JP4161460B2 - Bioimpedance measurement device - Google Patents

Bioimpedance measurement device Download PDF

Info

Publication number
JP4161460B2
JP4161460B2 JP08330899A JP8330899A JP4161460B2 JP 4161460 B2 JP4161460 B2 JP 4161460B2 JP 08330899 A JP08330899 A JP 08330899A JP 8330899 A JP8330899 A JP 8330899A JP 4161460 B2 JP4161460 B2 JP 4161460B2
Authority
JP
Japan
Prior art keywords
voltage
current
detecting
living body
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08330899A
Other languages
Japanese (ja)
Other versions
JP2000271101A (en
Inventor
弘文 乾
洋一 黒木
加寿子 粟屋
恭宏 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP08330899A priority Critical patent/JP4161460B2/en
Publication of JP2000271101A publication Critical patent/JP2000271101A/en
Application granted granted Critical
Publication of JP4161460B2 publication Critical patent/JP4161460B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、生体に高周波電流を流して生体のインピ−ダンスを測定し、生体のインピ−ダンスと、身体や体重等の身体条件から体内の体脂肪量を算出する体脂肪量計等の生体のインピ−ダンスを測定する装置に関するものである。
【0002】
【従来の技術】
一般に体内の脂肪量を測定する方法としては、両手間など身体の末端間のインピ−ダンスを4端子法で生体インピ−ダンスを測定し、身長や体重など身体の情報から体内脂肪量を算出する方法が提案されている。
【0003】
図8は、従来の生体インピ−ダンス測定装置の構成を示すブロック図である。生体インピ−ダンスの測定は、50kHzの正弦波を発信器1から発生させ、この正弦波の電圧を電圧−電流変換手段2によって定電流化する。この定電流を生体に接触する電極3a、3b間から生体に電流を流す。そして、前記電極3a、3b間の電圧を差動増幅器4で取りだし、フィルタ回路などで波形を整形して整流器5で直流変換した後,AD変換器6でアナログ値をAD変換してデジタル数値としてマイクロコンピュ−タからなる演算部7に伝達される。この演算部7は電圧信号から生体インピ−ダンスを算出している。
【0004】
生体インピ−ダンスZは生体電流Iと電極電圧Vとの関係において、Z=V/Iが成り立ち、電流Iが一定の時に電極電圧Vを検出することにより、生体インピ−ダンスZを求めることができる。前記生体インピ−ダンスZと身長や体重等の身体情報から体内の脂肪量を算出している。
【0005】
【発明が解決しようとする課題】
前記従来の構成の生体インピ−ダンス測定装置は、定電流源が温度等の環境により変化した場合、この定電流の変化が生体インピ−ダンスの測定誤差の要因となっている。前記定電流源を定常値にするために、外部環境変動の低減や定電流源の精度向上等に多大な労力を要するものであった。
【0006】
本発明は前記従来の課題を解決するもので、測定時の生体電流を検出して温度等の環境に影響されない精度の高い測定ができる生体インピ−ダンス測定装置を提供するものである。
【0007】
【課題を解決するための手段】
本発明は、高周波電圧発生手段と、この高周波電圧発生手段の電圧を電流に変換する電圧−電流変換手段と、生体に接触する電極と、この電極に流れる電流を検出する電流検出抵抗と、この電流検出抵抗の電圧を検出する抵抗電圧検出手段と、前記電極間の生体の電圧を検出する生体電圧検出手段と、この生体電圧検出手段と前記抵抗電圧検出手段の信号から生体のインピ−ダンスを算出する演算手段を備えたものである。
【0008】
上記手段において、電流検出抵抗で生体に流れる電流を検出して電流値を求めるので、温度等の外部環境に影響されない精度の高い測定をすることができる。
【0009】
【発明の実施の形態】
本発明の請求項1に記載の発明は、高周波電圧発生手段と、この高周波電圧発生手段の電圧を電流に変換する電圧−電流変換手段と、生体に接触する電極と、この電極に流れる電流を検出する電流検出抵抗と、この電流検出抵抗の電圧を検出する抵抗電圧検出手段と、前記電極間の生体の電圧を検出する生体電圧検出手段と、この生体電圧検出手段と前記抵抗電圧検出手段の信号から生体のインピ−ダンスを算出する演算手段と、抵抗電圧検出手段と生体電圧検出手段の信号を差動増幅する差動増幅手段と、電極間を短絡するスイッチを備えたものである。
【0010】
上記形態において、高周波電圧発生手段の電圧を電圧−電流変換手段で定電流化する。この定電流が電流検出抵抗と電極を介して生体に流れ、この電流によって発生した電流検出抵抗の電圧と電極間の電圧から演算手段は生体インピ−ダンスを算出する。従って、生体インピ−ダンスを算出するのに、常に電流検出抵抗の抵抗から生体に流れる電流を検出して行っているので、生体インピ−ダンス測定の精度を高められる。また、スイッチを閉じている場合は定電流が流れることにより発生した電流検出抵抗だけの電圧Vo1と、スイッチを開いている場合は定電流が電流検出抵抗と電極を介して生体に流れることにより発生した電圧Vo2との差を差動増幅器で検出し、この検出信号から演算手段は生体インピ−ダンスを演算する。従って、生体インピ−ダンスを演算するのに、常に測定時の電流I、前記電圧Vo1、電圧Vo2から生体に流れる電流を検出して行っているので、生体 インピ−ダンス測定の精度を高められる
【0011】
また、請求項に記載した発明は、請求項記載において電流検出抵抗を短絡するスイッチを備えたものである。
【0012】
上記形態において、スイッチを閉じている場合は定電流が電極を介して流れることにより発生した生体の電極間の電圧Vo1と、スイッチを開いている場合は電流検出抵抗と電極を介して生体に定電流が流れることにより、発生した電圧Vo2との差を差動増幅器で検出し、この検出信号から演算手段は生体インピ−ダンスを演算する。従って、生体インピ−ダンスを演算するのに、常に測定時の電流I、前記電圧Vo1、電圧Vo2から生体に流れる電流を検出して行っているので、生体インピ−ダンス測定の精度を高められる。
【0013】
また、請求項に記載した発明は、高周波電圧発生手段と、この高周波電圧発生手段の電圧を電流に変換する電圧−電流変換手段と、生体に接触する電極と、この電極に流れる電流を検出する電流検出抵抗と、この電流検出抵抗の電圧を検出する抵抗電圧検出手段と、前記電極間の生体の電圧を検出する生体電圧検出手段と、この生体電圧検出手段と前記抵抗電圧検出手段の信号から生体のインピ−ダンスを算出する演算手段と、電流検出抵抗と電極間との電圧を検出する電圧検出手段と、電流検出抵抗を短絡するスイッチを備えたものである。
【0014】
上記形態において、スイッチを閉じている場合は、定電流が電極を介して生体に流れることによって発生した生体の電極間の電圧Vo1と、スイッチを開いている場合は定電流が電流検出抵抗と電極を介して生体に流れることによって発生した電圧の和の電圧Vo1とから演算手段は生体インピ−ダンスを演算する。従って、生体インピ−ダンスを演算するのに、常に測定時の電流I、前記電圧Vo1、電圧Vo2から生体に流れる電流を検出して行っているので、生体インピ−ダンス測定の精度を高められる。
【0015】
また、請求項に記載の発明は、高周波電圧発生手段と、この高周波電圧発生手段の電圧を電流に変換する電圧−電流変換手段と、生体に接触する電極と、この電極に流れる電流を検出する電流検出抵抗と、この電流検出抵抗の電圧を検出する抵抗電圧検出手段と、前記電極間の生体の電圧を検出する生体電圧検出手段と、この生体電圧検出手段と前記抵抗電圧検出手段の信号から生体のインピ−ダンスを算出する演算手段と、電流検出抵抗と電極間との電圧を検出する電圧検出手段と、電極間を短絡するスイッチを備えたものである。
【0016】
上記形態において、スイッチを閉じている場合は定電流が流れることにより発生した電流検出抵抗だけの電圧Vo1と、スイッチが開いている場合は定電流が流れることによって発生した電流検出抵抗と生体の電極間との電圧の和の電圧Vo2から演算手段は生体インピ−ダンスを演算する。従って、生体インピ−ダンスを演算するのに、常に測定時の電流I、前記電圧Vo1、電圧Vo2から生体に流れる電流を検出して行っているので、生体インピ−ダンス測定の精度を高められる。
【0017】
また、請求項に記載した発明は、高周波電圧発生手段と、この高周波電圧発生手段の電圧を電流に変換する電圧−電流変換手段と、生体に接触する電極と、この電極に流れる電流を検出する電流検出抵抗と、この電流検出抵抗の電圧を検出する抵抗電圧検出手段と、前記電極間の生体の電圧を検出する生体電圧検出手段と、この生体電圧検出手段と前記抵抗電圧検出手段の信号から生体のインピ−ダンスを算出する演算手段と、抵抗値が電流検出抵抗と異なる抵抗と、この抵抗を前記電流検出抵抗に並列に接続するスイッチを備えたものである。
【0018】
上記形態において、スイッチを閉じている場合は、定電流が電流検出抵抗、抵抗と電極間に流れることによって発生した電流検出抵抗と抵抗の並列回路の電圧Vo2と、スイッチを開いている場合は定電流が電流検出抵抗だけの電圧Vo1の差電圧と、電極を介して定電流が流れることより発生した生体の電極間の電圧から演算手段は生体インピ−ダンスを演算する。従って、生体インピ−ダンスを演算するのに、常に測定時の電流I、前記電圧Vo1、電圧Vo2から生体に流れる電流を検出して行っているので、生体インピ−ダンス測定の精度を高められる。
【0019】
また、請求項に記載した発明は、請求項1〜請求項のいずれか1項に記載の生体電圧検出手段の信号により電極が生体に接触したことを検知する電極接触検知手段を備えたものである。
【0020】
上記形態において、電極接触検知手段は生体電圧検出手段から信号を得て生体への電極の接触度を検知する。従って、測定回数を繰り返すことにより生体インピ−ダンス測定の精度を高められる
【0021】
【実施例】
以下本発明生体インピ−ダンス測定装置につき、図1〜図7を参照して説明する。
【0022】
参考例1)
図1は、生体インピ−ダンス測定装置の参考例1の発明を示すブロック図である。この生体インピ−ダンス測定装置は、50kHzの正弦波を発生させる高周波電圧発生手段10と、この高周波電圧発生手段10の電圧を電流に変換する電圧−電流変換手段11と、生体に接触する電極12a,12bと、この電極12a,12bに流れる電流を検出する電流検出抵抗13と、この電流検出抵抗13の電圧を検出する抵抗電圧検出手段14と、前記電極12a,12b間の生体の電圧を検出する生体電圧検出手段15と、この生体電圧検出手段15と前記抵抗電圧検出手段14の信号から生体のインピ−ダンスを演算する演算手段15を備えたものである。
【0023】
上記参考例1において、高周波電圧発生手段10の電圧を電圧−電流変換手段11が定電流化する。この電流は、生体に接触している電極12a,12b間に、前記電流を検出するための電流検出抵抗13を介して流れる。電極12a、12bは、身体の左手と右手に接触して両手間に電流が流れる。この電流が流れることにより発生する生体の電極12a,12b間の電圧を、生体電圧検出手段15が検出する。また同様にして電流検出抵抗13間に発生する電圧を、抵抗電圧検出手段14が検出する。この検出した両電圧を読み込んで演算手段16は生体インピ−ダンスZを演算するのである。すなわち、抵抗電圧検出手段14の検出した電圧Vrと、電流検出抵抗13の抵抗値Rから生体に流れる電流Iを常に求める。この電流Iを用いて生体電圧Vzから生体インピ−ダンスを求めることができる。
【0024】
特に本参考例1では、生体インピ−ダンス測定時の電流Iを常に検出して生体インピ−ダンスを演算するので、精度の高い生体インピ−ダンスの測定装置を実現できる。
【0025】
なお、参考例1では、高周波電圧発生手段10の周波数に50kHzを用いたが、10kHzから500kHz等の周波数でも同様の効果が得られ、単一周波数に限られるものではない。
【0026】
(実施例
図2は、生体インピ−ダンス測定装置の実施例を示すブロック図である。この生体インピ−ダンス測定装置は、電極間を短絡するスイッチと演算手段の入力側に差動増幅器を設けた点が参考例1と異なるだけで、それ以外の同一構成および作用効果を奏する部分には同一符号を付して詳細な説明を省略し、異なる点を中心に説明する。
【0027】
17は演算手段16の入力側に接続した差動増幅器で、抵抗電圧検出手段14と生体電圧検出手段15との信号を差動増幅する。18は電極12a、12b間を短絡するスイッチである。
【0028】
上記実施例において、スイッチ18を閉じ場合は、電圧−電流変換手段11からの定電流は電流検出抵抗13、電極12a、スイッチ18、電極12bと流れ、差動増幅器17への電圧Vo1は抵抗電圧検出手段14の検出した電圧Vrが出力される。この電圧Vo1より生体に流れる電流Iを演算して求める。次に、スイッチ18を開いた場合、定電流は電流検出抵抗13、電極12a、生体、電極12bと流れ、差動増幅器17への電圧Vo2は、生体電圧検出手段15の検出した電圧Vzから抵抗電圧検出手段14の検出した電圧Vrとの差の電圧が出力される。そして、抵抗電圧検出手段14と生体電圧検出手段15から出力された電圧による差動増幅器17からの信号で演算手段16は生体インピ−ダンスZを求める。すなわち、前記電圧Vo2から電圧Vo1を引き算して生体電圧Vzを求める。この生体電圧Vzと前記電流Iを用いて生体インピ−ダンスを求めることができる。
【0029】
以上のように実施例によれば、常に前記電圧Vo2、電圧Vo1、測定時の電流Iから生体インピ−ダンスZを決定するようにしているため、定電流の変動の影響を低減でき、測定精度の高い生体インピ−ダンス装置を実現できる。
【0030】
(実施例
図3は、生体インピ−ダンス測定装置の実施例を示すブロック図である。この生体インピ−ダンス測定装置は、実施例の電極間を短絡するスイッチを、電流検出抵抗を短絡するスイッチに変えた点が実施例と異なるだけで、それ以外の同一構成および作用効果を奏する部分には同一符号を付して詳細な説明を省略し、異なる点を中心に説明する。19は電流検出抵抗13を短絡するスイッチである。
【0031】
上記実施例において、スイッチ19を閉じた場合は、電圧−電流変換手段11からの定電流は電流検出抵抗13をバイパスしてスイッチ19、電極12a、生体、電極12bと流れ、差動増幅器17への電圧Vo1は生体電圧検出手段15の検出した電圧Vzが出力される。次に、スイッチ19を開いた場合は、定電流は電流検出抵抗13、電極12a、生体、電極12bと流れ、差動増幅器17への電圧Vo2は、生体電圧検出手段15の検出した電圧Vzから抵抗電圧検出手段14の検出した電圧Vrとの差の電圧が出力される。そして、抵抗電圧検出手段14と生体電圧検出手段15から出力された電圧による差動増幅器17からの信号により演算手段16は生体インピ−ダンスZを求める。すなわち、電圧Vo2から電圧Vo1を引き算して抵抗電圧Vrが得られ、この電圧Vrより生体に流れる電流Iを演算して求めている。そして、前記電圧Vo1である生体電圧Vzと前記電流Iを用いて生体インピ−ダンスZを求めることができる。
【0032】
以上のように実施例によれば、常に前記電圧Vo2、電圧Vo1、測定時の電流Iから生体インピ−ダンスZを決定するようにしているため、定電流の変動の影響を低減でき、測定精度の高い生体インピ−ダンス装置を実現できる。
【0033】
(実施例
図4は、生体インピ−ダンス測定装置の実施例を示すブロック図である。この生体インピ−ダンス測定装置は、電流検出抵抗と電極間の電圧を検出する電圧検出手段と、電流検出抵抗を短絡するスイッチを設けた点が参考例1と異なるだけで、それ以外の同一構成および作用効果を奏する部分には同一符号を付して詳細な説明を省略し、異なる点を中心に説明する。
【0034】
20は電流検出抵抗13と電極12a,12bの直列回路の電圧を検出する電圧検出手段で、21は電流検出抵抗13を短絡するスイッチである。
【0035】
上記実施例において、スイッチ19を閉じた場合は、電圧−電流変換手段11からの定電流は電流検出抵抗13をバイパスしてスイッチ21、電極12a、生体、電極12bと流れ、電圧検出手段20への電圧Vo1は、生体間の電圧Vzが出力される。次に、スイッチ21を開いた場合は、定電流は電流検出抵抗13、電極12a、生体、電極12bと流れ、電圧検出手段20への電圧Vo2は、生体間の電圧Vzと電流検出抵抗13の電圧Vrとの和の電圧が出力される。そして、電圧検出手段20を介し前記両方の出力電圧を受けた演算手段16は生体インピ−ダンスZを求める。すなわち、前記電圧Vo2から電圧Vo1を引くことにより、電流検出抵抗13の電圧Vrが得られ、この電圧Vrより生体に流れる電流Iを演算して求めている。そして、前記電圧Vo1である生体電圧Vzと前記電流Iを用いて生体インピ−ダンスZを求めることができる。
【0036】
以上のように実施例によれば、常に前記電圧Vo1、電圧Vo2、測定時の電流Iから生体インピ−ダンスZを決定するようにしているため、定電流の変動の影響を低減でき、測定精度の高い生体インピ−ダンス装置を実現できる。
【0037】
(実施例
図5は、生体インピ−ダンス測定装置の実施例を示すブロック図である。この生体インピ−ダンス測定装置は、実施例の電流検出抵抗を短絡するスイッチを、電極間を短絡するスイッチに変えた点が実施例と異なるだけで、それ以外の同一構成および作用効果を奏する部分には同一符号を付して詳細な説明を省略し、異なる点を中心に説明する。22は電極12a、12b間を短絡するスイッチである。
【0038】
上記実施例において、スイッチ22を閉じた場合は、電圧−電流変換手段11からの定電流は電流検出抵抗13、電極12a、スイッチ22、電極12bと流れ、電圧検出手段20への電圧Vo1は、電流検出抵抗13の電圧Vrが出力される。この電圧Vo1より生体に流れる電流Iを演算して求める。次に、スイッチ22を開いた場合は、定電流は電流検出抵抗13、電極12a、生体、電極12bと流れ、電圧検出手段20への電圧Vo2は、生体間の電圧Vzと電流検出抵抗13の電圧Vrとの和の電圧が出力される。そして、前記両方の出力電圧を受けた電圧検出手段20からの信号で演算手段16は生体インピ−ダンスZを求める。すなわち、前記電圧Vo2から電圧Vo1を引くことにより、生体電圧Vzが得られ、この電圧Vzと前記電流Iを用いて生体インピ−ダンスZを求めることができる。
【0039】
以上のように実施例によれば、常に前記電圧Vo1、電圧Vo2、測定時の電流Iから生体インピ−ダンスZを決定するようにしているため、定電流の変動の影響を低減でき、測定精度の高い生体インピ−ダンス装置を実現できる。
【0040】
(実施例
図6は、生体インピ−ダンス測定装置の実施例を示すブロック図である。この生体インピ−ダンス測定装置は、電流検出抵抗と並列に、抵抗とスイッチの直列回路を設けた点が参考例1と異なるだけで、それ以外の同一構成および作用効果を奏する部分には同一符号を付して詳細な説明を省略し、異なる点を中心に説明する。
【0041】
23は抵抗値が電流検出抵抗13と異なる抵抗で、直列に接続したスイッチ24を介して電流検出抵抗13と並列結線している。
【0042】
上記実施例において、スイッチ24を開いた場合は、電圧−電流変換手段11からの定電流は電流検出抵抗13、電極12a、生体、電極12bと流れ、抵抗電圧検出手段14への電圧Vo1は、電流検出抵抗13の電圧Vr1が出力される。また、スイッチ24を閉じた場合は、定電流が電流検出抵抗13と抵抗23に分流し、更に電極12a、生体、電極12bと流れ、抵抗電圧検出手段14への電圧Vo2は、電流検出抵抗13と抵抗23の並列抵抗による電圧が出力される。この前記両方の電圧Vo1とVo2を受けた抵抗電圧検出手段14の信号で演算手段16は生体に流れる電流Iを演算して求めている。
【0043】
一方、生体電圧検出手段15には、生体電圧Vzが出力される。この生体電圧Vzと前記電流Iを用いて演算手段16は生体インピ−ダンスZを求めることができる。
【0044】
以上のように実施例によれば、2値の電流検出抵抗の電圧から測定時の電流Iの相関式を算出して、生体インピ−ダンスZを決定するようにしているため、定電流の変動の影響を低減でき、測定精度の高い生体インピ−ダンス装置を実現できる。
【0045】
(実施例
図7は、生体インピ−ダンス測定装置の実施例を示すブロック図である。この生体インピ−ダンス測定装置は、電極接触検知手段を設けた点が実施例1と異なるだけで、それ以外の同一構成および作用効果を奏する部分には同一符号を付して詳細な説明を省略し、異なる点を中心に説明する。
【0046】
25は生体電圧検知手段15の信号により電極12a、12bが生体に接触したことを検知する電極接触検知手段である。
【0047】
上記実施例において、電極12a、12bを生体に接触させると、生体電圧検知手段15が前記電極間の電圧を検出し、この電圧レベルで電極接触検知手段25が電極12a,12bの接触度を判定する。すなわち、電極12a,12bが生体に接触不十分の場合、生体と電極12a,12b間に接触抵抗が発生し、生体電圧検知手段15の出力電圧は高くなる。また、電極12a,12bが生体に確実に接触した場合、所定の生体インピ−ダンスによる電圧値となる。つまり、電極接触検知手段25が、所定の電圧範囲にあることを判定して、生体インピ−ダンスの測定を開始することができる。そして、設定の回数繰り返すことによって複数の測定結果が得られ、これを処理することによりデ−タの精度を向上できるものである。
【0048】
なお、上記実施例において、電極の生体との接触を検知するのに電極接触検知手段25は、電極12a、12b間の生体電圧検知手段15の信号を用いているが、電流検出抵抗13の抵抗電圧検知手段14の信号を用いても同様の効果が得られるものである。
【0049】
【発明の効果】
以上のように本発明の請求項1に記載の発明は、高周波電圧発生手段と、この高周波電圧発生手段の電圧を電流に変換する電圧−電流変換手段と、生体に接触する電極と、この電極に流れる電流を検出する電流検出抵抗と、この電流検出抵抗の電圧を検出する抵抗電圧検出手段と、前記電極間の生体の電圧を検出する生体電圧検出手段と、この生体電圧検出手段と前記抵抗電圧検出手段の信号から生体のインピ−ダンスを算出する演算手段と、抵抗電圧検出手段と生体電圧検出手段の信号を差動増幅する差動増幅手段と、電極間を短絡するスイッチを備えたもので、スイッチの開閉による生体に流れる電流を電流検出抵抗により検出して生体インピ−ダンスZを演算しているため、定電流の変動の影響を低減でき、測定精度の高い装置を実現できる
【0050】
また、請求項に記載した発明は、請求項記載において電流検出抵抗を短絡するスイッチを備えたもので、スイッチの開閉による生体に流れる電流を電流検出抵抗により検出して生体インピ−ダンスZを演算しているため、定電流の変動の影響を低減でき、測定精度の高い装置を実現できる。
【0051】
また、請求項に記載した発明は、高周波電圧発生手段と、この高周波電圧発生手段の電圧を電流に変換する電圧−電流変換手段と、生体に接触する電極と、この電極に流れる電流を検出する電流検出抵抗と、この電流検出抵抗の電圧を検出する抵抗電圧検出手段と、前記電極間の生体の電圧を検出する生体電圧検出手段と、この生体電圧検出手段と前記抵抗電圧検出手段の信号から生体のインピ−ダンスを算出する演算手段と、電流検出抵抗と電極間との電圧を検出する電圧検出手段と、電流検出抵抗を短絡するスイッチを備えたもので、スイッチの開閉による生体に流れる電流を電流検出抵抗により検出して生体インピ−ダンスZを演算しているため、定電流の変動の影響を低減でき、測定精度の高い装置を実現できる。
【0052】
また、請求項に記載の発明は、高周波電圧発生手段と、この高周波電圧発生手段の電圧を電流に変換する電圧−電流変換手段と、生体に接触する電極と、この電極に流れる電流を検出する電流検出抵抗と、この電流検出抵抗の電圧を検出する抵抗電圧検出手段と、前記電極間の生体の電圧を検出する生体電圧検出手段と、この生体電圧検出手段と前記抵抗電圧検出手段の信号から生体のインピ−ダンスを算出する演算手段と、電流検出抵抗と電極間との電圧を検出する電圧検出手段と、電極間を短絡するスイッチを備えたもので、スイッチの開閉による生体に流れる電流を電流検出抵抗により検出して生体インピ−ダンスZを演算しているため、定電流の変動の影響を低減でき、測定精度の高い装置を実現できる。
【0053】
また、請求項に記載した発明は、高周波電圧発生手段と、この高周波電圧発生手段の電圧を電流に変換する電圧−電流変換手段と、生体に接触する電極と、この電極に流れる電流を検出する電流検出抵抗と、この電流検出抵抗の電圧を検出する抵抗電圧検出手段と、前記電極間の生体の電圧を検出する生体電圧検出手段と、この生体電圧検出手段と前記抵抗電圧検出手段の信号から生体のインピ−ダンスを算出する演算手段と、抵抗値が電流検出抵抗と異なる抵抗と、この抵抗を前記電流検出抵抗に並列に接続するスイッチを備えたもので、スイッチの開閉による生体に流れる電流を電流検出抵抗により検出して生体インピ−ダンスZを演算しているため、定電流の変動の影響を低減でき、測定精度の高い装置を実現できる。
【0054】
また、請求項に記載した発明は、請求項1〜請求項のいずれか1項に記載の生体電圧検出手段の信号により電極が生体に接触したことを検知する電極接触検知手段を備えたもので、生体への電極の接触度を検知して自動的に測定を開始できる。
【図面の簡単な説明】
【図1】 本発明の参考例1における生体インピ−ダンス測定装置を示すブロック図
【図2】 同実施例における生体インピ−ダンス測定装置を示すブロック図
【図3】 同実施例における生体インピ−ダンス測定装置を示すブロック図
【図4】 同実施例における生体インピ−ダンス測定装置を示すブロック図
【図5】 同実施例における生体インピ−ダンス測定装置を示すブロック図
【図6】 同実施例における生体インピ−ダンス測定装置を示すブロック図
【図7】 同実施例における生体インピ−ダンス測定装置を示すブロック図
【図8】 従来例における生体インピ−ダンス測定装置を示すブロック図
【符号の説明】
10 高周波電圧発生手段
11 電圧−電流変換手段
12a 電極
12b 電極
13 電流検出抵抗
14 抵抗電圧検出手段
15 生体電圧検出手段
16 演算手段
17 差動増幅器
18 スイッチ
19 スイッチ
20 電圧検出手段
21 スイッチ
22 スイッチ
23 抵抗
24 スイッチ
25 電極接触検知手段
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a living body such as a body fat meter that measures the impedance of a living body by applying a high-frequency current to the living body and calculates the body fat mass in the body from the body impedance and body conditions such as body weight. The present invention relates to an apparatus for measuring the impedance.
[0002]
[Prior art]
  In general, as a method for measuring the amount of fat in the body, the impedance between the ends of the body, such as between both hands, is measured by a four-terminal method, and the amount of fat in the body is calculated from the body information such as height and weight. A method has been proposed.
[0003]
  FIG. 8 is a block diagram showing a configuration of a conventional biological impedance measuring apparatus. In the measurement of the biological impedance, a sine wave of 50 kHz is generated from the transmitter 1 and the voltage of this sine wave is converted to a constant current by the voltage-current conversion means 2. This constant current is passed through the living body from between the electrodes 3a and 3b that are in contact with the living body. Then, the voltage between the electrodes 3a and 3b is taken out by the differential amplifier 4, the waveform is shaped by a filter circuit or the like, converted into direct current by the rectifier 5, and then converted from analog values to digital values by the AD converter 6. The data is transmitted to the calculation unit 7 composed of a microcomputer. The calculation unit 7 calculates the biological impedance from the voltage signal.
[0004]
  The biological impedance Z can be obtained by detecting the electrode voltage V when the current I is constant when Z = V / I in the relationship between the biological current I and the electrode voltage V. it can. The amount of fat in the body is calculated from the body impedance Z and body information such as height and weight.
[0005]
[Problems to be solved by the invention]
  In the living body impedance measuring apparatus having the conventional configuration, when the constant current source changes due to an environment such as temperature, the change in the constant current causes a measurement error of the living body impedance. In order to set the constant current source to a steady value, a great deal of labor is required for reducing external environmental fluctuations and improving the accuracy of the constant current source.
[0006]
  The present invention solves the above-mentioned conventional problems, and provides a living body impedance measuring device capable of detecting a living body current at the time of measurement and performing highly accurate measurement without being affected by an environment such as temperature.
[0007]
[Means for Solving the Problems]
  The present invention includes a high-frequency voltage generating means, a voltage-current converting means for converting the voltage of the high-frequency voltage generating means into a current, an electrode in contact with a living body, a current detection resistor for detecting a current flowing through the electrode, Resistance voltage detection means for detecting the voltage of the current detection resistor, biological voltage detection means for detecting the voltage of the living body between the electrodes, and the impedance of the living body from the signals of the biological voltage detection means and the resistance voltage detection means It is provided with the calculating means to calculate.
[0008]
  In the above means, since the current value is obtained by detecting the current flowing through the living body with the current detection resistor, it is possible to perform highly accurate measurement that is not affected by the external environment such as temperature.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
  According to the first aspect of the present invention, the high-frequency voltage generating means, the voltage-current converting means for converting the voltage of the high-frequency voltage generating means into a current, the electrode in contact with the living body, and the current flowing through the electrode A current detecting resistor for detecting, a resistance voltage detecting means for detecting a voltage of the current detecting resistor, a living body voltage detecting means for detecting a living body voltage between the electrodes, a living body voltage detecting means and the resistance voltage detecting means; Calculation means for calculating impedance of living body from signalA differential amplifying means for differentially amplifying signals from the resistance voltage detecting means and the biological voltage detecting means, and a switch for short-circuiting the electrodes.It is a thing.
[0010]
  In the above embodiment, the voltage of the high frequency voltage generating means is made constant by the voltage-current converting means. The constant current flows to the living body through the current detection resistor and the electrode, and the calculation means calculates the living body impedance from the voltage of the current detection resistor generated by this current and the voltage between the electrodes. Therefore, the calculation of the living body impedance is performed by always detecting the current flowing through the living body from the resistance of the current detection resistor, so that the accuracy of the living body impedance measurement can be improved.. In addition, when the switch is closed, the voltage Vo1 is generated only by the current detection resistor generated by the constant current flowing. When the switch is opened, the constant current flows to the living body through the current detection resistor and the electrode. The difference from the detected voltage Vo2 is detected by a differential amplifier, and the calculation means calculates the biological impedance from this detection signal. Accordingly, the calculation of the living body impedance is always performed by detecting the current flowing through the living body from the current I at the time of measurement, the voltage Vo1, and the voltage Vo2. Improve impedance measurement accuracy.
[0011]
  Claims2The invention described in claim 11In the description, a switch for short-circuiting the current detection resistor is provided.
[0012]
  In the above embodiment, when the switch is closed, the voltage Vo1 between the living body electrodes generated by a constant current flowing through the electrode, and when the switch is opened, the current is fixed to the living body via the current detection resistor and the electrode. When the current flows, the difference from the generated voltage Vo2 is detected by a differential amplifier, and the calculation means calculates the biological impedance from this detection signal. Accordingly, since the biological impedance is calculated by always detecting the current I flowing during measurement and the current flowing through the living body from the voltage Vo1 and the voltage Vo2, the accuracy of the biological impedance measurement can be improved.
[0013]
  Claims3The invention described inA high-frequency voltage generating means, a voltage-current converting means for converting the voltage of the high-frequency voltage generating means into a current, an electrode in contact with the living body, a current detecting resistor for detecting a current flowing through the electrode, and a current detecting resistor Resistance voltage detection means for detecting a voltage, biological voltage detection means for detecting the voltage of the living body between the electrodes, and calculation means for calculating the impedance of the living body from signals of the biological voltage detection means and the resistance voltage detection means When,A voltage detection means for detecting the voltage between the current detection resistor and the electrode and a switch for short-circuiting the current detection resistor are provided.
[0014]
  In the above embodiment, when the switch is closed, the voltage Vo1 between the living body electrodes generated when a constant current flows to the living body through the electrode, and when the switch is opened, the constant current is the current detection resistor and the electrode. The calculating means calculates the living body impedance from the voltage Vo1 of the sum of the voltages generated by flowing into the living body via the. Accordingly, since the biological impedance is calculated by always detecting the current I flowing during measurement and the current flowing through the living body from the voltage Vo1 and the voltage Vo2, the accuracy of the biological impedance measurement can be improved.
[0015]
  Claims4The invention described inA high-frequency voltage generating means, a voltage-current converting means for converting the voltage of the high-frequency voltage generating means into a current, an electrode in contact with the living body, a current detecting resistor for detecting a current flowing through the electrode, and a current detecting resistor Resistance voltage detection means for detecting a voltage, biological voltage detection means for detecting the voltage of the living body between the electrodes, and calculation means for calculating the impedance of the living body from signals of the biological voltage detection means and the resistance voltage detection means When,A voltage detection means for detecting a voltage between the current detection resistor and the electrode and a switch for short-circuiting the electrodes are provided.
[0016]
  In the above embodiment, when the switch is closed, the voltage Vo1 of only the current detection resistor generated by the constant current flowing, and when the switch is open, the current detection resistor and the biological electrode generated by the constant current flowing The computing means computes the biological impedance from the voltage Vo2 which is the sum of the voltages between the two. Accordingly, since the biological impedance is calculated by always detecting the current I flowing during measurement and the current flowing through the living body from the voltage Vo1 and the voltage Vo2, the accuracy of the biological impedance measurement can be improved.
[0017]
  Claims5The invention described inA high-frequency voltage generating means, a voltage-current converting means for converting the voltage of the high-frequency voltage generating means into a current, an electrode in contact with the living body, a current detecting resistor for detecting a current flowing through the electrode, and a current detecting resistor Resistance voltage detection means for detecting a voltage, biological voltage detection means for detecting the voltage of the living body between the electrodes, and calculation means for calculating the impedance of the living body from signals of the biological voltage detection means and the resistance voltage detection means When,A resistor having a resistance value different from that of the current detection resistor and a switch for connecting the resistor in parallel with the current detection resistor are provided.
[0018]
  In the above embodiment, when the switch is closed, a constant current flows between the current detection resistor, the resistor and the electrode, and the voltage Vo2 of the parallel circuit of the current detection resistor and the resistor is generated. The computing means computes the biological impedance from the voltage difference between the voltage Vo1 whose current is only the current detection resistor and the voltage between the biological electrodes generated by the constant current flowing through the electrodes. Accordingly, since the biological impedance is calculated by always detecting the current I flowing during measurement and the current flowing through the living body from the voltage Vo1 and the voltage Vo2, the accuracy of the biological impedance measurement can be improved.
[0019]
  Claims6The invention described in claim 1 to claim 15The electrode contact detection means which detects that the electrode contacted the living body by the signal of the biological voltage detection means described in any one of the above.
[0020]
  In the said form, an electrode contact detection means detects a contact degree of the electrode to a biological body by obtaining a signal from a biological voltage detection means. Therefore, the accuracy of the biological impedance measurement can be improved by repeating the number of measurements..
[0021]
【Example】
  Hereinafter, the biological impedance measuring apparatus of the present invention will be described with reference to FIGS.
[0022]
  (referenceExample 1)
  FIG. 1 shows a biological impedance measuring apparatus.reference1 is a block diagram showing the invention of Example 1. FIG. This living body impedance measuring apparatus includes a high frequency voltage generating means 10 that generates a 50 kHz sine wave, a voltage-current converting means 11 that converts the voltage of the high frequency voltage generating means 10 into a current, and an electrode 12a that contacts the living body. , 12b, a current detection resistor 13 for detecting the current flowing through the electrodes 12a, 12b, a resistance voltage detection means 14 for detecting the voltage of the current detection resistor 13, and a living body voltage between the electrodes 12a, 12b. And a calculating means 15 for calculating the impedance of the living body from the signals of the living body voltage detecting means 15 and the resistance voltage detecting means 14.
[0023]
  the abovereferenceIn Example 1, the voltage-current converting means 11 makes the voltage of the high-frequency voltage generating means 10 constant. This current flows between the electrodes 12a and 12b in contact with the living body via the current detection resistor 13 for detecting the current. The electrodes 12a and 12b are in contact with the left and right hands of the body, and a current flows between both hands. The biological voltage detection means 15 detects the voltage between the biological electrodes 12a and 12b generated by the flow of this current. Similarly, the resistance voltage detection means 14 detects the voltage generated between the current detection resistors 13. The calculation means 16 calculates the biological impedance Z by reading both detected voltages. That is, the current I flowing through the living body is always obtained from the voltage Vr detected by the resistance voltage detector 14 and the resistance value R of the current detection resistor 13. By using this current I, the biological impedance can be obtained from the biological voltage Vz.
[0024]
  Especially booksreferenceIn Example 1, since the living body impedance is calculated by always detecting the current I during the living body impedance measurement, a highly accurate living body impedance measuring apparatus can be realized.
[0025]
  In addition,referenceIn Example 1, 50 kHz is used as the frequency of the high-frequency voltage generating means 10, but the same effect can be obtained even at a frequency of 10 kHz to 500 kHz, and the frequency is not limited to a single frequency.
[0026]
  (Example1)
  FIG. 2 shows an embodiment of a biological impedance measuring device.1FIG. This bioimpedance measuring device is characterized in that a switch for short-circuiting the electrodes and a differential amplifier are provided on the input side of the arithmetic means.referenceOnly the differences from Example 1 will be described, with the same reference numerals assigned to other parts having the same configuration and operational effects, and detailed description thereof omitted.
[0027]
  Reference numeral 17 denotes a differential amplifier connected to the input side of the arithmetic means 16, which differentially amplifies signals from the resistance voltage detection means 14 and the biological voltage detection means 15. Reference numeral 18 denotes a switch for short-circuiting the electrodes 12a and 12b.
[0028]
  Example above1When the switch 18 is closed, the constant current from the voltage-current conversion means 11 flows through the current detection resistor 13, the electrode 12a, the switch 18, and the electrode 12b, and the voltage Vo1 to the differential amplifier 17 is the resistance voltage detection means 14. The detected voltage Vr is output. The current I flowing through the living body is calculated from this voltage Vo1. Next, when the switch 18 is opened, a constant current flows through the current detection resistor 13, the electrode 12 a, the living body, and the electrode 12 b, and the voltage Vo 2 to the differential amplifier 17 is resistance from the voltage Vz detected by the living body voltage detection means 15. A difference voltage from the voltage Vr detected by the voltage detection means 14 is output. Then, the computing means 16 obtains the biological impedance Z by the signal from the differential amplifier 17 based on the voltages output from the resistance voltage detecting means 14 and the biological voltage detecting means 15. That is, the biological voltage Vz is obtained by subtracting the voltage Vo1 from the voltage Vo2. The bioelectrical impedance can be obtained using the bioelectric voltage Vz and the current I.
[0029]
  Examples as above1Since the living body impedance Z is always determined from the voltage Vo2, the voltage Vo1, and the current I at the time of measurement, the influence of the fluctuation of the constant current can be reduced and the living body impedance with high measurement accuracy. A device can be realized.
[0030]
  (Example2)
  FIG. 3 shows an embodiment of a biological impedance measuring device.2FIG. This living body impedance measuring apparatus is1The point that changed the switch that short-circuits between the electrodes to the switch that short-circuits the current detection resistor is an example1The other parts having the same configuration and operational effects are denoted by the same reference numerals, detailed description thereof will be omitted, and different points will be mainly described. A switch 19 short-circuits the current detection resistor 13.
[0031]
  Example above2When the switch 19 is closed, the constant current from the voltage-current conversion means 11 bypasses the current detection resistor 13 and flows through the switch 19, the electrode 12a, the living body, and the electrode 12b, and the voltage Vo1 to the differential amplifier 17 is supplied. The voltage Vz detected by the biological voltage detection means 15 is output. Next, when the switch 19 is opened, a constant current flows through the current detection resistor 13, the electrode 12 a, the living body, and the electrode 12 b, and the voltage Vo 2 to the differential amplifier 17 is determined from the voltage Vz detected by the living body voltage detecting means 15. A difference voltage from the voltage Vr detected by the resistance voltage detection means 14 is output. Then, the computing means 16 obtains the biological impedance Z based on signals from the differential amplifier 17 based on the voltages output from the resistance voltage detecting means 14 and the biological voltage detecting means 15. That is, the resistance voltage Vr is obtained by subtracting the voltage Vo1 from the voltage Vo2, and the current I flowing through the living body is calculated from the voltage Vr. Then, the living body impedance Z can be obtained using the living body voltage Vz which is the voltage Vo1 and the current I.
[0032]
  Examples as above2Since the living body impedance Z is always determined from the voltage Vo2, the voltage Vo1, and the current I at the time of measurement, the influence of the fluctuation of the constant current can be reduced and the living body impedance with high measurement accuracy. A device can be realized.
[0033]
  (Example3)
  FIG. 4 shows an embodiment of a biological impedance measuring device.3FIG. This biological impedance measuring device is provided with a voltage detection means for detecting a voltage between the current detection resistor and the electrode, and a switch for short-circuiting the current detection resistor.referenceOnly the differences from Example 1 will be described, with the same reference numerals assigned to other parts having the same configuration and operational effects, and detailed description thereof omitted.
[0034]
  Reference numeral 20 denotes voltage detection means for detecting the voltage of the series circuit of the current detection resistor 13 and the electrodes 12a and 12b, and reference numeral 21 denotes a switch for short-circuiting the current detection resistor 13.
[0035]
  Example above3When the switch 19 is closed, the constant current from the voltage-current conversion unit 11 bypasses the current detection resistor 13 and flows through the switch 21, the electrode 12a, the living body, and the electrode 12b, and the voltage Vo1 to the voltage detection unit 20 is detected. Outputs a voltage Vz between the living bodies. Next, when the switch 21 is opened, the constant current flows through the current detection resistor 13, the electrode 12 a, the living body, and the electrode 12 b, and the voltage Vo 2 to the voltage detection means 20 is the voltage Vz between the living body and the current detection resistor 13. A voltage summed with the voltage Vr is output. Then, the calculation means 16 that has received both the output voltages via the voltage detection means 20 obtains the biological impedance Z. That is, the voltage Vr of the current detection resistor 13 is obtained by subtracting the voltage Vo1 from the voltage Vo2, and the current I flowing through the living body is calculated from the voltage Vr. Then, the living body impedance Z can be obtained using the living body voltage Vz which is the voltage Vo1 and the current I.
[0036]
  Examples as above3Since the living body impedance Z is always determined from the voltage Vo1, the voltage Vo2, and the current I at the time of measurement, the influence of the fluctuation of the constant current can be reduced and the living body impedance with high measurement accuracy. A device can be realized.
[0037]
  (Example4)
  FIG. 5 shows an embodiment of a biological impedance measuring device.4FIG. This living body impedance measuring apparatus is3The switch that short-circuited the current detection resistor of the circuit was changed to a switch that short-circuited the electrodes.3The other parts having the same configuration and operational effects are denoted by the same reference numerals, detailed description thereof will be omitted, and different points will be mainly described. A switch 22 short-circuits between the electrodes 12a and 12b.
[0038]
  Example above4When the switch 22 is closed, the constant current from the voltage-current conversion unit 11 flows through the current detection resistor 13, the electrode 12a, the switch 22, and the electrode 12b, and the voltage Vo1 to the voltage detection unit 20 is the current detection resistor. 13 voltage Vr is output. The current I flowing through the living body is calculated from this voltage Vo1. Next, when the switch 22 is opened, the constant current flows through the current detection resistor 13, the electrode 12 a, the living body, and the electrode 12 b, and the voltage Vo 2 to the voltage detection means 20 is the voltage Vz between the living body and the current detection resistor 13. A voltage summed with the voltage Vr is output. Then, the calculation means 16 obtains the biological impedance Z based on the signals from the voltage detection means 20 that have received both the output voltages. That is, the biological voltage Vz is obtained by subtracting the voltage Vo1 from the voltage Vo2, and the biological impedance Z can be obtained using the voltage Vz and the current I.
[0039]
  Examples as above4Since the living body impedance Z is always determined from the voltage Vo1, the voltage Vo2, and the current I at the time of measurement, the influence of the fluctuation of the constant current can be reduced and the living body impedance with high measurement accuracy. A device can be realized.
[0040]
  (Example5)
  FIG. 6 shows an embodiment of a biological impedance measuring device.5FIG. This biological impedance measuring device is provided with a series circuit of a resistor and a switch in parallel with the current detection resistor.referenceOnly the differences from Example 1 will be described, with the same reference numerals assigned to other parts having the same configuration and operational effects, and detailed description thereof omitted.
[0041]
  Reference numeral 23 denotes a resistor having a resistance value different from that of the current detection resistor 13, and is connected in parallel to the current detection resistor 13 through a switch 24 connected in series.
[0042]
  Example above5When the switch 24 is opened, the constant current from the voltage-current conversion means 11 flows through the current detection resistor 13, the electrode 12a, the living body, and the electrode 12b, and the voltage Vo1 to the resistance voltage detection means 14 is the current detection resistance. 13 voltage Vr1 is output. When the switch 24 is closed, a constant current is shunted to the current detection resistor 13 and the resistor 23, and further flows to the electrode 12a, the living body, and the electrode 12b, and the voltage Vo2 to the resistance voltage detection means 14 is And a voltage due to the parallel resistance of the resistor 23 is output. The calculating means 16 calculates and obtains the current I flowing through the living body based on the signal of the resistance voltage detecting means 14 that has received both the voltages Vo1 and Vo2.
[0043]
  On the other hand, the biological voltage detection unit 15 outputs the biological voltage Vz. Using this biological voltage Vz and the current I, the calculation means 16 can determine the biological impedance Z.
[0044]
  Examples as above5According to the above, since the correlation equation of the current I at the time of measurement is calculated from the voltage of the binary current detection resistor and the biological impedance Z is determined, the influence of the fluctuation of the constant current can be reduced, A biological impedance apparatus with high measurement accuracy can be realized.
[0045]
  (Example6)
  FIG. 7 shows an embodiment of a biological impedance measuring device.6FIG. This living body impedance measuring apparatus is different from the first embodiment only in that an electrode contact detecting means is provided, and other parts having the same configuration and operational effects are denoted by the same reference numerals and detailed description thereof is omitted. However, the differences will be mainly described.
[0046]
  Reference numeral 25 denotes an electrode contact detection means for detecting that the electrodes 12a and 12b have contacted the living body based on a signal from the biological voltage detection means 15.
[0047]
  Example above6When the electrodes 12a and 12b are brought into contact with the living body, the living body voltage detecting means 15 detects the voltage between the electrodes, and the electrode contact detecting means 25 determines the degree of contact between the electrodes 12a and 12b at this voltage level. That is, when the electrodes 12a and 12b are not sufficiently in contact with the living body, contact resistance is generated between the living body and the electrodes 12a and 12b, and the output voltage of the living body voltage detecting means 15 is increased. Further, when the electrodes 12a and 12b are surely in contact with the living body, the voltage value is determined by a predetermined living body impedance. That is, the electrode contact detection means 25 can determine that the voltage is within a predetermined voltage range, and can start measuring the biological impedance. A plurality of measurement results can be obtained by repeating the set number of times, and the accuracy of the data can be improved by processing these results.
[0048]
  The above example6The electrode contact detection means 25 uses the signal of the biological voltage detection means 15 between the electrodes 12a and 12b to detect the contact of the electrode with the living body, but the resistance voltage detection means 14 of the current detection resistor 13 The same effect can be obtained even if a signal is used.
[0049]
【The invention's effect】
  As described above, the invention according to claim 1 of the present invention is the high frequency voltage generating means, the voltage-current converting means for converting the voltage of the high frequency voltage generating means into current, the electrode in contact with the living body, and the electrode A current detection resistor that detects a current flowing through the electrode, a resistance voltage detection unit that detects a voltage of the current detection resistor, a biological voltage detection unit that detects a biological voltage between the electrodes, the biological voltage detection unit, and the resistance Calculation means for calculating impedance of living body from signal of voltage detection meansA differential amplifying means for differentially amplifying signals of the resistance voltage detecting means and the biological voltage detecting means, and a switch for short-circuiting the electrodesWithSince the current impedance Z is calculated by detecting the current flowing through the living body due to the opening and closing of the switch by the current detection resistor, the influence of the fluctuation of the constant current can be reduced, and a device with high measurement accuracy can be realized..
[0050]
  Claims2The invention described in claim 11In the description, a switch for short-circuiting the current detection resistor is provided, and the current flowing through the living body due to opening and closing of the switch is detected by the current detection resistor and the living body impedance Z is calculated. It can be reduced and a device with high measurement accuracy can be realized.
[0051]
  Claims3The invention described inA high-frequency voltage generating means, a voltage-current converting means for converting the voltage of the high-frequency voltage generating means into a current, an electrode in contact with the living body, a current detecting resistor for detecting a current flowing through the electrode, and a current detecting resistor Resistance voltage detection means for detecting a voltage, biological voltage detection means for detecting the voltage of the living body between the electrodes, and calculation means for calculating the impedance of the living body from signals of the biological voltage detection means and the resistance voltage detection means When,A voltage detection means for detecting a voltage between the current detection resistor and the electrode, and a switch for short-circuiting the current detection resistor. A current flowing through the living body due to opening and closing of the switch is detected by the current detection resistor and the living body impedance. Since Z is calculated, the influence of constant current fluctuations can be reduced, and a device with high measurement accuracy can be realized.
[0052]
  Claims4The invention described inA high-frequency voltage generating means, a voltage-current converting means for converting the voltage of the high-frequency voltage generating means into a current, an electrode in contact with the living body, a current detecting resistor for detecting a current flowing through the electrode, and a current detecting resistor Resistance voltage detection means for detecting a voltage, biological voltage detection means for detecting the voltage of the living body between the electrodes, and calculation means for calculating the impedance of the living body from signals of the biological voltage detection means and the resistance voltage detection means When,A voltage detection means for detecting the voltage between the current detection resistor and the electrode and a switch for short-circuiting between the electrodes, and a current flowing through the living body due to opening and closing of the switch is detected by the current detection resistor and the living body impedance Z Therefore, the influence of constant current fluctuations can be reduced, and a device with high measurement accuracy can be realized.
[0053]
  Claims5The invention described inA high-frequency voltage generating means, a voltage-current converting means for converting the voltage of the high-frequency voltage generating means into a current, an electrode in contact with the living body, a current detecting resistor for detecting a current flowing through the electrode, and a current detecting resistor Resistance voltage detection means for detecting a voltage, biological voltage detection means for detecting the voltage of the living body between the electrodes, and calculation means for calculating the impedance of the living body from signals of the biological voltage detection means and the resistance voltage detection means When,A resistor having a resistance value different from that of the current detection resistor, and a switch for connecting the resistor in parallel with the current detection resistor. The current detection resistor detects the current flowing through the living body by opening and closing the switch, and the living body impedance. Since Z is calculated, the influence of constant current fluctuations can be reduced, and a device with high measurement accuracy can be realized.
[0054]
  Claims6The invention described in claim 1 to claim 15It is equipped with electrode contact detection means for detecting that the electrode is in contact with the living body according to the signal from the biological voltage detection means described in any one of the above, and automatically measures by detecting the degree of contact of the electrode with the living body Can start.
[Brief description of the drawings]
FIG. 1 of the present inventionreferenceThe block diagram which shows the bioelectrical impedance measuring apparatus in Example 1
FIG. 2 Example1Block diagram showing a biological impedance measuring device
FIG. 3 Example2Block diagram showing a biological impedance measuring device
FIG. 4 Example3Block diagram showing a biological impedance measuring device
FIG. 5 Example4Block diagram showing a biological impedance measuring device
FIG. 6 Example5Block diagram showing a biological impedance measuring device
FIG. 7 Example6Block diagram showing a biological impedance measuring device
FIG. 8 is a block diagram showing a biological impedance measuring apparatus in a conventional example.
[Explanation of symbols]
  10 High frequency voltage generation means
  11 Voltage-current conversion means
  12a electrode
  12b electrode
  13 Current detection resistor
  14 Resistance voltage detection means
  15 Biological voltage detection means
  16 Calculation means
  17 Differential amplifier
  18 switches
  19 switch
  20 Voltage detection means
  21 switch
  22 switch
  23 Resistance
  24 switch
  25 Electrode contact detection means

Claims (6)

高周波電圧発生手段と、この高周波電圧発生手段の電圧を電流に変換する電圧−電流変換手段と、生体に接触する電極と、この電極に流れる電流を検出する電流検出抵抗と、この電流検出抵抗の電圧を検出する抵抗電圧検出手段と、前記電極間の生体の電圧を検出する生体電圧検出手段と、この生体電圧検出手段と前記抵抗電圧検出手段の信号から生体のインピ−ダンスを算出する演算手段と、抵抗電圧検出手段と生体電圧検出手段の信号を差動増幅する差動増幅手段と、電極間を短絡するスイッチを備えた生体インピ−ダンス測定装置。A high-frequency voltage generating means, a voltage-current converting means for converting the voltage of the high-frequency voltage generating means into a current, an electrode in contact with the living body, a current detecting resistor for detecting a current flowing through the electrode, and a current detecting resistor Resistance voltage detection means for detecting a voltage, biological voltage detection means for detecting the voltage of the living body between the electrodes, and calculation means for calculating the impedance of the living body from signals of the biological voltage detection means and the resistance voltage detection means And a bioelectrical impedance measuring device comprising: differential amplifying means for differentially amplifying signals from the resistance voltage detecting means and the bioelectric voltage detecting means; and a switch for short-circuiting the electrodes . 電流検出抵抗を短絡するスイッチを備えた請求項記載の生体インピ−ダンス測定装置。Vivo according to claim 1, further comprising a switch for short-circuiting the current detection resistor Inpi - dancing measuring device. 高周波電圧発生手段と、この高周波電圧発生手段の電圧を電流に変換する電圧−電流変換手段と、生体に接触する電極と、この電極に流れる電流を検出する電流検出抵抗と、この電流検出抵抗の電圧を検出する抵抗電圧検出手段と、前記電極間の生体の電圧を検出する生体電圧検出手段と、この生体電圧検出手段と前記抵抗電圧検出手段の信号から生体のインピ−ダンスを算出する演算手段と、電流検出抵抗と電極間との電圧を検出する電圧検出手段と、電流検出抵抗を短絡するスイッチを備えた生体インピ−ダンス測定装置。 A high-frequency voltage generating means, a voltage-current converting means for converting the voltage of the high-frequency voltage generating means into a current, an electrode in contact with the living body, a current detecting resistor for detecting a current flowing through the electrode, and a current detecting resistor Resistance voltage detection means for detecting a voltage, biological voltage detection means for detecting the voltage of the living body between the electrodes, and calculation means for calculating the impedance of the living body from signals of the biological voltage detection means and the resistance voltage detection means And a bioelectrical impedance measuring device comprising: voltage detection means for detecting a voltage between the current detection resistor and the electrode; and a switch for short-circuiting the current detection resistor . 高周波電圧発生手段と、この高周波電圧発生手段の電圧を電流に変換する電圧−電流変換手段と、生体に接触する電極と、この電極に流れる電流を検出する電流検出抵抗と、この電流検出抵抗の電圧を検出する抵抗電圧検出手段と、前記電極間の生体の電圧を検出する生体電圧検出手段と、この生体電圧検出手段と前記抵抗電圧検出手段の信号から生体のインピ−ダンスを算出する演算手段と、電流検出抵抗と電極間との電圧を検出する電圧検出手段と、電極間を短絡するスイッチを備えた生体インピ−ダンス測定装置。 A high-frequency voltage generating means, a voltage-current converting means for converting the voltage of the high-frequency voltage generating means into a current, an electrode in contact with the living body, a current detecting resistor for detecting a current flowing through the electrode, and a current detecting resistor Resistance voltage detection means for detecting a voltage, biological voltage detection means for detecting the voltage of the living body between the electrodes, and calculation means for calculating the impedance of the living body from signals of the biological voltage detection means and the resistance voltage detection means And a bioelectrical impedance measuring device comprising: voltage detecting means for detecting a voltage between the current detection resistor and the electrode; and a switch for short-circuiting the electrodes . 高周波電圧発生手段と、この高周波電圧発生手段の電圧を電流に変換する電圧−電流変換手段と、生体に接触する電極と、この電極に流れる電流を検出する電流検出抵抗と、この電流検出抵抗の電圧を検出する抵抗電圧検出手段と、前記電極間の生体の電圧を検出する生体電圧検出手段と、この生体電圧検出手段と前記抵抗電圧検出手段の信号から生体のインピ−ダンスを算出する演算手段と、抵抗値が電流検出抵抗と異なる抵抗と、この抵抗を前記電流検出抵抗に並列に接続するスイッチを備えた生体インピ−ダンス測定装置。 A high-frequency voltage generating means, a voltage-current converting means for converting the voltage of the high-frequency voltage generating means into a current, an electrode in contact with the living body, a current detecting resistor for detecting a current flowing through the electrode, and a current detecting resistor Resistance voltage detection means for detecting a voltage, biological voltage detection means for detecting the voltage of the living body between the electrodes, and calculation means for calculating the impedance of the living body from signals of the biological voltage detection means and the resistance voltage detection means And a resistor having a resistance value different from that of the current detection resistor, and a switch for connecting the resistor in parallel with the current detection resistor . 生体電圧検出手段の信号により電極が生体に接触したことを検知する電極接触検知手段を備えた請求項1〜請求項のいずれか1項に記載の生体インピ−ダンス測定装置 The living body impedance measuring device according to any one of claims 1 to 5 , further comprising an electrode contact detecting unit configured to detect that the electrode is in contact with the living body based on a signal from the living body voltage detecting unit .
JP08330899A 1999-03-26 1999-03-26 Bioimpedance measurement device Expired - Fee Related JP4161460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08330899A JP4161460B2 (en) 1999-03-26 1999-03-26 Bioimpedance measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08330899A JP4161460B2 (en) 1999-03-26 1999-03-26 Bioimpedance measurement device

Publications (2)

Publication Number Publication Date
JP2000271101A JP2000271101A (en) 2000-10-03
JP4161460B2 true JP4161460B2 (en) 2008-10-08

Family

ID=13798800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08330899A Expired - Fee Related JP4161460B2 (en) 1999-03-26 1999-03-26 Bioimpedance measurement device

Country Status (1)

Country Link
JP (1) JP4161460B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6631292B1 (en) * 2001-03-23 2003-10-07 Rjl Systems, Inc. Bio-electrical impedance analyzer
JP5672543B2 (en) * 2011-02-25 2015-02-18 株式会社タニタ Body composition meter
JP5673975B2 (en) * 2013-04-09 2015-02-18 株式会社タニタ Biometric device
US9591987B1 (en) 2013-08-23 2017-03-14 Rjl Systems, Inc. Determining body composition through segmental bioelectrical impedance analysis (BIA)
FR3026631B1 (en) * 2014-10-03 2016-12-09 Ecole Polytech IMPLANTABLE MEDICAL DEVICE WITH SENSORS
FR3049843A1 (en) 2016-04-06 2017-10-13 Instent MEDICAL DEVICE PROVIDED WITH SENSORS

Also Published As

Publication number Publication date
JP2000271101A (en) 2000-10-03

Similar Documents

Publication Publication Date Title
JP3907353B2 (en) Bioimpedance measurement device
US6393317B1 (en) Living body impedance measuring instrument and body composition measuring instrument
EP1512371B1 (en) Bioelectrical impedance measuring apparatus
ES2250593T3 (en) APPLIANCE AND BIOSENSOR PROCEDURE WITH VOLUME DETECTION AND SAMPLE TYPE.
JP5238712B2 (en) ECG electrode contact quality measurement system
US3085566A (en) Apparatus for measuring the electrical response of living tissue
JP4041360B2 (en) Bioimpedance measurement device
JP2001037735A (en) Biological impedance measuring instrument
JP4161460B2 (en) Bioimpedance measurement device
Degen et al. Continuous Monitoring of Electrode--Skin Impedance Mismatch During Bioelectric Recordings
CN114616448A (en) Method for monitoring the function of a capacitive pressure measuring cell
JP2835656B2 (en) Bioimpedance measurement method
JP4196036B2 (en) Bioimpedance measurement device
JP2003116803A (en) Electric characteristic measuring system
JP4671467B2 (en) Impedance measuring device
JP2004093416A (en) Voltage / current measuring instrument
JP2763255B2 (en) Passive element value measuring device using current vector
KR101597943B1 (en) Apparatus for simultaneous measuring of glucose and hematocrit
JP2019208843A (en) Semiconductor device, measurement system, and measurement method
SU757151A1 (en) Rheograph
RU2462185C1 (en) Device for measuring impedance of biological media
JP2544130B2 (en) Temperature measurement circuit
RU2016543C1 (en) Method of studying functional status of biological test object and apparatus for effecting same
RU2268644C2 (en) Method of measurement of electric-skin resistance of acupuncture points, device and method for the realization of the methods (versions)
JP3469369B2 (en) Electric measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060117

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070322

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140801

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees