JP4198796B2 - Method for manufacturing aluminum electrolytic capacitor - Google Patents

Method for manufacturing aluminum electrolytic capacitor Download PDF

Info

Publication number
JP4198796B2
JP4198796B2 JP29995298A JP29995298A JP4198796B2 JP 4198796 B2 JP4198796 B2 JP 4198796B2 JP 29995298 A JP29995298 A JP 29995298A JP 29995298 A JP29995298 A JP 29995298A JP 4198796 B2 JP4198796 B2 JP 4198796B2
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
aluminum electrolytic
polymer layer
conductive polymer
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29995298A
Other languages
Japanese (ja)
Other versions
JP2000124074A (en
Inventor
紘一 三井
毅一 別所
泉 藤馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP29995298A priority Critical patent/JP4198796B2/en
Publication of JP2000124074A publication Critical patent/JP2000124074A/en
Application granted granted Critical
Publication of JP4198796B2 publication Critical patent/JP4198796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高周波におけるインピーダンス値を低減し、かつ漏れ電流値の増加をも抑えることができる電気特性に優れたアルミニウム電解コンデンサに関するものである。
【0002】
【従来の技術】
従来の巻回型アルミニウム電解コンデンサには、アルミニウムの陽極箔と陰極箔とをセパレータを介して巻回してなるコンデンサ素子に、(イ)駆動用電解液(以下、電解液という)を含浸し、金属ケースに収納してなるコンデンサ、(ロ)巻回したコンデンサ素子に導電性高分子層を形成し、金属ケースに収納してなる固体コンデンサの2つのタイプがあった。
【0003】
【発明が解決しようとする課題】
しかし、上記した従来の巻回形コンデンサにおいては、次のような問題があった。すなわち、
(イ)液体電解質を使用した場合:コンデンサの損失特性の改善が十分に行われず、高周波におけるインピーダンス値が高い。
(ロ)固体電解質を使用した場合:導電性高分子層形成処理を十数回繰り返すことから、製造コストが高くなる上、陽極箔の誘電体酸化皮膜欠損部が完全に修復されないため、コンデンサの漏れ電流が増大する。
従って、高周波におけるインピーダンス特性に優れ、製造コストも低減でき、さらにコンデンサの漏れ電流をも抑えることができるコンデンサが要求されていた。
【0004】
【課題を解決するための手段】
本発明は、上記の課題を解決するもので、アルミニウムの陽極箔と陰極箔とを所定寸法に裁断し、セパレータを介して巻回してなるコンデンサ素子を駆動用電解液に含浸し、金属ケースに収納してアルミニウム電解コンデンサを製造するアルミニウム電解コンデンサの製造方法において、上記陽極箔は、アルミニウム箔表面の誘電体酸化皮膜上に化学重合により導電性高分子層を形成後、所定寸法に裁断し、加締位置において前記導電性高分子層を加熱して脱ドープ処理した後、引出しリードを固着することを特徴とするアルミニウム電解コンデンサの製造方法である。
【0005】
また、上記の陰極箔に誘電体酸化皮膜を形成したことを特徴とするアルミニウム電解コンデンサの製造方法である。
【0006】
さらに、上記の陰極箔に化学重合による導電性高分子層を形成したことを特徴とするアルミニウム電解コンデンサの製造方法である。
【0007】
そして、上記の駆動用電解液の溶質にイミダゾリニウム塩を用いたことを特徴とするアルミニウム電解コンデンサの製造方法である。
【0008】
また、上記の導電性高分子層が、ピロール、チオフェン、アニリン、フランまたはそれらの誘導体であることを特徴とするアルミニウム電解コンデンサの製造方法である。
【0009】
さらに、上記の導電性高分子層中に、カーボン粒子を混在させることを特徴とするアルミニウム電解コンデンサの製造方法である。
【0010】
【発明の実施の形態】
巻回型コンデンサの陽極箔の誘電体酸化皮膜上に、化学重合による導電性高分子層を形成し、セパレータを介して陰極箔とともに巻回してコンデンサ素子とし、該素子を電解液に含浸し、金属ケースに収納し、所定の電圧、電流値を設定してエージングを行い、電解液により陽極箔の誘電体酸化皮膜欠損部を修復させる。
上記の処理により、コンデンサの高周波におけるインピーダンスが低減されるとともに、導電性高分子層形成処理の回数も低減することができ、漏れ電流値を抑えることができる。
【0011】
【実施例】
表1に示す試料箔(陽極箔、陰極箔)を用い、表1の工程▲1▼〜▲7▼に従って、図1のようなコンデンサ素子を作製し、電解液含浸、ケーシング、エージング(再化成)を行って、定格電圧25V、静電容量15μFの固体電解コンデンサを完成した。
【0012】
【表1】

Figure 0004198796
【0013】
上記の通り作製した電解コンデンサについて、静電容量(μF)、tanδ、漏れ電流(μA)、インピーダンス(Ω)(at 100kHz)を比較した。その結果を表2に示す。
【0014】
【表2】
Figure 0004198796
【0015】
表2より明らかなように、本発明の実施例1〜4による電解コンデンサは、従来例に比べ、tanδ、漏れ電流(μA)が小さくなっており、高周波におけるインピーダンスも低減されている。
【0016】
なお、上記実施例1〜4では導電性高分子層を形成するために、ピロールを用いて化学重合を行ったが、チオフェン、アニリン、フランまたはそれらの誘導体を用いても同様の効果が得られる。
そして、誘電体酸化皮膜との密着性と導電性高分子層の嵩密度を向上させるため、導電性高分子層中にカーボン粒子を混在させることもできる。
また、上記実施例では、駆動用電解液の溶質にイミダゾリニウム塩を使用したが、溶質の種類はこれに限定されるものではない。
さらに、陰極箔の処理として、実施例2では化成処理、実施例3では化学重合、実施例4では化成処理+化学重合を行ったが、かかる処理を行うことにより、陰極箔の電解液中の水分との水和を防止することができ、併せて電解液の漏液をも抑制することができる。
なお、上記実施例ではケーシング後、エージング(再化成)を行っているが、エージング時の発生ガスを逃すため、エージング後、ケーシングを行ってもよい。
【0017】
【発明の効果】
上記したように、本発明によれば、陽極箔の誘電体酸化皮膜上に固体電解質である導電性高分子層を形成することにより、コンデンサの高周波におけるインピーダンスを低減することができる。
また、液体の電解液により、コンデンサ素子内の隅々にまで電解質が含浸されるので、固体電解質のみで導電性高分子層を形成する場合に比べ、導電性高分子層形成処理を繰り返し行う必要がなく、繰り返しの回数が大幅に低減され、製造コストを低減することができる。
そして、上記導電性高分子層の形成処理時に生じた誘電体酸化皮膜欠損部が電解液により修復されるので、コンデンサの漏れ電流増加を抑えることができる。
【図面の簡単な説明】
【図1】本発明の実施例によるコンデンサ素子の展開図である。
【符号の説明】
1 陽極箔(導電性高分子層形成)
2 陰極箔
3 セパレータ
4 陽極リード
5 陰極リード[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum electrolytic capacitor excellent in electrical characteristics that can reduce an impedance value at a high frequency and suppress an increase in leakage current value.
[0002]
[Prior art]
In a conventional wound aluminum electrolytic capacitor, a capacitor element formed by winding an anode foil and a cathode foil of aluminum through a separator is impregnated with (a) a driving electrolyte (hereinafter referred to as an electrolyte), There were two types: a capacitor housed in a metal case, and (b) a solid capacitor formed by forming a conductive polymer layer on a wound capacitor element and housed in a metal case.
[0003]
[Problems to be solved by the invention]
However, the above-described conventional wound capacitor has the following problems. That is,
(A) When a liquid electrolyte is used: The loss characteristics of the capacitor are not sufficiently improved, and the impedance value at a high frequency is high.
(B) When a solid electrolyte is used: Since the conductive polymer layer forming process is repeated ten times or more, the manufacturing cost increases, and the defective portion of the dielectric oxide film of the anode foil is not completely repaired. Leakage current increases.
Therefore, there has been a demand for a capacitor that has excellent impedance characteristics at high frequencies, can reduce manufacturing costs, and can suppress the leakage current of the capacitor.
[0004]
[Means for Solving the Problems]
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and cuts aluminum anode foil and cathode foil into predetermined dimensions, impregnates a capacitor element formed by winding through a separator with a driving electrolyte, and forms a metal case. In the method for producing an aluminum electrolytic capacitor that is housed to produce an aluminum electrolytic capacitor, the anode foil is cut into a predetermined dimension after forming a conductive polymer layer by chemical polymerization on the dielectric oxide film on the surface of the aluminum foil , In the method for manufacturing an aluminum electrolytic capacitor , the conductive polymer layer is heated and dedoped in a crimping position, and then a lead is fixed .
[0005]
Further, the present invention is a method for producing an aluminum electrolytic capacitor , wherein a dielectric oxide film is formed on the cathode foil.
[0006]
Further, the present invention is a method for producing an aluminum electrolytic capacitor , wherein a conductive polymer layer is formed on the cathode foil by chemical polymerization.
[0007]
And it is a manufacturing method of the aluminum electrolytic capacitor characterized by using imidazolinium salt for the solute of said drive electrolyte solution.
[0008]
Also, the conductive polymer layer is a pyrrole, thiophene, aniline, furan or manufacturing method of an aluminum electrolytic capacitor which is a derivative thereof.
[0009]
Furthermore, it is a method for producing an aluminum electrolytic capacitor , characterized in that carbon particles are mixed in the conductive polymer layer.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
On the dielectric oxide film of the anode foil of the winding capacitor, a conductive polymer layer is formed by chemical polymerization, wound with the cathode foil through a separator to form a capacitor element, and the element is impregnated with an electrolytic solution, It is housed in a metal case, a predetermined voltage and current value is set, aging is performed, and the dielectric oxide film defect portion of the anode foil is repaired with the electrolytic solution.
By the above processing, the impedance of the capacitor at high frequency can be reduced, the number of conductive polymer layer forming treatments can be reduced, and the leakage current value can be suppressed.
[0011]
【Example】
Using the sample foil (anode foil, cathode foil) shown in Table 1, the capacitor element as shown in FIG. ) To complete a solid electrolytic capacitor with a rated voltage of 25 V and a capacitance of 15 μF.
[0012]
[Table 1]
Figure 0004198796
[0013]
The electrolytic capacitors produced as described above were compared in terms of capacitance (μF), tan δ, leakage current (μA), and impedance (Ω) (at 100 kHz). The results are shown in Table 2.
[0014]
[Table 2]
Figure 0004198796
[0015]
As is apparent from Table 2, the electrolytic capacitors according to Examples 1 to 4 of the present invention have smaller tan δ and leakage current (μA) than the conventional example, and the impedance at high frequency is also reduced.
[0016]
In Examples 1 to 4, chemical polymerization was performed using pyrrole in order to form a conductive polymer layer. However, the same effect can be obtained using thiophene, aniline, furan or derivatives thereof. .
And in order to improve the adhesiveness with a dielectric oxide film, and the bulk density of a conductive polymer layer, carbon particles can also be mixed in a conductive polymer layer.
Moreover, in the said Example, although the imidazolinium salt was used for the solute of the electrolyte solution for a drive, the kind of solute is not limited to this.
Further, as the treatment of the cathode foil, the chemical conversion treatment was performed in Example 2, the chemical polymerization was performed in Example 3, and the chemical conversion treatment + chemical polymerization was performed in Example 4. By performing such a treatment, Hydration with moisture can be prevented, and electrolyte leakage can also be suppressed.
In the above embodiment, aging (re-forming) is performed after the casing, but the casing may be performed after aging in order to release the gas generated during aging.
[0017]
【The invention's effect】
As described above, according to the present invention, the high-frequency impedance of the capacitor can be reduced by forming the conductive polymer layer, which is a solid electrolyte, on the dielectric oxide film of the anode foil.
Moreover, since the electrolyte is impregnated in every corner of the capacitor element with the liquid electrolyte, it is necessary to repeat the conductive polymer layer formation process as compared with the case where the conductive polymer layer is formed only with the solid electrolyte. The number of repetitions is greatly reduced, and the manufacturing cost can be reduced.
And since the dielectric oxide film defect | deletion part produced at the time of the formation process of the said conductive polymer layer is repaired with electrolyte solution, the increase in the leakage current of a capacitor | condenser can be suppressed.
[Brief description of the drawings]
FIG. 1 is a development view of a capacitor element according to an embodiment of the present invention.
[Explanation of symbols]
1 Anode foil (conductive polymer layer formation)
2 Cathode foil 3 Separator 4 Anode lead 5 Cathode lead

Claims (6)

アルミニウムの陽極箔と陰極箔とをセパレータを介して巻回してなるコンデンサ素子を駆動用電解液に含浸し、金属ケースに収納してアルミニウム電解コンデンサを製造するアルミニウム電解コンデンサの製造方法において、
上記陽極箔は、アルミニウム箔表面の誘電体酸化皮膜上に化学重合により導電性高分子層を形成後、所定寸法に裁断し、加締位置において前記導電性高分子層を加熱して脱ドープ処理した後、引出しリードを固着することを特徴とするアルミニウム電解コンデンサの製造方法
In the method for producing an aluminum electrolytic capacitor, a capacitor element formed by winding an aluminum anode foil and a cathode foil through a separator is impregnated in a driving electrolytic solution, and housed in a metal case to produce an aluminum electrolytic capacitor .
The anode foil is formed by chemically polymerizing a conductive polymer layer on a dielectric oxide film on the surface of the aluminum foil , and then cut into a predetermined size, and the conductive polymer layer is heated at a crimping position to be dedope processed. After that, a method for producing an aluminum electrolytic capacitor , wherein the lead lead is fixed .
請求項1記載の陰極箔に誘電体酸化皮膜を形成したことを特徴とするアルミニウム電解コンデンサの製造方法A method for producing an aluminum electrolytic capacitor , wherein a dielectric oxide film is formed on the cathode foil according to claim 1. 請求項1または請求項2記載の陰極箔に化学重合による導電性高分子層を形成したことを特徴とするアルミニウム電解コンデンサの製造方法A method for producing an aluminum electrolytic capacitor , wherein a conductive polymer layer is formed on the cathode foil according to claim 1 or 2 by chemical polymerization. 請求項1記載の駆動用電解液の溶質にイミダゾリニウム塩を用いたことを特徴とするアルミニウム電解コンデンサの製造方法A method for producing an aluminum electrolytic capacitor , wherein an imidazolinium salt is used as a solute of the driving electrolyte solution according to claim 1. 請求項1または請求項3の導電性高分子層が、ピロール、チオフェン、アニリン、フラン、またはそれらの誘導体であることを特徴とするアルミニウム電解コンデンサの製造方法The method for producing an aluminum electrolytic capacitor , wherein the conductive polymer layer according to claim 1 or 3 is pyrrole, thiophene, aniline, furan, or a derivative thereof. 請求項5記載の導電性高分子層中に、カーボン粒子を混在させたことを特徴とするアルミニウム電解コンデンサの製造方法6. A method for producing an aluminum electrolytic capacitor , wherein carbon particles are mixed in the conductive polymer layer according to claim 5.
JP29995298A 1998-10-21 1998-10-21 Method for manufacturing aluminum electrolytic capacitor Expired - Fee Related JP4198796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29995298A JP4198796B2 (en) 1998-10-21 1998-10-21 Method for manufacturing aluminum electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29995298A JP4198796B2 (en) 1998-10-21 1998-10-21 Method for manufacturing aluminum electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2000124074A JP2000124074A (en) 2000-04-28
JP4198796B2 true JP4198796B2 (en) 2008-12-17

Family

ID=17878951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29995298A Expired - Fee Related JP4198796B2 (en) 1998-10-21 1998-10-21 Method for manufacturing aluminum electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4198796B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009267232A (en) * 2008-04-28 2009-11-12 Shin Etsu Polymer Co Ltd Capacitor, and manufacturing method thereof
GB2468942B (en) * 2009-03-23 2014-02-19 Avx Corp High voltage electrolytic capacitors
CN107275125A (en) * 2017-05-17 2017-10-20 浙江长兴鑫启元电子科技有限公司 The production technology of high-voltage super farad level capacitor
WO2022145451A1 (en) * 2020-12-28 2022-07-07 パナソニックIpマネジメント株式会社 Electrolytic capacitor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6474711A (en) * 1987-09-17 1989-03-20 Japan Carlit Co Ltd Manufacture of wound type solid electrolytic capacitor
JP2599115B2 (en) * 1989-09-27 1997-04-09 マルコン電子株式会社 Electrolytic capacitor
JP3379766B2 (en) * 1991-11-18 2003-02-24 ルビコン株式会社 Aluminum electrolytic capacitors
JP3443927B2 (en) * 1994-04-14 2003-09-08 松下電器産業株式会社 Electrolytic capacitor and method for manufacturing the same
JPH08148390A (en) * 1994-11-15 1996-06-07 Marcon Electron Co Ltd Electrolytic capacitor
JP3130228B2 (en) * 1995-05-26 2001-01-31 松下電器産業株式会社 Electrolytic solution and electrochemical device using the same
JP3407544B2 (en) * 1996-05-28 2003-05-19 日立エーアイシー株式会社 Solid electrolytic capacitors

Also Published As

Publication number Publication date
JP2000124074A (en) 2000-04-28

Similar Documents

Publication Publication Date Title
US7872858B2 (en) Method for manufacturing electrolytic capacitor and electrolytic capacitor
JP4916416B2 (en) Electrolytic capacitor manufacturing method and electrolytic capacitor
EP1028441A1 (en) Solid electrolytic capacitor electrode foil, method of producing it and solid electrolytic capacitor
JP4947150B2 (en) Manufacturing method of solid electrolytic capacitor
JP2005109252A (en) Method of manufacturing solid electrolytic capacitor
JP4198796B2 (en) Method for manufacturing aluminum electrolytic capacitor
JP3459573B2 (en) Method for manufacturing solid electrolytic capacitor
JPH10340831A (en) Manufacture of solid electrolytic capacitor
JP3975161B2 (en) Solid electrolytic capacitor
JP2001110685A (en) Solid electrolytic capacitor
JP4486636B2 (en) Manufacturing method of solid electrolytic capacitor
JPH11204377A (en) Solid-state electrolytic capacitor
JPH0521295A (en) Manufacture of laminated solid electrolytic capacitor
JP2006210837A (en) Solid electrolytic capacitor and method for manufacturing the same
JPH06236831A (en) Manufacture of solid electrolytic capacitor
JP4494377B2 (en) Manufacturing method of solid electrolytic capacitor
JP2002083750A (en) Method of manufacturing solid electrolytic capacitor
JP2004104013A (en) Electrolytic capacitor
JP2000340462A (en) Solid electrolytic capacitor
JPH11186105A (en) Solid electrolytic capacitor and its manufacture
JPH10154639A (en) Method for manufacturing solid capacitor
JP2001237145A (en) Manufacturing method of solid-state electrolytic capacitor
JP3656666B2 (en) Manufacturing method of solid electrolytic capacitor
JP2003142344A (en) Method for manufacturing solid electrolytic capacitor
JP2004119830A (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081002

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees