JP4200236B2 - Tip piles for ready-made piles, ready-made piles with tip brackets, foundation pile structure using ready-made piles - Google Patents

Tip piles for ready-made piles, ready-made piles with tip brackets, foundation pile structure using ready-made piles Download PDF

Info

Publication number
JP4200236B2
JP4200236B2 JP2002246247A JP2002246247A JP4200236B2 JP 4200236 B2 JP4200236 B2 JP 4200236B2 JP 2002246247 A JP2002246247 A JP 2002246247A JP 2002246247 A JP2002246247 A JP 2002246247A JP 4200236 B2 JP4200236 B2 JP 4200236B2
Authority
JP
Japan
Prior art keywords
pile
ready
diameter
tip
cylindrical base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002246247A
Other languages
Japanese (ja)
Other versions
JP2004084275A (en
Inventor
好伸 木谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitani Sekisan Co Ltd
Original Assignee
Mitani Sekisan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitani Sekisan Co Ltd filed Critical Mitani Sekisan Co Ltd
Priority to JP2002246247A priority Critical patent/JP4200236B2/en
Publication of JP2004084275A publication Critical patent/JP2004084275A/en
Application granted granted Critical
Publication of JP4200236B2 publication Critical patent/JP4200236B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)

Description

【0001】
【発明の属する技術分野】
杭下端部に、突起、例えば節、スパイラル翼、鋼棒、鋼板等の突起物を形成した既製杭を、所定の拡底根固め部のソイルセメント層に設置し、その突起を利用して高支持力を発現している基礎杭構造、既製杭、既製杭用の先端金具に関する。
【0002】
【従来の技術】
杭穴内に既製杭を埋設する杭基礎構造において、杭穴の根固め部内に、既製杭に形成した突起を位置させ、基礎杭構造の支持力を増強させたものが提案されている(特開平11−280067(公知例A)、特開2002−97635(公知例B))。
【0003】
例えば、公知例Bに記載の図7あるいは図12によれば、円筒形コンクリート杭等の既製杭の下端部において、その下端部の軸部径をその上部の軸部径より小径とし、その小径の下端部軸部の外側面に、環状突起である節を複数形成した下部杭に対し、その上部に、その下部杭の下端部の上部軸部径と同径の上杭とが連結された杭構成とし、また、所定寸法形状の掘削をして根固め部および杭穴軸部とし、該杭穴に所定固化強度のソイルセメントを充填して該杭を埋設して所望の基礎杭が築造され、従来の約2倍の鉛直支持力および引抜き力が実現されている。
【0004】
尚、公知例A、Bの以前にも、支持力増加を目的として既製杭の下端部に様々な突起を形成する案が多数提案されているが、単なる案に止まり、いずれも突起の形状、間隔などがその突起面等でのせん断力を充分生かす構造となっておらず、また杭穴寸法形状および充填されるソイルセメント層品質等も所定値に設定するように充分配慮されておらず実際に支持力として定量的な実測値が明示されるまで高支持力実現の条件が極められていなかった。このため、この種の施工実績がないようである。
【0005】
【発明が解決しようとする課題】
(1)前記高い支持力を発揮できる基礎杭構造では、高い支持力は、杭穴の根固め部で発現する先端支持力がその主要部を占めていると考えられている。この場合、支持力の大小は、根固め部に埋設される既製杭の形状・寸法に左右されるので、求める支持力が所要値を満たす形状・寸法の下端部を有する既製杭の調達が必要である。また、本来、基礎杭構造に要求される支持力としては、建造物等の上載荷重にきめ細かく対応した支持力を有する根固め部が必要である。言い換えればその要求値を満たす形状・寸法の既製杭を、所定寸法・形状に掘削した根固め部に所要固化強度のソイルセメントを充填してその所定位置に設置することが経済的である。
【0006】
一般に、コンクリート杭は、限られた形状寸法系列の型枠にコンクリートを注入して遠心成型し、脱型養生して、製造させるが、現場への搬入できる状態にするまで、1週間程度の期間を要していた。従って、現場毎に最適な支持力を得られる型枠をその都度製作することは現実的でなかった。
【0007】
従って、各杭穴に最適の支持力を有するように、複数の節を下端部に形成して、所定形状・寸法のコンクリート杭を使用することが望ましいが、既製杭の調達期間、施工期間、コストの両面から、所要強度以上の大きい形状・寸法の既製杭を用いる傾向があり、経済的では無かった。
【0008】
(2)また、突起付きコンクリート杭として、複数の節を下端部に形成したコンクリート杭を使用した場合、通常の円筒状(ストレート状)の既製杭と異なり、この既製杭では、節部の縁欠けが生じ易く、既製杭の製造時(突起部の付加、脱型、養生)、現場への搬送時、現場での移動時等で、吊上げ、移設、仮置き、運搬などで慎重に取り扱う必要があった。
【0009】
また、突起部を大径にすれば、当然支持力の増大は可能であるが、突起部の外径(節径等)を大きくすると、既製杭の下端部側が上端部側に比して重くならざるを得なかった。従って、長い杭自身の重量バランスの点から強度上問題も多く、大支持力の大径コンクリート杭の場合は、突起部外径(例えば、節径)寸法が軸部径寸法の20%程度までしか実現されていなかった。即ち、根固め部の支持力増強値が限られていた。
【0010】
(3)また、軸部に対し節部の比率が大きい大径杭および、大きい突起径(節径)で広い表面積を利用して大支持力を実現する周辺技術も未解決であったので、2ランク又は3ランク上の口径に相当するような大支持力を有する既製杭の実現が困難であった。
【0011】
【課題を解決するための手段】
然るにこの発明では、既製杭との連結部を有する筒状基部に、上方又は下方にせん断力を伝搬させ先端支持力として利用することができる支持面を形成し、あるいは、突起部を形成した先端金具を使用するので、前記問題点を解決した。
【0012】
即ちこの発明は、 予め掘削しあるいは既製杭を埋設しながら掘削をした杭穴の根固め部内に位置させて使用する先端金具であって、鋼管からなる筒状基部の上端部にコンクリート杭からなる既製杭との連結部を形成し、前記筒状基部の内径を上部に連結する既製杭の内径と略同一に形成し、前記筒状基部の外側面に、斜め上方又は斜め下方に向けて、せん断力を伝搬させ先端支持力として利用することができる支持面を、1つ又は複数箇所に形成し、前記支持面を前記筒状基部の外側面に形成した凹部から構成し、前記先端金具の長さを前記根固め部内に完全に収容できる長さで形成したことを特徴とする既製杭用の先端金具である。
【0014】
また、予め掘削しあるいは既製杭を埋設しながら掘削をした杭穴の根固め部内に位置させて使用する先端金具であって、鋼管からなる筒状基部の上端部に該筒状基部より大径の大径部を形成し、該大径部をコンクリート杭からなる既製杭との連結部を有する構成とし、前記筒状基部の内径を上部に連結する既製杭の内径と略同一に形成し、かつ前記筒状基部の外径を前記既製杭の外径より小径に形成し、前記筒状基部の外側面に、1つ又は複数の突起部を形成し、前記先端金具の長さを前記根固め部内に完全に収容できる長さで形成したことを特徴とする既製杭用の先端金具である。
【0015】
また、予め掘削しあるいは既製杭を埋設しながら掘削をした杭穴の根固め部内に位置させて使用する先端金具であって、鋼管からなる筒状基部の上端部に該筒状基部より大径の大径部を形成し、該大径部をコンクリート杭からなる既製杭との連結部を有する構成とし、前記筒状基部の内径を上部に連結する既製杭の内径と略同一に形成し、かつ前記筒状基部の外径を前記既製杭の外径より小径に形成し、前記筒状基部の外側面に突起部を形成してなり、前記突起部の外径を、前記大径部の外径と同等又は前記大径部より大径に形成し、前記先端金具の長さを前記根固め部内に完全に収容できる長さで形成したことを特徴とする既製杭用の先端金具である。
【0016】
前記において、突起部は、略円盤状とし、1個又は上下に複数個を並列して形成し、一の突起部の上下面と、該一の突起部に隣接して配置された他の突起部の対向する面とに所定間隔を設け、または、大径部下面と下方に位置する突起部上面とに所定間隙を設けて構成し、該突起部の外径Dを前記既製杭の外径Dと同等又は前記既製杭の外径Dより小さく形成し、たことを特徴とする既製杭用の先端金具である。また、上面を略水平面とした円盤状基部の下面を、下方に向けて徐々に縮径した部分円錐状のテーパー面を形成して、突起部を構成したことを特徴とする既製杭用の先端金具であ
【0017】
また、他の発明は、予め掘削しあるいは既製杭を埋設しながら掘削をした杭穴の根固め部内に位置させて使用するコンクリート杭からなる既製杭であって、所定外径の主軸部を有する前記既製杭の下端に、前記主軸部より外径が小径で、内径が略同一の鋼管からなる筒状基部を有する先端金具を連結してなり、前記筒状基部に横方向の突起部を形成し、該突起部の先端を、前記主軸部の最大外径と同等位置又は前記主軸部の最大外径より外方に突出させ、前記先端金具の長さを前記根固め部内に完全に収容できる長さで形成したことを特徴とする先端金具を有する既製杭である。
【0018】
また、他の発明は、所定軸径の主軸部を有するコンクリート杭からなる既製杭の下端に、横方向の突起部を突設した先端金具を連結し、該既製杭を、予め掘削しあるいは既製杭を埋設しながら掘削をした根固め部を有する杭穴内に、前記突起部が前記杭穴の根固め部内に位置するように、埋設してなる基礎杭の構造であって、前記先端金具は、前記主軸部より外径が小径で、内径が略同一の鋼管からなる筒状基部の外側面に、横方向の突起部を形成し、該突起部の先端が前記主軸部の最大外径と同等又は最大外径より大径に形成し、前記先端金具を前記根固め部内に完全に収容したことを特徴とする既製杭を使用した基礎杭構造である。
【0020】
前記における「せん断力の伝搬」とは先端金具を取り付けた既製杭を杭穴内の固化したソイルセメント層内に埋設した場合に当該ソイルセメント層へ向けてせん断力を伝搬できることをいう。また「せん断力を伝搬させることができる支持面」は、筒状基部1の外側面に突起を形成した場合には、当該突起の下面が斜め下方に向けてせん断力を伝搬されることができる支持面Bを構成し、当該突起の上面が斜め上方に向けてせん断力を伝搬されることができる支持面Aを構成する(図10(a))。この場合、突起の上下面は、垂直面に対して多少傾斜した面であればその機能を果たす。せん断力の伝搬する方向は、垂直面に対して斜めに作用するので、当該伝搬する方向と直角に形成することが望ましい。
【0021】
また、筒状基部1の外側面に凹部を形成した場合には、凹部の側壁面が各支持面A、Bを構成する(図10(b))。更に、支持面は、突起や凹部に限らず、筒状基部の外側面に段差を形成して同様の機能を有する支持面Aとすることもでき(図10(c)(d))、その形状は任意である。要は、筒状基部1の外側面にせん断力の伝搬に有効な何らかの手段が形成され、先端支持力として利用できれば、支持面を構成できる。
【0022】
また、前記における筒状基部は、応力の伝搬バランス上、円筒状とすることが望ましいが、角筒等その形状は任意である。
【0023】
また、前記において、先端金具12の筒状基部1の外径Dは、既製杭14の外径Dより小径に形成すれば(D<D。図8(a)、図1)、既製杭14の外径Dに応じた杭穴を掘削すれば良いので望ましい。この場合には、筒状基部1の上端部に、既製杭14の外径Dに応じた大径部2を形成する(図8(a)、図1)。また、この場合、支持面を形成する環状突起10の外径Dを、既製杭14の外径D(即ち、大径部2の外径)より小径とし(D<D。図8(a))、あるいは、既製杭14の外径Dより大径とすることもでできる(D<D。図1)。また、当然、D=D、とすることもできる。
【0024】
また、筒状基部1の外径Dを、既製杭14の外径Dと同等とし(D≒D。図8(b))、あるいは、筒状基部1の外径Dを、既製杭14の外径Dより大径とすることもできる(D<D。図8(c))。
【0025】
また、前記において、筒状基部1の内径Dを既製杭14の内径と同等とすれば(図8(a)、図1、図2)、特に中掘工法の際に既製杭14と筒状基部1とに段差が生ぜず有利であるが、異なる寸法とすることもできる(図8(b)(c))。
【0026】
【発明の実施の形態】
(1)この発明の先端金具12は、既製杭14の下端部(端板部等)にボルトなどで装着可能な構造とし、鋼管本体1の上端部に連結用の大径部2を形成する。鋼管本体1の中間部及び下端部(大径部を除く部分)には、環状突起10、10が形成されている。環状突起10の外径Dは、大径部2即ち既製杭14の最大外径Dと同等又はより大きく形成されている(図1)。
【0027】
既製杭(ストレート状)14の先端に先端金具12を連結し、既製杭14を、ソイルセメント等が充填された杭穴32内に下降して、杭穴下端部に形成した根固め部34に先端金具12が位置するように、既製杭14を埋設して、ソイルセメントが固化した後に、基礎杭構造37を形成する(図3)。ソイルセメントは、地盤強度以上の所定の固化強度を有することが望ましい。
【0028】
各基礎杭構造37の上端に、基礎ベース及び建造物等の上部構造物を構築する。
【0029】
(2)装着する先端金具12の機能、構造等
【0030】
既製杭14から伝達されてくる建造物等の荷重を、先端金具12の環状突起10の表面等からのせん断力等として支持地盤等に伝搬させ、先端金具12は杭穴32内の固化ソイルセメント層と一体となって、先端支持力として支持地盤に支持する機能を有している。
【0031】
先端金具12の上端部の大径部2は、その上面が、既製杭14の下端板17の下面に密着して、既製杭14に装着する連結部として機能する。大径部2は、鋼管本体1に溶接され、あるいは鋼管本体1と一体に成形して形成する。
【0032】
また、鋼管本体1の外側面8は、杭穴32内の固化ソイルセメントと付着して、一体に埋設されるように機能する。
【0033】
(3)各構成部分の説明
【0034】
(a) 先端金具12の上端部に位置する大径部(連結部)2は、その上方に位置する既製杭14から伝達されてくる建造物等の荷重を鋼管本体1および環状突起10へ伝達する。更に、大径部2の外側縁下面(鋼管本体との段差部分)から杭穴内のソイルセメント層を通じて鉛直方向のせん断力を伝搬させて、環状突起10と共に、支持力を増強する機能も有する。
【0035】
大径部2と鋼管本体1とは溶接あるいは成形加工などにより接続・固着等され、応力の伝達が円滑に伝搬するように、一体化した構造の鋼材を使用する。また、大径部2には、既製杭14と接合する為のボルト穴4、4を有する筒状表面材5が形成されており、強度上の必要性により、筒状表面材5を上下に複数形成し、応力分散を図ることも可能である。また、大径部2の傾斜した段差部下面7と鋼管本体1の外側面との間に斜め状の補強リブを複数形成することもできる(図示していない)。
【0036】
(b) 環状突起10は、杭穴32内のソイルセメント層に一体に付着して埋設され、環状突起10の上下表面は所望支持力に見合ったソイルセメント層との付着面積および強度(厚さ、材質)を有することが必要であり、通常、鋼材を使用する。従って、環状突起10は、複数形成されることが望ましい。鉛直荷重が作用した際に、各環状突起10の下面41、段差部下面43からの下方向へのせん断力が斜め下方(鉛直下方となす角度θは、約30度)へ充分伝搬し、かつ引抜力が作用した際に、各環状突起10の上面42から上方向へのせん断力が斜め上方(鉛直上方となす角度θは、約30度)へ充分伝搬できるように所定の間隔Lを設けることが望ましい。このような環状突起10、10が、鋼管本体1の外側面8に溶接等で固着形成し鋼管本体1と一体的に構成されている。
【0037】
環状突起10の構造は、例えば、鋼板によるドーナツ形状で、鋼管本体1に2個取り付けた構造(図1)、鋼板によるドーナツ形状で3個取り付けた構造(図5(a))とすることができる。この場合、環状突起10の上下面と鋼管本体1の外側面8との間に、補強リブ11、11を形成する(図1、図5(a))。また、補強リブ11は、環状突起の上面側と上下両面に位置をずらして形成することもできる(図示していない)。
【0038】
またドーナツ状の形成は、鋼板に代えて鋼棒を重ねて巻き付けて同様の構造とすることもできる(図示していない)。
【0039】
また、環状突起10は、ドーナッツ状の鋼板を捻って、スパイラル翼形状を2箇所に形成した構造とすることもできる(図5(b))。この場合、ソイルセメント層内でのせん断力の伝搬を考慮して、スパイラル翼の傾斜角度は小さくすると共に、一周より少なく形成することが望ましい。
【0040】
また、環状突起10は、肉厚が厚い断面台形状のドーナッツ状に形成することもできる(図5(c))。この場合、環状突起10は中空又は中実いずれでも可能である。
【0041】
(c) 鋼管本体1は、大径部2及び環状突起10と一体となり、更に、埋設した際に、杭穴32内の固化ソイルセメント層と一体となって、上下方向の応力を伝達、先端支持力として支持する基体となる構造体である。従って、鋼管本体1は応力伝達、支持に見合った所要強度の厚さt、材質が必要である。また、鋼管本体1の内部は、接続する既製杭14の中空部と同一内径で連通して、中空部内にソイルセメントが均一に充填できるように形成する。また、接続する既製杭14の中空部と同一内径で形成することにより、中掘り工法に適用する場合、掘削ロッドを支障無く挿通できる。
【0042】
(4)先端金具12の寸法
【0043】
鋼管本体1の内径寸法Dは、上部に位置する既製杭14の中空部内径寸法以上とすれば良いが、鋼管本体1の外径を小径にして、突起の長さLを大きくし、環状突起10、10の表面積を大きくするために、既製杭14の中空部内径と略同一寸法の内径とが望ましい(図1)。
【0044】
また、環状突起10の外径Dは、上部に位置する既製杭14の外径D以上と寸法とする(図1)。尚、既製杭14の外径Dと略同一とすることもできる。
【0045】
また、環状突起10の鋼管本体1の外側面からの長さL(=「D−D」の2分の1)と、設置間隔Lとは、下方へのせん断力の伝搬角度θ(鉛直上方又は下方と成す角度≒30度)とした場合、せん断力を充分発現できるように、
<L×tanθ
となるように形成し、かつ、ソイルセメント層へのせん断力の伝搬の面及びソイルセメントとの付着の面の両面から、環状突起10の表面積を確保できるように、できるだけLを大きくすることが望ましい(図1(a))。
【0046】
(5)また、前記にのような技術的思想から、先端金具12に代わり、既製杭14の下端に螺旋翼付きの鋼管杭(取付ける既製杭より小径)を固定して、この発明の既製杭14を構成することもできる(図示していない)。
【0047】
【実施例1】
図面に基づきこの発明の先端金具12の実施例を説明する。
【0048】
(1)外径D、内径Dの鋼管本体(厚さt)1の上端部に、外径Dの大径部2を形成し、大径部2を既製杭14との連結部とする。大径部2の上端側の外側面に、連結用バンドを嵌装する為の環状溝部3を形成する。連結部の外径、即ち、大径部2の外径Dは、接続するべき既製杭14の外径(下端部の外径D)と略同一としてある。
【0049】
大径部2の外側面には、環状溝部を有する筒状表面材5と、筒状表面材5の上端内側に連続して、既製杭14の下面13と当接するドーナッツ状の当接材6とが埋め込まれている。ボルト穴4は、筒状表面材5に形成されている。
【0050】
鋼管本体1の外側面に、外径D、厚さtの円盤状(ドーナツ状)の環状突起10、10を突設する。各環状突起10の上下面と鋼管本体1の側面との間に、三角形の補強リブ11、11が等間隔に突設されている(図1)。また、各環状突起10、10の設置位置は、
・最下端に位置する環状突起10と鋼管本体1の下端13との距離L1−1
・上側に位置する環状突起10と、下側に位置する環状突起10との距離L1−2
・最上端に位置する環状突起10と大径部2との距離L1−3
で形成されている。
【0051】
また、L1−1、L1−2、L1−3は、以下の値で形成される。
・L1−1 0.5m
・L1−2 1.0m
・L1−3 1.0m
【0052】
以上のようにして、先端金具12を構成する(図1)。先端金具12は、上端(大径部2の上端)から下端13まで内径Dで、形成されている。
【0053】
前記における間隔L(L1−2、L1−3)は、環状突起10の下面及び上面、大径部2の段差部下面7からのせん断力の有効な伝搬を考慮して、
>L×tanθ≒L×tan30°=L×√3
となるように形成されている。尚、L1−1は、上記条件具備する必要はなく、
1−1=0
とすることもできる(図6(a))。
【0054】
また、前記各寸法は、以下のように形成する。
【0055】

Figure 0004200236
【0056】
(2)次に、前記実施例に基づくこの発明の先端金具12の使用、即ち既製杭14の構成について説明する。
【0057】
コンクリート製の既製杭14は、下端部に、鋼製の接続金具16が一体に取り付けられている。接続金具16は、円盤状の下端板17と、下端板17の上面周縁部に連結し、既製杭14の側面に周設した筒状の側板18とからなる。側板18は、下端板17に連続した部分に、材厚を厚くした肉厚部19を有する。側板18に、先端金具16の環状溝部3と略同一形状の環状溝部20を形成する。環状溝部20には、先端金具12のボルト穴4、4に対応したボルト穴21、21、が形成されている。環状溝部20、ボルト穴21は、肉厚部19に形成されている(図2(a))。
【0058】
接合用のバンド23は、先端金具12の大径部2と既製杭14の下端板17に嵌装できる内径を有する鋼製で構成される。バンド23には、上側の内面に、環状溝部20に嵌挿できるように内方に向けて突出する環状凸部25が形成され、下側に、環状溝部3に対応した同様の環状凸部26が形成されている。また、バンド23の環状凸部25、26には、ボルト穴4、21に対応した貫通孔27、27が形成され、バンド23の外面で、各貫通孔27の外面側に拡径して収容部28が形成され、接合用のボルト30の頭部を収容できるようになっている。また、バンド23は、連結作業がし易いように、3つのバンド片24、24に等分割されている。
【0059】
既製杭14を縦に吊り上げて、あるいは既製杭14を地面に寝かせた状態で、既製杭14の下面(下端板17の下面)に先端金具12の上面(大径部2の上面)を当接して合わせ、両当接部分にバンド片24、24、を環状に並べて当接してバンド23とし、バンド23の環状凸部25、26を既製杭14の環状溝部20、先端金具12の環状溝部3に夫々嵌挿する。貫通孔27、27からボルト30、30を挿通して、ボルト穴21、4にボルト30の先端部を螺合緊結して、バンド23を既製杭14及び先端金具12に固定し、既製杭14に先端金具12を一体に固定する(図2(b))。
【0060】
この状態で既製杭14の内径と、先端金具12の内径は略同径に形成されている。即ち、既杭14の内側面15と先端金具12の内側面9とは略面一に形成される。
【0061】
以上のようにして、先端金具12付きの既製杭14を構成する(図3)。
【0062】
【実施例2】
次に、この発明の基礎杭構造37について説明する。
【0063】
(1)口径D11で長さLの杭穴32の軸部を掘削し、杭穴32の軸部33に連続して深さLに亘り口径D12に拡底掘削して、杭穴32の根固め部34を形成する(図3)。杭穴32内には、根固め部34内に根固め液を、軸部33に杭周固定液を夫々充填する。根固め液、杭周固定液は、セメントミルク等の固化性材料、又は固化性材料を掘削土と撹拌混合して形成したソイルセメントから構成する。根固め液は、支持地盤の地盤強度と同等の固化強度を有するように調整し、例えば、20N/mm程度とするが、それ以上の固化強度とすることもできる。
【0064】
(2)杭穴32内に、下端に先端金具12を取り付けた既製杭(ストレート形状)14を埋設する。
【0065】
この際、先端金具12が完全に根固め部34内に収容され、かつ既製杭14の下端22(先端金具12の上端)が所定長さLだけ、根固め部34内に入り、即ち、根固め部の上端から既製杭14の下端22(先端金具12の上端)までの距離をLとする。また、先端金具12の下面13が根固め部34の底35から所定長さLだけ上方に位置するような位置で、既製杭14の下降を停止して、その状態で既製杭14を保持する(図3)。
【0066】
(3)根固め液及び杭周固定液が固化発現した状態で、この発明の基礎杭構造37を構成する(図3)。
【0067】
(4)他の実施例
【0068】
前記実例において、杭穴の掘削完了後に既製杭を埋設するいわゆる先掘工法について説明したが、杭穴を掘削しながら既製杭を埋設するいわゆる中掘工法に適用して、従来と同様に基礎杭を構築することもできる。
【0069】
即ち、先端金具12を取り付けた既製杭14の中空部に、中掘用掘削ロッドを挿通し、先端金具の下端から掘削ヘッドを突出して杭穴を掘削しながら、既製杭14を下降させる(図示していない)。続いて、既製杭14Aを連結して、掘削ロッドを継ぎ足して、既製杭14、14Aを下降し、所定位置まで下降したならば、拡径根固め部を形成し、セメントミルクを注入撹拌し、セメントミルク類を吐出しながら掘削ロッドを、既製杭14、14A、先端金具12の中空部内を通って、地上に引き上げる。
【0070】
以下、既製杭14を下降しながら、前記先掘工法と同様に、先端金具12が完全に根固め部34内に収容され、かつ既製杭14の下端22が所定長さLだけ、根固め部34内に入り、かつ先端金具12の下面13が根固め部34の底35から所定長さLだけ上方に位置するような位置で、既製杭14の下降を停止して、その状態で既製杭14、14Aを保持する。以上で、根固め液等が固化発現して、基礎杭構造を構築する。
【0071】
【実施例3】
本願発明の基礎杭構造と、従来の基礎杭構造とを、同じ地盤に適用した場合の比較を説明する。
【0072】
(1)本願発明
【0073】
図4図示の地盤内に根固め部34を有する杭穴32を掘削し、前記実施例1のように、既製杭14の下端に先端金具12を取付け、杭穴32内に埋設して基礎杭構造37を構築する(図3、図4)。各部の寸法は、以下の通りとする。
【0074】
Figure 0004200236
【0075】
(3)比較例
【0076】
同じ既製杭14を上杭とし、先端金具12に代えて、節39付きの下杭14Aを連結して(図9)、前記実施例2の杭穴32内に埋設して、基礎杭構造を構築する。下杭14Aは、外径Dの上部軸部44に連続して、縮径して外径Dとした下部軸部45が形成され、両軸部44、45の外側面に外径Dの環状突起46、46が長さLの間隔を空けて、3個形成されている。
【0077】
3個の環状突起46の内、中央に位置する環状突起46は、上部軸部44と下部軸部45の段差部に形成され、上側の環状突起46は上部軸部44の外側面に、下側の環状突起46は下部軸部45の外側面に夫々形成される。また、上側の環状突起46と下杭14Aの上端47とは距離Lで形成され、下側の環状突起46と下杭14Aの下端48とは距離Lで形成されている(図9)。
【0078】
各寸法は、以下の通りとする。
【0079】
Figure 0004200236
【0080】
(3)本願発明と比較例のと比較
実施例1、2の基礎杭構造37に、載荷試験を実施した所、最大荷重として、7MN以上の値が得られた。この値は、同じ地盤(図4)に比較例の基礎杭構造を形成した場合と同様の値である。
【0081】
また、実施例1、2の基礎杭構造37では、ソイルセメントとの付着表面積は、比較例の表面積の約1.5倍となっており、更に、高い鉛直支持力が得られる可能性があり、耐力としても安定性が期待できる。
【0082】
例えば、実施例1、2で、環状突起10の個数を2個とし、あるいは3個以上とし、あるいは、環状突起の外径Dを、前記範囲内で増減させることにより、表面積を容易に増減させることができる。
【0083】
従って、本願発明では、上記表面積の増減、ソイルセメント固化強度制御、鋼管本体1や環状突起10の厚さt、tを調節することにより、支持力の調節が容易にできる。
【0084】
【実施例4】
図6に基づき、この発明の他の実施例を説明する。この実施例は、環状突起の形状を変えた接続金物の実施例である。
【0085】
(1)外径D、内径Dの鋼管本体(厚さt、全長892.4mm)1の上端部に、外径Dの大径部2を形成し、大径部2を既製杭14との連結部とする。大径部2は、上面を水平平面状とし、下面側を徐々に小径とした部分円錐状の傾斜斜面40を形成してある。連結部の外径、即ち、大径部2の外径Dは、接続するべき既製杭14の外径(下端部の外径)と略同一としてある。
【0086】
鋼管本体1の下端部外側面に、外径D4の円盤状(ドーナツ状)の環状突起10を突設する。環状突起10の上面42は、水平面状に形成し、下面41は部分円錐状の傾斜斜面を形成し、傾斜斜面の下端は鋼管本体1の下端13に至っている。
【0087】
以上のようにして、先端金具12を構成する(図6(a))。先端金具12は、上端(大径部2の上端)から下端13まで内径Dで、形成されている。また大径部2と環状突起10との間隔はL1−3で形成され、前記実施例1と同様に、
1−3>L×tanθ≒L×tan30°=L×√3
を満たすように形成されている。
【0088】
(2) 尚、寸法は、下記のように形成する。
【0089】
Figure 0004200236
【0090】
(3)前記先端金具12の大径部2の上面を、前記実施例1と同じ既製杭14の下端板17の下面に当て、大径部2と下端板17とをボルトや溶接等で一体に固定して、先端金具12付きの既製杭14を構成する(図6(b))。先端金具12付きの既製杭14は、前記実施例2と同様に、根固め部34を形成した杭穴32内に埋設して、基礎杭構造を形成する(図示していない)。尚、ボルトで固定する場合には、大径部に、既製杭14の下端板のボルト穴と連通する貫通孔を形成してある(図示していない)。
【0091】
(4) この実施例の先端金具12では、前記実施例1の先端金具12(図1)に比して、支持力が多少劣った設計となっているが、施工上取扱い易いと共に、杭穴の根固め部の掘削径を小さく形成できる等の利点がある。
【0092】
即ち、具体的には、以下のような利点が考えられる。
【0093】
(a) 筒状基部の長さを短くし(長さ1.0m程度。実施例1では、長さ2.5m程度)、先端金具における支持力の発揮に寄与が少ない、筒状基部の側面の面積を減らした。これにより、杭穴の根固め部の拡底掘削する長さを短くし、結果、施工時間の短縮、セメントミルクの使用量を削減する等を実現できる。
【0094】
(b) また、環状突起10の根付け部分を厚くし、機械的強度を高めた。
【0095】
(c) また、環状突起の下面41を部分円錐状の傾斜斜面としたので、根固め部内のソイルセメント層及び地盤への応力が効率的に伝搬される。
【0096】
(d) 鉛直支持力の発生に最も寄与すると考えられる先端部に広い表面積の環状突起10としたので、少ない突起部で大きな鉛直支持力を発揮できる。
【0097】
(e) 鉛直支持力の発生に寄与する環状突起10の下面41を傾斜させて形成したので、先端金具を杭穴へ埋設する際に環状突起10の下面41に泥土が付着し難い。従って、ソイルセメント層と下面41との付着を高め、せん断力のソイルセメント層への伝搬を確実になし得る。
【0098】
(f) 既製杭の最先端に最も大径な部分が形成してあるので、既製杭を埋設する際に、既製杭のセンタリング(杭穴の芯との芯合わせ)が容易となる。
【0099】
(5) また、鋼管本体1の中間部に、前記実施例1と同様に、ドーナツ状の環状突起10を更に追加すれば、支持力を増加させることができる(図示していない)。この場合には、前記実施例1と同様に、
1−2>L×tanθ≒L×tan30°=L×√3
の条件を満たすように形成する。
【0100】
(6)他の実施例
【0101】
前記実施例において、大径部2は、下面側を徐々に小径とした部分円錐状の傾斜斜面40を形成したが、他の構成とすることもできる。例えば、大径部2を円盤状に形成し、円盤状の下面と鋼管本体1の外側面との間に補強リブ49、49を取り付けることもできる(図7)。この場合、円盤状とした大径部2に、既製杭14の下端板17のボルト穴に対応させて、貫通孔を形成すれば(図示していない)、大径部2を既製杭14の下端板17にボルトによる固定が容易にできる。この場合、貫通穴の間に補強リブ49、49を形成すれば、効率的に補強できる。
【0102】
また、前記実施例において、環状突起10の下面41の傾斜を水平面に対して30°程度としたが、45°程度とすることもできる(図7(a)(b))
【0103】
【発明の効果】
(1)この発明は、既製杭に連結できる大径部を有する筒状基部を形成し、小径の筒状基部の外側面に突起部を形成して先端金具を構成したので、汎用のコンクリート杭の下端に先端金具を連結して、所望の支持力を発揮できる効果がある。
【0104】
また、突起部の外径を、大径部の外径と同等又はより大径に形成して先端金具を形成した場合には、突起部の表面積を容易に大きく取ることができ、更に大きな支持力を期待できる。
【0105】
即ち、円筒形コンクリート杭などの既製杭下端部に突起を形成する代りに、汎用性のある円筒形杭(コンクリート杭等)の既製杭の下端面に、建造物の所要支持力に最適な形状・寸法の突起付き筒状基部を装着できるので、過大な形状寸法及び支持力の杭を選択する必要がなく、建造物に必要な支持力値を有する基礎杭を容易かつ短期間に調達・提供できる。
【0106】
(2)先端金具の筒状基部の内径を、上部に連結する既製杭と同一とした場合には、その筒状基部の外径が連結する既製杭の軸部径より大幅に小径となるので、突起部の表面積を容易に大きくできる効果がある。
【0107】
また、従来の高支持力を発揮できる大径杭にない軸径比率の大きい(軸径に比して突起部外径が大きい)突起を有する基礎杭を容易に提供できる。従って、従来の突起部の総表面積では地盤の支持力が不足する場合に、従来の突起付き杭の場合より大きくかつ面積の大きい突起が容易に加工・形成できる。よって、杭穴の掘削・形成寸法を適宜適合させることにより、従来より耐力の大きい基礎杭が簡便に短納期で実現できる。
【0108】
即ち、上部に使用する円筒形既製杭の外径を一定にして、先端金具を使用することにより、根固め部による支持力を容易に増強できるので、連結する円筒形既製杭の外径を変更しないで、突起付きの先端金具の加工・成形と根固め部の掘削寸法変更などで容易に短期間に設計変更に対応できる。
【0109】
また、ある外径の円筒形既製杭に対して、外径を1ランク上とした場合と同等の支持力を容易に実現できる。具体的には、600φの既製杭で700φ相当のの支持力が容易に実現できる。
【0110】
(3)また、既製杭に突起を形成した場合と異なり、破損し難い鋼材を利用した先端金具を使用するので、突起付き先端金具と既製杭を分離して製造・移送し、現場で既製杭の下端面に先端金具を装着する施工方法が可能である。よって、製造、移送及び吊上げ等が個別に処理でき、調達および取扱いで杭材の破損・損傷など特別の品質・取扱等の管理が不要となり施工作業が安定する。
【図面の簡単な説明】
【図1】この発明の先端金具の実施例で、(a)は正面図、(b)は底面図、(c)は縦断面図である。
【図2】この発明の先端金具と既製杭との連結を表す一部拡大縦断面図で、(a)は連結前、(b)は連結後を表す。
【図3】この発明の基礎杭構造の実施例の縦断面図である。
【図4】実施例2を適用する地盤と既製杭の設置状況を説明する図である。
【図5】(a)〜(c)はこの発明の先端金具の他の実施例の正面図である。
【図6】他の先端金具を使用した既製杭の縦断面図で、(a)は接合前、(b)は接合後を夫々表す。
【図7】同じく他の先端金具を使用した既製杭の縦断面図で、(a)は接合前、(b)は接合後を夫々表す。
【図8】(a)〜(c)は同じく他の先端金具を使用した既製杭の縦断面図である。
【図9】比較例の既製杭の構成を表す縦断面図である。
【図10】(a)〜(d)は、この発明の先端金具の支持面とせん断力の伝搬を説明する概略した縦断面図である。
【符号の説明】
1 鋼管本体(筒状基部)
2 大径部
3 環状溝部
4 ボルト穴
5 筒状表面材
6 当接材
8 外側面
9 内側面
10 環状突起(突起部)
11 環状突起のリブ
12 先端金具
13 先端金具の下面
14 既製杭
14A 比較例の下杭
15 既製杭の内側面
16 既製杭の接続金具
17 既製杭の下端板
18 既製杭の側板
19 既製杭の側板の肉厚部
20 既製杭の環状溝部
21 既製杭のボルト穴
22 既製杭の下端
23 連結用のバンド
24 バンド片
25、26 バンドの環状凸部
27 バンドの貫通孔
28 バンドの収容部
30 ボルト
32 杭穴
33 杭穴の軸部
34 杭穴の根固め部
35 杭穴の根固め部の底
37 基礎杭構造
40 先端金具の環状突起の傾斜面
41 先端金具の突起部下面
42 先端金具の突起部上面
44 比較例の上部軸部
45 比較例の下部軸部
46 比較例の環状突起
A 支持面[0001]
BACKGROUND OF THE INVENTION
A pre-made pile with protrusions such as nodes, spiral wings, steel rods, steel plates, etc. formed on the lower end of the pile is placed on the soil cement layer of the predetermined deepened root-solidified part, and the protrusion is used for high support The present invention relates to a foundation pile structure, a ready-made pile, and a tip fitting for a ready-made pile.
[0002]
[Prior art]
In a pile foundation structure in which a ready-made pile is embedded in a pile hole, a structure in which a protrusion formed on the ready-made pile is positioned in the root portion of the pile hole to enhance the support capacity of the foundation pile structure has been proposed (JP-A 11-280067 (known example A), JP-A-2002-97635 (known example B)).
[0003]
For example, according to FIG. 7 or FIG. 12 described in the known example B, in the lower end portion of a ready-made pile such as a cylindrical concrete pile, the shaft diameter of the lower end portion is smaller than the shaft diameter of the upper portion, and the smaller diameter On the outer surface of the lower end shaft portion of the lower pile with a plurality of nodes that are annular projections, the upper pile was connected to the upper pile with the same diameter as the upper shaft diameter of the lower end portion of the lower pile Pile construction, excavation of a predetermined size and shape to form a root solidified part and a pile hole shaft part, filling the pile hole with soil cement of a predetermined solidification strength and burying the pile to build a desired foundation pile As a result, a vertical support force and a pulling force approximately twice that of the prior art are realized.
[0004]
In addition, before the known examples A and B, many proposals for forming various protrusions on the lower end of the ready-made pile have been proposed for the purpose of increasing the supporting force, but they are only mere proposals, both of which are the shapes of the protrusions, The spacing does not have a structure that makes full use of the shearing force on the projecting surface, etc., and the pile hole dimensions and the soil cement layer quality that is filled are not sufficiently considered to be set to the specified values. Until the quantitative measurement value was clearly shown as the bearing capacity, the conditions for realizing the high bearing capacity were not achieved. For this reason, it seems that there is no construction result of this kind.
[0005]
[Problems to be solved by the invention]
(1) In the foundation pile structure which can exhibit the above-mentioned high support force, it is thought that the high support force occupies the main part of the tip support force which develops in the root consolidation part of a pile hole. In this case, the size of the bearing capacity depends on the shape and dimensions of the ready-made piles embedded in the consolidation part, so it is necessary to procure ready-made piles with the lower end of the shape and dimensions that meet the required values. It is. In addition, as a supporting force originally required for the foundation pile structure, a rooting portion having a supporting force that finely corresponds to an upper load of a building or the like is necessary. In other words, it is economical to place a ready-made pile having a shape and size satisfying the required value at a predetermined position by filling a soil cement having a required solidification strength into a root consolidation portion excavated to a predetermined size and shape.
[0006]
In general, concrete piles are made by injecting concrete into formwork of limited shape and dimension series, centrifugally molding, demolding curing, and manufacturing, but it takes about one week until it can be brought into the field. Needed. Therefore, it is not realistic to produce a mold form that can obtain an optimum supporting force for each site.
[0007]
Therefore, it is desirable to use a concrete pile with a predetermined shape and dimensions by forming a plurality of nodes at the lower end so that each pile hole has the optimum supporting force, but the procurement period of the ready-made pile, the construction period, In terms of cost, there was a tendency to use ready-made piles with large shapes and dimensions that exceeded the required strength, which was not economical.
[0008]
(2) In addition, when a concrete pile with a plurality of nodes formed at the lower end is used as the projecting concrete pile, unlike the conventional cylindrical (straight) ready-made pile, Chipping is likely to occur, and it is necessary to handle carefully during lifting, relocation, temporary placement, transportation, etc. during manufacture of ready-made piles (addition of protrusions, demolding, curing), transportation to the site, movement at the site, etc. was there.
[0009]
In addition, if the protrusion is made large in diameter, naturally the supporting force can be increased, but if the outer diameter (node diameter, etc.) of the protrusion is increased, the lower end of the ready-made pile is heavier than the upper end. I had to be. Therefore, there are many problems in strength from the viewpoint of the weight balance of the long pile itself, and in the case of a large-diameter concrete pile with a large bearing capacity, the protrusion outer diameter (for example, node diameter) is up to about 20% of the shaft diameter. However, it was only realized. In other words, the support strength increase value of the root hardening portion is limited.
[0010]
(3) In addition, the large-diameter pile with a large ratio of the node portion to the shaft portion, and the peripheral technology that realizes a large bearing capacity using a large surface area with a large protrusion diameter (node diameter) has not been solved. It was difficult to realize a ready-made pile having a large bearing capacity corresponding to the diameter of two or three ranks.
[0011]
[Means for Solving the Problems]
However, in this invention, the tip which formed the support surface which can be used as a tip support force by propagating a shearing force upward or downward in the cylindrical base part which has a connection part with a ready-made pile, or formed the projection part. Since the metal fittings are used, the above problems are solved.
[0012]
    That is, the present invention is a tip metal fitting that is used by being positioned in the root consolidation portion of a pile hole excavated in advance or excavated while burying a ready-made pile,Made of steel pipeAt the upper end of the cylindrical baseMade of concrete pilesForm a connecting part with ready-made piles,Forming the inner diameter of the cylindrical base substantially the same as the inner diameter of a ready-made pile that connects to the upper part,A support surface that can be used as a tip support force by propagating a shear force obliquely upward or obliquely downward is formed at one or a plurality of locations on the outer surface of the cylindrical base.The support surface comprises a recess formed on the outer surface of the cylindrical base,A tip metal fitting for prefabricated piles, characterized in that the tip metal fitting is formed with a length that can be completely accommodated in the root-sealed portion.
[0014]
  Moreover, it is a tip metal fitting that is used by being positioned in the root of the pile hole that has been excavated in advance or excavated while burying the ready-made pile,Made of steel pipeA large diameter portion having a diameter larger than that of the cylindrical base portion is formed at the upper end portion of the cylindrical base portion, and the large diameter portion isMade of concrete pilesIt has a structure with a connecting part with ready-made piles,Forming the inner diameter of the cylindrical base substantially the same as the inner diameter of the ready-made pile connected to the upper part, and forming the outer diameter of the cylindrical base smaller than the outer diameter of the ready-made pile,One or a plurality of protrusions are formed on the outer surface of the cylindrical base, and the length of the tip fitting is formed with a length that can be completely accommodated in the rooting portion. It is a tip fitting.
[0015]
  Moreover, it is a tip metal fitting that is used by being positioned in the root of the pile hole that has been excavated in advance or excavated while burying the ready-made pile,Made of steel pipeA large diameter portion having a diameter larger than that of the cylindrical base portion is formed at the upper end portion of the cylindrical base portion, and the large diameter portion isMade of concrete pilesIt has a structure with a connecting part with ready-made piles,Forming the inner diameter of the cylindrical base substantially the same as the inner diameter of the ready-made pile connected to the upper part, and forming the outer diameter of the cylindrical base smaller than the outer diameter of the ready-made pile,A protrusion is formed on the outer surface of the cylindrical base, and the outer diameter of the protrusion is formed to be equal to or larger than the outer diameter of the large diameter portion. It is the tip metal fitting for ready-made piles characterized by having formed the length with the length which can be completely accommodated in the root hardening part.
[0016]
  In the above, the protrusion is substantially disk-shaped, and one or a plurality of protrusions are formed in parallel, and the upper and lower surfaces of one protrusion and another protrusion disposed adjacent to the one protrusion. A predetermined interval is provided between the opposing surfaces of the portions, or a predetermined gap is provided between the lower surface of the large-diameter portion and the upper surface of the protruding portion located below, and the outer diameter D of the protruding portion.4The outer diameter D of the ready-made pile5Or the outer diameter D of the ready-made pile5It is the tip metal fitting for ready-made piles characterized by having formed smaller. Further, the tip of a prefabricated pile characterized in that the lower surface of the disk-shaped base portion whose upper surface is a substantially horizontal surface is formed with a protruding portion by forming a partially conical tapered surface gradually reducing the diameter downward. With bracketRu.
[0017]
  In addition, other inventionsUsed within the root of the pile hole that has been excavated in advance or excavated while burying ready-made pilesMade of concrete pilesFrom the main shaft portion to the lower end of the pre-made pile having a main shaft portion with a predetermined outer diameterOuter diameter isSmall diameterAnd consisting of steel pipes with substantially the same inner diameterA tip metal fitting having a cylindrical base is connected to form a lateral projection on the cylindrical base, and the tip of the projection is positioned at a position equivalent to the maximum outer diameter of the main shaft or the maximum of the main shaft. It is an off-the-shelf pile having a tip fitting that protrudes outward from an outer diameter and has a length that allows the tip fitting to be completely accommodated in the root-fixing portion.
[0018]
  Another invention has a main shaft portion having a predetermined shaft diameter.Made of concrete pilesConnected to the lower end of the ready-made pile is a tip fitting with a protruding portion in the lateral direction, and the protrusion is placed in a pile hole having a rooted portion excavated in advance or excavated while burying the ready-made pile. It is the structure of the foundation pile embedded so that a part may be located in the root consolidation part of the said pile hole, Comprising: The said front-end metal fittings are more than the said spindle part.Outer diameter isSmall diameterAnd consisting of steel pipes with substantially the same inner diameterA lateral projection is formed on the outer surface of the cylindrical base, and the tip of the projection is formed to have a diameter equal to or larger than the maximum outer diameter of the main shaft, and the tip fitting is fixed to the root. It is a foundation pile structure using a ready-made pile characterized by being completely accommodated in the part.
[0020]
“Propagation of shearing force” in the above means that when a ready-made pile attached with a tip metal fitting is embedded in a solidified soil cement layer in a pile hole, the shearing force can be propagated toward the soil cement layer. Further, the “support surface capable of propagating shear force” means that when a projection is formed on the outer surface of the cylindrical base 1, the lower surface of the projection can be propagated obliquely downward. The support surface B is configured, and the support surface A is configured such that the upper surface of the projection can be propagated with a shearing force obliquely upward (FIG. 10A). In this case, if the upper and lower surfaces of the protrusion are surfaces slightly inclined with respect to the vertical surface, the function is achieved. Since the direction in which the shear force propagates acts obliquely with respect to the vertical plane, it is desirable that the shear force propagate at a right angle to the direction in which the shear force propagates.
[0021]
Moreover, when a recessed part is formed in the outer side surface of the cylindrical base 1, the side wall surface of a recessed part comprises each support surface A and B (FIG.10 (b)). Furthermore, the support surface is not limited to the protrusion or the recess, and a support surface A having a similar function can be formed by forming a step on the outer surface of the cylindrical base (FIGS. 10C and 10D). The shape is arbitrary. In short, if any means effective for the propagation of the shearing force is formed on the outer surface of the cylindrical base 1 and can be used as the tip support force, the support surface can be configured.
[0022]
In addition, the cylindrical base is preferably cylindrical in terms of stress propagation balance, but the shape such as a rectangular tube is arbitrary.
[0023]
In the above, the outer diameter D of the cylindrical base portion 1 of the end fitting 121Is the outer diameter D of the ready-made pile 145If it has a smaller diameter (D1<D5. 8 (a), FIG. 1), outer diameter D of ready-made pile 145It is desirable because it is sufficient to drill a pile hole according to the condition. In this case, the outer diameter D of the ready-made pile 14 is formed on the upper end of the cylindrical base 1.5The large-diameter portion 2 corresponding to the above is formed (FIGS. 8A and 1). In this case, the outer diameter D of the annular protrusion 10 forming the support surface4The outer diameter D of the ready-made pile 145(Ie, the outer diameter of the large diameter portion 2) smaller than (D4<D5. Fig. 8 (a)) or the outer diameter D of the ready-made pile 145It can also be made larger diameter (D5<D4. FIG. 1). Of course, D4= D5It can also be said.
[0024]
Also, the outer diameter D of the cylindrical base 11The outer diameter D of the ready-made pile 145(D5≒ D1. FIG. 8B) or the outer diameter D of the cylindrical base 11The outer diameter D of the ready-made pile 145A larger diameter can also be used (D5<D1. FIG. 8 (c)).
[0025]
  In the above, the inner diameter D of the cylindrical base 12Is equivalent to the inner diameter of the ready-made pile 14 (FIG. 8 (a), FIG. 1, FIG. 2), in particular, there is no difference in level between the ready-made pile 14 and the cylindrical base 1 in the case of the digging method. Can be of different dimensions (FIG. 8).(B) (c)).
[0026]
DETAILED DESCRIPTION OF THE INVENTION
(1) The tip metal fitting 12 of the present invention has a structure that can be attached to a lower end portion (end plate portion or the like) of the ready-made pile 14 with a bolt or the like, and a large-diameter portion 2 for connection is formed at the upper end portion of the steel pipe main body 1. . Annular projections 10 and 10 are formed on the intermediate portion and the lower end portion (the portion excluding the large diameter portion) of the steel pipe main body 1. The outer diameter D of the annular protrusion 104Is the large diameter part 2, that is, the maximum outer diameter D of the ready-made pile 145It is equivalent to or larger than (Fig. 1).
[0027]
The tip metal fitting 12 is connected to the tip of the ready-made pile (straight shape) 14, and the ready-made pile 14 is lowered into the pile hole 32 filled with soil cement or the like to the root-solidified portion 34 formed at the lower end of the pile hole. The ready-made pile 14 is embedded so that the tip metal fitting 12 is positioned, and after the soil cement is solidified, the foundation pile structure 37 is formed (FIG. 3). It is desirable that the soil cement has a predetermined solidification strength equal to or higher than the ground strength.
[0028]
An upper structure such as a foundation base and a building is constructed at the upper end of each foundation pile structure 37.
[0029]
(2) Function and structure of the end fitting 12 to be mounted
[0030]
The load of the building or the like transmitted from the ready-made pile 14 is propagated to the supporting ground or the like as a shearing force or the like from the surface of the annular protrusion 10 of the tip fitting 12, and the tip fitting 12 is solidified soil cement in the pile hole 32. It is integrated with the layer and has a function of supporting the support ground as a tip support force.
[0031]
The upper surface of the large-diameter portion 2 at the upper end of the tip fitting 12 is in close contact with the lower surface of the lower end plate 17 of the ready-made pile 14 and functions as a connecting portion to be attached to the ready-made pile 14. The large-diameter portion 2 is formed by being welded to the steel pipe main body 1 or molded integrally with the steel pipe main body 1.
[0032]
Moreover, the outer side surface 8 of the steel pipe main body 1 adheres to the solidified soil cement in the pile hole 32 and functions so as to be embedded integrally.
[0033]
(3) Explanation of each component
[0034]
(a) The large-diameter portion (connecting portion) 2 positioned at the upper end portion of the tip fitting 12 transmits the load of the building or the like transmitted from the ready-made pile 14 positioned above the steel pipe body 1 and the annular protrusion 10. To do. Furthermore, it has the function of increasing the supporting force together with the annular protrusion 10 by propagating a vertical shearing force from the lower surface of the outer edge of the large-diameter portion 2 (stepped portion with the steel pipe body) through the soil cement layer in the pile hole.
[0035]
The large-diameter portion 2 and the steel pipe body 1 are connected and fixed by welding or forming process, etc., and a steel material having an integrated structure is used so that the transmission of stress smoothly propagates. Moreover, the cylindrical surface material 5 which has the bolt holes 4 and 4 for joining with the ready-made pile 14 is formed in the large diameter part 2, and the cylindrical surface material 5 is made up and down by the necessity on intensity | strength. It is also possible to form a plurality of stress distributions. Also, a plurality of oblique reinforcing ribs can be formed between the inclined stepped portion lower surface 7 of the large diameter portion 2 and the outer surface of the steel pipe body 1 (not shown).
[0036]
(b) The annular protrusion 10 is integrally attached to and embedded in the soil cement layer in the pile hole 32, and the upper and lower surfaces of the annular protrusion 10 are attached to the soil cement layer corresponding to the desired bearing force and the strength (thickness). In general, steel is used. Therefore, it is desirable to form a plurality of annular protrusions 10. When a vertical load is applied, the downward shearing force from the lower surface 41 and the stepped portion lower surface 43 of each annular protrusion 10 is sufficiently propagated obliquely downward (the angle θ formed with the vertical downward is approximately 30 degrees), and When a pulling force is applied, a predetermined interval L is set so that the upward shearing force from the upper surface 42 of each annular protrusion 10 can sufficiently propagate obliquely upward (the angle θ formed with the vertical upward is approximately 30 degrees).1It is desirable to provide Such annular protrusions 10 and 10 are fixedly formed on the outer surface 8 of the steel pipe body 1 by welding or the like, and are configured integrally with the steel pipe body 1.
[0037]
The structure of the annular protrusion 10 may be, for example, a donut shape made of a steel plate and attached to the steel pipe body 1 (FIG. 1), or a structure attached three to a donut shape made of a steel plate (FIG. 5A). it can. In this case, reinforcing ribs 11 and 11 are formed between the upper and lower surfaces of the annular protrusion 10 and the outer surface 8 of the steel pipe body 1 (FIGS. 1 and 5A). Further, the reinforcing rib 11 can be formed by shifting the position on the upper surface side and the upper and lower surfaces of the annular protrusion (not shown).
[0038]
In addition, the donut shape can be formed in a similar structure by overlapping and winding a steel rod instead of a steel plate (not shown).
[0039]
Moreover, the annular protrusion 10 can also be made into the structure which twisted the donut-shaped steel plate and formed the spiral wing | blade shape in two places (FIG.5 (b)). In this case, considering the propagation of the shearing force in the soil cement layer, it is desirable to make the inclination angle of the spiral blade smaller and to form it less than one round.
[0040]
Moreover, the annular protrusion 10 can also be formed in a donut shape having a thick trapezoidal cross section (FIG. 5C). In this case, the annular protrusion 10 can be either hollow or solid.
[0041]
(c) The steel pipe body 1 is integrated with the large-diameter portion 2 and the annular protrusion 10, and further, when embedded, it is integrated with the solidified soil cement layer in the pile hole 32 to transmit the stress in the vertical direction. It is a structure which becomes a base to be supported as a supporting force. Therefore, the steel pipe body 1 has a required thickness t suitable for stress transmission and support.1, Material is required. Moreover, the inside of the steel pipe main body 1 communicates with the hollow part of the ready-made pile 14 to connect with the same internal diameter, and it forms so that soil cement can be uniformly filled in a hollow part. Moreover, when it forms with the same internal diameter as the hollow part of the ready-made pile 14 to connect, when applying to a medium digging method, a drilling rod can be penetrated without trouble.
[0042]
(4) Dimensions of tip bracket 12
[0043]
Inside diameter D of steel pipe body 12May be larger than the inner diameter dimension of the hollow portion of the ready-made pile 14 located in the upper portion, but the outer diameter of the steel pipe body 1 is made smaller and the length L of the protrusion7In order to increase the surface area of the annular protrusions 10 and 10, it is desirable that the inner diameter of the pre-made pile 14 is substantially the same as the inner diameter of the hollow portion 14 (FIG. 1).
[0044]
Further, the outer diameter D of the annular protrusion 104Is the outer diameter D of the ready-made pile 14 located in the upper part5The dimensions are as described above (FIG. 1). The outer diameter D of the ready-made pile 145Can be substantially the same.
[0045]
Further, the length L of the annular protrusion 10 from the outer surface of the steel pipe body 17(= “D4-D1)) And the installation interval L1Means that if the propagation angle θ of the downward shearing force is (an angle formed vertically upward or downward≈30 degrees), the shearing force can be sufficiently expressed.
L7<L1× tanθ
In order to secure the surface area of the annular protrusion 10 from both the surface of propagation of shearing force to the soil cement layer and the surface of adhesion to the soil cement, L is as much as possible.7It is desirable to increase (FIG. 1 (a)).
[0046]
(5) From the technical idea as described above, a steel pipe pile with a spiral wing (smaller diameter than the ready-made pile to be attached) is fixed to the lower end of the ready-made pile 14 instead of the tip fitting 12, and the ready-made pile of this invention 14 can also be configured (not shown).
[0047]
[Example 1]
An embodiment of the tip fitting 12 of the present invention will be described based on the drawings.
[0048]
(1) Outer diameter D1, Inner diameter D2Steel pipe body (thickness t1) Outer diameter D at the upper end of 13The large-diameter portion 2 is formed, and the large-diameter portion 2 is used as a connection portion with the ready-made pile 14. An annular groove 3 for fitting the connecting band is formed on the outer surface on the upper end side of the large diameter portion 2. The outer diameter of the connecting portion, that is, the outer diameter D of the large diameter portion 23Is the outer diameter of the ready-made pile 14 to be connected (the outer diameter D of the lower end)5).
[0049]
The outer surface of the large-diameter portion 2 has a cylindrical surface material 5 having an annular groove portion, and a donut-shaped contact material 6 that contacts the lower surface 13 of the ready-made pile 14 continuously from the upper end inside the cylindrical surface material 5. And are embedded. The bolt hole 4 is formed in the cylindrical surface material 5.
[0050]
On the outer surface of the steel pipe body 1, the outer diameter D4, Thickness t2The disc-shaped (doughnut-shaped) annular projections 10 and 10 are projected. Triangular reinforcing ribs 11 are projected at equal intervals between the upper and lower surfaces of each annular protrusion 10 and the side surface of the steel pipe body 1 (FIG. 1). Moreover, the installation position of each annular protrusion 10 and 10 is as follows.
The distance L between the annular protrusion 10 located at the lowermost end and the lower end 13 of the steel pipe body 11-1
The distance L between the annular protrusion 10 located on the upper side and the annular protrusion 10 located on the lower side1-2
The distance L between the annular protrusion 10 located at the uppermost end and the large diameter portion 21-3
It is formed with.
[0051]
L1-1, L1-2, L1-3Is formed with the following values:
・ L1-1  0.5m
・ L1-2  1.0m
・ L1-3  1.0m
[0052]
As described above, the end fitting 12 is configured (FIG. 1). The end fitting 12 has an inner diameter D from the upper end (the upper end of the large-diameter portion 2) to the lower end 13.2And formed.
[0053]
Interval L in the above1(L1-2, L1-3) In consideration of effective propagation of the shearing force from the lower and upper surfaces of the annular protrusion 10 and the stepped portion lower surface 7 of the large-diameter portion 2,
L1> L7× tanθ ≒ L7Xtan30 ° = L7× √3
It is formed to become. L1-1Does not have to satisfy the above conditions,
L1-1= 0
(FIG. 6A).
[0054]
The dimensions are formed as follows.
[0055]
Figure 0004200236
[0056]
(2) Next, the use of the end fitting 12 of the present invention based on the above embodiment, that is, the configuration of the ready-made pile 14 will be described.
[0057]
The ready-made pile 14 made of concrete has a steel connection fitting 16 integrally attached to a lower end portion thereof. The connection fitting 16 includes a disc-shaped lower end plate 17 and a cylindrical side plate 18 that is connected to the peripheral edge of the upper surface of the lower end plate 17 and is provided around the side surface of the ready-made pile 14. The side plate 18 has a thick portion 19 having a thicker material at a portion continuous with the lower end plate 17. An annular groove portion 20 having substantially the same shape as the annular groove portion 3 of the end fitting 16 is formed on the side plate 18. Bolt holes 21 and 21 corresponding to the bolt holes 4 and 4 of the end fitting 12 are formed in the annular groove portion 20. The annular groove part 20 and the bolt hole 21 are formed in the thick part 19 (FIG. 2A).
[0058]
The band 23 for joining is comprised with the steel which has the internal diameter which can be fitted to the large diameter part 2 of the front-end metal fitting 12, and the lower end board 17 of the ready-made pile 14. FIG. The band 23 is formed with an annular convex portion 25 projecting inward so that it can be fitted into the annular groove portion 20 on the upper inner surface, and a similar annular convex portion 26 corresponding to the annular groove portion 3 on the lower side. Is formed. Further, through-holes 27 and 27 corresponding to the bolt holes 4 and 21 are formed in the annular protrusions 25 and 26 of the band 23, and the diameter of the outer surface of the band 23 is increased to the outer surface side of each through-hole 27. A portion 28 is formed so that the head of the bolt 30 for joining can be accommodated. Further, the band 23 is equally divided into three band pieces 24 and 24 so as to facilitate the connecting operation.
[0059]
With the ready-made pile 14 lifted vertically or with the ready-made pile 14 laid on the ground, the upper surface of the tip fitting 12 (the upper surface of the large-diameter portion 2) is brought into contact with the lower surface of the ready-made pile 14 (the lower surface of the lower end plate 17). The band pieces 24, 24 are arranged in a ring and abutted on both abutting portions to form a band 23, and the annular protrusions 25, 26 of the band 23 are formed as the annular groove portion 20 of the ready-made pile 14 and the annular groove portion 3 of the tip fitting 12 Is inserted into each. Bolts 30, 30 are inserted through the through holes 27, 27, the tip ends of the bolts 30 are screwed and fastened to the bolt holes 21, 4, and the band 23 is fixed to the ready-made pile 14 and the tip fitting 12. The tip metal fitting 12 is fixed integrally to (Fig. 2 (b)).
[0060]
In this state, the inner diameter of the ready-made pile 14 and the inner diameter of the tip fitting 12 are formed to be substantially the same diameter. That is, the inner surface 15 of the existing pile 14 and the inner surface 9 of the tip metal fitting 12 are formed substantially flush with each other.
[0061]
The ready-made pile 14 with the front-end | tip metal fitting 12 is comprised as mentioned above (FIG. 3).
[0062]
[Example 2]
Next, the foundation pile structure 37 of this invention is demonstrated.
[0063]
(1) Diameter D11The shaft portion of the pile hole 32 having a length L is excavated with the depth L continuously from the shaft portion 33 of the pile hole 32.HOver the diameter D12The bottom is excavated to form a root 34 of the pile hole 32 (FIG. 3). In the pile hole 32, the root-solidifying part 34 is filled with a root-solidifying liquid, and the shaft part 33 is filled with a pile circumference fixing liquid. The root hardening liquid and the pile circumference fixing liquid are composed of a solidifying material such as cement milk, or a soil cement formed by stirring and mixing a solidifying material with excavated soil. The root hardening liquid is adjusted to have a solidification strength equivalent to the ground strength of the supporting ground, for example, 20 N / mm.2Although it is about a degree, it can also be set as a solidification strength higher than that.
[0064]
(2) A ready-made pile (straight shape) 14 having the tip metal fitting 12 attached to the lower end is embedded in the pile hole 32.
[0065]
At this time, the front end fitting 12 is completely accommodated in the solidified portion 34, and the lower end 22 of the ready-made pile 14 (the upper end of the front end fitting 12) has a predetermined length L.UOnly, the distance from the upper end of the root-solidified portion to the lower end 22 of the ready-made pile 14 (the upper end of the end fitting 12) is L.UAnd Further, the lower surface 13 of the tip metal fitting 12 has a predetermined length L from the bottom 35 of the rooting portion 34.DThe descent of the ready-made pile 14 is stopped at such a position as to be located only above, and the ready-made pile 14 is held in that state (FIG. 3).
[0066]
(3) The foundation pile structure 37 of this invention is comprised in the state which the root hardening liquid and the pile periphery fixing liquid solidified and expressed (FIG. 3).
[0067]
(4) Other embodiments
[0068]
In the above example, the so-called pre-digging method in which the ready-made pile is buried after the completion of the drilling of the pile hole has been explained. Can also be built.
[0069]
That is, the drilling rod for medium digging is inserted into the hollow portion of the ready-made pile 14 to which the tip metal fitting 12 is attached, and the ready-made pile 14 is lowered while the excavation head is protruded from the lower end of the tip metal fitting to excavate the pile hole (see FIG. Not shown). Subsequently, the ready-made pile 14A is connected, the excavation rod is added, the ready-made piles 14 and 14A are lowered, and when lowered to a predetermined position, a diameter-enlarged rooted portion is formed, and cement milk is injected and stirred. While discharging the cement milk, the excavating rod is pulled up to the ground through the hollow portions of the ready-made piles 14 and 14A and the tip fitting 12.
[0070]
Thereafter, while lowering the ready-made pile 14, the end fitting 12 is completely accommodated in the rooted portion 34, and the lower end 22 of the ready-made pile 14 has a predetermined length L, as in the pre-digging method.5Only into the root consolidation part 34, and the lower surface 13 of the end fitting 12 is a predetermined length L from the bottom 35 of the root consolidation part 34.DThe descent of the ready-made pile 14 is stopped at such a position as to be located only above, and the ready-made piles 14 and 14A are held in this state. With the above, the root hardening liquid is solidified and the foundation pile structure is constructed.
[0071]
[Example 3]
A comparison when the foundation pile structure of the present invention and the conventional foundation pile structure are applied to the same ground will be described.
[0072]
(1) Invention of the present application
[0073]
A pile hole 32 having a solidified portion 34 is excavated in the ground shown in FIG. Structure 37 is constructed (FIGS. 3 and 4). The dimensions of each part are as follows.
[0074]
Figure 0004200236
[0075]
(3) Comparative example
[0076]
The same ready-made pile 14 is used as an upper pile, and instead of the end fitting 12, a lower pile 14A with a joint 39 is connected (FIG. 9), embedded in the pile hole 32 of the second embodiment, and a foundation pile structure is obtained. To construct. Lower pile 14A has outer diameter D3The outer diameter D is continuously reduced to the upper shaft portion 44 of the outer diameter D.1The lower shaft portion 45 is formed, and the outer diameter D is formed on the outer surface of the shaft portions 44 and 45.4The annular protrusions 46, 46 have a length L3Three are formed with an interval of.
[0077]
Of the three annular protrusions 46, the annular protrusion 46 located in the center is formed at the stepped portion of the upper shaft portion 44 and the lower shaft portion 45, and the upper annular protrusion 46 is formed on the outer surface of the upper shaft portion 44. The annular projections 46 on the side are respectively formed on the outer surfaces of the lower shaft portion 45. Further, the upper annular protrusion 46 and the upper end 47 of the lower pile 14A are separated by a distance L.2The lower annular protrusion 46 and the lower end 48 of the lower pile 14A are separated by a distance L.1(FIG. 9).
[0078]
Each dimension is as follows.
[0079]
Figure 0004200236
[0080]
(3) Comparison between the present invention and the comparative example
When a loading test was performed on the foundation pile structures 37 of Examples 1 and 2, a value of 7 MN or more was obtained as the maximum load. This value is the same value as the case where the foundation pile structure of the comparative example is formed on the same ground (FIG. 4).
[0081]
Moreover, in the foundation pile structure 37 of Examples 1 and 2, the adhesion surface area with the soil cement is about 1.5 times the surface area of the comparative example, and there is a possibility that a high vertical bearing force can be obtained. Also, stability can be expected as proof stress.
[0082]
For example, in the first and second embodiments, the number of the annular protrusions 10 is two, or three or more, or the outer diameter D of the annular protrusions.4The surface area can be easily increased or decreased by increasing or decreasing within the above range.
[0083]
Therefore, in the present invention, the surface area increase / decrease, the soil cement solidification strength control, the thickness t of the steel pipe main body 1 and the annular protrusion 10 are set.1, T2By adjusting the support force, the support force can be easily adjusted.
[0084]
[Example 4]
Another embodiment of the present invention will be described with reference to FIG. This embodiment is an embodiment of a connecting hardware in which the shape of the annular protrusion is changed.
[0085]
(1) Outer diameter D1, Inner diameter D2Steel pipe body (thickness t1, Total length 892.4 mm) at the upper end of 1, the outer diameter D3The large-diameter portion 2 is formed, and the large-diameter portion 2 is used as a connection portion with the ready-made pile 14. The large-diameter portion 2 is formed with a partially conical inclined inclined surface 40 whose upper surface is a horizontal flat surface and whose lower surface side is gradually smaller in diameter. The outer diameter of the connecting portion, that is, the outer diameter D of the large diameter portion 23Is substantially the same as the outer diameter of the ready-made pile 14 to be connected (the outer diameter of the lower end).
[0086]
A disc-shaped (doughnut-shaped) annular protrusion 10 having an outer diameter D4 is provided on the outer surface of the lower end portion of the steel pipe body 1 so as to project. The upper surface 42 of the annular protrusion 10 is formed in a horizontal plane, the lower surface 41 forms a partially conical inclined slope, and the lower end of the inclined slope reaches the lower end 13 of the steel pipe body 1.
[0087]
As described above, the end fitting 12 is configured (FIG. 6A). The end fitting 12 has an inner diameter D from the upper end (the upper end of the large-diameter portion 2) to the lower end 13.2And formed. The distance between the large diameter portion 2 and the annular protrusion 10 is L1-3As in Example 1 above,
L1-3> L7× tanθ ≒ L7Xtan30 ° = L7× √3
It is formed to satisfy.
[0088]
(2) The dimensions are formed as follows.
[0089]
Figure 0004200236
[0090]
(3) The upper surface of the large-diameter portion 2 of the end fitting 12 is applied to the lower surface of the lower end plate 17 of the same prefabricated pile 14 as in the first embodiment, and the large-diameter portion 2 and the lower end plate 17 are integrated by bolts, welding or the like. To make a ready-made pile 14 with a tip fitting 12 (FIG. 6B). The ready-made pile 14 with the tip metal fitting 12 is embedded in the pile hole 32 in which the root-solidified portion 34 is formed in the same manner as in the second embodiment to form a foundation pile structure (not shown). In addition, when fixing with a volt | bolt, the through-hole connected with the bolt hole of the lower end board of the ready-made pile 14 is formed in the large diameter part (not shown).
[0091]
(4) The tip fitting 12 of this embodiment is designed to have a slightly lower supporting force than the tip fitting 12 of the first embodiment (FIG. 1). There is an advantage that the excavation diameter of the root consolidation portion can be reduced.
[0092]
Specifically, the following advantages can be considered.
[0093]
(a) The length of the cylindrical base is shortened (about 1.0 m in length. In Example 1, the length is about 2.5 m), and the side of the cylindrical base that contributes little to exerting the supporting force in the tip fitting is small. Reduced the area. As a result, the length of the bottom-excavated excavation of the root consolidation portion of the pile hole can be shortened, and as a result, the construction time can be shortened and the amount of cement milk used can be reduced.
[0094]
    (b) Also, the annular protrusion10The base of the thickening was thickened to increase the mechanical strength.
[0095]
(c) Further, since the lower surface 41 of the annular protrusion is a partially conical inclined slope, the stress to the soil cement layer and the ground in the root consolidation portion is efficiently propagated.
[0096]
    (d) An annular protrusion with a large surface area at the tip that is considered to contribute most to the generation of vertical bearing force10 andTherefore, a large vertical support force can be exhibited with a small number of protrusions.
[0097]
    (e) An annular projection that contributes to the generation of vertical bearing force10Since the lower surface 41 is inclined, an annular protrusion is formed when the end fitting is embedded in the pile hole.10It is difficult for mud to adhere to the lower surface 41. Therefore, adhesion between the soil cement layer and the lower surface 41 can be enhanced, and the propagation of shearing force to the soil cement layer can be ensured.
[0098]
(f) Since the largest diameter portion is formed at the forefront of the ready-made pile, centering of the ready-made pile (alignment with the core of the pile hole) is facilitated when the ready-made pile is embedded.
[0099]
(5) Moreover, if the donut-shaped annular protrusion 10 is further added to the intermediate part of the steel pipe main body 1 like the said Example 1, support force can be increased (not shown). In this case, as in the first embodiment,
L1-2> L7× tanθ ≒ L7Xtan30 ° = L7× √3
It is formed so as to satisfy the conditions of
[0100]
(6) Other embodiments
[0101]
In the above embodiment, the large-diameter portion 2 is formed with the partially conical inclined slope 40 whose bottom surface is gradually reduced in diameter, but may have other configurations. For example, the large-diameter portion 2 can be formed in a disk shape, and reinforcing ribs 49 can be attached between the disk-shaped lower surface and the outer surface of the steel pipe body 1 (FIG. 7). In this case, if a through hole is formed in the large-diameter portion 2 having a disk shape so as to correspond to the bolt hole of the lower end plate 17 of the ready-made pile 14 (not shown), the large-diameter portion 2 is The lower end plate 17 can be easily fixed with bolts. In this case, if the reinforcing ribs 49 are formed between the through holes, the reinforcing can be efficiently performed.
[0102]
Moreover, in the said Example, although the inclination of the lower surface 41 of the cyclic | annular protrusion 10 was about 30 degrees with respect to the horizontal surface, it can also be set to about 45 degrees (FIG. 7 (a) (b)).
[0103]
【The invention's effect】
(1) Since this invention formed the cylindrical base part which has a large diameter part which can be connected with a ready-made pile, and formed the projection part in the outer surface of the small diameter cylindrical base part, the general purpose concrete pile There is an effect that a tip metal fitting is connected to the lower end of each of them to exhibit a desired supporting force.
[0104]
In addition, when the tip fitting is formed by forming the outer diameter of the protruding portion to be equal to or larger than the outer diameter of the large diameter portion, the surface area of the protruding portion can be easily increased, and the support is further increased. We can expect power.
[0105]
In other words, instead of forming protrusions at the lower end of a prefabricated pile such as a cylindrical concrete pile, the shape that best fits the required bearing capacity of the building on the bottom end of a prefabricated pile of a general-purpose cylindrical pile (concrete pile, etc.)・ Because it is possible to mount a cylindrical base with projections of dimensions, it is not necessary to select piles with excessive shape dimensions and bearing capacity, and foundation piles having the bearing capacity value necessary for buildings can be procured and provided easily and in a short period of time. it can.
[0106]
(2) If the inner diameter of the cylindrical base of the tip fitting is the same as that of the ready-made pile connected to the upper part, the outer diameter of the cylindrical base is significantly smaller than the diameter of the shaft of the ready-made pile to be connected. There is an effect that the surface area of the protrusion can be easily increased.
[0107]
In addition, it is possible to easily provide a foundation pile having protrusions with a large shaft diameter ratio (a protrusion portion outer diameter is larger than the shaft diameter) which is not found in a large-diameter pile capable of exhibiting a high bearing capacity. Therefore, when the total surface area of the conventional protrusions is insufficient to support the ground, a protrusion having a larger area than that of a conventional pile with protrusions can be easily processed and formed. Therefore, by appropriately adapting the excavation / formation dimensions of the pile holes, a foundation pile having a greater proof strength can be easily realized in a short delivery time.
[0108]
In other words, the outer diameter of the cylindrical ready-made pile used for the upper part can be easily increased by using the end fittings with a constant outer diameter of the cylindrical ready-made pile. Without modification, it is possible to easily adapt to design changes in a short period of time by processing and forming the tip fittings with protrusions and changing the excavation dimensions of the solidified part.
[0109]
In addition, it is possible to easily realize a supporting force equivalent to that when the outer diameter is one rank higher than a cylindrical ready-made pile having a certain outer diameter. Specifically, a supporting force equivalent to 700φ can be easily realized with a 600φ ready-made pile.
[0110]
(3) Also, unlike the case where protrusions are formed on ready-made piles, tip metal fittings that use steel materials that are not easily damaged are used. The construction method which attaches a front-end | tip metal fitting to the lower end surface of is possible. Therefore, manufacturing, transfer, lifting, etc. can be individually processed, and management of special quality and handling such as breakage and damage of pile materials is not required in procurement and handling, and the construction work is stabilized.
[Brief description of the drawings]
1A is a front view, FIG. 1B is a bottom view, and FIG. 1C is a longitudinal sectional view of an embodiment of a tip metal fitting of the present invention.
FIGS. 2A and 2B are partially enlarged longitudinal sectional views showing the connection between the tip fitting of the present invention and the ready-made pile, wherein FIG. 2A shows before connection, and FIG. 2B shows after connection.
FIG. 3 is a longitudinal sectional view of an embodiment of a foundation pile structure according to the present invention.
FIG. 4 is a diagram for explaining the installation status of the ground to which Example 2 is applied and ready-made piles.
FIGS. 5A to 5C are front views of another embodiment of the end fitting of the present invention. FIGS.
6A and 6B are longitudinal sectional views of a ready-made pile using other end fittings, where FIG. 6A shows before joining, and FIG. 6B shows after joining.
FIG. 7 is a longitudinal sectional view of a ready-made pile using another tip metal fitting, wherein (a) shows before joining and (b) shows after joining.
FIGS. 8A to 8C are longitudinal sectional views of a ready-made pile using other tip fittings.
FIG. 9 is a longitudinal sectional view showing a configuration of a ready-made pile according to a comparative example.
FIGS. 10A to 10D are schematic longitudinal sectional views for explaining propagation of a shearing force and a support surface of a tip metal fitting of the present invention.
[Explanation of symbols]
1 Steel pipe body (tubular base)
2 Large diameter part
3 annular groove
4 Bolt holes
5 Tubular surface material
6 Contact material
8 Outside
9 Inner side
10 Annular protrusion (protrusion)
11 Rib of annular projection
12 Tip bracket
13 Underside of the end fitting
14 Ready-made piles
14A Lower pile of comparative example
15 Inside surface of ready-made piles
16 Ready-made pile connection fittings
17 Lower end plate of ready-made pile
18 Side plates of ready-made piles
19 Thick part of side plate of ready-made pile
20 Annular groove of ready-made pile
21 Bolt holes in ready-made piles
22 Lower end of ready-made pile
23 Band for connection
24 Band pieces
25, 26 Banded convex part
27 Band through hole
28 Band housing
30 volts
32 Pile hole
33 Shaft hole shaft
34 Root consolidation part of pile hole
35 Bottom of pile hole root
37 Foundation pile structure
40 Inclined surface of annular projection of tip fitting
41 Bottom of protrusion of tip fitting
42 Top surface of protrusion of tip fitting
44 Upper shaft part of comparative example
45 Lower shaft part of comparative example
46 Annular projection of comparative example
A Support surface

Claims (7)

予め掘削しあるいは既製杭を埋設しながら掘削をした杭穴の根固め部内に位置させて使用する先端金具であって、
鋼管からなる筒状基部の上端部にコンクリート杭からなる既製杭との連結部を形成し、前記筒状基部の内径を上部に連結する既製杭の内径と略同一に形成し、前記筒状基部の外側面に、斜め上方又は斜め下方に向けて、せん断力を伝搬させ先端支持力として利用することができる支持面を、1つ又は複数箇所に形成し、前記支持面を前記筒状基部の外側面に形成した凹部から構成し、前記先端金具の長さを前記根固め部内に完全に収容できる長さで形成したことを特徴とする既製杭用の先端金具。
It is a tip metal fitting that is used by being positioned in the root of the pile hole excavated in advance or excavated while burying the ready-made pile,
Forming a connecting part with a ready-made pile made of concrete piles at the upper end of a cylindrical base made of steel pipe , forming the inner diameter of the cylindrical base substantially the same as the inner diameter of the ready-made pile connecting the upper part, the cylindrical base A support surface that can be used as a tip support force by propagating a shear force obliquely upward or diagonally downward is formed at one or a plurality of locations on the outer surface of the cylindrical base portion. A tip metal fitting for ready-made piles , comprising a concave portion formed on an outer side surface, and having a length that allows the tip metal fitting to be completely accommodated in the root-fixing portion.
予め掘削しあるいは既製杭を埋設しながら掘削をした杭穴の根固め部内に位置させて使用する先端金具であって、鋼管からなる筒状基部の上端部に該筒状基部より大径の大径部を形成し、該大径部をコンクリート杭からなる既製杭との連結部を有する構成とし、前記筒状基部の内径を上部に連結する既製杭の内径と略同一に形成し、かつ前記筒状基部の外径を前記既製杭の外径より小径に形成し、
前記筒状基部の外側面に、1つ又は複数の突起部を形成し、前記先端金具の長さを前記根固め部内に完全に収容できる長さで形成したことを特徴とする既製杭用の先端金具。
It is a tip metal fitting that is used by being positioned in a rooted portion of a pile hole that has been excavated in advance or embedded while burying a pre-made pile, and has a larger diameter than the cylindrical base at the upper end of the cylindrical base made of steel pipe Forming a diameter portion, the large diameter portion having a connection portion with a ready-made pile made of concrete pile , forming the inner diameter of the cylindrical base portion substantially the same as the inner diameter of the ready-made pile connecting the upper portion, and The outer diameter of the cylindrical base is formed to be smaller than the outer diameter of the ready-made pile,
One or a plurality of protrusions are formed on the outer surface of the cylindrical base, and the length of the tip fitting is formed with a length that can be completely accommodated in the rooting portion. Tip bracket.
予め掘削しあるいは既製杭を埋設しながら掘削をした杭穴の根固め部内に位置させて使用する先端金具であって、鋼管からなる筒状基部の上端部に該筒状基部より大径の大径部を形成し、該大径部をコンクリート杭からなる既製杭との連結部を有する構成とし、前記筒状基部の内径を上部に連結する既製杭の内径と略同一に形成し、かつ前記筒状基部の外径を前記既製杭の外径より小径に形成し、
前記筒状基部の外側面に突起部を形成してなり、前記突起部の外径を、前記大径部の外径と同等又は前記大径部より大径に形成し、前記先端金具の長さを前記根固め部内に完全に収容できる長さで形成したことを特徴とする既製杭用の先端金具。
It is a tip metal fitting that is used by being positioned in a rooted portion of a pile hole that has been excavated in advance or embedded while burying a pre-made pile, and has a larger diameter than the cylindrical base at the upper end of the cylindrical base made of steel pipe Forming a diameter portion, the large diameter portion having a connection portion with a ready-made pile made of concrete pile , forming the inner diameter of the cylindrical base portion substantially the same as the inner diameter of the ready-made pile connecting the upper portion, and The outer diameter of the cylindrical base is formed to be smaller than the outer diameter of the ready-made pile,
A protrusion is formed on the outer surface of the cylindrical base, and the outer diameter of the protrusion is formed to be equal to or larger than the outer diameter of the large diameter portion. An end fitting for a ready-made pile, characterized in that the length is formed so as to be able to be completely accommodated in the root hardening portion.
突起部は、略円盤状とし、1個又は上下に複数個を並列して形成し、一の突起部の上下面と、該一の突起部に隣接して配置された他の突起部の対向する面とに所定間隔を設け、または、大径部下面と下方に位置する突起部上面とに所定間隙を設けて構成し、該突起部の外径Dを前記既製杭の外径Dと同等又は前記既製杭の外径Dより小さく形成し、たことを特徴とする請求項2又は請求項3記載の既製杭用の先端金具。The protrusion is substantially disk-shaped, and is formed in one or a plurality of upper and lower surfaces in parallel. The upper and lower surfaces of one protrusion and the other protrusions arranged adjacent to the one protrusion are opposed to each other. A predetermined interval is provided on the surface to be formed, or a predetermined gap is provided between the lower surface of the large-diameter portion and the upper surface of the protruding portion positioned below, and the outer diameter D 4 of the protruding portion is set as the outer diameter D 5 of the ready-made pile. equivalent or the prefabricated pile claim 2 or claim 3 end attachment for ready-made pile according smaller form than the outer diameter D 5, characterized in that there was a. 上面を略水平面とした円盤状基部の下面を、下方に向けて徐々に縮径した部分円錐状のテーパー面を形成して、突起部を構成したことを特徴とする請求項2又は請求項3記載の既製杭用の先端金具。  4. The protrusion is configured by forming a partially conical tapered surface whose diameter is gradually reduced downward on a lower surface of a disk-shaped base portion having a substantially horizontal upper surface. Tip metal fittings for ready-made piles as described. 予め掘削しあるいは既製杭を埋設しながら掘削をした杭穴の根固め部内に位置させて使用するコンクリート杭からなる既製杭であって、所定外径の主軸部を有する前記既製杭の下端に、前記主軸部より外径が小径で、内径が略同一の鋼管からなる筒状基部を有する先端金具を連結してなり、
前記筒状基部に横方向の突起部を形成し、該突起部の先端を、前記主軸部の最大外径と同等位置又は前記主軸部の最大外径より外方に突出させ、前記先端金具の長さを前記根固め部内に完全に収容できる長さで形成したことを特徴とする先端金具を有する既製杭。
It is a ready-made pile made of a concrete pile that is used by being positioned in a rooted portion of a pile hole excavated in advance while being excavated or buried, and at the lower end of the ready-made pile having a main shaft portion of a predetermined outer diameter, The outer diameter is smaller than the main shaft portion, and a tip fitting having a cylindrical base portion made of a steel pipe having substantially the same inner diameter is connected,
A lateral protrusion is formed on the cylindrical base, and the tip of the protrusion protrudes outwardly from a position equivalent to the maximum outer diameter of the main shaft portion or the maximum outer diameter of the main shaft portion. A ready-made pile having a tip metal fitting characterized in that the length is formed so as to be able to be completely accommodated in the root consolidation part.
所定軸径の主軸部を有するコンクリート杭からなる既製杭の下端に、横方向の突起部を突設した先端金具を連結し、該既製杭を、予め掘削しあるいは既製杭を埋設しながら掘削をした根固め部を有する杭穴内に、前記突起部が前記杭穴の根固め部内に位置するように、埋設してなる基礎杭の構造であって、
前記先端金具は、前記主軸部より外径が小径で、内径が略同一の鋼管からなる筒状基部の外側面に、横方向の突起部を形成し、該突起部の先端が前記主軸部の最大外径と同等又は最大外径より大径に形成し、前記先端金具を前記根固め部内に完全に収容したことを特徴とする既製杭を使用した基礎杭構造。
Connected to the lower end of a prefabricated pile made of a concrete pile having a main shaft portion of a predetermined shaft diameter, a tip fitting with a protruding portion in the lateral direction is connected, and the prefabricated pile is excavated in advance or excavated while embedding the prefabricated pile. In a pile hole having a root consolidation part, the structure of the foundation pile embedded so that the protrusion is located in the root consolidation part of the pile hole,
The tip metal fitting has a lateral projection formed on the outer surface of a cylindrical base made of a steel pipe having an outer diameter smaller than that of the main shaft portion and substantially the same inner diameter , and the tip of the projection portion is formed on the main shaft portion. A foundation pile structure using an off-the-shelf pile, which is formed to have a diameter equal to or larger than the maximum outer diameter and the tip fitting is completely accommodated in the root-sealed portion.
JP2002246247A 2002-08-27 2002-08-27 Tip piles for ready-made piles, ready-made piles with tip brackets, foundation pile structure using ready-made piles Expired - Lifetime JP4200236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002246247A JP4200236B2 (en) 2002-08-27 2002-08-27 Tip piles for ready-made piles, ready-made piles with tip brackets, foundation pile structure using ready-made piles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002246247A JP4200236B2 (en) 2002-08-27 2002-08-27 Tip piles for ready-made piles, ready-made piles with tip brackets, foundation pile structure using ready-made piles

Publications (2)

Publication Number Publication Date
JP2004084275A JP2004084275A (en) 2004-03-18
JP4200236B2 true JP4200236B2 (en) 2008-12-24

Family

ID=32054186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002246247A Expired - Lifetime JP4200236B2 (en) 2002-08-27 2002-08-27 Tip piles for ready-made piles, ready-made piles with tip brackets, foundation pile structure using ready-made piles

Country Status (1)

Country Link
JP (1) JP4200236B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101347873B1 (en) 2012-03-12 2014-01-09 백규호 Complex pile for improving end bearing capacity of bored precast pile

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2683684B2 (en) * 1995-05-23 1997-12-03 株式会社国土基礎 Piling method
JPH09242069A (en) * 1996-03-07 1997-09-16 Dairiyou Kenzai:Kk Drill at tip of pile
JPH09317049A (en) * 1996-06-03 1997-12-09 Misawa Homes Co Ltd Fireproof unit structure
JP4724873B2 (en) * 1999-08-31 2011-07-13 三谷セキサン株式会社 Ready-made pile
JP2001317049A (en) * 2000-05-09 2001-11-16 Sumitomo Metal Ind Ltd Pile with wing
JP3170756B1 (en) * 2001-01-11 2001-05-28 日本鋼管株式会社 Screw-in type steel pipe pile and its construction method

Also Published As

Publication number Publication date
JP2004084275A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
JP5520347B2 (en) Pile digging method
JP4984308B2 (en) Ready-made pile
JP3593070B2 (en) Foundation pile
JPH11280067A (en) Method for embedding existing concrete pile and structure of foundation pile and existing concrete pile
JP4200236B2 (en) Tip piles for ready-made piles, ready-made piles with tip brackets, foundation pile structure using ready-made piles
JP2003119775A (en) Construction of foundation pile
JP4724879B2 (en) Foundation pile structure
JP2013040447A (en) Combined footing pile and structuring method for combined footing pile
WO2002016701A1 (en) Reinforcement structure for a foundation pile
JP4389095B2 (en) Ready-made pile and foundation pile structure
JP4724878B2 (en) Foundation pile structure
JP4512859B2 (en) Method of burying ready-made piles in pile holes
KR100500143B1 (en) Constructing method for hollow section extension of pier to ensure water flow section and struction thereof
JP4724873B2 (en) Ready-made pile
JP4706994B2 (en) Foundation pile structure using ready-made piles
JP4517233B2 (en) Ready-made concrete pile, manufacturing method of ready-made concrete pile, foundation pile structure
JP2004238927A (en) Joint structure of prefabricated pile and column, and its axial force transmission member
CN220099879U (en) High bearing capacity steel pipe column foot structure
JP4054903B2 (en) Method of burying ready-made piles, foundation pile structure and ready-made piles
JP4478810B2 (en) Joining method between ready-made piles and foundation base, joining structure between ready-made piles and foundation base, ready-made piles
JP6873613B2 (en) How to build foundation piles, foundation pile structure and double ready-made piles
JP4441774B2 (en) Ready-made pile and foundation pile structure
JP6328312B1 (en) Self-supporting retaining wall and its basic structure
KR0176306B1 (en) Piling method using casing
JP3085926B2 (en) Connection pole

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4200236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term