JP4199825B2 - Nickel fine powder - Google Patents
Nickel fine powder Download PDFInfo
- Publication number
- JP4199825B2 JP4199825B2 JP2002143270A JP2002143270A JP4199825B2 JP 4199825 B2 JP4199825 B2 JP 4199825B2 JP 2002143270 A JP2002143270 A JP 2002143270A JP 2002143270 A JP2002143270 A JP 2002143270A JP 4199825 B2 JP4199825 B2 JP 4199825B2
- Authority
- JP
- Japan
- Prior art keywords
- acid
- nickel
- fine powder
- added
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Powder Metallurgy (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、表面に周期表第2族〜第15族に属し且つ第4〜第6周期に含まれる金属、リチウム、マグネシウム及びアルミニウムから選ばれる少なくとも1種の金属の脂肪酸石鹸を0.5〜10重量%の範囲にて付着させてなるニッケル微粉末に関し、より詳しくは、積層セラミックコンデンサー内部電極材料として用いるのに好適な分散性に優れた導電性ペースト材料としてのニッケル微粉末に関する。
【0002】
【従来の技術】
近年、電子部品の小型化高容量化が進展するにつれて、積層セラミックコンデンサーも、小型化高容量化が一層強く求められるに至っている。積層セラミックコンデンサーは、チタン酸バリウム等のセラミック誘電体粉末とエチルセルロース等のバインダーとからなる誘電体グリーンシートにパラジウム、銀−パラジウム、白金等のような内部電極の為の貴金属粉末を含むペーストを印刷し、乾燥し、内部電極が交互に重なる様に積層し、熱圧着し、次いで、これを適宜の寸法に裁断した後、約1300℃の温度で焼成して、脱バインダーしつつ、内部電極とセラミック誘電体とを燒結させ、この後、銅、或いは銀等の外部電極を形成して製造される。
【0003】
積層セラミックコンデンサーの大容量化及び小型化の為には積層数の増大と薄層化が必要であるが、その為上記の様に内部電極材料として貴金属を用いた積層セラミックコンデンサーは、高価とならざるを得ない。そこで近年、積層セラミックコンデンサーの内部電極材料として、卑金属であるニッケルへのシフトが急速に進行して来ている。
【0004】
積層セラミックコンデンサの内部電極は、内部電極に用いる金属粉の大きさによって制約を受け、その金属粉の粒径よりも薄くすることができない。内部電極の厚みは、通常、1〜2μmであるので、粒径が1μmよりも大きい粒子を用いるときは、電極層が不均一となり、導通不良を起こすおそれがあり、また、積層工程において、内部電極層が誘電体層を貫通して、絶縁不良を起こしたりする。従って、積層セラミックコンデンサーの内部電極に用いるニッケル粉は、粒子が平滑な球状であり、粒子径が0.1〜1μm程度の範囲にあり、粗大粒子が混在せず、且つ凝集が無く、高分散性である事が強く求められている。ここに大きな問題がある。
【0005】
積層セラミックコンデンサの内部電極材料として用いられている従来のニッケル粉末の分散は必ずしも良いものではなく、通常、経時変化による凝集も含めて数十ミクロンの凝集粒が混在している。また、有機バインダーに対する馴染みも必ずしも良いものではなく、これらがペースト化に際して以下のような問題を起こす場合がある。すなわち、ニッケル粉末のペースト化は、一般にニッケル粉末と有機バインダーとをビーズミルやロールミル等の分散機を用いて分散、混錬する事によって行われるが、この際、上述した様にニッケル粉末の分散が悪いと、その凝集粒子を解す為に過度の分散を行う必要があり、これにかかるコストが大きくなる。そればかりでなく、ニッケルは展性を有するので、強い力がかかると、凝集粒子は突き固められた様に変形し、巨大粒子となり、積層セラミックコンデンサの内部電極材料として求められている特性を満足する事が出来なくなる。
【0006】
【発明が解決しようとする課題】
本発明は、ニッケル微粉末の上述した問題を解決するためになされたものであって、粒子径が0.1〜1μm程度の範囲にあり、粗大粒子が混在せず、且つ凝集が無く高分散性を有し、例えば、積層セラミックコンデンサ内部電極として好適に用いることができるニッケル微粉末を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明によるニッケル微粉末は、その表面に周期表第2族〜第15族に属し且つ第4〜第6周期に含まれる金属、リチウム、マグネシウム及びアルミニウムから選ばれる少なくとも1種の金属の脂肪酸石鹸を0.5〜10重量%の範囲にて付着させてなることを特徴としている。
【0008】
【発明の実施の形態】
本発明において用いるニッケル微粉末は、その製造方法において、特に限定されるものではなく、例えば、ニッケル塩蒸気の気相水素還元法のような乾式法や、ニッケル塩を含む水溶液を還元剤で還元し、析出させる湿式法によるものでもよいが、好ましくは、0.1〜5μm、より好ましくは、0.1〜2μm、特に好ましくは、0.1〜1μmの範囲の平均粒子径を有する。
【0009】
しかし、本発明によれば、特に、特開平12−44252号公報や特開2001−152214号に記載されているように、エマルション法にて微細球状の塩基性ニッケル炭酸塩又はニッケル炭酸塩(以下、(塩基性)ニッケル炭酸塩と言う。)を製造し、これを酸化、還元して得られるニッケル微粉末や、また、上記(塩基性)ニッケル炭酸塩をアルカリ土類元素、アルミニウム、ケイ素、希土類元素等の化合物からなる融着防止剤の存在下で、水素雰囲気下に加熱して、上記(塩基性)ニッケル炭酸塩を還元して得られるニッケル微粉末が好ましく用いられる。この様にして得られるニッケル微粉末は、エマルション法による(塩基性)ニッケル炭酸塩の形態を承継して、微細球状の形態を有する。
【0010】
本発明によれば、このようなニッケル微粉末の表面に脂肪酸金属石鹸を付着させる。上記脂肪酸金属石鹸における脂肪酸は、炭素数3〜30の飽和、不飽和及びその他特殊脂肪酸から成る。具体的には、飽和脂肪酸としては、酪酸、カプロン酸、カプリル酸、ペラルゴン酸、カプリン酸、ウンデカン酸、ラウリン酸、ミスチリン酸、パルミチン酸、ステアリン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、モンタン酸、メリシン酸等を例示する事が出来る。
【0011】
また、不飽和脂肪酸としては、モノエン不飽和脂肪酸として、オプツシル酸、カプロレイン酸、ウンデシレン酸、リンデル酸、ツズ酸、フィゼテリン酸、ミリストレイン酸、パルミトレイン酸、ペトロセリン酸、オレイン酸、エライジン酸、アスクレピン酸、バクセン酸、ガドレイン酸、ゴンドレイン酸、セトレイン酸、エルカ酸、ブラシジン酸、セラコイレン酸、キシメン酸、ルメクエン酸等を、ポリエン不飽和脂肪酸として、ソルビン酸、リノール酸等のジエン、ヒラゴ酸、α―エレオステアリン酸、β―エレオステアリン酸、ブニカ酸、リノレン酸、γ―リノレン酸等のトリエン、モロクチ酸、ステアリドン酸、アラキドン酸等のテトラエン、イワシ酸、ニシン酸等のペンタエン及びヘキサエン等を例示する事が出来る。
【0012】
更に、各種の特殊脂肪酸として、イソバレリアン酸、α−メチル酪酸、イソ酸、アンテイソ酸、ツベルクロステアリン酸等の枝分かれタイプ、タリリン酸、ステアロール酸、クレペニン酸、キシメニン酸等の3重結合を有するタイプ、マルバリン酸、ステルクリン酸、ヒドノカルピン酸、ショールムーグリン酸、ゴルリン酸等の脂環タイプ、サビニン酸、イプロール酸、ヤラビノール酸、ユニペリン酸、アンブレットール酸、アリューリット酸、リシノール酸、カムロレン酸、リカン酸、フェロン酸、セレブロン酸等の含酸素タイプをそれぞれ例示する事が出来る。
【0013】
上記脂肪酸と金属石鹸を形成する金属としては、周期表第2族〜第15族、第4周期〜第6周期に属する金属、具体的に元素名で表示すれば、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As、Sr、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、Ba、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、Tl、Pb、Bi、及びLa、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等のランタノイド元素を挙げることができ、また、Li、Mg、Al等を例示する事が出来る。
【0014】
上記脂肪酸金属石鹸が付着したニッケル微粉末は、その製造方法においては、特に限定されるものではないが、例えば、ニッケル微粉末への脂肪酸金属石鹸の付着は、以下のようにして行う事ができる。即ち、上記脂肪酸のアルカリ金属塩若しくはアンモニウム塩の所定量を加熱しながら水に溶解、若しくは懸濁させる。この時の温度は50℃〜100℃とすることが好ましい。この溶液にニッケル微粉末を懸濁し、攪拌下に、等モル量の前述した金属の塩を添加し、複分解する。或いは、複分解した後、ニッケル微粉末を懸濁してもよい。その後、デカンテーション等により十分洗浄し、ろ過、乾燥させれば、脂肪酸金属石鹸の付着したニッケル微粉末を得る。
【0015】
以上のような種々の方法によって得られた脂肪酸金属石鹸の付着したニッケル微粉末は、必要に応じて、エアミルのような流体エネルギーミルによって仕上げ粉砕される。
【0016】
このようにして、ニッケル微粒子に付着させる脂肪酸金属石鹸の量は、0.1重量%〜10重量%の範囲にある事が好ましく、より好ましくは、0.5重量%〜5重量%の範囲である。ニッケル微粒子に対する脂肪酸金属石鹸の付着量が0.1重量%以下の場合には、その効果が十分でなく、逆に、10重量%以上の場合には、その処理量に見合った効果が得られず、また、これらのニッケル微粉末を積層コンデンサーの内部電極材料として使用した時にコンデンサーの誘電特性に悪影響を及ぼす傾向がある。
【0017】
このように、ニッケル微粒子に脂肪酸金属石鹸を付着させる事によるペースト化時の樹脂との濡れ性、分散性、特に、初期分散性向上の効果は、JIS K 5101−1991「顔料試験方法」に記載される吸油量(以下、O.Aとする)及びペースト化試験等によって評価する事が出来る。
【0018】
O.Aは顔料等の試料を一定の流動性を有するペーストにするビヒクルの量をいい、通常、試料100gに対するビヒクルのg数又はmlで表される。試料に亜麻仁油を少量ずつ添加し、混練すると、油は先ず、試料粒子表面に付着して油層を形成する。更に、油量を増していくと、油は試料粒子間の空隙を次第に埋めていく。最終的に試料が最密充填し、その空隙の全てを油で満たした状態が終点となる。従って、O.Aは、試料粒子表面に油層を形成する油量と、試料粒子の空隙を埋めるのに要した油量の和である。O.Aを支配する主因子としては、油に対する濡れ易さ、試料の比表面積、粒度分布及び試料の凝集の度合い等が挙げられる。これらのうちでも、後の3者は、試料の形状に起因する要因であるが、前者、油に対する濡れ易さは、試料の表面性状に起因する要因として特に重要である。
【0019】
ペースト化試験は、ビヒクルに対する試料の分散性を直接に評価する試験として重要である。勿論、具体的にはビヒクルの種類によって、馴染み、その他の状態も変化し、それらに応じた最適な脂肪酸金属石鹸種を選択しなければならない。これらの選択は、一般的には脂肪酸のアルキル基、若しくはアルケニル基の種類、長さ等を変化させることによって行う事が出来る。
【0020】
積層コンデンサーの内部電極材料のペースト化には、ビヒクルとして、エチルセルロース等セルロース系の樹脂とテレピネオール、ブチルカービトールアセテート、ジアセトンアルコール等の溶剤、又はそれらを組み合わせた配合が用いられることが多い。
【0021】
また、ペースト化の分散機としては、ビーズミルや、3本ロール等のロールミルが用いられている。試料の分散性は、初期分散性と本質分散性の2つの指標で評価され、前者については、グラインドゲージを用いた分布図法によるツブの経時変化、後者については、アプリケーター等で作成した塗膜のグロスメーターによる光沢値等で数値化される。
【0022】
【実施例】
以下に、本発明で主に用いたニッケル微粒子のエマルション法による調製方法を調製例として示すと共に、本発明のニッケル微粒子を実施例を挙げて説明するが、本発明はこれら調製例及び実施例により何ら限定されるものではない。
【0023】
(ニッケル微粒子のエマルション法による調製例)
(第1段階)
市販の塩基性炭酸ニッケル(NiCO3・2Ni(OH)2・4H2O)470kgと炭酸水素アンモニウム806.6kgとを28%アンモニア水/水混合物に加え、よく撹拌して、pH9.5の塩基性炭酸ニッケルの炭酸水素アンモニウム水溶液を調製した。得られたニッケル塩の水溶液666.6kgにノニオン系界面活性剤ポリオキシエチレンソルビタンモノオレエート(花王製レオドールTW−O120)100kgを加え、50℃にて撹拌して溶解させた。別に有機溶媒として、スーパースクワラン(スクアテック製スクワラン)166.7kgを加え、80℃にて撹拌して溶解させた。
【0024】
次に、界面活性剤を溶解させたニッケル塩水溶液と有機溶媒とを混合し、デイスパー型攪拌機を用いて800rpm(周速度12.5m/s)で30分間撹拌し、W/O型のエマルションを調製した。次に、このエマルションを温度80℃において20〜30mmHgの減圧下に吸引して、アンモニア及び炭酸ガス等を蒸発させ、アンモニア臭がなくなった後も吸引を続け、水分も蒸発させ、油中に分散された塩基性炭酸ニッケルの淡緑色沈殿を得た。この沈殿をろ過し、ヘキサン、メタノール及び水の順序にて洗浄した後、温度100℃で2時間乾燥させて、球状の塩基性炭酸ニッケル粉末約50kgを得た。
【0025】
(第2段階)
以上のようにして得られた塩基性炭酸ニッケルを空気雰囲気中、600℃で2時間焼成して、酸化ニッケルとし、更に、水素気流中、600℃で6時間還元して、平均粒子径0.2μmの球状ニッケル微粉末を得た。
【0026】
実施例1
炭素数18の飽和脂肪酸であるステアリン酸100gを5000mlのイオン交換水に懸濁し、約80℃に加熱した。この懸濁液に100g/lのカセイソーダ水溶液を140ml加えて、中和し、30分間攪拌して、ステアリン酸ソーダを調製した。次に、調製例に従って調製した平均粒子径0.2μmの球状ニッケル微粉末5000gを加え、30分間攪拌した後、Niとして10g/lのNiCl2 水溶液1040mlを加え、複分解した。その後、30分間攪拌し、濾過、水洗、乾燥し、エアミルにて粉砕し、ステアリン酸ニッケルが2.02重量%付着したニッケル微粉末を得た。尚、ニッケル微粉末に付着した脂肪酸金属石鹸の量は次の様にして求めた。即ち、ニッケル微粉末上の脂肪酸金属石鹸を酸分解して、生成した脂肪酸をメチルエステルとして抽出し、これをガスクロマトグラフィーによって定量して、脂肪酸金属石鹸に換算した。
【0027】
実施例2
炭素数18の飽和脂肪酸であるステアリン酸100gを5000mlのイオン交換水に懸濁し、約80℃に加熱した。この懸濁液に100g/lのカセイソーダ水溶液を140ml加えて、中和し、30分間攪拌して、ステアリン酸ソーダを調製した。次に、調製例に従って調製した平均粒子径0.2μmの球状ニッケル微粉末5000gを加え、30分間攪拌した後、Snとして10g/lのSnCl2 水溶液2090mlを加え、複分解した。その後、30分間攪拌し、濾過、水洗、乾燥し、エアミルにて粉砕し、ステアリン酸スズを2.11重量%付着したニッケル微粉末を得た。
【0028】
実施例3
炭素数18の飽和脂肪酸であるステアリン酸100gを5000mlのイオン交換水に懸濁し、約80℃に加熱した。この懸濁液に100g/lのカセイソーダ水溶液を140ml加えて、中和し、30分間攪拌して、ステアリン酸ソーダを調製した。次に、調製例に従って調製した平均粒子径0.2μmの球状ニッケル微粉末5000gを加え、30分間攪拌した後、Laとして10g/lのLaCl3 水溶液1640mlを加え、複分解した。その後、30分間攪拌し、濾過、水洗、乾燥し、エアミルにて粉砕し、ステアリン酸ランタンを2.08重量%付着したニッケル微粉末を得た。
【0029】
実施例4
炭素数18の飽和脂肪酸であるステアリン酸100gを5000mlのイオン交換水に懸濁し、約80℃に加熱した。この懸濁液に100g/lのカセイソーダ水溶液を140ml加えて、中和し、30分間攪拌して、ステアリン酸ソーダを調製した。次に、調製例に従って調製した平均粒子径0.2μmの球状ニッケル微粉末5000gを加え、30分間攪拌した後、Mgとして10g/lのMgCl2 水溶液420mlを加え、複分解した。その後、30分間攪拌し、濾過、水洗、乾燥し、エアミルにて粉砕し、ステアリン酸マグネシウムを1.87重量%付着したニッケル微粉末を得た。
【0030】
実施例5
炭素数18の飽和脂肪酸であるステアリン酸100gを5000mlのイオン交換水に懸濁し、約80℃に加熱した。この懸濁液に100g/lのカセイソーダ水溶液を140ml加えて、中和し、30分間攪拌して、ステアリン酸ソーダを調製した。次に、調製例に従って調製した平均粒子径0.2μmの球状ニッケル微粉末5000gを加え、30分間攪拌した後、Alとして10g/lのAlCl3 水溶液320mlを加え、複分解した。その後、30分間攪拌し、濾過、水洗、乾燥し、エアミルにて粉砕し、ステアリン酸アルミニウムを1.73重量%付着したニッケル微粉末を得た。
【0031】
実施例6
炭素数18の飽和脂肪酸であるステアリン酸100gを5000mlのイオン交換水に懸濁し、約80℃に加熱した。この懸濁液に100g/lのカセイソーダ水溶液を140ml加えて、中和し、30分間攪拌して、ステアリン酸ソーダを調製した後、Niとして10g/lのNiCl2 水溶液1040mlを加え、複分解した。次に、調製例に従って調製した平均粒子径0.2μmの球状ニッケル微粉末5000gを加え、30分間攪拌した後、濾過、水洗、乾燥し、エアミルにて粉砕し、ステアリン酸ニッケルを1.68重量%付着したニッケル微粉末を得た。
【0032】
実施例7
炭素数18のモノエン不飽和脂肪酸であるオレイン酸100gを5000mlのイオン交換水に懸濁し、約80℃に加熱した。この懸濁液に100g/lのカセイソーダ水溶液を140ml加えて、中和し、30分間攪拌して、オレイン酸ソーダを調製した。次に、調製例に従って調製した平均粒子径0.2μmの球状ニッケル微粉末5000gを加え、30分間攪拌した後、Niとして10g/lのNiCl2 水溶液1050mlを加え、複分解した。その後、30分間攪拌し、濾過、水洗、乾燥し、エアミルにて粉砕し、オレイン酸ニッケルを1.79重量%付着したニッケル微粉末を得た。
【0033】
実施例8
炭素数18のジエン不飽和脂肪酸であるリノール酸100gを5000mlのイオン交換水に懸濁し、約80℃に加熱した。この懸濁液に100g/lのカセイソーダ水溶液を140ml加えて、中和し、30分間攪拌して、リノール酸ソーダを調製した。次に、調製例に従って調製した平均粒子径0.2μmの球状ニッケル微粉末5000gを加え、30分間攪拌した後、Niとして10g/lのNiCl2 水溶液1050mlを加え、複分解した。その後、30分間攪拌し、濾過、水洗、乾燥し、エアミルにて粉砕し、リノール酸ニッケルを1.66重量%付着したニッケル微粉末を得た。
【0034】
実施例9
炭素数18の含酸素脂肪酸である12−ヒドロキシステアリン酸100gを5000mlのイオン交換水に懸濁し、約80℃に加熱した。この懸濁液に100g/lのカセイソーダ水溶液を130ml加えて、中和し、30分間攪拌して、12−ヒドロキシステアリン酸ソーダを調製した。次に、調製例に従って調製した平均粒子径0.2μmの球状ニッケル微粉末5000gを加え、30分間攪拌した後、Niとして10g/lのNiCl2 水溶液980mlを加え、複分解した。その後、30分間攪拌し、濾過、水洗、乾燥し、エアミルにて粉砕し、12−ヒドロキシステアリン酸ニッケルを1.87重量%付着したニッケル微粉末を得た。
【0035】
比較例1
調製例に従って調製した平均粒子径0.2μmの球状ニッケル微粉末に脂肪酸金属石鹸を付着させずして、実施例1〜9と同様にして、エアミルにて粉砕し、ニッケル微粉末を得た。
【0036】
(吸油量の測定)
JIS K5101「顔料試験方法」に準ずる。ニッケル微粉末試料5gを精秤し、測定板上の中央にとり、煮亜麻仁油を10mlのマイクロビュレットから1回に4〜5滴、徐々に試料の中央に滴下し、全体をベラで十分練り合わせた。この操作を繰り返し、全体が硬いパテ状の塊となったとき、1滴ごとに練り合わせ、最後の1滴でへらを用いてらせん状に巻くことの出来る状態になったときを終点とする。ただし、らせん状に巻くことが出来ない場合は、1滴で急激に柔らかくなる直前を終点とする。尚、本発明においては、亜麻仁油(以下、アマニ油とする)の他に、2重量%エチルセルロース/テレピネオール系(以下、セルロース系とする)を用いた試験も実施した。吸油量は以下の式にて算出した。
【0037】
O.A(単位:ml/100g)=(V/m)×100、ただし、Vは適下したアマニ油の量(単位:ml)、mは試料の重量(単位:g)である。
【0038】
(初期分散性試験)
10Lのステンレスパットにバインダー液として8重量%エチルセルロース/テレピネオール1500gを計り取り、この液を攪拌しながら、これにニッケル微粉末を1500g加え、更に、20分間攪拌混合して、ニッケル微粉末とバインダーを良く馴染ませた。次に、この予備分散ペーストを3本ロールの供給ロールに投入し、ロール分散を行った。1回通し(1パス)終了後、グラインドゲージ線条法によりツブを測定した。この操作を3回繰り返して(3パス)、ツブの経時変化を比較し、初期分散性とした。
【0039】
また、分散後のペーストは、メタノールを用いて良く洗浄し、乾燥後、SEMにより粒子の変形、巨大化等が起こっていないかどうかについて観察した。判定は、以下の3段階で評価した。○:変形等なし、△:若干変形等あり、×:変形等多し。
【0040】
尚、3本ロールの仕様は、以下の様である。ロール長:300mm、ロール直径:120mm、前ロール回転数:164rpm(60Hz)、ロール回転比:後ろロール/中ロール/前ロール=1/2.6/6.8、周速度(m/s):後ろロール/中ロール/前ロール=0.15/0.39/1.03。
【0041】
【表1】
【0042】
表1に示す結果から明らかな様に、比較例1はO.Aが高く、初期分散性についても3パス後でも、ツブが5μm以下とならず、また、SEMによって、僅かではあるが、粒子の変形が観察された。これに対して、実施例1〜実施例9の全てにおいて、O.A、初期分散性、SEMともに、比較例に比べて良好な結果が得られた。
【0043】
【発明の効果】
以上のように、本発明によれば、ニッケル微粒子に脂肪酸金属石鹸を付着させる事によって、ペースト化時の樹脂との濡れ性及び初期分散性を向上させる事が出来、過度の分散を回避する事が可能となり、それによる粒子の変形、巨大化を防止する事が出来るようになる。[0001]
BACKGROUND OF THE INVENTION
The present invention provides a fatty acid soap of at least one metal selected from metals , lithium, magnesium and aluminum belonging to Groups 2 to 15 and 4 to 6 in the periodic table on the surface of 0.5 to relates Ru nickel fine powder name by attaching at 10 wt% range, more particularly, to nickel fine powder as an excellent conductive paste material to a suitable dispersion for use as a multilayer ceramic capacitor internal electrode material.
[0002]
[Prior art]
Recently, as miniaturization high capacity of the electronic component evolves, also multilayer ceramic capacitors, miniaturization higher capacity has come to be more strongly demanded et al. Multilayer ceramic capacitors are printed on a dielectric green sheet composed of ceramic dielectric powder such as barium titanate and binder such as ethyl cellulose and paste containing noble metal powder for internal electrodes such as palladium, silver-palladium, platinum, etc. And dried, laminated so that the internal electrodes are alternately stacked, thermocompression-bonded, and then cut into appropriate dimensions, and then fired at a temperature of about 1300 ° C. to remove the binder, The ceramic dielectric is sintered, and thereafter, an external electrode such as copper or silver is formed.
[0003]
While for larger capacity and size of the multilayer ceramic capacitor is Ru Oh requires increasing the thinning number of layers, Therefore multilayer ceramic capacitors using a noble metal as the internal electrode material as described above, the expensive I have to be. Therefore, in recent years, the shift to nickel, which is a base metal, has rapidly progressed as an internal electrode material for multilayer ceramic capacitors.
[0004]
The internal electrode of the multilayer ceramic capacitor is restricted by the size of the metal powder used for the internal electrode, and cannot be made thinner than the particle size of the metal powder. Since the thickness of the internal electrode is usually 1 to 2 μm, when particles having a particle size larger than 1 μm are used, the electrode layer may become non-uniform, which may cause poor conduction. The electrode layer penetrates the dielectric layer and causes insulation failure. Accordingly, the nickel powder used in the internal electrode of a multilayer ceramic capacitor over the particles is smooth spherical in the range particle size of about 0.1 to 1 [mu] m, not mixed coarse particles, and agglomeration without high There is a strong demand for dispersibility. The big problem is Ru Oh here.
[0005]
The dispersion of the conventional nickel powder used as the internal electrode material of the multilayer ceramic capacitor is not necessarily good, and usually a few tens of microns of agglomerated grains including agglomeration due to aging are mixed. In addition , the familiarity with organic binders is not always good, and these may cause the following problems in forming a paste. That is, a paste of nickel powder is generally dispersed nickel powder and an organic binder with a dispersing machine such as a bead mill or a roll mill is carried out by the kneading, this time, the dispersion of the nickel powder as described above If it is bad, it is necessary to carry out excessive dispersion in order to unravel the aggregated particles, and this increases the cost. Not only that, since nickel malleable, a strong force is applied, the aggregated particles are deformed as that tamped, it becomes huge particles, satisfying the properties sought as an internal electrode material of the multilayer ceramic capacitor You can't do it.
[0006]
[Problems to be solved by the invention]
The present invention has been made in order to solve the above-described problems of nickel fine powder, and has a particle diameter in the range of about 0.1 to 1 μm, does not contain coarse particles, and has no aggregation and high dispersion. An object of the present invention is to provide a nickel fine powder that has good properties and can be suitably used, for example, as an internal electrode of a multilayer ceramic capacitor.
[0007]
[Means for Solving the Problems]
The nickel fine powder according to the present invention has at least one metal fatty acid soap selected from metals , lithium, magnesium and aluminum belonging to Groups 2 to 15 of the periodic table and included in Groups 4 to 6 on the surface thereof. It is characterized in Rukoto such by attaching at 0.5 to 10 weight percent range.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The nickel fine powder used in the present invention is not particularly limited in its production method. For example, a dry method such as a vapor phase hydrogen reduction method of nickel salt vapor or an aqueous solution containing nickel salt is reduced with a reducing agent. However, it is preferably 0.1 to 5 μm, more preferably 0.1 to 2 μm, and particularly preferably 0.1 to 1 μm.
[0009]
However, according to the present invention, as described in JP-A-12-44252 and JP-A-2001-152214, a fine spherical basic nickel carbonate or nickel carbonate (hereinafter referred to as an emulsion method) is used. , (Basic) nickel carbonate), and nickel fine powder obtained by oxidation and reduction thereof, and the above (basic) nickel carbonate is converted to alkaline earth element, aluminum, silicon, A nickel fine powder obtained by reducing the above (basic) nickel carbonate by heating in a hydrogen atmosphere in the presence of an anti-fusing agent comprising a compound such as a rare earth element is preferably used. The nickel fine powder thus obtained inherits the form of (basic) nickel carbonate by the emulsion method and has a fine spherical form.
[0010]
According to the present invention, fatty acid metal soap is adhered to the surface of such nickel fine powder . The fatty acid in the fatty acid metal soap is composed of saturated, unsaturated and other special fatty acids having 3 to 30 carbon atoms. Specific examples of saturated fatty acids include butyric acid, caproic acid, caprylic acid, pelargonic acid, capric acid, undecanoic acid, lauric acid, mytilic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, lignoceric acid, and serotic acid. , Montanic acid, melicic acid and the like.
[0011]
In addition, as unsaturated fatty acids, mono-unsaturated fatty acids include optosilic acid, caproleic acid, undecylenic acid, Linderic acid, tuzuic acid, fizeteric acid, myristoleic acid, palmitoleic acid, petrothelic acid, oleic acid, elaidic acid, asclepine Acid, vaccenic acid, gadoleic acid, gondolic acid, cetreic acid, erucic acid, brassic acid, cerakoylenic acid, ximenoic acid, rumecic acid and the like as polyene unsaturated fatty acid, diene such as sorbic acid, linoleic acid, hiragoic acid, Trienes such as α-eleostearic acid, β-eleostearic acid, bunicic acid, linolenic acid, γ-linolenic acid, tetraenes such as moloctic acid, stearidonic acid, arachidonic acid, pentaenes such as succinic acid, nisinic acid, and hexaenes Etc. can be illustrated.
[0012]
In addition, various special fatty acids include branched types such as isovaleric acid, α-methylbutyric acid, isoacid, anteisoic acid, and tuberculostearic acid, and triple bonds such as taliphosphoric acid, stearolic acid, crepenic acid, and xymenic acid. Type, Malvalic acid, Stericuric acid, Hydnocarpinic acid, Shool moulinic acid, Golulic acid, and other alicyclic types, Sabinic acid, Iprolic acid, Jarabinolic acid, Uniperic acid, Ambrettlic acid, Aleurit acid, Ricinoleic acid, Camlolene Examples include oxygen-containing types such as acid, licanoic acid, ferronic acid, and cerebronic acid.
[0013]
The metal forming the soap with the fatty acid is a metal belonging to Groups 2 to 15 and Periods 4 to 6 of the periodic table, specifically Ca, Sc, Ti, V, if expressed by element names. , Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Ba , Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, and La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, mention may be made of the lanthanide elements of Lu, etc., also, Li, Mg, it is possible to illustrate the Al or the like.
[0014]
Nickel fine powder in which the fatty acid metal soap is attached, in its production process, such is limited in particular bur, for example, deposition of fatty acid metal soap to the nickel fine powder, be carried out as follows it can. That is, a predetermined amount of the alkali metal salt or ammonium salt of the fatty acid is dissolved or suspended in water while heating. The temperature at this time preferably set to 50 ° C. to 100 ° C.. To this solution was suspended nickel fine powder, under stirring, was added the above-described metal salts of equimolar amounts, double decomposed. Alternatively, the nickel fine powder may be suspended after metathesis. Then, thoroughly washed by decantation or the like to obtain filtered, lever dried, the deposited nickel fine powder of the fatty acid metal soap.
[0015]
The nickel fine powder to which the fatty acid metal soap is obtained by the various methods as described above is finished and pulverized by a fluid energy mill such as an air mill, if necessary.
[0016]
Thus, the amount of fatty acid metal soap attached to the nickel fine particles is preferably in the range of 0.1 wt% to 10 wt%, more preferably in the range of 0.5 wt% to 5 wt%. is there. When the adhesion amount of fatty acid metal soap to nickel fine particles is 0.1% by weight or less, the effect is not sufficient. Conversely, when the amount is 10% by weight or more, an effect commensurate with the treatment amount is obtained. In addition, when these nickel fine powders are used as the internal electrode material of a multilayer capacitor, they tend to adversely affect the dielectric characteristics of the capacitor.
[0017]
Thus, wettability between the resin during pasting caused by the deposition of fatty acid metal soap nickel particles, dispersibility, particularly, the effect of the initial dispersibility improved, according to JIS K 5101-1991 "pigment test method" The amount of oil absorbed (hereinafter referred to as OA) and a pasting test can be evaluated.
[0018]
O. A refers to the amount of vehicle that turns a sample such as a pigment into a paste having a certain fluidity, and is usually expressed in grams or ml of vehicle relative to 100 g of sample. When linseed oil is added to the sample in small portions and kneaded, the oil first adheres to the surface of the sample particles to form an oil layer. Furthermore, transfected gaining oil quantity, oil rather have filled progressively voids between sample particles. The end point is the state in which the sample is finally closely packed and all of the voids are filled with oil. Therefore, O.D. A is the sum of the amount of oil that forms an oil layer on the surface of the sample particles and the amount of oil required to fill the voids in the sample particles. O. The main factors governing A include ease of wetting with oil, specific surface area of the sample, particle size distribution, and the degree of aggregation of the sample . Among these, the latter three are factors resulting from the shape of the sample, but the former, ease of wetting with oil, is particularly important as a factor resulting from the surface properties of the sample.
[0019]
The pasting test is important as a test for directly evaluating the dispersibility of a sample with respect to a vehicle. Of course, in particular, the familiarity and other conditions change depending on the type of vehicle, and an optimum fatty acid metal soap type corresponding to them must be selected. These choices, typically alkyl group of the fatty acid, or the kind of the alkenyl group, can be carried out by changing the length or the like.
[0020]
For pasting the internal electrode material of a multilayer capacitor, a vehicle-based resin such as ethyl cellulose and a solvent such as terpineol, butyl carbitol acetate, diacetone alcohol, or a combination thereof is often used.
[0021]
Further, as a disperser for pasting, a bead mill or a roll mill such as a three roll is used. The dispersibility of the sample is evaluated by two indicators, initial dispersibility and intrinsic dispersibility. The former is the time-dependent change of the tube by the distribution map method using a grind gauge, and the latter is the coating film prepared by an applicator or the like. It is quantified by gloss value by gloss meter.
[0022]
【Example】
Hereinafter, the preparation method of the nickel fine particles mainly used in the present invention by the emulsion method will be shown as preparation examples, and the nickel fine particles of the present invention will be described with reference to examples, but the present invention is based on these preparation examples and examples. It is not limited at all.
[0023]
(Preparation example of nickel fine particles by emulsion method )
(First stage)
470 kg of commercially available basic nickel carbonate (NiCO 3 .2Ni (OH) 2 .4H 2 O) and 806.6 kg of ammonium hydrogen carbonate are added to a 28% ammonia water / water mixture and stirred well to obtain a base having a pH of 9.5. Aqueous nickel carbonate aqueous ammonium hydrogen carbonate solution was prepared. 100 kg of nonionic surfactant polyoxyethylene sorbitan monooleate (Kao-made Leodol TW-O120) was added to 666.6 kg of the obtained aqueous solution of nickel salt, and dissolved by stirring at 50 ° C. Separately as an organic solvent, adding a super squalane (Sukuatekku manufactured squalane) 166.7Kg, and stirred to dissolve at 80 ° C..
[0024]
Next, an aqueous nickel salt solution by dissolving a surfactant and an organic solvent were mixed and stirred for 30 minutes at 800 rpm (peripheral speed 12.5 m / s) by using a disper stirrer, a W / O type Emar Shi A sample was prepared. Next , the emulsion is sucked under a reduced pressure of 20 to 30 mmHg at a temperature of 80 ° C. to evaporate ammonia and carbon dioxide gas, and after the ammonia odor disappears, the suction is continued to evaporate water and disperse in oil. A pale green precipitate of basic nickel carbonate was obtained. The precipitate was filtered , washed with hexane, methanol and water in that order, and then dried at a temperature of 100 ° C. for 2 hours to obtain about 50 kg of spherical basic nickel carbonate powder.
[0025]
(Second stage)
During above-obtained basic nickel carbonate to an air atmosphere, and then calcined 2 hours at 600 ° C., and nickel oxide, further, in a hydrogen stream was reduced 6 hours at 600 ° C., an average particle diameter of 0. A 2 μm spherical nickel fine powder was obtained.
[0026]
Example 1
100 g of stearic acid, which is a saturated fatty acid having 18 carbon atoms, was suspended in 5000 ml of ion-exchanged water and heated to about 80 ° C. Added 140ml of aqueous sodium hydroxide solution of 100 g / l to the suspension, neutralized, and stirred for 30 minutes to prepare a sodium stearate. Then, a spherical nickel powder 5000g having an average particle size of 0.2μm was prepared according to Preparation Example was added and after stirring for 30 min, the NiCl 2 aqueous solution 1040ml of 10 g / l added as Ni, and metathesis. Thereafter, the mixture was stirred for 30 minutes, filtered, washed with water, dried and then pulverized by air mill to obtain a nickel powder nickel stearate adheres 2.02 wt%. The amount of fatty acid metal soap adhered to the nickel fine powder was determined as follows. That is, the fatty acid metal soaps on fine nickel powder by decomposing an acid, the resulting fatty acids were extracted as methyl ester, which was quantified by gas chromatography, it was converted to the fatty acid metal soap.
[0027]
Example 2
100 g of stearic acid, which is a saturated fatty acid having 18 carbon atoms, was suspended in 5000 ml of ion-exchanged water and heated to about 80 ° C. Added 140ml of aqueous sodium hydroxide solution of 100 g / l to the suspension, neutralized, and stirred for 30 minutes to prepare a sodium stearate. Then, a spherical nickel powder 5000g having an average particle size of 0.2μm was prepared according to Preparation Example was added and after stirring for 30 min, the SnCl 2 solution 2090ml of 10 g / l added as Sn, and metathesis. Thereafter, the mixture was stirred for 30 minutes, filtered, washed with water, dried, and pulverized with an air mill to obtain a nickel fine powder having 2.11% by weight of tin stearate attached thereto.
[0028]
Example 3
100 g of stearic acid, which is a saturated fatty acid having 18 carbon atoms, was suspended in 5000 ml of ion-exchanged water and heated to about 80 ° C. Added 140ml of aqueous sodium hydroxide solution of 100 g / l to the suspension, neutralized, and stirred for 30 minutes to prepare a sodium stearate. Then, a spherical nickel powder 5000g having an average particle size of 0.2μm was prepared according to Preparation Example was added and after stirring for 30 min, the LaCl 3 solution 1640ml of 10 g / l added as La, and metathesis. Thereafter, the mixture was stirred for 30 minutes, filtered, washed with water, dried, and pulverized with an air mill to obtain a nickel fine powder having 2.08% by weight of lanthanum stearate attached thereto.
[0029]
Example 4
100 g of stearic acid, which is a saturated fatty acid having 18 carbon atoms, was suspended in 5000 ml of ion-exchanged water and heated to about 80 ° C. Added 140ml of aqueous sodium hydroxide solution of 100 g / l to the suspension, neutralized, and stirred for 30 minutes to prepare a sodium stearate. Then, a spherical nickel powder 5000g having an average particle size of 0.2μm was prepared according to Preparation Example was added and after stirring for 30 min, the MgCl 2 solution 420ml of 10 g / l added as Mg, and metathesis. Thereafter, the mixture was stirred for 30 minutes, filtered, washed with water, dried, and pulverized with an air mill to obtain a fine nickel powder having 1.87% by weight of magnesium stearate attached thereto.
[0030]
Example 5
100 g of stearic acid, which is a saturated fatty acid having 18 carbon atoms, was suspended in 5000 ml of ion-exchanged water and heated to about 80 ° C. Added 140ml of aqueous sodium hydroxide solution of 100 g / l to the suspension, neutralized, and stirred for 30 minutes to prepare a sodium stearate. Then, a spherical nickel powder 5000g having an average particle size of 0.2μm was prepared according to Preparation Example was added and after stirring for 30 min, the AlCl 3 solution 320ml of 10 g / l added as Al, and metathesis. Thereafter, the mixture was stirred for 30 minutes, filtered, washed with water, dried, and pulverized with an air mill to obtain a nickel fine powder having 1.73% by weight of aluminum stearate attached thereto.
[0031]
Example 6
100 g of stearic acid, which is a saturated fatty acid having 18 carbon atoms, was suspended in 5000 ml of ion-exchanged water and heated to about 80 ° C. Added 140ml of aqueous sodium hydroxide solution of 100 g / l to the suspension, neutralized, and stirred for 30 minutes, after the preparation of the sodium stearate, a NiCl 2 aqueous solution 1040ml of 10 g / l added as Ni, and metathesis. Next, 5000 g of fine spherical nickel powder having an average particle diameter of 0.2 μm prepared according to the preparation example was added , stirred for 30 minutes, filtered, washed with water, dried, pulverized with an air mill, and 1.68 wt. % Adhered nickel powder was obtained.
[0032]
Example 7
100 g of oleic acid, which is a monoene unsaturated fatty acid having 18 carbon atoms, was suspended in 5000 ml of ion-exchanged water and heated to about 80 ° C. Added 140ml of aqueous sodium hydroxide solution of 100 g / l to the suspension, neutralized, and stirred for 30 minutes to prepare a sodium oleate. Then, a spherical nickel powder 5000g having an average particle size of 0.2μm was prepared according to Preparation Example was added and after stirring for 30 min, the NiCl 2 aqueous solution 1050ml of 10 g / l added as Ni, and metathesis. Thereafter, the mixture was stirred for 30 minutes, filtered, washed with water, dried, and pulverized with an air mill to obtain a nickel fine powder having 1.79% by weight of nickel oleate attached thereto.
[0033]
Example 8
100 g of linoleic acid, which is a diene unsaturated fatty acid having 18 carbon atoms, was suspended in 5000 ml of ion-exchanged water and heated to about 80 ° C. Added 140ml of aqueous sodium hydroxide solution of 100 g / l to the suspension, neutralized, and stirred for 30 minutes to prepare a linoleic acid soda. Then, a spherical nickel powder 5000g having an average particle size of 0.2μm was prepared according to Preparation Example was added and after stirring for 30 min, the NiCl 2 aqueous solution 1050ml of 10 g / l added as Ni, and metathesis. Thereafter, the mixture was stirred for 30 minutes, filtered, washed with water, dried, and pulverized with an air mill to obtain fine nickel powder having 1.66% by weight of nickel linoleate attached thereto.
[0034]
Example 9
100 g of 12-hydroxystearic acid, which is an oxygen-containing fatty acid having 18 carbon atoms, was suspended in 5000 ml of ion-exchanged water and heated to about 80 ° C. Added 130ml of aqueous sodium hydroxide solution of 100 g / l to the suspension, neutralized, and stirred for 30 minutes to prepare a 12-hydroxystearic acid soda. Next, 5000 g of spherical nickel fine powder having an average particle size of 0.2 μm prepared according to the preparation example was added and stirred for 30 minutes, and then 980 ml of a 10 g / l NiCl 2 aqueous solution as Ni was added to undergo double decomposition. Thereafter, the mixture was stirred for 30 minutes, filtered, washed with water, dried, and pulverized with an air mill to obtain a fine nickel powder having 1.87% by weight of nickel 12-hydroxystearate attached thereto.
[0035]
Comparative Example 1
And without attaching the spherical nickel fine powder in the fatty acid metal soaps having an average particle diameter of 0.2μm prepared according to Preparation Example, in the same manner as in Example 1 to 9 were ground in an air mill to obtain a nickel powder .
[0036]
(Measurement of oil absorption)
Conforms to JIS K5101 “Pigment Test Method”. 5 g of a fine nickel powder sample was precisely weighed and taken at the center of the measurement plate, 4-5 drops of boiled linseed oil at a time from 10 ml of microburette, gradually dropped at the center of the sample, and the whole was thoroughly kneaded with a spatula . . Repeat this operation, when the whole became stiff putty-like mass, kneaded for each drop, the end point when it becomes a state that can be wound spirally with a spatula in last drop. However, if it cannot be wound in a spiral, the end point is the point immediately before it softens suddenly with one drop. In the present invention, in addition to linseed oil (hereinafter referred to as linseed oil), a test using a 2% by weight ethyl cellulose / terpineol system (hereinafter referred to as cellulose system) was also carried out. The oil absorption was calculated by the following formula.
[0037]
O. A (unit: ml / 100 g) = (V / m) × 100, where V is the amount of linseed oil (unit: ml) and m is the weight of the sample (unit: g) .
[0038]
(Initial dispersibility test)
Weighed 8 wt% ethyl cellulose / terpineol 1500g as a binder solution in a stainless pat 10L, stirring the solution, to which was added 1500g of nickel fine powder, further stirring and mixing for 20 minutes, the nickel fine powder and a binder I got used to it. Next, this pre-dispersion paste was put into a supply roll of three rolls to perform roll dispersion. After one pass (one pass), the tips were measured by the grind gauge wire method. This operation was repeated 3 times (3 passes), and the time course of the tube was compared to obtain initial dispersibility.
[0039]
Further, the paste after dispersion, methanol washed well with, dried, deformation of the particles by SEM, it is observed whether not occurred giant like. Judgment was evaluated in the following three stages. ○: No deformation, etc., Δ: Some deformation, etc. ×: Many deformations, etc.
[0040]
The specifications of the three rolls are as follows. Roll length: 300 mm, roll diameter: 120 mm, front roll rotation speed: 164 rpm (60 Hz), roll rotation ratio: rear roll / middle roll / front roll = 1 / 2.6 / 6.8, peripheral speed (m / s) : Back roll / Medium roll / Front roll = 0.15 / 0.39 / 1.03 .
[0041]
[Table 1]
[0042]
As is clear from the results shown in Table 1, Comparative Example 1 is O.D. The A was high, and the initial dispersibility was not less than 5 μm even after 3 passes, and a slight deformation of the particles was observed by SEM. In contrast, in all of Examples 1 to 9 , O.D. Good results were obtained for A, initial dispersibility, and SEM as compared to the comparative example.
[0043]
【The invention's effect】
As described above, according to the present invention, by attaching a fatty acid metal soap nickel particles, it can be Ru improve the wettability and initial dispersibility with the resin during pasting, to avoid excessive dispersion It becomes possible to prevent the deformation and enlargement of the particles.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002143270A JP4199825B2 (en) | 2002-05-17 | 2002-05-17 | Nickel fine powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002143270A JP4199825B2 (en) | 2002-05-17 | 2002-05-17 | Nickel fine powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003328003A JP2003328003A (en) | 2003-11-19 |
JP4199825B2 true JP4199825B2 (en) | 2008-12-24 |
Family
ID=29703340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002143270A Expired - Fee Related JP4199825B2 (en) | 2002-05-17 | 2002-05-17 | Nickel fine powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4199825B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5362615B2 (en) * | 2010-02-22 | 2013-12-11 | Dowaエレクトロニクス株式会社 | Silver powder and method for producing the same |
JP6422289B2 (en) * | 2014-09-30 | 2018-11-14 | 日鉄ケミカル&マテリアル株式会社 | Nickel particle composition, bonding material and bonding method |
-
2002
- 2002-05-17 JP JP2002143270A patent/JP4199825B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003328003A (en) | 2003-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3034202B1 (en) | Metal powder paste and method for producing same | |
CA2513174C (en) | Ultrafine metal powder slurry | |
JP4661726B2 (en) | Fine nickel powder and method for producing the same | |
JP5519938B2 (en) | Method for producing copper powder for conductive paste | |
US9299977B2 (en) | Manufacturing method of electrode material | |
TW200920857A (en) | Nickel powder or alloy powder comprising nickel as main component and manufacturing method thereof, conductive paste and multi-layer ceramic condenser | |
JP2010043345A (en) | Nickel powder or alloy powder composed mainly of nickel and method for producing the same, conductive paste, and multilayer ceramic capacitor | |
JP5522885B2 (en) | Nickel powder, method for producing the same, and conductive paste | |
JP2010067418A (en) | Conductive paste and method of manufacturing the same | |
JP7025125B2 (en) | A sol containing alkaline earth metal particles of titanate, a method for producing the sol, and a paste containing the sol. | |
KR100845688B1 (en) | Method for Surface treatment of Ni nano particle with Organic solution | |
JP5255580B2 (en) | Method for producing flake copper powder | |
JP4199825B2 (en) | Nickel fine powder | |
JP3203238B2 (en) | Composite nickel fine powder | |
JP5590289B2 (en) | Method for producing silver paste | |
JP2018150607A (en) | Nickel powder water slurry and method for producing same | |
JP4940520B2 (en) | Metal powder and manufacturing method thereof, conductive paste and multilayer ceramic electronic component | |
JP2009187672A (en) | Nickel particle with dielectric particle, and its manufacturing method | |
EP1127638B1 (en) | Nickel powder and conductive paste | |
WO2020158185A1 (en) | Coated particle, dispersion solution and molded body containing same, and sintered body formed using same | |
JP3474170B2 (en) | Nickel powder and conductive paste | |
JP2005243890A (en) | Laminated ceramic capacitor and manufacturing method thereof | |
JP2012221640A (en) | Conductive paste and method for producing the same | |
JP4061462B2 (en) | Composite fine particles, conductive paste and conductive film | |
JP3542079B2 (en) | Nickel powder and conductive paste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040527 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050628 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050726 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050920 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051025 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20051025 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060606 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060804 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060915 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060921 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20070223 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081004 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111010 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111010 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111010 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111010 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111010 Year of fee payment: 3 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111010 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111010 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121010 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121010 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121010 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131010 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |