this product was 15, and the bound phosphorus, inorganic phosphorus, Mg, and Na were 2.8, 0.5, 2.5, and 1.3%, respectively, per dry solid content.
[0053]
[Example 10]
50 kg of the POS solution (20% by weight) prepared by the method of Test Example 2 was treated with activated carbon, filtered and treated with an NF membrane in the same manner as in Example 8. Subsequently, CaCl for food addition to 30 L of membrane treatment solution 2 ・ 2H 2 A solution prepared by dissolving 1.15 kg of O in 30 L of water was added and adjusted to pH 6.0 with 4% NaOH. Furthermore, the operation of adding 30 L of pure water to 30 L of the membrane concentrate and concentrating to 30 L with the membrane was repeated twice. After filtering with a sanitary filter, the product was similarly dried with a spray dryer to obtain 6 kg of POS Ca salt composition powder. The average polymerization degree of this product was 7, and the bound phosphorus, inorganic phosphorus, Ca, and Na were 2.8, 0.5, 3.4, and 1.3%, respectively, per dry solid content.
[0054]
【The invention's effect】
According to the present invention, a polyvalent metal salt composition of phosphate oligosaccharide and / or dextrin phosphate excellent in water solubility can be provided. Moreover, the polyvalent metal salt composition of phosphate oligosaccharide and / or dextrin phosphate can be manufactured according to the present invention without forming a precipitate. Furthermore, the polyvalent metal salt composition of the phosphate oligosaccharide and / or dextrin phosphate of the present invention can contain a large amount of polyvalent metal salts such as Ca, Mg, Fe, etc. Products with enhanced absorption can be provided. In particular, organic acid and peptide products have been developed for water-soluble Ca agents, but there are few saccharides with excellent taste and water-soluble Ca agents, widely used in foods, beverages, feeds, fertilizers, metal supplements, It is expected to be used in product fields such as metal absorption accelerators, oral hygiene agents, cosmetics, and detergents.
In addition, according to the method of the present invention, the content of polyvalent metals can be significantly increased, and the effectiveness as a reinforcing agent or supply agent for polyvalent metals such as Ca, Mg, and Fe is increased. As a value can be increased.
[Brief description of the drawings]
[Fig. 1] CaCl from anion exchange resin 2 It is the figure which showed the property of each eluate fraction at the time of eluting POS with a solution.

Claims (3)

リン酸オリゴ糖及び/又はリン酸デキストリンをアニオン交換樹脂に吸着させ、次いで多価金属の塩化物溶液で溶出することを特徴とするリン酸オリゴ糖及び/又はリン酸デキストリンの多価金属塩類組成物の製造方法。  Polysaccharide metal composition of phosphate oligosaccharide and / or dextrin phosphate characterized by adsorbing phosphate oligosaccharide and / or dextrin phosphate on anion exchange resin and then eluting with polyvalent metal chloride solution Manufacturing method. pHを5以下としたリン酸オリゴ糖及び/又はリン酸デキストリンを含む溶液に多価金属の塩化物を加えることを特徴とするリン酸オリゴ糖及び/又はリン酸デキストリンの多価金属塩類組成物の製造方法。A polyvalent metal salt composition of a phosphate oligosaccharide and / or dextrin phosphate, characterized by adding a polyvalent metal chloride to a solution containing a phosphate oligosaccharide and / or dextrin phosphate having a pH of 5 or less Manufacturing method. 多価金属がカルシウム、マグネシウム及び鉄からなる群から選択される少なくとも1種である請求項1又は2に記載の製造方法。The production method according to claim 1 or 2 , wherein the polyvalent metal is at least one selected from the group consisting of calcium, magnesium and iron.
JP2000338136A 2000-11-06 2000-11-06 Polyvalent metal salt composition of phosphate oligosaccharide and dextrin phosphate and process for producing them Expired - Lifetime JP4755333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000338136A JP4755333B2 (en) 2000-11-06 2000-11-06 Polyvalent metal salt composition of phosphate oligosaccharide and dextrin phosphate and process for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000338136A JP4755333B2 (en) 2000-11-06 2000-11-06 Polyvalent metal salt composition of phosphate oligosaccharide and dextrin phosphate and process for producing them

Publications (2)

Publication Number Publication Date
JP2002145893A JP2002145893A (en) 2002-05-22
JP4755333B2 true JP4755333B2 (en) 2011-08-24

Family

ID=18813394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000338136A Expired - Lifetime JP4755333B2 (en) 2000-11-06 2000-11-06 Polyvalent metal salt composition of phosphate oligosaccharide and dextrin phosphate and process for producing them

Country Status (1)

Country Link
JP (1) JP4755333B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4403140B2 (en) * 2003-07-07 2010-01-20 王子コーンスターチ株式会社 Remineralization accelerator
JP2006249316A (en) * 2005-03-11 2006-09-21 Oji Paper Co Ltd Producing method of starch phosphate
US20080274068A1 (en) * 2005-10-05 2008-11-06 Tomoko Tanaka External Preparation for Skin Containing a Phosphorlated Saccharide
JP5349744B2 (en) * 2005-12-19 2013-11-20 松谷化学工業株式会社 Mineral absorption promoter, food and feed
JP5371415B2 (en) * 2008-12-24 2013-12-18 王子コーンスターチ株式会社 Bone density reduction inhibiting composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3861337B2 (en) * 1996-09-11 2006-12-20 王子製紙株式会社 Method for producing phosphate-linked oligosaccharide
JP4200537B2 (en) * 1998-03-06 2008-12-24 王子製紙株式会社 Phosphate-bound starch having high Ca solubilizing activity, oligosaccharide composition thereof, and production method thereof

Also Published As

Publication number Publication date
JP2002145893A (en) 2002-05-22

Similar Documents

Publication Publication Date Title
CN101342184B (en) Use of oligosaccharides in preparing nutritional or pharmaceutical composition
TWI351926B (en) Iron sulfate based phosphate adsorbent
CN107325205B (en) A kind of inulin and oligofructose syrup co-production
TW212183B (en)
PT2148890E (en) Water-soluble iron-carbohydrate derivative complexes, preparation thereof and medicaments comprising them
CN101709336A (en) Method for preparing high-concentration fructose syrup
JPH0728695B2 (en) Food composition having effect of improving serum lipid component
JP4755333B2 (en) Polyvalent metal salt composition of phosphate oligosaccharide and dextrin phosphate and process for producing them
CN102134260A (en) Method for preparing phytic acid
JP3371124B2 (en) Acetyl fucoidan from cultured Okinawa mozuku and its production
JP4729332B2 (en) Deashing inhibiting composition and food and drink containing the same
JP4200537B2 (en) Phosphate-bound starch having high Ca solubilizing activity, oligosaccharide composition thereof, and production method thereof
CN1927803A (en) Method of preparing calcium propionate and calcium lactate with oyster shell as calcium source
JP2785245B2 (en) Natural hydroxyapatite and the like and method for producing the same
JP2003183303A (en) Acidic xylooligosaccharide composition and its manufacturing method
JP4403140B2 (en) Remineralization accelerator
CN113272255A (en) Silicon ion compound organized by carboxylic acid, preparation method of compound and product using compound
JPH082270B2 (en) Method for producing dextrin containing dietary fiber
JP2007020567A (en) Phosphorylated saccharide composition and method for producing the same
JP2003048901A (en) Long-chain xylooligosaccharide composition and method for producing the same
JP3861337B2 (en) Method for producing phosphate-linked oligosaccharide
KR20000036774A (en) Preparing Methode for Aqueous Chitosan
JP4646550B2 (en) Mineral-containing agents and their uses
JP4851215B2 (en) Mineral absorption promoting composition containing mannooligosaccharide
JPH0737474B2 (en) Purification method of high-purity sialic acid

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040615

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040514

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070411

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090402

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110527

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4755333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term