JP4195601B2 - How to set ultrasonic shock treatment conditions for metallic materials - Google Patents

How to set ultrasonic shock treatment conditions for metallic materials Download PDF

Info

Publication number
JP4195601B2
JP4195601B2 JP2002335624A JP2002335624A JP4195601B2 JP 4195601 B2 JP4195601 B2 JP 4195601B2 JP 2002335624 A JP2002335624 A JP 2002335624A JP 2002335624 A JP2002335624 A JP 2002335624A JP 4195601 B2 JP4195601 B2 JP 4195601B2
Authority
JP
Japan
Prior art keywords
ultrasonic
treatment
impact
metal material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002335624A
Other languages
Japanese (ja)
Other versions
JP2004169099A (en
Inventor
知徳 冨永
宏二 本間
忠 石川
矢吉 肥後
和希 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002335624A priority Critical patent/JP4195601B2/en
Priority to PCT/JP2003/014596 priority patent/WO2004046395A1/en
Priority to AU2003280833A priority patent/AU2003280833A1/en
Publication of JP2004169099A publication Critical patent/JP2004169099A/en
Application granted granted Critical
Publication of JP4195601B2 publication Critical patent/JP4195601B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/275Tools having at least two similar components
    • B25D2250/285Tools having three or more similar components, e.g. three motors
    • B25D2250/291Tools having three or more parallel bits, e.g. needle guns
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属材料表層部を超音波衝撃処理するに際し、対象となる金属材料の目標とする改質程度に従って処理条件、特に処理温度域とその組み合わせを決定する超音波衝撃処理条件の設定方法に関するものである。
【0002】
【従来の技術】
金属製品の耐久性は、しばしば疲労と腐食によって規定される。これらの改善のためには、様々な手法が取られてきた。
【0003】
疲労の改善のためには、グラインディング、各種ピーニングにより止端形状を改善して応力集中を減少させたり、また圧縮残留応力を付与することが行われてきた。また、腐食については、塗装などの塗膜によるもの、ステンレスなど不導体皮膜を活用したもの、耐候性鋼のように保護性錆を作って腐食量を小さく抑えるものなどが実用になっている。
【0004】
このように、金属製品の耐久性を向上させるには、製作後の後処理によるものと、材料そのものを改善する方法の大きく分けて二つの手法があるのが現状であるといえる。
【0005】
このうち、材料の改善という面においては、最近において、非特許文献1により、金属材料の表面層の結晶組織をナノメータ(nm,10-9m)を単位として適当なサイズ、例えば、100nm以下に微細化した、所謂ナノ結晶組織を得ることにより、従来には得られなかった優れた性質、例えば、超高強度等の特性を得られることが知られている。
【0006】
このナノ結晶組織を有する金属材料を得るには、金属材料を一旦アモルファス状態とし、次いで低温熱処理を行う方法である。また、アモルファス状態とするには、金属材料を高速急冷或いはスパッタ製膜等の方法があるが、この場合、広く一般の形状の成形体や構造体を得るには様々な製造上の制約がある。また、この他に、金属材料の粉末をボールミル等で処理し、金属材料表面に強加工を施すことによりこの金属材料をアモルファス化し、次いでこれを熱処理することにより、ナノ結晶構造を有する金属粉末を得ることができる。この金属粉末を高温で加圧成形し、或いは更に溶接等の処理を行って構造体とすることができる。
ところが、上記高温の熱処理過程を経ることによってナノ結晶組織構造が成長して消失するために、このナノ結晶組織の特性を生かした成形体や構造体を得ることは困難とされている。
【0007】
一方、前記耐久性の向上方法のうち後処理に属する技術では、金属材料の表面に超音波衝撃処理を施すことにより表面に塑性変形を与え、或いは残留応力を開放することが知られており、例えば、金属材料の溶接部に超音波衝撃処理を施し、溶接部の残留応力を開放し、ボイドや異常粒界のような微小欠陥を低減する方法、疲労性能を向上させる方法、例えば、非特許文献3、特許文献1、特許文献2および特許文献3で提案されている。また、上記超音波衝撃処理を行うための機器として、超音波を発生させるトランスデューサー、超音波を先端に導くためのウエーブガイド、その先端に設けられ超音波により振動する衝撃用ピンを収納するヘッドを備えた超音波衝撃処理機が特許文献4で知られている。しかし、この方法では同時に非特許文献1、非特許文献2、に見られるように、表面結晶組織を改善することも知られている。つまり、この技術は後処理であると同時に材料の改善という特性を持っていると言える。
【0008】
しかしながら、従来の超音波衝撃処理は、疲労強度の向上、微小欠陥の軽減などが主体であり、金属材料表層の材料特性、表面改質が改善されるとしてもそれは副産物的に、その範囲、程度などはかなりばらつきが多い状況で生じており、目的に合わせて主体的にコントロールして改善するまでには至っていない。
【0009】
上記の様々な超音波を利用しての効果の研究は、それぞれの効果に対して独立に、個別になされており、殆ど同じような機材を用いて処理を行っているのにもかかわらず、それらの処理のための必要条件や効果を統一的な設計概念で扱って、処理対象の金属加工物にとって必要な効果を適切に、選択的に得ることはできていなかった。特に条件の中でも温度に関しては、「溶接中」というおおざっぱな高温状態と、常温の2種類しか検討がなく、それがこの超音波衝撃処理の可能性を狭めていた状況であるといえる。
【0010】
その結果、現在の金属製品の疲労や腐食に関する状況は以下のような課題を抱えているといえる。
1)金属材料を溶接した場合、鋼材で作り込んだ特性が溶接部で損なわれること
が多く、そのような場合には溶接部を塗装などの手段で補完している。
2)溶接凝固時に超音波を使用して残留応力を低減させる場合、疲労強度向上効
果が限定的であり、しかも止端形状の改善効果は見られない。
3)超音波衝撃処理で疲労強度向上効果はあるも、高強度鋼の方が残留応力改善効果の面では有利であるに係わらず、止端形状の改善効果に関しては高強度鋼の方が塑性変形しにくく、処理効率が低下すること、また深さ方向の処理
層厚の影響度が低下する傾向にある。
4)航空機等では疲労の発生する部分を炉に挿入し、加熱して集積した転移を回復する技術が実施されているが、橋梁等の大型構造物ではそのような技術の
適用が非現実的である。
【0011】
このように、大気中で構造物のサイズ、希望する疲労強度、高強度の部位に係わらず、対象となる金属材料の改質目標と処理温度域を含めた処理条件との組み合わせについては何ら解明されていないのが現状である。
【0012】
【非特許文献1】
Journal of Material Science Technology. Vol.15, No.3,1999
【非特許文献2】
Institute of Solid-State Physics, Academy of Science of
the USSR. No.7, pp.14-16, July, 1988
【非特許文献3】
日本機械学会論文集(C編)67巻 657号 (2001-5)
【特許文献1】
特開平9−234585号公報
【特許文献2】
特開平10−296461号公報
【特許文献3】
米国特許第6338765号公報
【特許文献4】
米国特許出願公開第2002/001400号明細書
【0013】
【発明が解決しようとする課題】
本発明は、金属材料表層部を超音波衝撃処理するに際し、対象となる金属材料の目標とする改質程度に従って処理温度域を含めた処理条件を決定する超音波衝撃処理条件の設定方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明は、上記課題を解決するためになされたもので、その要旨は以下の通りである。
【0015】
(1)処理対象とする金属材料において、必要とする超音波衝撃処理による効果として、疲労強度改善、表面改質、溶接割れ改善の何れか、または複数の効果を選択し、次いで、
(i-1) 疲労強度改善を目的とする場合は、超音波衝撃処理温度を850℃以上又は780℃以下に決定し、
(i-2) 表面改質を目的とする場合は、超音波衝撃処理温度を780℃以下に決定し、
(i-3) 溶接割れ改善を目的とする場合は、超音波衝撃処理温度を780〜850℃に決定し、その後、
(ii) 振幅20〜60μm、周波数15kHz〜60kHz、出力0.2〜1kWの超音波ハンマリング衝撃加工、又は、超音波ショットピーニング衝撃加工による超音波衝撃処理の条件設定を行い、最終的にそれらの処理の効率的な組み合わせを決定する
ことを特徴とする金属材料の超音波衝撃処理条件の設定方法。
【0016】
(2)前記超音波衝撃処理による多パス溶接部の処理において、670〜750℃の温度域で超音波衝撃処理した後、常温で、再度、超音波衝撃処理することを特徴とする(1)記載の金属材料の超音波衝撃処理条件の設定方法。
【0017】
(3)前記超音波衝撃処理において、補修溶接で、1パス目のビードに対しては850℃以上の温度域で超音波衝撃処理し、その後の積層溶接では、400〜650℃の温度域で超音波衝撃処理することを特徴とする(1)記載の金属材料の超音波衝撃処理条件の設定方法。
【0021】
【発明の実施の形態・実施例】
先ず、本発明における超音波衝撃処理について説明する。
【0022】
この超音波衝撃処理は、下記(a)〜(d)を可能にすると共に、広範囲の面積を効率的に処理できるようにしたものである。
(a)超音波衝撃処理を多軸的に施すことによってナノ結晶化を促進する、即ち、一軸方向の処理ではナノ結晶構造を得ることは困難であり、多軸方向からの強処理が必要である。
(b)金属材料表面の温度制御を可能とする構造とすることにより、超音波衝撃処理で得られる表層の諸特性を選択できるようにすること、即ち、高温での処理では変形は大きいが残留応力が小さく、逆に低温での処理では変形は小さいが残留応力が大きく付与され、依って、ナノ結晶化の度合い、ナノ結晶組織周辺の組織の状況が変化するので、要求される特性に応じて処理条件を選択することができる。
(c)少なくとも処理表面の雰囲気を制御可能な構造とし、酸化物層の形成を抑制し、良好な金属表面状態とすると共に、更には合金層の形成を可能とすること、即ち、処理表面の雰囲気が酸化雰囲気であると材料表面で生成した酸化物が表層部に巻き込まれ、表面欠陥となるばかりか、耐食性を損なうことになる。雰囲気制御を可能とすることにより、このような表面材質の低下を回避できるばかりでなく、雰囲気を、例えば窒素雰囲気という特定の雰囲気とすることによって表層に窒素を浸透させて特性の改善を図ることもできる。
(d)処理対象となる金属材料に対して合金成分を供給可能な構造とし、表層に合金層を形成可能とすること、即ち、超音波衝撃処理と同時に処理すべき箇所に金属成分の粉末を供給する、即ち、ピン自体を特定の金属材料とすることによって衝撃を与えると同時に金属粉末或いはピンの小片を処理対象材料表面に供給し、表層を所望の合金層とすることができる。これにより、金属材料表面に新しい機能を付与することもできる。
【0023】
また、上記超音波衝撃処理は、一般的に微細化現象としては、金属材料表層部では処理厚みとして10〜200μm、塑性変形/成形深さ方向範囲が1〜5mm、圧縮残留応力を1〜3mm程度まで導入するとすると云われている。本発明者らは、これらの現象が何れも処理温度と密接に関係していることを研究の結果知見した。すなわち、処理温度域で得られる現象および効果がそれぞれ異なることから目標とする金属材料の改質のレベルに合わせて処理条件を設定することが上記超音波衝撃処理で直接的に得られる効果を十分に発揮することができるのである。その処理温度域と得られる現象および効果を、特に最も一般的に使われている金属材料の一つである鋼材について以下に述べる。
▲1▼γ再結晶領域(約850℃以上)
金属材料表層部の微細化効果は少ないが、コア部では再結晶微細化による微細フェライト粒生成し高靱化し、また、塑性変形/成形面では凝固過程での
流動化による残留引張応力が低減し疲労強度が向上する。
▲2▼γ未再結晶領域(約780℃〜850℃)
金属材料コア部では再結晶微細化による微細フェライト粒生成し高靱化し、また、塑性変形/成形面では、特に溶接金属凝固割れ、降温割れを防止でき
る。
▲3▼α・γ2相域(約650℃〜780℃)
金属材料表層部の多軸処理により結晶粒を微細化(ナノ化)し、同時にコア部では再結晶微細化による微細フェライト粒生成し高靱化することができる。また、塑性変形/成形面では、溶接止端部の効率的な成形が行えることで疲労強度を向上することができる。更に、高強度鋼を加工した場合には低温
時の軟鋼並の塑性変形/成形を付与することができる。
▲4▼A1 点以下の温度域(約400℃〜650℃)
金属材料表層部の多軸処理により結晶粒を微細化(ナノ化)し、同時に変態温度低下に伴う逆変態挙動を利用した組織の微細化を行うことができる。また、塑性変形/成形面では、溶接止端部の効率的な成形が行えることで疲労強度を向上することができる。更に、溶接面においては、溶接多パス時の残
留応力、冷却割れに伴う圧縮残留応力を低減することができる。
▲5▼強度発現域(400℃以下)
金属材料表層部の多軸処理により結晶粒を微細化(ナノ化)し、同時に変態温度低下に伴う逆変態挙動を利用した組織の微細化を行うことができる。ま
た、塑性変形することで疲労強度向上、圧縮残留応力低減を期待できる。
【0024】
このように、本発明においては、対象とする金属材料において、必要とする超音波衝撃処理による効果、例えば、疲労強度改善、表面改質、溶接割れ改善の各効果で処理温度を決定し、超音波衝撃処理の条件設定を行うことを特徴とするものである。もちろん、鋼材以外の金属材料でも同様に、成分組成から得られる状態図、温度−強度関係などを活用して、合理的に上記のような整理が容易に出来る。これらの基礎データは教科書レベルのものを含む文献で容易に収集可能なものであり、それを本発明の方法で活用し、様々な金属材料への展開が可能である。この具体的な条件設定の手順を図1を用いて説明する。
【0025】
図1において、超音波衝撃処理(加工)を行う金属材料対象物を決定した後、その対象物についてどのような改善効果を付与すべきであるかを、疲労強度改善、表面改質および溶接割れ改善の中から選択する。そして、例えば、疲労強度改善が主目的であれば、バージン材の疲労強度付与か、既設材の疲労強度回復の何れかをにより、バージン材の場合には高強度材で溶接止端処理が非効率であるかを判断し、金属強度の温度依存性から処理温度を決定する。一方、既設材の場合には金属材料の状態図から回復に適切な処理温度を決定る。次いで、両者のケースについて処理温度−処理パターン関係から超音波衝撃処理条件を決定し、加熱下または常温下での処理を判断して超音波衝撃処理を行うという作業フローが設計できる。
【0026】
また、例えば、表面改質が主目的である場合には、目標とする金属材料の表面状態から合金化が必要か、必要であれば供給すべき合金成分を決定し、次いで、目標とする合金の状態図から処理温度を決定後、処理温度−処理パターン関係から超音波衝撃処理条件を決定し、加熱下または常温下での加工を判断して超音波衝撃処理を行うという作業フローが設計できる。
【0027】
更に、例えば、溶接割れ改善が主目的である場合には、対象金属材料に対する溶接条件および金属の状態図から処理温度を選定後、処理温度−処理パターン関係から超音波衝撃処理条件を決定し、加熱下または常温下での加工を判断して超音波衝撃処理を行うという作業フローが設計できる。
【0028】
なお、加熱下における超音波衝撃処理において、それが溶接、熱源、温度センサー、金属成分の供給、シールドガス等の課題を当然考慮する問題であることは勿論である。また、上記超音波衝撃処理は温度域毎に複数回処理することで累加した効果が得られることは勿論であるので、上記作業フローに従って複数回同一加工或いは異なる加工を適宜組み合わせて超音波衝撃処理しうることは当然である。この超音波衝撃処理の一例として、例えば、多パス溶接部の処理で670℃〜750℃の温度域で超音波衝撃処理後、常温で再度超音波衝撃処理することで高靱性と高疲労強度の両特性を兼備した金属材料を得ることができる。また、既設の使用中の橋脚の補修溶接で、1パス目のビードに対しては850℃以上の温度域で超音波衝撃処理することで応力変動による高温割れを防止し、その後の積層溶接では400℃〜650℃の温度域で超音波衝撃処理することによりラメラーティアを防止し、最後に溶接完了後の止端部を常温で超音波衝撃処理することで高疲労強度を付与することができる。更に、使用中、または使用後の鋼材の表面を上述した任意の温度域で超音波衝撃処理して表層部組織をナノ組織化すると共に、合金の補完が必要な場合には超音波衝撃処理で外部から合金を供給して必要な特性を付与して再生化を図ることができる。
【0029】
次に、本発明で使用する超音波衝撃加工機を図面を参照しながら説明する。
【0030】
図2(a)は、超音波ハンマリング衝撃加工に用いる機器の概要を示し、(b)は、(a)の先端部のみを超音波ショットピーニング衝撃加工用に変えた機器の概要を示す部分拡大図である。図2(a)において、超音波ハンマリング衝撃加工機1は、超音波を発信するトランスデューサー2と、その前方に取り付けられ、トランスデューサー2で発生した超音波を先端部に導く筒状のウエーブガイド3と、このウエーブガイド3の先端、即ち、処理対象物と対向する側、に取り付けられたヘッド4とから構成される。ヘッド4は、その先端に1つまたは複数の孔5が設けられ、この孔5の上下方向に挿入された棒状のピン6と、、ピン6の上端とウエーブガイド3の先端との間に設けられた空間8とを含んで収納するホルダー9とからなり、ホルダー9は環状の金具10により、ウエーブガイド3の外周に着脱可能に接続されており、ピン6を含めて交換可能なように構成されている。必要に応じて、ピンの径、本数、配列、材質、形状などを、交換することができる。
【0031】
なお、上記ウエーブガイド3の中間部には、その外周を間隙を設けて囲む樹脂製のカバー11を設け、この間隙にはウエーブガイドおよび振動部を有するヘッドを冷却、潤滑する潤滑剤を保持するための多孔体12を充填することができる。その場合、カバー11の下端部とウエーブガイド3との間には、開口部13が設けられており、潤滑冷却剤はこの開口部13を経てヘッド4に供給される。しかし、これは必須ではない。また、トランスデューサー2を冷却するために、水冷や空冷の装置を設ける場合もある。
【0032】
トランスデューサー2は、電気エネルギーを超音波エネルギーに変換するもので、磁気式或いは電気式トランスデューサー等が利用できる。前者は大容量化が可能で広範囲の音響負荷に対して高い安定度で作動するが、反面、重く、冷却が必要である。後者は容量は小さいが高効率で発熱も少なく冷却を軽減でき、また可搬性に優れる。しかし、逆に音響付加に対しての安定度は低い。従って、処理条件や目的により磁気式或いは電気式トランスデューサーを任意に選択すればよい。
【0033】
ヘッド4に収納されたピン6の数は、1本でも良いが、複数本を一列或いは複数列に配列することにより処理効率、処理面積を倍加することができる。また、このピン6は軸方向の1方向に振動させるのが一般的であるが、ピン6自体が処理領域内で回転或いは任意の方向に移動してもよい。例えば、ピン6自体を回転させようとする場合には、各ピンの根元にギアを取り付け、外部に設けたモーターの回転駆動力でギアを介して、100回転/秒回転させること、また、ホルダー9内の各ピンに電磁コイルを捲回し電磁力で回転させることも可能である。
【0034】
トランスデューサー2が超音波を発信すると、生じた超音波はこれに接続されたウエーブガイド3に伝達され、ウエーブガイド3の径が絞られていることによって速度が変性される。超音波はウエーブガイド3の先端からヘッド4に至り、これと接しているピン6を振動させる。この振動によりピン6の先端が処理対象物14の表面を打撃することによって衝撃加工される。処理条件としては、振幅20〜60μm、周波数15kHz〜60kHz、出力0.2〜1kWが好ましい。
【0035】
一方、超音波ショットピーニング衝撃加工に用いる機器の概要であるが、その構成は図2(b)の部分拡大図に示すように、図2(a)に示した超音波ハンマリング衝撃加工機におけるピン6の代わりに、鋼製のボール、カットワイヤ等の硬質小径鋼材、或いはサファイヤ等の小粒子15をウエーブガイド3の先端から発せられた超音波はによりヘッド4内に収納された板8を振動させ、これと接している硬質小径鋼材15を振動させ、処理対象物14の表面を打撃することによって衝撃加工される。また、処理条件は上述した超音波ハンマリング衝撃加工機を使用する場合と同条件でよい。なお、ショットピーニングの小粒子の材質は、本発明では重量約7mgのサファイヤ球を用いたが、その他に上述した鋼球、超鋼球、セラミクッス、アルミナ(Al2O3) 、ジルコニア(ZrO2)、窒化珪素(Si3N4)、SiC、SiO2 、サイアロン等も使用できる。使用するショットピーニングの種類は処理対象材料の種類、硬度、超音波発振パワーを適宜選択して使用することが好ましい。また、超音波振動板の径、面積も小粒子と処理対象材料との関係で変化させることもより好ましい。
【0036】
【発明の効果】
本発明は、対象金属材料に付与したい改善効果(疲労強度改善、表面改質、溶接割れ改善)の中から要求する効果に応じて超音波衝撃処理の温度域を選択し、超音波衝撃処理を行い目的とする効果を得ることができ、また、この処理を複数回任意に組み合わせて複合した効果を得ることができ、更に、使用中、または使用後の鋼材の表面状態をナノ組織として新たな特性を付与できるという効果がある。
【0037】
また、処理対象となる金属材料のサイズが大きく通常の処理炉で処理できないような大型サイズの構造物で疲労強度が懸念される応力集中部の表面を定期的に繰り返し補修・処理することで鋼材の表面状態をナノ組織として特性回復効果を付与することもできる。更に、この疲労特性回復効果は、溶接止端部の変形を最小に抑え、主に材料表層部組織をナノ化することで表層部での転移を解消して得ることができる。
【図面の簡単な説明】
【図1】本発明による超音波衝撃処理条件の設定方法のフローを示す図である。
【図2】超音波衝撃加工機の例を示すもので、(a)は本発明に用いる超音波ハンマリング衝撃加工機の概略構成図、(b)は本発明に用いる超音波ショットピーニング衝撃加工機の先端部の拡大図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for setting ultrasonic shock treatment conditions for determining a treatment condition, in particular, a treatment temperature range and a combination thereof, according to a target modification degree of a target metal material when performing ultrasonic shock treatment on a metal material surface layer portion. It is about.
[0002]
[Prior art]
The durability of metal products is often defined by fatigue and corrosion. Various approaches have been taken to improve these.
[0003]
In order to improve fatigue, it has been practiced to improve the toe shape by grinding and various types of peening to reduce stress concentration and to apply compressive residual stress. In addition, as for corrosion, those using coatings such as coating, those using non-conductive coatings such as stainless steel, and those that make protective rust such as weather-resistant steel to keep the amount of corrosion small have become practical.
[0004]
Thus, in order to improve the durability of metal products, it can be said that there are currently two methods, that is, a method of post-processing after production and a method of improving the material itself.
[0005]
Among these, in terms of material improvement, recently, according to Non-Patent Document 1, the crystal structure of the surface layer of the metal material is reduced to an appropriate size, for example, 100 nm or less, in units of nanometers (nm, 10 −9 m). It is known that by obtaining a so-called nanocrystal structure that is refined, it is possible to obtain excellent properties that have not been obtained in the past, such as properties such as ultra-high strength.
[0006]
In order to obtain a metal material having this nanocrystalline structure, the metal material is once brought into an amorphous state and then subjected to low-temperature heat treatment. In order to obtain an amorphous state, there is a method such as rapid cooling of a metal material or sputtering film formation, but in this case, there are various manufacturing restrictions in order to obtain a molded body or structure having a general shape. . In addition to this, the metal material powder is processed with a ball mill or the like, the metal material surface is subjected to strong processing to make the metal material amorphous, and then heat-treated to obtain a metal powder having a nanocrystal structure. Obtainable. The metal powder can be pressed at a high temperature, or further subjected to a treatment such as welding to form a structure.
However, since the nanocrystalline structure grows and disappears through the above-described high-temperature heat treatment process, it is difficult to obtain a molded body and a structural body that take advantage of the characteristics of the nanocrystalline structure.
[0007]
On the other hand, in the technique belonging to the post-treatment among the methods for improving the durability, it is known that the surface of the metal material is subjected to ultrasonic impact treatment to give plastic deformation to the surface, or release the residual stress, For example, a method of applying ultrasonic shock treatment to a welded portion of a metal material, releasing residual stress in the welded portion, reducing minute defects such as voids and abnormal grain boundaries, a method of improving fatigue performance, for example, non-patent It is proposed in Document 3, Patent Document 1, Patent Document 2, and Patent Document 3. Moreover, as a device for performing the ultrasonic shock treatment, a head that houses a transducer that generates ultrasonic waves, a wave guide that guides ultrasonic waves to the tip, and an impact pin that is provided at the tip and vibrates by the ultrasonic waves An ultrasonic shock treatment machine equipped with is known from Patent Document 4. However, this method is also known to improve the surface crystal structure as seen in Non-Patent Document 1 and Non-Patent Document 2 at the same time. In other words, it can be said that this technology has the characteristics of material improvement as well as post-processing.
[0008]
However, conventional ultrasonic impact treatment is mainly used to improve fatigue strength, reduce micro defects, etc. Even if the material properties and surface modification of the metal material surface layer are improved, it is a by-product of its range and extent. This has occurred in situations where there is a great deal of variation, and it has not yet been improved by proactively controlling according to the purpose.
[0009]
The study of the effects using the various ultrasonic waves described above has been done individually for each effect independently, and despite using almost the same equipment, The necessary conditions and effects for these treatments are handled by a unified design concept, and the effects necessary for the metal workpiece to be treated cannot be obtained appropriately and selectively. In particular, regarding the temperature among the conditions, there are only two types of examinations, a rough high temperature state of “being welded” and a normal temperature, which can be said to have narrowed the possibility of this ultrasonic impact treatment.
[0010]
As a result, it can be said that the current situation regarding fatigue and corrosion of metal products has the following problems.
1) When a metal material is welded, the characteristics made of steel are often impaired in the welded portion. In such a case, the welded portion is supplemented by means such as painting.
2) When residual stress is reduced by using ultrasonic waves during welding solidification, the effect of improving fatigue strength is limited, and the effect of improving the toe shape is not seen.
3) Although there is an effect of improving fatigue strength by ultrasonic impact treatment, high-strength steel is more plastic in terms of improvement of toe shape, although high-strength steel is more advantageous in terms of residual stress improvement effect. Deformation is difficult, the processing efficiency is lowered, and the influence of the depth of the treatment layer tends to be lowered.
4) In aircraft, etc., a technique for inserting fatigue-induced parts into a furnace and heating them to recover the accumulated transition has been implemented, but it is impractical to apply such techniques for large structures such as bridges. It is.
[0011]
In this way, no matter what the combination of the modification target of the target metal material and the processing conditions including the processing temperature range, regardless of the size of the structure, the desired fatigue strength, and the high strength part in the atmosphere The current situation is not.
[0012]
[Non-Patent Document 1]
Journal of Material Science Technology. Vol.15, No.3,1999
[Non-Patent Document 2]
Institute of Solid-State Physics, Academy of Science of
the USSR.No.7, pp.14-16, July, 1988
[Non-Patent Document 3]
Transactions of the Japan Society of Mechanical Engineers (C) Vol.67, No.657 (2001-5)
[Patent Document 1]
JP-A-9-234585 [Patent Document 2]
Japanese Patent Laid-Open No. 10-296461 [Patent Document 3]
US Pat. No. 6,338,765 [Patent Document 4]
US Patent Application Publication No. 2002/001400 Specification
[Problems to be solved by the invention]
The present invention provides an ultrasonic impact treatment condition setting method for determining a treatment condition including a treatment temperature range according to a target modification degree of a target metal material when performing ultrasonic impact treatment on a metal material surface layer portion. The purpose is to do.
[0014]
[Means for Solving the Problems]
The present invention has been made to solve the above problems, and the gist thereof is as follows.
[0015]
(1) In the metal material to be treated, as an effect by the necessary ultrasonic impact treatment, any one of fatigue strength improvement, surface modification, weld crack improvement or a plurality of effects is selected, and then
(i-1) For the purpose of improving fatigue strength, the ultrasonic shock treatment temperature is determined to be 850 ° C. or higher or 780 ° C. or lower,
(i-2) For the purpose of surface modification, the ultrasonic shock treatment temperature is determined to be 780 ° C. or lower,
(i-3) If it is intended to weld cracking improvement determines the ultrasonic impact treatment temperature 780-850 ° C., after that,
(ii) Set conditions of ultrasonic impact treatment by ultrasonic hammering impact processing or ultrasonic shot peening impact processing with an amplitude of 20 to 60 μm, a frequency of 15 kHz to 60 kHz, and an output of 0.2 to 1 kW . A method for setting ultrasonic shock treatment conditions for a metal material, wherein an effective combination of the treatments is determined.
[0016]
(2) In the multipass weld process by the ultrasonic impact treatment, the ultrasonic impact treatment is performed again at room temperature after performing the ultrasonic impact treatment in a temperature range of 670 to 750 ° C. (1) A method for setting ultrasonic shock treatment conditions for the metal material described.
[0017]
(3) In the ultrasonic impact treatment, in the repair welding, the first pass bead is subjected to ultrasonic impact treatment in a temperature range of 850 ° C. or higher, and in the subsequent laminated welding, in the temperature range of 400 to 650 ° C. The method for setting ultrasonic shock treatment conditions for a metal material according to (1), wherein ultrasonic shock treatment is performed.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
First, the ultrasonic impact treatment in the present invention will be described.
[0022]
This ultrasonic impact treatment enables the following (a) to (d) and efficiently treats a wide area.
(A) Nano-crystallization is promoted by applying multi-axial ultrasonic impact treatment, that is, it is difficult to obtain a nanocrystal structure by uniaxial treatment, and strong treatment from multiaxial directions is necessary. is there.
(B) By making the structure capable of controlling the temperature of the surface of the metal material, various characteristics of the surface layer obtained by the ultrasonic impact treatment can be selected, that is, the deformation remains large in the treatment at a high temperature. Low stress, on the other hand, low temperature treatment gives small deformation but large residual stress. Therefore, the degree of nanocrystallization and the condition of the structure around the nanocrystal structure change. Process conditions can be selected.
(C) At least the atmosphere on the treated surface can be controlled to suppress the formation of an oxide layer, to provide a good metal surface state, and further to allow the formation of an alloy layer. If the atmosphere is an oxidizing atmosphere, the oxide generated on the surface of the material is entangled in the surface layer portion, resulting in surface defects, and corrosion resistance is impaired. By making the atmosphere control possible, it is possible not only to avoid such deterioration of the surface material, but also to improve the characteristics by infiltrating nitrogen into the surface layer by making the atmosphere a specific atmosphere such as a nitrogen atmosphere, for example. You can also.
(D) A structure in which an alloy component can be supplied to a metal material to be processed, and an alloy layer can be formed on the surface layer, that is, a metal component powder is to be processed at the same time as the ultrasonic impact treatment. Supplying, that is, applying impact by making the pin itself a specific metal material, and simultaneously supplying metal powder or a small piece of the pin to the surface of the material to be treated, makes the surface layer a desired alloy layer. Thereby, a new function can also be given to the metal material surface.
[0023]
In addition, the ultrasonic impact treatment is generally performed as a fine phenomenon as follows. The metal material surface layer has a treatment thickness of 10 to 200 μm, a plastic deformation / forming depth direction range of 1 to 5 mm, and a compressive residual stress of 1 to 3 mm. It is said that it will be introduced to the extent. As a result of research, the present inventors have found that these phenomena are closely related to the processing temperature. In other words, since the phenomena and effects obtained in the processing temperature range are different, setting the processing conditions according to the target level of modification of the metal material is sufficient to obtain the effects directly obtained by the ultrasonic impact treatment. It can be demonstrated to. The processing temperature range and the phenomena and effects obtained are described below for steel, which is one of the most commonly used metal materials.
(1) γ recrystallization region (above about 850 ° C)
Although the effect of refining the metal material surface layer is small, fine ferrite grains are generated by recrystallization refinement in the core part to increase the toughness, and on the plastic deformation / molding surface, residual tensile stress due to fluidization during the solidification process is reduced. Fatigue strength is improved.
(2) γ non-recrystallized region (about 780 ° C to 850 ° C)
In the metal material core portion, fine ferrite grains are generated by recrystallization refinement to increase the toughness, and on the plastic deformation / molding surface, in particular, weld metal solidification cracking and cooling cracking can be prevented.
(3) α / γ2 phase range (approximately 650 ° C to 780 ° C)
Crystal grains can be refined (nano-ized) by multiaxial treatment of the surface portion of the metal material, and at the same time, fine ferrite grains can be generated by recrystallization refinement in the core portion to increase the toughness. Further, on the plastic deformation / molding surface, the fatigue strength can be improved by efficiently forming the weld toe. Furthermore, when high-strength steel is processed, plastic deformation / forming similar to mild steel at low temperatures can be imparted.
(4) A Temperature range of 1 point or less (about 400 ° C to 650 ° C)
The crystal grains can be refined (nanoed) by multiaxial treatment of the surface layer of the metal material, and at the same time, the microstructure can be refined by utilizing the reverse transformation behavior accompanying the transformation temperature decrease. Further, on the plastic deformation / molding surface, the fatigue strength can be improved by efficiently forming the weld toe. Furthermore, on the welding surface, the residual stress during multi-pass welding and the compressive residual stress accompanying cooling cracks can be reduced.
(5) Strength development range (400 ° C or less)
The crystal grains can be refined (nanoed) by multiaxial treatment of the surface layer of the metal material, and at the same time, the microstructure can be refined by utilizing the reverse transformation behavior accompanying the transformation temperature decrease. In addition, it can be expected to improve fatigue strength and reduce compressive residual stress by plastic deformation.
[0024]
As described above, in the present invention, in the target metal material, the treatment temperature is determined by the effects of the necessary ultrasonic impact treatment, for example, fatigue strength improvement, surface modification, and weld crack improvement, The condition of the sonic impact treatment is set. Of course, in the case of metal materials other than steel, the above arrangement can be made reasonably easily by utilizing the phase diagram obtained from the component composition and the temperature-strength relationship. These basic data can be easily collected in literature including textbook level data, and can be used in the method of the present invention to be developed into various metal materials. This specific condition setting procedure will be described with reference to FIG.
[0025]
In FIG. 1, after determining a metallic material object to be subjected to ultrasonic impact treatment (processing), what improvement effect should be imparted to the object, fatigue strength improvement, surface modification and weld cracking are shown. Choose from improvements. And, for example, if the main purpose is to improve fatigue strength, either the imparting fatigue strength of the virgin material or the recovery of the fatigue strength of the existing material. It is judged whether it is efficient, and the processing temperature is determined from the temperature dependence of the metal strength. On the other hand, in the case of existing materials, a processing temperature appropriate for recovery is determined from the state diagram of the metal material. Next, it is possible to design a work flow in which ultrasonic shock treatment conditions are determined from the treatment temperature-treatment pattern relationship for both cases, and the ultrasonic shock treatment is performed by judging the treatment under heating or at room temperature.
[0026]
Also, for example, when surface modification is the main purpose, it is necessary to determine whether alloying is necessary from the surface state of the target metal material, or if necessary, the alloy components to be supplied, and then the target alloy After determining the processing temperature from the state diagram, the ultrasonic shock processing conditions are determined from the processing temperature-processing pattern relationship, and the work flow of performing ultrasonic impact processing by judging processing under heating or at room temperature can be designed. .
[0027]
Furthermore, for example, when the main purpose is to improve weld cracking, after selecting the processing temperature from the welding conditions for the target metal material and the metal phase diagram, determine the ultrasonic impact processing conditions from the processing temperature-processing pattern relationship, It is possible to design a work flow in which ultrasonic shock treatment is performed by judging processing under heating or at room temperature.
[0028]
Needless to say, in the ultrasonic impact treatment under heating, it is a matter of course that considers issues such as welding, heat source, temperature sensor, supply of metal components, shield gas, and the like. In addition, since the ultrasonic impact treatment has a cumulative effect obtained by performing the treatment multiple times for each temperature range, the ultrasonic impact treatment is performed by appropriately combining the same processing or different processing multiple times according to the work flow. Of course, it can be done. As an example of this ultrasonic impact treatment, for example, high-toughness and high fatigue strength can be obtained by performing an ultrasonic impact treatment at a temperature range of 670 ° C. to 750 ° C. in the treatment of a multi-pass weld, and then performing an ultrasonic impact treatment again at room temperature. A metal material having both characteristics can be obtained. In addition, in the repair welding of existing piers in use, the first pass bead is subjected to ultrasonic impact treatment in the temperature range of 850 ° C. or higher to prevent high temperature cracking due to stress fluctuations, The lamellar tear can be prevented by ultrasonic shock treatment in the temperature range of 400 ° C. to 650 ° C., and finally high fatigue strength can be imparted by ultrasonic shock treatment of the toe after completion of welding at room temperature. . Furthermore, the surface of the steel material in use or after use is subjected to ultrasonic impact treatment in the above-mentioned arbitrary temperature range to form the surface layer structure into a nano structure, and when it is necessary to supplement the alloy, ultrasonic impact treatment is performed. An alloy can be supplied from the outside to give the necessary characteristics and regenerate.
[0029]
Next, an ultrasonic impact machine used in the present invention will be described with reference to the drawings.
[0030]
FIG. 2A shows an outline of an apparatus used for ultrasonic hammering impact processing, and FIG. 2B shows an outline of an apparatus in which only the tip of FIG. 2A is changed for ultrasonic shot peening impact processing. It is an enlarged view. In FIG. 2A, an ultrasonic hammering impact machine 1 includes a transducer 2 that transmits ultrasonic waves, and a cylindrical wave that is attached to the front of the ultrasonic wave and guides ultrasonic waves generated by the transducers 2 to the tip. It comprises a guide 3 and a head 4 attached to the tip of the wave guide 3, that is, the side facing the object to be processed. The head 4 is provided with one or a plurality of holes 5 at the tip thereof, and is provided between the rod-like pin 6 inserted in the vertical direction of the hole 5 and between the upper end of the pin 6 and the tip of the wave guide 3. The holder 9 includes a space 8 that is housed and accommodated. The holder 9 is detachably connected to the outer periphery of the wave guide 3 by an annular metal fitting 10 and is configured to be exchangeable including the pin 6. Has been. If necessary, the diameter, number, arrangement, material, shape, etc. of the pins can be exchanged.
[0031]
A resin cover 11 surrounding the outer periphery of the wave guide 3 with a gap is provided in the middle portion of the wave guide 3, and a lubricant that cools and lubricates the head having the wave guide and the vibrating portion is held in the gap. Therefore, the porous body 12 can be filled. In that case, an opening 13 is provided between the lower end of the cover 11 and the wave guide 3, and the lubricant coolant is supplied to the head 4 through the opening 13. However, this is not essential. Moreover, in order to cool the transducer 2, a water cooling or air cooling device may be provided.
[0032]
The transducer 2 converts electrical energy into ultrasonic energy, and a magnetic or electrical transducer can be used. The former can be increased in capacity and operates with high stability over a wide range of acoustic loads, but it is heavy and requires cooling. The latter has a small capacity but high efficiency, little heat generation, can reduce cooling, and is excellent in portability. However, the stability against the addition of sound is low. Therefore, a magnetic or electrical transducer may be arbitrarily selected depending on processing conditions and purposes.
[0033]
The number of pins 6 accommodated in the head 4 may be one, but the processing efficiency and the processing area can be doubled by arranging a plurality of pins in a single row or a plurality of rows. The pin 6 is generally vibrated in one axial direction, but the pin 6 itself may rotate or move in any direction within the processing region. For example, when the pin 6 itself is to be rotated, a gear is attached to the base of each pin, and the motor is provided with a rotational driving force of an external motor, and is rotated 100 revolutions / second via the gear. It is also possible to wind an electromagnetic coil on each pin in 9 and rotate it by electromagnetic force.
[0034]
When the transducer 2 transmits an ultrasonic wave, the generated ultrasonic wave is transmitted to the wave guide 3 connected thereto, and the speed of the wave guide 3 is reduced by reducing the diameter of the wave guide 3. The ultrasonic wave reaches the head 4 from the tip of the wave guide 3 and vibrates the pin 6 in contact therewith. Due to this vibration, the tip of the pin 6 strikes the surface of the object 14 to be impacted. As processing conditions, an amplitude of 20 to 60 μm, a frequency of 15 kHz to 60 kHz, and an output of 0.2 to 1 kW are preferable.
[0035]
On the other hand, although it is the outline | summary of the apparatus used for ultrasonic shot peening impact processing, as the structure is shown in the elements on larger scale of FIG.2 (b), in the ultrasonic hammering impact processing machine shown to Fig.2 (a). Instead of the pins 6, ultrasonic waves emitted from the tip of the wave guide 3 by using a small particle 15 such as a steel ball, a hard small diameter steel material such as a cut wire, or sapphire, the plate 8 accommodated in the head 4 is used. The hard small diameter steel material 15 in contact with this is vibrated, and the impact processing is performed by hitting the surface of the processing object 14. Further, the processing conditions may be the same as those in the case of using the ultrasonic hammering impact machine described above. In the present invention, sapphire balls having a weight of about 7 mg were used as the material for the small particles of shot peening. In addition, the above-described steel balls, super steel balls, ceramics, alumina (Al 2 O 3 ), zirconia (ZrO 2 ) were used. ), Silicon nitride (Si 3 N 4 ), SiC, SiO 2 , sialon and the like can also be used. It is preferable that the type of shot peening used is appropriately selected from the type of material to be treated, hardness, and ultrasonic oscillation power. It is more preferable to change the diameter and area of the ultrasonic diaphragm depending on the relationship between the small particles and the material to be processed.
[0036]
【The invention's effect】
In the present invention, the temperature range of the ultrasonic impact treatment is selected according to the required effect from the improvement effects (fatigue strength improvement, surface modification, weld crack improvement) to be imparted to the target metal material, and the ultrasonic impact treatment is performed. The target effect can be obtained, and a combined effect can be obtained by arbitrarily combining this treatment multiple times. Further, the surface state of the steel material during or after use can be renewed as a nanostructure. There is an effect that characteristics can be imparted.
[0037]
In addition, steel materials are manufactured by periodically repairing and treating the surface of stress-concentrated parts where fatigue strength is a concern in large-sized structures that cannot be processed in a normal processing furnace because the size of the metal material to be processed is large. It is also possible to impart a property recovery effect with the surface state of the nanostructure. Further, this fatigue property recovery effect can be obtained by minimizing the deformation of the weld toe and mainly eliminating the transition at the surface layer portion by making the material surface layer structure nanostructured.
[Brief description of the drawings]
FIG. 1 is a diagram showing a flow of an ultrasonic impact treatment condition setting method according to the present invention.
2A and 2B show an example of an ultrasonic impact processing machine, in which FIG. 2A is a schematic configuration diagram of an ultrasonic hammering impact processing machine used in the present invention, and FIG. 2B is an ultrasonic shot peening impact processing used in the present invention; It is an enlarged view of the front-end | tip part of a machine.

Claims (3)

処理対象とする金属材料において、必要とする超音波衝撃処理による効果として、疲労強度改善、表面改質、溶接割れ改善の何れか、または複数の効果を選択し、次いで、
(i-1) 疲労強度改善を目的とする場合は、超音波衝撃処理温度を850℃以上又は780℃以下に決定し、
(i-2) 表面改質を目的とする場合は、超音波衝撃処理温度を780℃以下に決定し、
(i-3) 溶接割れ改善を目的とする場合は、超音波衝撃処理温度を780〜850℃に決定し、その後、
(ii) 振幅20〜60μm、周波数15kHz〜60kHz、出力0.2〜1kWの超音波ハンマリング衝撃加工、又は、超音波ショットピーニング衝撃加工による超音波衝撃処理の条件設定を行い、最終的にそれらの処理の効率的な組み合わせを決定する
ことを特徴とする金属材料の超音波衝撃処理条件の設定方法。
In the metal material to be processed, as an effect by the necessary ultrasonic impact treatment, any one of fatigue strength improvement, surface modification, weld crack improvement or a plurality of effects is selected, and then,
(i-1) For the purpose of improving fatigue strength, the ultrasonic shock treatment temperature is determined to be 850 ° C. or higher or 780 ° C. or lower,
(i-2) For the purpose of surface modification, the ultrasonic shock treatment temperature is determined to be 780 ° C. or lower,
(i-3) If it is intended to weld cracking improvement determines the ultrasonic impact treatment temperature 780-850 ° C., after that,
(ii) Set conditions of ultrasonic impact treatment by ultrasonic hammering impact processing or ultrasonic shot peening impact processing with an amplitude of 20 to 60 μm, a frequency of 15 kHz to 60 kHz, and an output of 0.2 to 1 kW . A method for setting ultrasonic shock treatment conditions for a metal material, wherein an effective combination of the treatments is determined.
前記超音波衝撃処理による多パス溶接部の処理において、670〜750℃の温度域で超音波衝撃処理した後、常温で、再度、超音波衝撃処理することを特徴とする請求項1記載の金属材料の超音波衝撃処理条件の設定方法。2. The metal according to claim 1, wherein in the treatment of the multi-pass weld by the ultrasonic impact treatment, the ultrasonic impact treatment is performed again at room temperature after performing the ultrasonic impact treatment in a temperature range of 670 to 750 ° C. 3. How to set ultrasonic shock treatment conditions for materials. 前記超音波衝撃処理において、補修溶接で、1パス目のビードに対しては850℃以上の温度域で超音波衝撃処理し、その後の積層溶接では、400〜650℃の温度域で超音波衝撃処理することを特徴とする請求項1記載の金属材料の超音波衝撃処理条件の設定方法。In the ultrasonic impact treatment, the first impact bead is subjected to ultrasonic impact treatment in a temperature range of 850 ° C. or higher in the repair welding, and the subsequent multilayer welding is subjected to ultrasonic impact in the temperature range of 400 to 650 ° C. The method for setting ultrasonic shock treatment conditions for a metal material according to claim 1, wherein the treatment is performed.
JP2002335624A 2002-11-19 2002-11-19 How to set ultrasonic shock treatment conditions for metallic materials Expired - Fee Related JP4195601B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002335624A JP4195601B2 (en) 2002-11-19 2002-11-19 How to set ultrasonic shock treatment conditions for metallic materials
PCT/JP2003/014596 WO2004046395A1 (en) 2002-11-19 2003-11-17 Method of setting ultrasonic shock treatment conditions for metal material
AU2003280833A AU2003280833A1 (en) 2002-11-19 2003-11-17 Method of setting ultrasonic shock treatment conditions for metal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002335624A JP4195601B2 (en) 2002-11-19 2002-11-19 How to set ultrasonic shock treatment conditions for metallic materials

Publications (2)

Publication Number Publication Date
JP2004169099A JP2004169099A (en) 2004-06-17
JP4195601B2 true JP4195601B2 (en) 2008-12-10

Family

ID=32321769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002335624A Expired - Fee Related JP4195601B2 (en) 2002-11-19 2002-11-19 How to set ultrasonic shock treatment conditions for metallic materials

Country Status (3)

Country Link
JP (1) JP4195601B2 (en)
AU (1) AU2003280833A1 (en)
WO (1) WO2004046395A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005070614A1 (en) 2004-01-21 2005-08-04 Toyohashi University Of Technology Process for forming ultrafine crystal layer, machine component having ultrafine crystal layer formed by the ultrafine crystal layer forming process, process for producing the machine component, process for forming nano-crystal layer, machine component having nano-crystal layer formed by nano-crystal layer forming process, a
JP4713344B2 (en) * 2004-08-20 2011-06-29 国立大学法人豊橋技術科学大学 Ultra-fine crystal layer generation method, mechanical component including the ultra-fine crystal layer generated by the ultra-fine crystal layer generation method, mechanical component manufacturing method for manufacturing the mechanical component, and nano-crystal layer generation method, Mechanical component provided with nanocrystal layer generated by nanocrystal layer generation method, and mechanical component manufacturing method for manufacturing the mechanical component
CN102953023B (en) * 2011-08-29 2014-05-07 中国石油化工股份有限公司 Surface treatment process of titanium alloy welded joint
CN104975250A (en) * 2015-06-29 2015-10-14 柳州金茂机械有限公司 Surface treatment technology of titanium alloy bucket welded joint
CN104975163A (en) * 2015-06-29 2015-10-14 柳州金茂机械有限公司 Surface treatment technology of welded joint
CN104975162A (en) * 2015-06-29 2015-10-14 柳州金茂机械有限公司 Surface treatment technology of bucket welded joint
CN104975164A (en) * 2015-06-29 2015-10-14 柳州金茂机械有限公司 Surface treatment technology of tube plate welded joint
KR101858226B1 (en) 2016-08-31 2018-05-16 단국대학교 산학협력단 Crack repairing method for deterring growth of surface cracks on the wall using ultrasound
CN110280884B (en) * 2019-07-29 2020-12-22 吉林大学 Ultrasonic impact toughening joint with groove added with alloy powder

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55119120A (en) * 1979-03-08 1980-09-12 Toshiba Corp Heat treatment device
FR2612291B1 (en) * 1987-03-13 1992-05-07 Framatome Sa DEVICE AND METHOD FOR CONTROLLING THE EFFICIENCY OF PARTICLE HAMMING OF THE INTERIOR SURFACE OF A STEAM GENERATOR TUBE
JPH0757469B2 (en) * 1987-04-21 1995-06-21 同和鉱業株式会社 Method and apparatus for surface treatment of metal by shot-peening
JPS6479320A (en) * 1987-09-19 1989-03-24 Nippon Steel Corp Improvement of material quality of metal for welding austenitic stainless steel
JPH081514A (en) * 1994-06-16 1996-01-09 Toshiba Corp Surface treatment method for structure in reactor
JP3408687B2 (en) * 1996-02-29 2003-05-19 三菱重工業株式会社 Welding equipment with welding residual stress reduction device
US6171415B1 (en) * 1998-09-03 2001-01-09 Uit, Llc Ultrasonic impact methods for treatment of welded structures
JP2003113418A (en) * 2001-10-04 2003-04-18 Nippon Steel Corp Method for improving fatigue life and long-life metal material

Also Published As

Publication number Publication date
AU2003280833A1 (en) 2004-06-15
WO2004046395A1 (en) 2004-06-03
JP2004169099A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
CN107267976B (en) Laser combination processing technology for obtaining wear-resistant and corrosion-resistant titanium alloy workpiece
CN107253148B (en) Combination method for forming gradient nano structure on surface layer of metal workpiece
Jiang et al. Effects of laser shock peening on the ultra-high cycle fatigue performance of additively manufactured Ti6Al4V alloy
CN107336142B (en) A kind of device and method of electromagnetism assisting ultrasonic shot-peening
JP4195601B2 (en) How to set ultrasonic shock treatment conditions for metallic materials
CN106435158B (en) The workpiece surface laser-impact technique in residual stress hole is removed using the micro- texture in surface
CN107009039A (en) One kind is with weldering ultrasonic vibration installation and method
JP2011520042A (en) Bearing processing apparatus and processing method using ultrasonic nano-modifier
CN110760668B (en) Ultrasonic-assisted laser shot blasting method for obtaining superfine crystal surface layer
KR20070047760A (en) Method for producing wear-resistant and fatigue-resistant edge layers from titanium alloys, and correspondingly produced components
CN107739798A (en) A kind of pressure-auxiliary ultrasonic vibration can fitting surface intensifying device and method
JP4319830B2 (en) Ultrasonic shock treatment machine and ultrasonic shock treatment device
JP3890008B2 (en) Ultrasonic shot peening processing machine, ultrasonic shot peening apparatus, and ultrasonic shot peening processing method
Zhang et al. Numerical and experimental studies on needle impact characteristics in ultrasonic shot peening
JP3879059B2 (en) Method for producing nanocrystalline structure metal material and nanocrystalline structure metal material
CN100588722C (en) Surface nano method for silicon-containing high-carbon steel 9SiCr
CN117305743A (en) Method for efficiently increasing nanocrystalline thickness of aerofoil bearing material
CN106041268A (en) Layered ultrasonic impact treatment method capable of optimizing structure and performance of weld
JP2004130316A (en) Boxing joint of excellent fatigue strength, boxing joint manufacturing method, and welded structure
JP2004169103A (en) Method for producing wire rod
CN1336321A (en) Mechanical method and special mechanical equipment for forming nanometer structure
KR20110105156A (en) Apparatus of surface treatment of ni-based superalloy and ni-based superalloy thereby
JP2004167363A (en) Ultrasonic impact treatment machine and ultrasonic impact treatment device
JP2004124227A (en) Method for hardening surface of metal product
JP2005298879A (en) Method for producing metal product having fine crystallized surface layer part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080926

R151 Written notification of patent or utility model registration

Ref document number: 4195601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees