JP4194727B2 - Maintenance equipment for concrete structures - Google Patents

Maintenance equipment for concrete structures Download PDF

Info

Publication number
JP4194727B2
JP4194727B2 JP2000009430A JP2000009430A JP4194727B2 JP 4194727 B2 JP4194727 B2 JP 4194727B2 JP 2000009430 A JP2000009430 A JP 2000009430A JP 2000009430 A JP2000009430 A JP 2000009430A JP 4194727 B2 JP4194727 B2 JP 4194727B2
Authority
JP
Japan
Prior art keywords
damage
deterioration state
deterioration
facility
probability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000009430A
Other languages
Japanese (ja)
Other versions
JP2001200645A (en
Inventor
哲 小山
良弘 田中
孝明 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2000009430A priority Critical patent/JP4194727B2/en
Publication of JP2001200645A publication Critical patent/JP2001200645A/en
Application granted granted Critical
Publication of JP4194727B2 publication Critical patent/JP4194727B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、施設等の維持管理に関する費用を最適化するための維持管理計画に用いる装置に関する。
【0002】
【従来の技術】
最近、ライフサイクルコストの考え方を導入して、構造物の建設投資に加えて運用、維持管理、廃棄に至るまでに必要な費用をいかに最少にするというマネージメントシステムの開発が行なわれている。国内では、建設省土木研究所や大学などが橋梁の維持管理を支援するシステム開発を行なっている。これらのシステムは、橋梁の諸元、履歴、点検データを用いて、橋梁の健全度を評価点法や専門家の知識に基づいて評価を行ない、高次関数による劣化予測、更に補修の有無に関して健全度や補修費用を算定している。
【0003】
【発明が解決しようとする課題】
ところで、コンクリート構造物の劣化現象は、自然環境やコンクリート材料、施工方法などの色々な不確定性を含んだ要因に影響を受けているが、上記維持管理を支援するシステムにおいては、このような不確実性を考慮していないため、施設等の維持管理に関する費用を正確に算定することができないという不都合がある。
【0004】
本発明はこのような不都合を解消するためになされたものであり、施設等の維持管理に関する費用を正確且つ最適に算定することができるコンクリート構造物の維持管理装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明に係るコンクリート構造物の維持管理装置は、施設等のコンクリート構造物の現時点の劣化状態の推定値を対数正規分布に従う情報パラメータを有する予測モデル式を用いて算出すると共に、前記推定値をベイズの法則を用いて現時点の外観目視から得られたコンクリート構造物の評価データを組み入れて更新して更新パラメータ値を算出し、該更新パラメータ値に基づいて、事象としての将来の劣化状態を予測する劣化状態予測手段と、
劣化状態予測手段によって予測された劣化状態の事象毎に、被害が発生する確率と該被害による損失費用の大きさとに基づいて施設等における潜在的な被害の大きさをリスクとして定量的に算出する潜在リスク演算手段と、
潜在リスク演算手段によって得られた潜在リスクを用いて、施設等における供用期間中に見込まれる維持管理に関する累積総費用を算出する総費用演算手段とを備えたことを特徴とする。
【0006】
【発明の実施の形態】
以下、本発明の実施の形態の説明する。
図1を参照して、このコンクリート構造物の維持管理装置は、キーボード等の入力部1と、将来の劣化状態を予測する第1の劣化状態予測手段2と、補修後の劣化状態を予測する第2の劣化状態予測手段3と、施設等における潜在的な被害の大きさをリスクとして定量的に算出する潜在リスク演算手段4と、施設等における供用期間中に見込まれる維持管理に関する累積総費用を算出する総費用演算手段5とを備える。
【0007】
第1の劣化状態予測手段2は、コンクリート構造物の劣化状態を鉄筋腐食の度合によって表わすものとし、入力部1から入力された鉄筋腐食度に影響を及ぼす要因、例えば、「鉄筋かぶり、中性化深さ、塩化物量、気象条件(気温、湿度、降水量)」に基づいて、実構造物データを用いて構築したニューラルネットワークのモデル式(1)を用いて、コンクリート構造物の現時点の劣化状態を評価する。
【0008】
【数1】

Figure 0004194727
【0009】
但し、
C :鉄筋の腐食度
NW:ニューラルネットワーク
d :鉄筋のかぶり〔mm〕
t :供用期間中における鉄筋位置での塩化物量〔kg/m3
d :供用期間中における中性化深さ〔mm〕
Temp:年平均気温〔°C〕
Rain:年間降水量〔mm〕
RH :年平均相対湿度〔RH%〕
ここで、塩化物量、中性化深さは、次式(2)および(3)で予測した値を用いる。
(塩化物量の予測)
既存の研究資料からコンクリート中に浸透した塩化物量は、拡散方程式に従うとされている。コンクリート表面の塩化物量や拡散係数が時間と共に変化しないとすれば、コンクリート中の塩化物量は、次式(2)で表される。
【0010】
【数2】
Figure 0004194727
【0011】
但し、
C(x,t) :時刻tにおける塩化物量〔kg/m3
x :コンクリート表面からの距離〔cm〕
0 :コンクリート表面の塩化物量〔kg/m3
D :コンクリート中の塩化物の拡散係数〔cm2/sec 〕
erf :誤差関数
(中性化深さの予測)
既存の研究資料からコンクリートの中性化深さCdは供用期間tの関数として次式(3)で表される。
【0012】
【数3】
Figure 0004194727
【0013】
但し、K:中性化速度係数
中性化速度係数は、空気中の炭酸ガスや温度・湿度などの影響を受けている要因である。
供用期間中の塩化物量や中性化深さを予測するためには、上述のように建設時点での劣化に影響を及ぼす要因(鉄筋かぶり、表面塩化物量、拡散係数、中性化速度係数)の値を設定する必要がある。しかし、これらの情報は設計図書や設計基準書から設定することになり、既設の構造物では建設時点の情報が紛失していたり曖昧であったりするために、あくまでも目安であり主観的な情報である。
【0014】
そこで、ばらつきの多い主観的な情報である分布は次式(4)の対数正規分布に従うとする。
この様な情報を用いて推定した劣化状態は不確定性を含んだ予測値である。この不確定性を改善するために、現時点の外観目視から得られた観測データ(入力部1から入力)を活用し、現時点の劣化状態に適合するような劣化要因値に更新する。そして、この更新値を用いて今後の施設の劣化状態を予測することは、予測精度の向上につながる。
【0015】
従来、母数を正確に推定するためには大量なデータを必要とするが、利用できる情報量が限られている場合は、ベイズ確率の方法を用いることにより、主観的判断に現時点の外観目視から得られた観測データの評価を組み入れてバランスの取れた推定値を得ることができる。
(事前分布)
【0016】
【数4】
Figure 0004194727
【0017】
但し、
f′(θ):事前密度関数
λ2 :鉄筋腐食ニューラルネットワークで得られた値
ζ2 :対数標準偏差(=0.3(既存データから設定))
次に、事前分布f′(θ)はベイズの定理を用いて、観測データに照らして修正され、事後確率として次式(5)で表わせる。
(事後分布)
【0018】
【数5】
Figure 0004194727
【0019】
但し、
f′′(θ):事後密度関数
κ :正規化係数
L(Ei |θ):母数の値がθになる時に観測値がEi となる条件付
確率(尤度関数)
f′(θ):事前密度関数
ここで、κは次式(6)で与えられ、観測データを用いて更新された母数θの更新推定値は次式(7)で与えられ、母数の値がθになる時に観測値がEi となる条件付確率(尤度関数)は次式(8)で与えられる。
【0020】
【数6】
Figure 0004194727
【0021】
【数7】
Figure 0004194727
【0022】
【数8】
Figure 0004194727
【0023】
但し、
i :劣化状態I〜IV(事象)
P(Ei ):劣化状態の生起確率
P(Ei |θ):母数の値がθになる場合に、観測値がEi となる確
からしさ
i :目視による劣化状態
劣化状態I〜IVの生起確率は、既存のデータから得られた各々の劣化状態(I−II、II−III、III−IV)の閾値α1 、α2 、α3 および対数標準偏差ζ1 を用いて次式(9)〜(12)で与えられる。
【0024】
【数9】
Figure 0004194727
【0025】
【数10】
Figure 0004194727
【0026】
【数11】
Figure 0004194727
【0027】
【数12】
Figure 0004194727
【0028】
なお、図2は事前分布、尤度関数、事後分布の関係を示す図、図3は現時点からの塩化物量および中性化深さと供用期間との関係を示すグラフ図、図4は現時点から補修しないで施設を使用した場合の劣化状態I〜IVの生起確率と供用期間との関係を示すグラフ図である。
第2の劣化状態予測手段3は、コンクリート構造物の劣化状態を鉄筋腐食の度合によって表わすものとし、入力部1から入力された鉄筋腐食度に影響を及ぼす要因、例えば、「鉄筋かぶり、中性化深さ、塩化物量、気象条件(気温、湿度、降水量)」を入力部1から入力された補修工法、補修時期に応じて改善し、該改善値に基づいて、上記式(1)〜(4)および(9)〜(12)を用いて、補修後のコンクリート構造物の劣化状態を予測する。
【0029】
なお、図5は現時点から5年後に表面被覆工の補修をした場合の劣化状態I〜IVの生起確率と供用期間との関係を示すグラフ図、図6は現時点から5年後に表面被覆工+断面修復工の補修をした場合の劣化状態I〜IVの生起確率と供用期間との関係を示すグラフ図ある。
潜在リスク演算手段4は、第1及び第2の劣化状態予測手段2,3によって予測された劣化状態の事象毎に、施設等における潜在的な被害の大きさ(以下、潜在リスクという。)を、次式(13)を用いて定量的に算出する。
【0030】
【数13】
Figure 0004194727
【0031】
▲1▼被害が発生する確率(以下、損傷確率という。)の評価方法
被害を無被害、軽微、中破、大破の4つのレベルに分け、図7の鉄筋の応力−ひずみ曲線図を参照して各々次のように定義する。
無被害:健全な状態である。発生荷重が鉄筋許容応力σa に達した時の耐力を超えない。
【0032】
軽微 :一部ひびわれがある程度で、簡単な補修で復旧可能な状態である。
発生荷重が鉄筋許容応力σa に達した時の耐力を超える。
中破 :全面ひびわれ、剥離剥落をしており、全面的な補修が必要な状態である。
発生荷重が鉄筋降伏応力σy に達した時の耐力を超える。
【0033】
大破 :構造物が使用不可能な状態である。
発生荷重が、鉄筋終局応力σf に達した時の耐力を超える。
ここで、この実施の形態では、荷重Q(死荷重、活荷重)に対して、梁や床版に発生する曲げモーメントの中央値qmは鉄筋の許容応力時における曲げモーメントの70%とする。
【0034】
劣化状態Iの軽微な被害に対する曲げモーメントの中央値rsは曲げモーメントが鉄筋の許容応力σa に達した時の曲げモーメントCsとする。
劣化状態Iの中破な被害に対する曲げモーメントの中央値rmは曲げモーメントが鉄筋の降伏応力σy に達した時の曲げモーメントCmとする。
劣化状態Iの大破な被害に対する曲げモーメントの中央値rlは曲げモーメントが鉄筋の終局応力σf に達した時の曲げモーメントClとする。
【0035】
また、荷重Qおよび耐力Rの分布は、対数正規分布に従うとし、荷重Qの確率密度関数fQ(x)は次式(14)で表され、耐力Rの確率密度関数fR(x)は次式(15)で表される。なお、図8に劣化状態Iにおける荷重Qと耐力Rとの関係図を示す。
【0036】
【数14】
Figure 0004194727
【0037】
【数15】
Figure 0004194727
【0038】
但し、
λQ :In(x) の平均値
ζQ :In(x) の標準偏差
λR :In(x) の平均値
ζR :In(x) の標準偏差
次に、損傷確率は荷重Qが耐力Rを超える場合であり、荷重Qおよび耐力R共に対数正規分布であると仮定しているので、Z=R/Qも対数正規分布となる。Z=R/Qの確率密度関数fZ(x)は次式(16)で表される。
【0039】
【数16】
Figure 0004194727
【0040】
但し、
λZ :In(x) の平均値=λR −λQ
ζZ :In(x) の標準偏差=ζR 2 +ζQ 2 =0.2
また、損傷確率Pz=P(R<Q)=P(Z<1)、Z=R/Qとすると、損傷確率Pzは次式(17)で表される。図9に損傷確率Pzの分布を示す。
【0041】
【数17】
Figure 0004194727
【0042】
ここで、曲げモーメントの中央値rm,qmを用いれば、λR =In(rm),λQ =In(qm)となる。
従って、劣化状態Iにおける軽微、中破、大破の被害が発生する損傷確率は、それぞれ次式(18),(19),(20)で与えられる。
【0043】
【数18】
Figure 0004194727
【0044】
【数19】
Figure 0004194727
【0045】
【数20】
Figure 0004194727
【0046】
なお、劣化状態II,III,IVにおける軽微、中破、大破の被害が発生する損傷確率についても、劣化状態Iの場合と同様にして与えられる。
劣化状態がI〜II、II〜III、III〜IVに変化すると鉄筋断面が欠損し、これに伴い、軽微、中破、大破の耐力Cs、Cm、Clが低下する。劣化状態がI〜IIに変化する場合における軽微、中破、大破の被害が発生する損傷確率は次式(21),(22),(23)で与えられる。図10に劣化状態I、IIにおける荷重Qと耐力Rとの関係図を示す。
【0047】
【数21】
Figure 0004194727
【0048】
【数22】
Figure 0004194727
【0049】
【数23】
Figure 0004194727
【0050】
但し、断面減少率係数αの設定は、既存調査データから求める。
▲2▼損失費用の大きさの設定
損失費用の大きさは、想定される被害が発生した場合に実施する補修工法に掛る費用と工事期間中に生じる営業損失費などであり、入力部1から入力される。補修工法に掛る費用は、データベースから設定し、営業損失費は各々の構造物の売上げ高や重要度によって異なるために構造物の所有者とのヒアリングにより設定する。
▲3▼潜在リスク
上記(13)式より、潜在リスクを求める。
【0051】
Figure 0004194727
で表される。
【0052】
総費用演算手段5は、潜在リスク演算手段4によって得られた潜在リスクと劣化状態予測手段2,3を用いて、施設等における供用期間中に見込まれる維持管理に関する累積総費用を算出して維持管理の最適化を行なうものである。総費用=Σ{(運用費)+(保全費)+(リスク)+(補修費)}となり、次式(24)で表される。図11は劣化状態I〜IVの被害レベルにおける損傷確率を示すグラフ図、図12は各補修対策毎における総費用と供用期間との関係を示すグラフ図である。
【0053】
【数24】
Figure 0004194727
【0054】
ここで、
t :t年後の総費用
i :補修なしの劣化状態ベクトル
L :潜在リスクベクトル
R :補修費用
i ′:n年目の補修後の劣化状態ベクトル
1 :運用費用
2 :保全費用
なお、上記処理を実行するプログラムはROM、フレキシブルディスク、コンパクトディスク或いはハードディスク等の記憶媒体に電子的に格納されており、コントローラが記憶媒体から上記プログラムを読み出してこれを実行するようになっている。
【0055】
【発明の効果】
上記の説明から明らかなように、本発明によれば、施設等の維持管理に関する費用を正確且つ最適に算定することができるという効果が得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態の一例であるコンクリート構造物の維持管理装置を説明するためのブロック図である。
【図2】事前分布、尤度関数、事後分布の関係を示す図である。
【図3】現時点からの塩化物量および中性化深さと供用期間との関係を示すグラフ図である。
【図4】現時点から補修しないで施設を使用した場合の劣化状態I〜IVの生起確率と供用期間との関係を示すグラフ図である。
【図5】現時点から5年後に表面被覆工の補修をした場合の劣化状態I〜IVの生起確率と供用期間との関係を示すグラフ図である。
【図6】現時点から5年後に表面被覆工+断面修復工の補修をした場合の劣化状態I〜IVの生起確率と供用期間との関係を示すグラフ図ある。
【図7】鉄筋の応力−ひずみ曲線図である。
【図8】劣化状態Iにおける荷重Qと耐力Rとの関係図である。
【図9】損傷確率Pzの分布を示す図である。
【図10】劣化状態I、IIにおける荷重Qと耐力Rとの関係を示す図である。
【図11】劣化状態I〜IVの被害レベルにおける損傷確率を示すグラフ図である。
【図12】各補修対策毎における総費用と供用期間との関係を示すグラフ図である。
【符号の説明】
1…入力部
2…第1の劣化状態予測手段
3…第2の劣化状態予測手段
4…潜在リスク演算手段
5…総費用演算手段[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus used for a maintenance management plan for optimizing expenses related to maintenance management of facilities and the like.
[0002]
[Prior art]
Recently, a life cycle cost concept has been introduced to develop a management system that minimizes the cost required for operation, maintenance, and disposal in addition to investment in construction of a structure. In Japan, the Ministry of Construction Civil Engineering Research Institute and universities are developing systems that support bridge maintenance. These systems use bridge specifications, history, and inspection data to evaluate the soundness of the bridge based on the evaluation point method and expert knowledge, predict deterioration by higher-order functions, and whether repairs are required. Soundness and repair costs are calculated.
[0003]
[Problems to be solved by the invention]
By the way, the deterioration phenomenon of concrete structures is influenced by factors including various uncertainties such as the natural environment, concrete materials, and construction methods. Since uncertainties are not taken into account, there is an inconvenience that expenses related to maintenance and management of facilities and the like cannot be accurately calculated.
[0004]
The present invention has been made to eliminate such inconveniences, and an object of the present invention is to provide a concrete structure maintenance management apparatus capable of accurately and optimally calculating the costs related to maintenance management of facilities and the like. .
[0005]
[Means for Solving the Problems]
To achieve the above object, the concrete structure maintenance and management apparatus according to the present invention uses a prediction model equation having an information parameter that follows a lognormal distribution of an estimated value of a current deterioration state of a concrete structure such as a facility. In addition to calculating the updated parameter value by incorporating the evaluation data of the concrete structure obtained from visual appearance at the present time using Bayes' law, and calculating the updated parameter value. A deterioration state prediction means for predicting the future deterioration state as,
For each event in the deterioration state predicted by the deterioration state prediction means, the amount of potential damage in the facility is quantitatively calculated as a risk based on the probability of occurrence of damage and the amount of loss cost due to the damage. Potential risk calculation means;
And a total cost calculation means for calculating a cumulative total cost related to the maintenance management expected during the in-service period in the facility using the potential risk obtained by the potential risk calculation means.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
Referring to FIG. 1, the concrete structure maintenance management apparatus predicts an input unit 1 such as a keyboard, first deterioration state prediction means 2 for predicting a future deterioration state, and a deterioration state after repair. Second degradation state predicting means 3, potential risk calculating means 4 for quantitatively calculating the magnitude of potential damage at the facility as a risk, and cumulative total cost related to maintenance management expected during the service period at the facility, etc. And total cost calculation means 5 for calculating.
[0007]
The first deterioration state predicting means 2 represents the deterioration state of the concrete structure by the degree of rebar corrosion, and a factor that affects the rebar corrosion degree input from the input unit 1, for example, “rebar cover, neutrality” Deterioration of concrete structures at present using model formula (1) of neural network constructed using actual structure data based on “depth of formation, chloride content, meteorological conditions (temperature, humidity, precipitation)” Assess the condition.
[0008]
[Expression 1]
Figure 0004194727
[0009]
However,
S C : Corrosion degree of rebar NW: Neural network d: Cover of rebar [mm]
C t : Chloride amount [kg / m 3 ] at the reinforcing bar position during the service period
C d : Neutralization depth during service period [mm]
Temp: Annual average temperature [° C]
Rain: Annual precipitation [mm]
RH: Annual average relative humidity [RH%]
Here, the values predicted by the following formulas (2) and (3) are used for the chloride amount and the neutralization depth.
(Prediction of chloride content)
From the existing research data, the amount of chloride that has penetrated into the concrete is said to follow the diffusion equation. If the amount of chloride and the diffusion coefficient on the concrete surface do not change with time, the amount of chloride in the concrete is expressed by the following equation (2).
[0010]
[Expression 2]
Figure 0004194727
[0011]
However,
C (x, t): Chloride amount at time t [kg / m 3 ]
x: Distance from the concrete surface [cm]
C 0 : Amount of chloride on the concrete surface [kg / m 3 ]
D: Diffusion coefficient of chloride in concrete [cm 2 / sec]
erf: Error function (prediction of neutralization depth)
From the existing research data, the neutralization depth Cd of concrete is expressed by the following equation (3) as a function of the service period t.
[0012]
[Equation 3]
Figure 0004194727
[0013]
However, K: neutralization rate coefficient The neutralization rate coefficient is a factor that is influenced by carbon dioxide gas in the air, temperature, humidity, and the like.
In order to predict the amount of chloride and neutralization depth during the service period, factors that affect deterioration at the time of construction as described above (rebar cover, surface chloride content, diffusion coefficient, neutralization rate coefficient) The value of must be set. However, since this information is set from the design books and design standards, the existing structure may be missing or ambiguous at the time of construction. is there.
[0014]
Therefore, it is assumed that the distribution, which is subjective information with many variations, follows the lognormal distribution of the following equation (4).
The deterioration state estimated using such information is a predicted value including uncertainty. In order to improve this uncertainty, the observation data (input from the input unit 1) obtained from the visual appearance at the present time is utilized and updated to a deterioration factor value suitable for the current deterioration state. Predicting the future deterioration state of the facility using the updated value leads to improvement of prediction accuracy.
[0015]
Conventionally, a large amount of data is required to accurately estimate the parameter. However, when the amount of information that can be used is limited, the current appearance can be visually checked for subjective judgment by using the Bayesian probability method. It is possible to obtain a balanced estimate by incorporating the evaluation of observation data obtained from.
(Prior distribution)
[0016]
[Expression 4]
Figure 0004194727
[0017]
However,
f ′ (θ): prior density function λ 2 : value obtained by reinforcing bar corrosion neural network ζ 2 : logarithmic standard deviation (= 0.3 (set from existing data))
Next, the prior distribution f ′ (θ) is corrected in light of observation data using Bayes' theorem, and can be expressed as the posterior probability by the following equation (5).
(Posterior distribution)
[0018]
[Equation 5]
Figure 0004194727
[0019]
However,
f ″ (θ): posterior density function κ: normalization coefficient L (E i | θ): conditional probability (likelihood function) that the observed value becomes E i when the parameter value becomes θ
f ′ (θ): Prior density function Here, κ is given by the following equation (6), and the updated estimated value of the parameter θ updated using the observation data is given by the following equation (7). The conditional probability (likelihood function) that the observed value becomes E i when the value of becomes θ is given by the following equation (8).
[0020]
[Formula 6]
Figure 0004194727
[0021]
[Expression 7]
Figure 0004194727
[0022]
[Equation 8]
Figure 0004194727
[0023]
However,
E i : Degradation states I to IV (events)
P (E i ): Occurrence probability of deterioration state P (E i | θ): When the parameter value is θ, the probability that the observed value will be E i P i : The deterioration state deterioration state I to visual observation The occurrence probability of IV is calculated by using threshold values α 1 , α 2 , α 3 and logarithmic standard deviation ζ 1 of each deterioration state (I-II, II-III, III-IV) obtained from existing data. It is given by equations (9) to (12).
[0024]
[Equation 9]
Figure 0004194727
[0025]
[Expression 10]
Figure 0004194727
[0026]
[Expression 11]
Figure 0004194727
[0027]
[Expression 12]
Figure 0004194727
[0028]
2 shows the relationship between the prior distribution, likelihood function, and posterior distribution, FIG. 3 is a graph showing the relationship between the chloride content and neutralization depth from the present time and the service period, and FIG. 4 is the repair from the current time. It is a graph which shows the relationship between the occurrence probability of the deterioration states I-IV at the time of using a plant | facility and a service period.
The second deterioration state predicting means 3 represents the deterioration state of the concrete structure by the degree of rebar corrosion, and a factor affecting the rebar corrosion degree input from the input unit 1, for example, “rebar cover, neutrality” "Chemical depth, chloride content, meteorological conditions (temperature, humidity, precipitation)" are improved according to the repair method and repair time inputted from the input unit 1, and the above formula (1) to Using (4) and (9) to (12), the deterioration state of the concrete structure after repair is predicted.
[0029]
5 is a graph showing the relationship between the occurrence probability of the deterioration states I to IV and the service period when the surface coating is repaired five years from the present time, and FIG. 6 is the surface coating + 5 years after the current time. It is a graph which shows the relationship between the occurrence probability of the degradation states I-IV at the time of repair of a cross-section repair work, and a service period.
The potential risk calculation means 4 calculates the magnitude of potential damage in the facility or the like (hereinafter referred to as potential risk) for each of the deterioration state events predicted by the first and second deterioration state prediction means 2 and 3. Quantitatively calculated using the following equation (13).
[0030]
[Formula 13]
Figure 0004194727
[0031]
(1) Evaluation method of the probability of damage (hereinafter referred to as damage probability) The damage is divided into four levels: no damage, minor damage, medium damage, and severe damage, and refer to the stress-strain curve diagram of the reinforcing bar in FIG. Are defined as follows.
No damage: Healthy condition. It does not exceed the yield strength when the generated load reaches the reinforcing steel allowable stress σ a .
[0032]
Minor : Some cracks are present and can be recovered by simple repairs.
It exceeds the proof stress when the generated load reaches the reinforcing steel allowable stress σ a .
Medium damage: The entire surface is cracked and peeled off, requiring complete repair.
It exceeds the yield strength when the generated load reaches the reinforcing steel yield stress σ y .
[0033]
Wrong: The structure is unusable.
The generated load exceeds the yield strength when the ultimate stress σ f is reached.
Here, in this embodiment, with respect to the load Q (dead load, live load), the median value qm of the bending moment generated in the beam and the floor slab is 70% of the bending moment at the allowable stress of the reinforcing bar.
[0034]
The median value rs of bending moment for minor damage in the deteriorated state I is the bending moment Cs when the bending moment reaches the allowable stress σ a of the reinforcing bar.
The median value rm of the bending moment with respect to the moderate damage of the deteriorated state I is the bending moment Cm when the bending moment reaches the yield stress σ y of the reinforcing bar.
The median value rl of the bending moment for the severe damage in the deteriorated state I is the bending moment Cl when the bending moment reaches the ultimate stress σ f of the reinforcing bar.
[0035]
The distribution of the load Q and the proof strength R follows a logarithmic normal distribution, the probability density function f Q (x) of the load Q is expressed by the following equation (14), and the probability density function f R (x) of the proof strength R is It is represented by the following formula (15). FIG. 8 shows a relationship diagram between the load Q and the proof stress R in the deteriorated state I.
[0036]
[Expression 14]
Figure 0004194727
[0037]
[Expression 15]
Figure 0004194727
[0038]
However,
λ Q : average value of In (x) ζ Q : standard deviation of In (x) λ R : average value of In (x) ζ R : standard deviation of In (x) In this case, it is assumed that both the load Q and the proof stress R are lognormal distributions, and therefore Z = R / Q also has a lognormal distribution. The probability density function f Z (x) of Z = R / Q is expressed by the following equation (16).
[0039]
[Expression 16]
Figure 0004194727
[0040]
However,
λ Z : Average value of In (x) = λ R −λ Q
ζ Z : Standard deviation of In (x) = ζ R 2 + ζ Q 2 = 0.2
Further, assuming that the damage probability Pz = P (R <Q) = P (Z <1) and Z = R / Q, the damage probability Pz is expressed by the following equation (17). FIG. 9 shows the distribution of damage probability Pz.
[0041]
[Expression 17]
Figure 0004194727
[0042]
Here, if the median values rm and qm of the bending moment are used, λ R = In (rm) and λ Q = In (qm).
Therefore, the damage probabilities of occurrence of minor, medium, and severe damage in the degradation state I are given by the following equations (18), (19), and (20), respectively.
[0043]
[Expression 18]
Figure 0004194727
[0044]
[Equation 19]
Figure 0004194727
[0045]
[Expression 20]
Figure 0004194727
[0046]
It should be noted that the damage probability of occurrence of minor, medium damage, or severe damage in the deterioration states II, III, and IV is given in the same manner as in the deterioration state I.
When the deterioration state changes to I to II, II to III, and III to IV, the cross section of the reinforcing bar is lost, and accordingly, the proof strengths Cs, Cm, and Cl of minor, medium, and severe damages are reduced. The probability of damage that causes minor damage, medium damage, or major damage when the deterioration state changes from I to II is given by the following equations (21), (22), and (23). FIG. 10 shows a relationship diagram between the load Q and the proof stress R in the deterioration states I and II.
[0047]
[Expression 21]
Figure 0004194727
[0048]
[Expression 22]
Figure 0004194727
[0049]
[Expression 23]
Figure 0004194727
[0050]
However, the setting of the cross-section reduction rate coefficient α is obtained from existing survey data.
(2) Setting the size of the loss cost The size of the loss cost is the cost of the repair method implemented when the expected damage occurs and the operating loss cost generated during the construction period. Entered. The cost for the repair method is set from the database, and the operating loss cost varies depending on the sales and importance of each structure, and is set by hearing with the owner of the structure.
(3) Potential risk The potential risk is obtained from the above equation (13).
[0051]
Figure 0004194727
It is represented by
[0052]
The total cost calculation means 5 uses the latent risk obtained by the potential risk calculation means 4 and the deterioration state prediction means 2 and 3 to calculate and maintain a cumulative total cost related to maintenance management expected during the service period in the facility or the like. Management optimization. Total cost = Σ {(operation cost) + (maintenance cost) + (risk) + (repair cost)} and is expressed by the following equation (24). FIG. 11 is a graph showing the damage probability at the damage level in the deterioration states I to IV, and FIG. 12 is a graph showing the relationship between the total cost and the service period for each repair measure.
[0053]
[Expression 24]
Figure 0004194727
[0054]
here,
R t : Total cost after t years S i : Degraded state vector without repair L: Potential risk vector C R : Repair cost S i ': Degraded state vector after repair in the nth year C 1 : Operating cost C 2 : Maintenance cost The program for executing the above processing is electronically stored in a storage medium such as a ROM, a flexible disk, a compact disk, or a hard disk, and the controller reads the program from the storage medium and executes it. ing.
[0055]
【The invention's effect】
As is clear from the above description, according to the present invention, there is an effect that it is possible to accurately and optimally calculate a cost related to maintenance and management of facilities and the like.
[Brief description of the drawings]
FIG. 1 is a block diagram for explaining a concrete structure maintenance management apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating a relationship between a prior distribution, a likelihood function, and a posterior distribution.
FIG. 3 is a graph showing the relationship between the chloride content and neutralization depth from the present time and the in-service period.
FIG. 4 is a graph showing a relationship between occurrence probability of deterioration states I to IV and a service period when a facility is used without repairing from the present time.
FIG. 5 is a graph showing the relationship between the occurrence probability of deterioration states I to IV and the service period when the surface coating work is repaired five years after the present time.
FIG. 6 is a graph showing the relationship between the occurrence probability of deterioration states I to IV and the service period when repairing a surface covering work and a cross-sectional repair work is performed five years after the present time.
FIG. 7 is a stress-strain curve diagram of a reinforcing bar.
8 is a relationship diagram between a load Q and a proof stress R in a deteriorated state I. FIG.
FIG. 9 is a diagram showing a distribution of damage probabilities Pz.
FIG. 10 is a diagram showing a relationship between a load Q and a proof stress R in deterioration states I and II.
FIG. 11 is a graph showing the damage probability at the damage level in the deterioration states I to IV.
FIG. 12 is a graph showing the relationship between total cost and service period for each repair measure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Input part 2 ... 1st deterioration state prediction means 3 ... 2nd deterioration state prediction means 4 ... Potential risk calculation means 5 ... Total cost calculation means

Claims (1)

施設等のコンクリート構造物の現時点の劣化状態の推定値を対数正規分布に従う情報パラメータを有する予測モデル式を用いて算出すると共に、前記推定値をベイズの法則を用いて現時点の外観目視から得られたコンクリート構造物の評価データを組み入れて更新して更新パラメータ値を算出し、該更新パラメータ値に基づいて、事象としての将来の劣化状態を予測する劣化状態予測手段と、
劣化状態予測手段によって予測された劣化状態の事象毎に、被害が発生する確率と該被害による損失費用の大きさとに基づいて施設等における潜在的な被害の大きさをリスクとして定量的に算出する潜在リスク演算手段と、
潜在リスク演算手段によって得られた潜在リスクを用いて、施設等における供用期間中に見込まれる維持管理に関する累積総費用を算出する総費用演算手段とを備えたことを特徴とするコンクリート構造物の維持管理装置。
The estimated value of the current deterioration state of a concrete structure such as a facility is calculated using a prediction model formula having an information parameter according to a lognormal distribution, and the estimated value is obtained from visual appearance at the present time using Bayes' law. Deterioration parameter predicting means for predicting a future deterioration state as an event based on the updated parameter value by calculating and updating an update parameter value by incorporating evaluation data of the concrete structure.
For each event in the deterioration state predicted by the deterioration state prediction means, the amount of potential damage in the facility is quantitatively calculated as a risk based on the probability of occurrence of damage and the amount of loss cost due to the damage. Potential risk calculation means;
Maintenance of a concrete structure characterized by comprising a total cost calculation means for calculating a cumulative total cost related to maintenance that is expected during a service period in a facility, etc., using the potential risk obtained by the potential risk calculation means Management device.
JP2000009430A 2000-01-18 2000-01-18 Maintenance equipment for concrete structures Expired - Fee Related JP4194727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000009430A JP4194727B2 (en) 2000-01-18 2000-01-18 Maintenance equipment for concrete structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000009430A JP4194727B2 (en) 2000-01-18 2000-01-18 Maintenance equipment for concrete structures

Publications (2)

Publication Number Publication Date
JP2001200645A JP2001200645A (en) 2001-07-27
JP4194727B2 true JP4194727B2 (en) 2008-12-10

Family

ID=18537580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000009430A Expired - Fee Related JP4194727B2 (en) 2000-01-18 2000-01-18 Maintenance equipment for concrete structures

Country Status (1)

Country Link
JP (1) JP4194727B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002245146A (en) * 2001-02-20 2002-08-30 Ohbayashi Corp Method and system for calculating structure maintenance cost, program for making computer perform the calculating method and recording medium with the program recorded thereon
JP2002328969A (en) * 2001-04-27 2002-11-15 Ohbayashi Corp System for supporting prediction of repair updating time of building, program for making computer function as such system and computer-readable recording medium with this program recorded thereon
JP2002340782A (en) * 2001-05-14 2002-11-27 Okumura Corp Method for predicting degradation of concrete structure
JP2005011327A (en) * 2003-05-29 2005-01-13 Tokyo Electric Power Co Inc:The Repair plan making support device and method
JP4028824B2 (en) * 2003-06-27 2007-12-26 大成建設株式会社 Deterioration prediction method for reinforced concrete structures
JP4039992B2 (en) * 2003-07-28 2008-01-30 株式会社奥村組 Prediction method of neutralization depth of concrete structures
JP2006336280A (en) * 2005-06-01 2006-12-14 Ishikawajima Harima Heavy Ind Co Ltd Maintenance management method for concrete structure
JP4731228B2 (en) * 2005-07-13 2011-07-20 中国電力株式会社 Concrete deterioration prediction method
JP4496188B2 (en) * 2006-09-28 2010-07-07 中日本ハイウェイ・エンジニアリング名古屋株式会社 Appropriateness judgment method of concrete structure repair method, repair method judgment chart creation method, and simple suitability judgment method of concrete structure repair method
JP2008291441A (en) * 2007-05-22 2008-12-04 Ihi Corp Maintenance management method for concrete structure
JP5261740B2 (en) * 2010-06-08 2013-08-14 独立行政法人国立高等専門学校機構 Neutralization depth prediction device for concrete structure and program to make computer calculate neutralization depth
JP6120307B2 (en) * 2012-09-07 2017-04-26 国立大学法人東京工業大学 Electrocorrosion monitoring method and apparatus for metal structure
JP6032493B2 (en) * 2013-06-17 2016-11-30 清水建設株式会社 Building health check method
JP6550254B2 (en) * 2015-04-02 2019-07-24 株式会社Nttファシリティーズ Recovery curve creation system, recovery curve creation method, and program
CN113094843B (en) * 2021-04-30 2022-08-09 哈尔滨工业大学 Solving method for conditional probability of beam bridge evaluation based on Bayesian network

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021211A (en) * 1996-06-28 1998-01-23 Taisei Corp Neural network, evaluating method and predicting method of corrosion of reinforcing bar in concrete structure
JPH1046832A (en) * 1996-08-05 1998-02-17 Shimizu Corp Building life-cycle analysis system

Also Published As

Publication number Publication date
JP2001200645A (en) 2001-07-27

Similar Documents

Publication Publication Date Title
JP4194727B2 (en) Maintenance equipment for concrete structures
Biondini et al. Life-cycle performance of deteriorating structural systems under uncertainty
Ellingwood Reliability-based condition assessment and LRFD for existing structures
Sommer et al. Probability-based bridge inspection strategy
Chiu et al. Multi-objective decision-making supporting system of maintenance strategies for deteriorating reinforced concrete buildings
Schmidt et al. Challenges related to probabilistic decision analysis for bridge testing and reclassification
Li et al. Updating the assessment of resistance and reliability of existing aging bridges with prior service loads
Anoop et al. A refined methodology for durability‐based service life estimation of reinforced concrete structural elements considering fuzzy and random uncertainties
Gonzalez-Gonzalez et al. A non-linear fuzzy regression for estimating reliability in a degradation process
Sharifi Reliability of deteriorating steel box-girder bridges under pitting corrosion
Zhang et al. Markov chain-based stochastic modeling of chloride ion transport in concrete bridges
Cheng et al. Optimal load rating-based inspection planning of corroded steel girders using Markov decision process
CN115358102B (en) Corrosion pipeline failure probability analysis method under earthquake action of introduced internal detection data
Yang et al. A Theoretical Framework for Risk–Cost-Optimized Maintenance Strategy for Structures
Walraven Design for service life: How should it be implemented in future codes
Anoop et al. Performance evaluation of corrosion-affected reinforced concrete bridge girders using Markov chains with fuzzy states
Frangopol Life-cycle performance, management, and optimisation of structural systems under uncertainty: accomplishments and challenges 1
Capacci et al. Resilience-based seismic risk assessment of aging bridge networks under climate change
Bakker et al. Inspection validation model for life-cycle analysis
A Tantele et al. Integration of probabilistic effectiveness with a two-stage genetic algorithm methodology to develop optimum maintenance strategies for bridges
JP2002245146A (en) Method and system for calculating structure maintenance cost, program for making computer perform the calculating method and recording medium with the program recorded thereon
Steiger et al. Development of new Swiss standards for the reassessment of existing load bearing structures
Stewart On-going issues in time-dependent reliability of deteriorating concrete bridges
Roohbakhsh et al. Seismic performance assessment of RC structures exposed to the corrosion aggressive environment of the Persian Gulf
Abdelalim A novel diagnostic prognostic approach for rehabilitated RC structures based on integrated probabilistic deterioration models

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4194727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees