JP4196036B2 - Bioimpedance measurement device - Google Patents

Bioimpedance measurement device Download PDF

Info

Publication number
JP4196036B2
JP4196036B2 JP17497999A JP17497999A JP4196036B2 JP 4196036 B2 JP4196036 B2 JP 4196036B2 JP 17497999 A JP17497999 A JP 17497999A JP 17497999 A JP17497999 A JP 17497999A JP 4196036 B2 JP4196036 B2 JP 4196036B2
Authority
JP
Japan
Prior art keywords
voltage
biological
signal
living body
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17497999A
Other languages
Japanese (ja)
Other versions
JP2001000410A (en
Inventor
弘文 乾
洋一 黒木
加寿子 粟屋
恭宏 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP17497999A priority Critical patent/JP4196036B2/en
Publication of JP2001000410A publication Critical patent/JP2001000410A/en
Application granted granted Critical
Publication of JP4196036B2 publication Critical patent/JP4196036B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、生体に高周波電流を流して生体のインピーダンスを測定し、生体のインピーダンスと、身長や体重等の身体条件から体内の体脂肪量を算出する体脂肪量計等、生体のインピーダンスを測定する装置に関するものである。
【0002】
【従来の技術】
一般に体内の脂肪量を測定する方法として、両手間など身体の末端間のインピーダンスを4端子法で生体インピーダンスを測定し、身長や体重など身体の情報から体内脂肪量を算出する方法が提案されている。
【0003】
図5は、従来の生体インピーダンス測定装置の構成を示すブロック図である。生体インピーダンスの測定は、50kHzの正弦波を発振器1から発生させ、この正弦波の電圧を電圧−電流変換手段2によって定電流化する。この定電流を生体に接触する電極3a、3b間から生体に電流を流す。そして、前記電極3a、3b間の電圧を差動増幅器4で取り出し、フィルター回路などで波形を整形して整流器5で直流変換した後、AD変換器6でアナログ値をAD変換してデジタル数値としてマイコンからなる演算部7に伝達される。演算部7が電圧信号から生体インピーダンスZを演算している。
【0004】
生体インピーダンスZは生体電流Iと電極電圧Vとの関係は、Z=V/Iが成り立ち、電流Iが一定の時に電極電圧Vを検出することにより、生体インピーダンスZを求めることができる。前記生体インピーダンスZと身長や体重等の身体情報から体内の脂肪量を算出している。
【0005】
【発明が解決しようとする課題】
前記従来の構成の生体インピーダンス測定装置は、定電流源の出力が周囲温度の変化等で出力値に影響を受け、この定電流の変化が生体インピーダンスの測定誤差の要因となっている。前記定電流源を定常値にするためには、外部環境変動の低減や定電流源の精度向上など多大な労力を要するものである。
【0006】
【課題を解決するための手段】
本発明は、定電圧源と、この定電圧源から高周波電圧を発生させる高周波電圧発生手段と、生体に接触する電極と、この電極と直列に接続し前記高周波発生手段の電圧を分圧する分圧抵抗と、前記電極間の生体の電圧を検出する生体電圧検出手段と、この生体電圧検出手段の信号をデジタルに変換するAD変換手段と、このAD変換手段の基準電圧に定電圧源を用いるAD基準電圧手段と、前記生体電圧検出手段の信号から生体のインピーダンスを算出する演算手段とを備えたものである。
【0007】
上記手段において、AD変換手段の基準電圧に定電圧源を用いて測定時の生体インピーダンスの電圧を求めるので温度等の環境に影響されず、より高い精度で生体のインピーダンスが測定できる生体インピーダンス測定装置としているものである。
【0008】
【発明の実施の形態】
本発明の請求項1記載の発明は、定電圧源と、この定電圧源から高周波電圧を発生させる高周波電圧発生手段と、生体に接触する電極と、この電極と直列に接続し前記高周波発生手段の電圧を分圧する分圧抵抗と、前記電極間の生体の電圧を検出する生体電圧検出手段と、この生体電圧検出手段の信号をデジタルに変換するAD変換手段と、このAD変換手段の基準電圧に前記定電圧源を用いるAD基準電圧手段と、前記生体電圧検出手段の信号から生体のインピーダンスを算出する演算手段とを備えたものである。
【0009】
上記形態において、高周波発生手段で定電圧源から電圧を供給する。この電圧は分圧抵抗と電極を介して生体に印加される。生体インピーダンスによって発生した電圧をAD変換手段がAD基準電圧手段の電圧を基にアナログ値をデジタル値に変換する。このデジタル値を用いて演算手段は生体インピーダンスを算出する。従って、生体インピーダンスを算出するのに、常に生体に印加される定電圧源を検出して行っているので、生体インピーダンス測定の精度を高められる。
【0010】
また、請求項2記載の発明は、定電圧源と、この定電圧源から高周波電圧を発生させる高周波電圧発生手段と、この高周波電圧発生手段の電圧を保持する電圧保持手段と、生体に接触する電極と、この電極と直列に接続し前記高周波発生手段の電圧を分圧する分圧抵抗と、前記電極間の生体の電圧を検出する生体電圧検出手段と、この生体電圧検出手段の信号をデジタルに変換するAD変換手段と、このAD変換手段の基準電圧に前記電圧保持手段で保持された電圧を用いるAD基準電圧手段と、前記生体電圧検出手段の信号から生体のインピーダンスを算出する演算手段とを備えたものである。
【0011】
上記形態において、電圧保持手段は高周波電圧発生手段の電圧を保持してAD変換手段の基準電圧に用いている。従って、生体インピーダンスを演算するのに、常に生体に印加される電圧を基にアナログ値をデジタル値に変換して演算しているので生体インピーダンスの測定精度を高められる。
【0012】
また、請求項3記載の発明は、請求項1または請求項2のいずれか1項に記載の生体電圧検出手段の電圧信号によってAD基準電圧手段の基準電圧を切り替える基準電圧切り替え手段とを備えたものである。
【0013】
上記形態において、所定の基準電圧Vrefを用いて、生体電圧Vzを検出する。この生体電圧Vzが設定値より小さい場合は、演算手段から基準電圧切り替え手段に信号を伝達し、基準電圧切り替え手段がAD基準電圧手段の電圧を小さくする。この基準電圧Vrefが切り替わった後、再度生体電圧Vzを測定して、この生体電圧Vzから生体インピーダンスZを演算する。従って、生体電圧Vzが小さい場合でも、基準電圧切り替え手段が基準電圧Vrefを小さくして、生体インピーダンスの検出精度を高められる。
【0014】
また、請求項4記載の発明は、請求項1または請求項2のいずれか1項に記載の生体電圧検出手段の増幅率を生体電圧検出手段の電圧信号によって切り替える増幅率切り替え手段とを備えたものである。
【0015】
上記形態において、所定の増幅率を用いて、生体電圧Vzを検出する。この生体電圧Vzが設定値より小さい場合は、演算手段から増幅率切り替え手段に信号を伝達し、増幅率切り替え手段が生体電圧検出手段の増幅率を大きくする。この増幅率が切り替わった後、再度生体電圧Vzを測定して、この生体電圧Vzから生体インピーダンスZを演算する。従って、生体電圧Vzが小さい場合、増幅率切り替え手段が増幅率を大きくして、生体インピーダンスの検出精度を高められる。
【0016】
【実施例】
以下本発明の生体インピーダンス測定装置について、図1〜図4を参照して説明する。
【0017】
(実施例1)
図1は、生体インピーダンス測定装置の実施例1の発明を示すブロック図である。定電圧源10と、この定電圧源10から高周波電圧を発生させる高周波電圧発生手段11と、生体に接触する電極12a,12bと、この電極12a,12bと直列に接続し前記高周波発生手段11の電圧を分圧する分圧抵抗13と、前記電極12a,12b間の生体の電圧を検出する生体電圧検出手段14と、この生体電圧検出手段14の信号をデジタルに変換するAD変換手段15と、このAD変換手段15の基準電圧に定電圧源を用いるAD基準電圧手段16と、前記生体電圧検出手段14の信号から生体のインピーダンスを算出する演算手段17とを備えたものである。
【0018】
上記実施例1において、定電圧源10の電圧により、高周波電圧発生手段11は50kHzの正弦波を発生させる。この電圧Vinにより、前記分圧抵抗13と、生体に接触している電極12a,12b間に電流Iが流れる。電極12a、12bは、身体の左手と右手に接触して両手間に電流Iが流れる。この電流Iによって発生する生体の電極12a,12b間の電圧を生体電圧検出手段15は、差動増幅器で検出する。生体電圧検出手段15の電圧Vzは、前記分圧抵抗13のインピーダンスZrと生体インピーダンスZの和から、電流Iが決まる。この電流Iにより生体インピーダンスZに、生体電圧Vzが発生する。前記分圧抵抗13のインピーダンスZrと、高周波電圧発生手段11の電圧Vinは、予め定められた設定値であり、上記の関係から生体電圧Vzを求めることができる。AD変換手段15の基準電圧Vrefは、前記定電圧源10の定電圧が供給している。この基準電圧Vrefは、アナログ値をデジタル値に変換するための基準電圧であり、設定のビット数で割ることにより、1ビットあたりの電圧分解能が決まるものである。つまり、電圧Vinが変動しても、生体電圧Vzと基準電圧Vrefが共に変動するため、生体電圧Vzのデジタル値は変化しない。このデジタル値から演算手段17は、生体インピーダンスZを演算するのである。
【0019】
特にこの時の本実施例1では、AD変換手段15の基準電圧Vrefを定電圧源10から供給して、AD変換後のデジタル値に定電圧源の変動を吸収することにより、生体電圧Vzを検出して生体インピーダンスを演算することにより、精度の高い生体インピーダンスの測定が実現できるものである。
【0020】
なお、本実施例1では、高周波発生手段10の周波数は50kHzを用いているが、10kHzから500kHzなどの周波数でも同様の効果が得られ、単一周波数に限られるものではない。
【0021】
(実施例2)
図2は、生体インピーダンス測定装置の実施例2を示すブロック図である。この生体インピーダンス測定装置は、AD基準電圧手段に高周波電圧発生手段の電圧を保持する電圧保持手段とを設けた点が実施例1と異なるだけで、それ以外の同一構成及び作用効果を奏する部分には同一符号を付して詳細な説明は省略し、異なる点を中心に説明する。18はAD基準電圧手段16に高周波電圧発生手段11の電圧を保持する電圧保持手段である。
【0022】
上記実施例2において、電圧保持手段18は、高周波発電圧生手段11の正弦波信号をダイオードとコンデンサから高周波電圧Vinをピークホールドする。この電圧をAD変換手段15の基準電圧Vrefに出力される。この基準電圧Vrefを用いて生体電圧VzはAD変換される。すなわち、高周波電圧発生手段の出力電圧を常に検出して、生体電圧Vzを検出できるものである。
【0023】
以上のように本実施例2によれば、測定時の正弦波電圧Vinを検出して、生体インピーダンスZを決定するようにしているため、定電圧出力の変動による影響を低減でき、測定精度の高いインピーダンス測定装置を実現できるものである。
【0024】
(実施例3)
図3は、生体インピーダンス測定装置の実施例3を示すブロック図である。この生体インピーダンス測定装置は、生体電圧検出手段の電圧信号によってAD基準電圧手段を切り替える基準電圧切り替え手段とを設けた点が実施例1と異なるだけで、それ以外の同一構成及び作用効果を奏する部分には同一符号を付して詳細な説明は省略し、異なる点を中心に説明する。19は生体電圧検出手段14の電圧信号によってAD基準電圧手段16を切り替える基準電圧切り替え手段である。
【0025】
上記実施例3において、所定の基準電圧Vrefを用いて、生体電圧Vzを検出する。この生体電圧Vzが設定値より小さい場合は、演算手段17から基準電圧切り替え手段19に信号を伝達し、基準電圧切り替え手段19がAD基準電圧手段16の電圧を小さくする。この基準電圧Vrefが切り替わった後、再度生体電圧Vzを測定して、この生体電圧Vzから生体インピーダンスZを演算する。基準電圧Vrefを小さくすると、1ビットあたりの電圧分解能が高くなり、電圧検出精度が向上する。基準電圧Vrefを設定値から半分にすることにより、電圧分解能は2倍になる。臀部間など生体インピーダンスの小さい局部の生体インピーダンス測定や局部の脂肪厚さの測定に有効である。
【0026】
以上のように本実施例3によれば、生体電圧Vzが小さい場合、基準電圧切り替え手段19が基準電圧Vrefを小さくして、検出精度を高めることができ、測定精度の高い生体インピーダンス装置が実現できる。
【0027】
なお、複数の電極によって複数部位の生体インピーダンスを測る装置においては、低いインピーダンスの部位を測定する電極時に、この電極を切り替える信号と連動して基準電圧Vrefを切り替えても同様な効果が得られる。
【0028】
(実施例4)
図4は、生体インピーダンス測定装置の実施例4を示すブロック図である。この生体インピーダンス測定装置は、生体電圧検出手段14の信号を増幅する増幅手段20と、この増幅手段20の増幅率を前記生体電圧検出手段14の電圧信号によって切り替える増幅率切り替え手段21とを設けた点が実施例1と異なるだけで、それ以外の同一構成及び作用効果を奏する部分には同一符号を付して詳細な説明は省略し、異なる点を中心に説明する。20は、生体電圧検出手段14の信号を増幅する増幅手段である。21は、この増幅手段20の増幅率を前記生体電圧検出手段14の電圧信号によって切り替える増幅率切り替え手段である。
【0029】
上記実施例4において、所定の増幅率を用いて、生体電圧Vzを検出する。この生体電圧Vzが設定値より小さい場合は、演算手段17から増幅率切り替え手段21に信号を伝達し、増幅率切り替え手段21が生体電圧検出手段14の増幅率を大きくする。この増幅率が切り替わった後、再度生体電圧Vzを測定して、この生体電圧Vzから生体インピーダンスZを演算する。増幅率を大きくすると、1ビットあたりの電圧分解能が高くなり、電圧検出精度が向上する。増幅率を設定値から2倍にすることにより、電圧分解能は2倍になる。
【0030】
以上のように本実施例4によれば、生体電圧Vzが小さい場合、増幅率切り替え手段21が増幅率を大きくして、検出精度を高めることができ、測定精度の高い生体インピーダンス装置が実現できる。
【0031】
【発明の効果】
以上のように本発明の請求項1記載の発明は、定電圧源と、この定電圧源から高周波電圧を発生させる高周波電圧発生手段と、生体に接触する電極と、この電極と直列に接続し前記高周波発生手段の電圧を分圧する分圧抵抗と、前記電極間の生体の電圧を検出する生体電圧検出手段と、この生体電圧検出手段の信号をデジタルに変換するAD変換手段と、このAD変換手段の基準電圧に前記定電圧源を用いるAD基準電圧手段と、前記生体電圧検出手段の信号から生体のインピーダンスを算出する演算手段とを備えたもので、AD変換手段の基準電圧Vrefを定電圧源から供給して、AD変換後のデジタル値に定電圧源の変動を吸収する。そして、生体電圧Vzを検出して生体インピーダンスを演算することにより、精度の高い生体インピーダンスの測定が実現できる。
【0032】
また、請求項2記載の発明は、定電圧源と、この定電圧源から高周波電圧を発生させる高周波電圧発生手段と、この高周波電圧発生手段の電圧を保持する電圧保持手段と、生体に接触する電極と、この電極と直列に接続し前記高周波発生手段の電圧を分圧する分圧抵抗と、前記電極間の生体の電圧を検出する生体電圧検出手段と、この生体電圧検出手段の信号をデジタルに変換するAD変換手段と、このAD変換手段の基準電圧に前記電圧保持手段で保持された電圧を用いるAD基準電圧手段と、前記生体電圧検出手段の信号から生体のインピーダンスを算出する演算手段とを備えたもので、測定時の正弦波電圧Vinを検出して、生体インピーダンスZを決定するようにしているため、定電圧の変動影響を低減でき、測定精度の高い装置が実現できる。
【0033】
また、請求項3記載の発明は、生体電圧検出手段の電圧信号によってAD基準電圧手段を切り替える基準電圧切り替え手段とを備えたもので、生体電圧Vzが小さい場合、基準電圧切り替え手段が基準電圧Vrefを小さくして、検出精度を高めることができ、測定精度の高い生体インピーダンス装置が実現できる。
【0034】
また、請求項4記載の発明は、生体電圧検出手段の信号を増幅する増幅手段と、この増幅手段の増幅率を前記生体電圧検出手段の電圧信号によって切り替える増幅率切り替え手段とを備えたもので、生体電圧Vzが小さい場合、増幅率切り替え手段20が増幅率を大きくして、検出精度を高めることができ、測定精度の高い生体インピーダンス装置が実現できる。
【図面の簡単な説明】
【図1】図1は、本発明の実施例1における生体インピーダンス測定装置の構成を示すブロック図
【図2】同実施例2における生体インピーダンス測定装置の構成を示すブロック図
【図3】同実施例3における生体インピーダンス測定装置の構成を示すブロック図
【図4】同実施例4における生体インピーダンス測定装置の構成を示すブロック図
【図5】従来例における生体インピーダンス測定装置の構成を示すブロック図
【符号の説明】
10 定電圧源
11 高周波電圧発生手段
12a 電極
12b 電極
13 分圧抵抗
14 生体電圧検出手段
15 AD変換手段
16 AD基準電圧手段
17 演算手段
18 電圧保持手段
19 基準電圧切り替え手段
20 増幅率切り替え手段
[0001]
BACKGROUND OF THE INVENTION
The present invention measures the impedance of a living body such as a body fat meter that calculates the body fat mass from the body impedance and body conditions such as height and weight by measuring the impedance of the living body by passing a high-frequency current through the living body. It is related with the apparatus which performs.
[0002]
[Prior art]
In general, as a method for measuring the amount of fat in the body, a method has been proposed in which the impedance between the ends of the body, such as between both hands, is measured by a four-terminal method, and the amount of fat in the body is calculated from body information such as height and weight. Yes.
[0003]
FIG. 5 is a block diagram showing a configuration of a conventional bioimpedance measuring apparatus. The bioimpedance is measured by generating a 50 kHz sine wave from the oscillator 1 and making the voltage of this sine wave constant by the voltage-current conversion means 2. This constant current is passed through the living body from between the electrodes 3a and 3b that are in contact with the living body. Then, the voltage between the electrodes 3a and 3b is taken out by the differential amplifier 4, the waveform is shaped by a filter circuit or the like, converted into direct current by the rectifier 5, and then the analog value is AD converted by the AD converter 6 as a digital numerical value. It is transmitted to the calculation unit 7 composed of a microcomputer. The computing unit 7 computes the bioelectrical impedance Z from the voltage signal.
[0004]
The bioelectrical impedance Z can be obtained by detecting the electrode voltage V when the current I is constant because the relationship between the bioelectrical current I and the electrode voltage V is Z = V / I. The amount of fat in the body is calculated from the bioelectrical impedance Z and body information such as height and weight.
[0005]
[Problems to be solved by the invention]
In the bioimpedance measuring apparatus having the conventional configuration, the output of the constant current source is affected by the output value due to a change in the ambient temperature or the like, and this change in the constant current causes a measurement error of the bioimpedance. In order to set the constant current source to a steady value, a great deal of labor is required such as reduction of external environmental fluctuations and improvement of the accuracy of the constant current source.
[0006]
[Means for Solving the Problems]
The present invention relates to a constant voltage source, a high frequency voltage generating means for generating a high frequency voltage from the constant voltage source, an electrode in contact with a living body, and a voltage divider for connecting the electrode in series and dividing the voltage of the high frequency generating means. Resistor, biological voltage detecting means for detecting the biological voltage between the electrodes, AD converting means for digitally converting the signal of the biological voltage detecting means, and AD using a constant voltage source as a reference voltage for the AD converting means Reference voltage means and calculation means for calculating the impedance of the living body from the signal of the living body voltage detecting means are provided.
[0007]
In the above means, the bioimpedance measuring apparatus can measure the impedance of the living body with higher accuracy without being affected by the environment such as temperature because the voltage of the bioimpedance at the time of measurement is obtained using a constant voltage source as the reference voltage of the AD converting means It is what you are trying.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 of the present invention is a constant voltage source, a high frequency voltage generating means for generating a high frequency voltage from the constant voltage source, an electrode in contact with a living body, and the high frequency generating means connected in series with the electrode. A voltage dividing resistor for dividing the voltage of the living body, a living body voltage detecting means for detecting a living body voltage between the electrodes, an AD converting means for converting a signal of the living body voltage detecting means into digital, and a reference voltage of the AD converting means wherein those having an AD reference voltage means using a constant voltage source, and a calculating means for calculating the impedance of the living body from the signal of the living body voltage detecting means.
[0009]
In the above embodiment, the voltage is supplied from the constant voltage source by the high frequency generating means. This voltage is applied to the living body through the voltage dividing resistor and the electrode. The AD conversion means converts the voltage generated by the bioelectrical impedance into a digital value based on the voltage of the AD reference voltage means. Using this digital value, the computing means calculates the bioelectrical impedance. Therefore, since the constant voltage source applied to the living body is always detected to calculate the biological impedance, the accuracy of the biological impedance measurement can be improved.
[0010]
The invention according to claim 2 is in contact with a living body, a constant voltage source, high frequency voltage generating means for generating a high frequency voltage from the constant voltage source, voltage holding means for holding the voltage of the high frequency voltage generating means, and An electrode, a voltage dividing resistor connected in series with the electrode to divide the voltage of the high-frequency generating means, a biological voltage detecting means for detecting a biological voltage between the electrodes, and a signal from the biological voltage detecting means digitally AD converting means for converting, AD reference voltage means using the voltage held by the voltage holding means as a reference voltage of the AD converting means, and calculating means for calculating the impedance of the living body from the signal of the biological voltage detecting means It is provided .
[0011]
In the above embodiment, the voltage holding means holds the voltage of the high frequency voltage generating means and uses it as the reference voltage of the AD converting means. Therefore, since the bioelectrical impedance is calculated by always converting the analog value into a digital value based on the voltage applied to the living body, the measurement accuracy of the bioelectrical impedance can be improved.
[0012]
According to a third aspect of the present invention, there is provided the reference voltage switching means for switching the reference voltage of the AD reference voltage means by the voltage signal of the biological voltage detecting means according to any one of the first or second aspects. Is.
[0013]
In the above embodiment, the biological voltage Vz is detected using a predetermined reference voltage Vref. When the biological voltage Vz is smaller than the set value, a signal is transmitted from the calculation means to the reference voltage switching means, and the reference voltage switching means decreases the voltage of the AD reference voltage means. After the reference voltage Vref is switched, the biological voltage Vz is measured again, and the biological impedance Z is calculated from the biological voltage Vz. Therefore, even when the bioelectric voltage Vz is small, the reference voltage switching means can reduce the reference voltage Vref to increase the detection accuracy of the bioelectrical impedance.
[0014]
According to a fourth aspect of the invention, there is provided an amplification factor switching means for switching the amplification factor of the biological voltage detection means according to any one of the first or second aspects according to a voltage signal of the biological voltage detection means. Is.
[0015]
In the above embodiment, the biological voltage Vz is detected using a predetermined amplification factor. When the biological voltage Vz is smaller than the set value, a signal is transmitted from the calculation means to the amplification factor switching means, and the amplification factor switching means increases the amplification factor of the biological voltage detection means. After the amplification factor is switched, the biological voltage Vz is measured again, and the biological impedance Z is calculated from the biological voltage Vz. Therefore, when the biological voltage Vz is small, the amplification factor switching means increases the amplification factor, and the detection accuracy of the biological impedance can be improved.
[0016]
【Example】
The bioimpedance measuring apparatus of the present invention will be described below with reference to FIGS.
[0017]
(Example 1)
FIG. 1 is a block diagram showing the invention of Embodiment 1 of the bioimpedance measuring apparatus. A constant voltage source 10; high frequency voltage generating means 11 for generating a high frequency voltage from the constant voltage source 10; electrodes 12a and 12b in contact with a living body; and the electrodes 12a and 12b connected in series to the high frequency generating means 11 A voltage dividing resistor 13 for dividing the voltage, a biological voltage detecting means 14 for detecting a biological voltage between the electrodes 12a and 12b, an AD converting means 15 for converting the signal of the biological voltage detecting means 14 into digital, and this An AD reference voltage unit 16 that uses a constant voltage source as a reference voltage of the AD conversion unit 15 and a calculation unit 17 that calculates the impedance of the living body from the signal of the biological voltage detection unit 14 are provided.
[0018]
In the first embodiment, the high-frequency voltage generation means 11 generates a 50 kHz sine wave by the voltage of the constant voltage source 10. The voltage Vin causes a current I to flow between the voltage dividing resistor 13 and the electrodes 12a and 12b in contact with the living body. The electrodes 12a and 12b come into contact with the left and right hands of the body, and a current I flows between both hands. The biological voltage detection means 15 detects the voltage between the biological electrodes 12a and 12b generated by the current I with a differential amplifier. The voltage Vz of the biological voltage detection means 15 is determined by the current I from the sum of the impedance Zr of the voltage dividing resistor 13 and the biological impedance Z. The bioelectric voltage Vz is generated in the bioelectric impedance Z by this current I. The impedance Zr of the voltage dividing resistor 13 and the voltage Vin of the high-frequency voltage generation means 11 are predetermined set values, and the biological voltage Vz can be obtained from the above relationship. The reference voltage Vref of the AD conversion means 15 is supplied by the constant voltage of the constant voltage source 10. This reference voltage Vref is a reference voltage for converting an analog value into a digital value, and the voltage resolution per bit is determined by dividing by a set number of bits. That is, even if the voltage Vin varies, the biological voltage Vz and the reference voltage Vref both vary, so the digital value of the biological voltage Vz does not change. The calculation means 17 calculates the bioelectrical impedance Z from this digital value.
[0019]
In particular, in the first embodiment at this time, the reference voltage Vref of the AD conversion means 15 is supplied from the constant voltage source 10 and the fluctuation of the constant voltage source is absorbed in the digital value after AD conversion, thereby obtaining the biological voltage Vz. By detecting and calculating bioimpedance, highly accurate bioimpedance measurement can be realized.
[0020]
In the first embodiment, the frequency of the high frequency generating means 10 is 50 kHz, but the same effect can be obtained even at a frequency of 10 kHz to 500 kHz, and the frequency is not limited to a single frequency.
[0021]
(Example 2)
FIG. 2 is a block diagram showing a second embodiment of the bioimpedance measuring apparatus. This bioimpedance measuring apparatus is different from the first embodiment only in that the AD reference voltage means is provided with a voltage holding means for holding the voltage of the high-frequency voltage generating means, and other parts having the same configuration and effects are provided. Are denoted by the same reference numerals, detailed description thereof is omitted, and different points will be mainly described. Reference numeral 18 denotes voltage holding means for holding the voltage of the high frequency voltage generating means 11 in the AD reference voltage means 16.
[0022]
In the second embodiment, the voltage holding unit 18 peaks the high frequency voltage Vin from the diode and the capacitor with the sine wave signal of the high frequency voltage generating unit 11. This voltage is output to the reference voltage Vref of the AD conversion means 15. The biological voltage Vz is AD converted using this reference voltage Vref. That is, the biological voltage Vz can be detected by always detecting the output voltage of the high-frequency voltage generating means.
[0023]
As described above, according to the second embodiment, the sine wave voltage Vin at the time of measurement is detected and the bioelectrical impedance Z is determined, so that the influence of fluctuations in the constant voltage output can be reduced, and the measurement accuracy can be improved. A high impedance measuring device can be realized.
[0024]
(Example 3)
FIG. 3 is a block diagram showing a third embodiment of the bioimpedance measuring apparatus. This bioimpedance measuring device is different from the first embodiment only in that a reference voltage switching unit that switches an AD reference voltage unit according to a voltage signal of the bioelectric voltage detection unit is provided, and the other parts that have the same configuration and operational effects The same reference numerals are assigned to the components, and detailed description thereof is omitted, and different points will be mainly described. Reference numeral 19 is a reference voltage switching means for switching the AD reference voltage means 16 according to the voltage signal of the biological voltage detection means 14.
[0025]
In the third embodiment, the biological voltage Vz is detected using a predetermined reference voltage Vref. When the biological voltage Vz is smaller than the set value, a signal is transmitted from the calculation means 17 to the reference voltage switching means 19, and the reference voltage switching means 19 reduces the voltage of the AD reference voltage means 16. After the reference voltage Vref is switched, the biological voltage Vz is measured again, and the biological impedance Z is calculated from the biological voltage Vz. When the reference voltage Vref is reduced, the voltage resolution per bit is increased and the voltage detection accuracy is improved. By halving the reference voltage Vref from the set value, the voltage resolution is doubled. It is effective for measuring local bioimpedance and measuring local fat thickness, such as between the buttocks.
[0026]
As described above, according to the third embodiment, when the bioelectric voltage Vz is small, the reference voltage switching unit 19 can reduce the reference voltage Vref to increase the detection accuracy, thereby realizing a bioimpedance device with high measurement accuracy. it can.
[0027]
In an apparatus for measuring bioimpedance at a plurality of sites using a plurality of electrodes, the same effect can be obtained even when the reference voltage Vref is switched in conjunction with a signal for switching the electrodes when measuring a low impedance site.
[0028]
Example 4
FIG. 4 is a block diagram showing a fourth embodiment of the bioimpedance measuring apparatus. This bioimpedance measuring apparatus is provided with an amplifying means 20 for amplifying the signal of the bioelectric voltage detecting means 14 and an amplification factor switching means 21 for switching the amplification factor of the amplifying means 20 by the voltage signal of the bioelectric voltage detecting means 14. Only points differ from the first embodiment, and other parts having the same configuration and operational effects are denoted by the same reference numerals, detailed description thereof is omitted, and different points are mainly described. Reference numeral 20 denotes amplification means for amplifying the signal from the biological voltage detection means 14. Reference numeral 21 denotes amplification factor switching means for switching the amplification factor of the amplification means 20 according to the voltage signal of the biological voltage detection means 14.
[0029]
In the fourth embodiment, the biological voltage Vz is detected using a predetermined amplification factor. When the biological voltage Vz is smaller than the set value, a signal is transmitted from the computing unit 17 to the amplification factor switching unit 21 , and the amplification factor switching unit 21 increases the amplification factor of the biological voltage detection unit 14. After the amplification factor is switched, the biological voltage Vz is measured again, and the biological impedance Z is calculated from the biological voltage Vz. When the amplification factor is increased, the voltage resolution per bit is increased, and the voltage detection accuracy is improved. By doubling the amplification factor from the set value, the voltage resolution is doubled.
[0030]
As described above, according to the fourth embodiment, when the biological voltage Vz is small, the amplification factor switching unit 21 can increase the amplification factor to increase the detection accuracy, thereby realizing a bioimpedance device with high measurement accuracy. .
[0031]
【The invention's effect】
As described above, the invention according to claim 1 of the present invention is connected to a constant voltage source, high frequency voltage generating means for generating a high frequency voltage from the constant voltage source, an electrode in contact with a living body, and the electrode in series. A voltage dividing resistor for dividing the voltage of the high-frequency generating means, a biological voltage detecting means for detecting a biological voltage between the electrodes, an AD converting means for digitally converting a signal of the biological voltage detecting means, and the AD conversion and AD reference voltage means using the constant voltage source to the reference voltage means, the one having the from the signal of the living body voltage detecting means and calculating means for calculating the impedance of the living body, the reference voltage Vref of the AD converter constant voltage The constant voltage source fluctuation is absorbed into the digital value after AD conversion. Then, by detecting the bioelectric voltage Vz and calculating the bioelectrical impedance, it is possible to realize a highly accurate measurement of the bioelectrical impedance.
[0032]
The invention according to claim 2 is in contact with a living body, a constant voltage source, high frequency voltage generating means for generating a high frequency voltage from the constant voltage source, voltage holding means for holding the voltage of the high frequency voltage generating means, and An electrode, a voltage dividing resistor connected in series with the electrode to divide the voltage of the high-frequency generating means, a biological voltage detecting means for detecting a biological voltage between the electrodes, and a signal from the biological voltage detecting means digitally AD converting means for converting, AD reference voltage means using the voltage held by the voltage holding means as a reference voltage of the AD converting means, and calculating means for calculating the impedance of the living body from the signal of the biological voltage detecting means those having detects a sinusoidal voltage Vin at the time of measurement, because you have to determine the bioelectrical impedance Z, it can reduce the effect of a variation in the constant voltage, high measurement precision apparatus It can be current.
[0033]
According to a third aspect of the present invention, there is provided a reference voltage switching means for switching the AD reference voltage means by a voltage signal of the biological voltage detection means. When the biological voltage Vz is small, the reference voltage switching means is the reference voltage Vref. The detection accuracy can be increased by reducing the impedance, and a bioimpedance device with high measurement accuracy can be realized.
[0034]
According to a fourth aspect of the present invention, there is provided amplification means for amplifying a signal of the biological voltage detection means, and amplification factor switching means for switching the amplification factor of the amplification means by the voltage signal of the biological voltage detection means. When the biological voltage Vz is small, the amplification factor switching means 20 can increase the amplification factor to increase the detection accuracy, and a bioimpedance device with high measurement accuracy can be realized.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a bioimpedance measuring apparatus according to a first embodiment of the present invention. FIG. 2 is a block diagram showing a configuration of a bioimpedance measuring apparatus according to the second embodiment. FIG. 4 is a block diagram showing the configuration of the bioimpedance measuring apparatus in Example 4. FIG. 5 is a block diagram showing the configuration of the bioimpedance measuring apparatus in the conventional example. Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Constant voltage source 11 High frequency voltage generation means 12a Electrode 12b Electrode 13 Voltage dividing resistor 14 Biological voltage detection means 15 AD conversion means 16 AD reference voltage means 17 Calculation means 18 Voltage holding means 19 Reference voltage switching means 20 Amplification rate switching means

Claims (4)

定電圧源と、この定電圧源から高周波電圧を発生させる高周波電圧発生手段と、生体に接触する電極と、この電極と直列に接続し前記高周波発生手段の電圧を分圧する分圧抵抗と、前記電極間の生体の電圧を検出する生体電圧検出手段と、この生体電圧検出手段の信号をデジタルに変換するAD変換手段と、このAD変換手段の基準電圧に前記定電圧源を用いるAD基準電圧手段と、前記生体電圧検出手段の信号から生体のインピーダンスを算出する演算手段とを備えた生体インピーダンス測定装置。A constant voltage source, a high frequency voltage generating means for generating a high frequency voltage from the constant voltage source, an electrode in contact with a living body, a voltage dividing resistor connected in series with the electrode and dividing the voltage of the high frequency generating means, a biological voltage detecting means for detecting a voltage of the living body between the electrodes, and the AD converting means for converting the signal of the biological voltage detecting means to a digital, AD reference voltage means using the constant voltage source to the reference voltage of the AD converter And a bioimpedance measuring apparatus comprising: a calculation means for calculating the impedance of the living body from the signal of the biological voltage detection means. 定電圧源と、この定電圧源から高周波電圧を発生させる高周波電圧発生手段と、この高周波電圧発生手段の電圧を保持する電圧保持手段と、生体に接触する電極と、この電極と直列に接続し前記高周波発生手段の電圧を分圧する分圧抵抗と、前記電極間の生体の電圧を検出する生体電圧検出手段と、この生体電圧検出手段の信号をデジタルに変換するAD変換手段と、このAD変換手段の基準電圧に前記電圧保持手段で保持された電圧を用いるAD基準電圧手段と、前記生体電圧検出手段の信号から生体のインピーダンスを算出する演算手段とを備えた生体インピーダンス測定装置。 A constant voltage source, a high frequency voltage generating means for generating a high frequency voltage from the constant voltage source, a voltage holding means for holding the voltage of the high frequency voltage generating means, an electrode in contact with a living body, and the electrode connected in series. A voltage dividing resistor for dividing the voltage of the high-frequency generating means, a biological voltage detecting means for detecting a biological voltage between the electrodes, an AD converting means for digitally converting a signal of the biological voltage detecting means, and the AD conversion A bioimpedance measuring apparatus comprising: an AD reference voltage means that uses a voltage held by the voltage holding means as a reference voltage of the means; and an arithmetic means for calculating the impedance of the living body from a signal of the biological voltage detecting means . 生体電圧検出手段の電圧信号によってAD基準電圧手段を切り替える基準電圧切り替え手段を備えた請求項1または請求項2のいずれか1項に記載の生体インピーダンス測定装置。  The bioimpedance measurement apparatus according to claim 1, further comprising a reference voltage switching unit that switches the AD reference voltage unit according to a voltage signal of the bioelectric voltage detection unit. 生体電圧検出手段の増幅率を生体電圧検出手段の電圧信号によって切り替える増幅率切り替え手段を備えた請求項1または請求項2のいずれか1項に記載の生体インピーダンス測定装置。  The bioimpedance measuring apparatus according to claim 1, further comprising an amplification factor switching unit that switches an amplification factor of the biological voltage detection unit according to a voltage signal of the biological voltage detection unit.
JP17497999A 1999-06-22 1999-06-22 Bioimpedance measurement device Expired - Fee Related JP4196036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17497999A JP4196036B2 (en) 1999-06-22 1999-06-22 Bioimpedance measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17497999A JP4196036B2 (en) 1999-06-22 1999-06-22 Bioimpedance measurement device

Publications (2)

Publication Number Publication Date
JP2001000410A JP2001000410A (en) 2001-01-09
JP4196036B2 true JP4196036B2 (en) 2008-12-17

Family

ID=15988107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17497999A Expired - Fee Related JP4196036B2 (en) 1999-06-22 1999-06-22 Bioimpedance measurement device

Country Status (1)

Country Link
JP (1) JP4196036B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1214761C (en) 2001-10-29 2005-08-17 船井电机株式会社 TV remote controller with body fat detecting function and TV appts.
JP5976675B2 (en) 2011-01-05 2016-08-24 日東電工株式会社 Wavelength-converting perylene diester chromophore and luminescent film
KR101844880B1 (en) 2011-09-26 2018-04-03 닛토덴코 가부시키가이샤 Highly-fluorescent and photo-stable chromophores for enhanced solar harvesting efficiency
CN103415589B (en) 2011-10-05 2016-08-10 日东电工株式会社 There is the Wavelength conversion film of the pressure sensitive adhesive layer improving day light collecting efficiency

Also Published As

Publication number Publication date
JP2001000410A (en) 2001-01-09

Similar Documents

Publication Publication Date Title
JP3907353B2 (en) Bioimpedance measurement device
JP2001212098A (en) Equipment for measuring bioelectric impedance whose circuit is integrated into one chip
JP3139431U (en) Apparatus for measuring impedance of human body and its application
JP2001212098A5 (en)
JP4041360B2 (en) Bioimpedance measurement device
JP2001037735A (en) Biological impedance measuring instrument
JP4196036B2 (en) Bioimpedance measurement device
JP2012213458A (en) Bio-impedance meter
JP2835656B2 (en) Bioimpedance measurement method
US12019103B2 (en) Power measurement apparatus and power measurement method
JP4161460B2 (en) Bioimpedance measurement device
JPH09243683A (en) Method and device for measurement of resistivity, electric conductivity and/or permittivity
JP2013128716A (en) Bioelectric impedance measuring apparatus
JP4525995B2 (en) Bioimpedance measurement device
JP2550735B2 (en) Measuring instrument with adjustment invalidation function
CN202693026U (en) Measuring device of differential capacitive instrument
JP3024627U (en) Bioimpedance measuring device
Lin et al. Admittance-to-Digital-Impedance Converter for Wide-Frequency-Range Impedance Measurement System
SU741177A1 (en) Microwave power measuring device
JPS6056252A (en) Oxygen concentration meter
JPH0715490B2 (en) Conductivity meter circuit
JPS6152945B2 (en)
RU2266099C2 (en) Device for electric interaction with biologically active points
RU12253U1 (en) CONDUCTOMETER FOR DETERMINING SPECIFIC ELECTRICAL CONDUCTIVITY OF AQUEOUS SOLUTIONS
SU566202A1 (en) Momentary phase shift to dc voltage converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060523

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060613

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070322

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees