JP4192579B2 - Steel for plastic mold - Google Patents

Steel for plastic mold Download PDF

Info

Publication number
JP4192579B2
JP4192579B2 JP2002348314A JP2002348314A JP4192579B2 JP 4192579 B2 JP4192579 B2 JP 4192579B2 JP 2002348314 A JP2002348314 A JP 2002348314A JP 2002348314 A JP2002348314 A JP 2002348314A JP 4192579 B2 JP4192579 B2 JP 4192579B2
Authority
JP
Japan
Prior art keywords
steel
ferrite
thermal conductivity
machinability
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002348314A
Other languages
Japanese (ja)
Other versions
JP2004183008A (en
Inventor
知暁 瀬羅
正英 海野
毅 城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002348314A priority Critical patent/JP4192579B2/en
Priority to CNB2003801043485A priority patent/CN100360697C/en
Priority to PCT/JP2003/015303 priority patent/WO2004050933A1/en
Publication of JP2004183008A publication Critical patent/JP2004183008A/en
Application granted granted Critical
Publication of JP4192579B2 publication Critical patent/JP4192579B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プラスチックの射出成形等に使用される金型用鋼に関する。
【0002】
【従来の技術】
自動車用インストルメントパネルやバンパー、家電用テレビやエアコンの筺体等のような大型のプラスチック製品を射出成形するのに用いられる金型には、JIS G 4051に規定されるS55Cクラスの汎用鋼が使用されている。
【0003】
プラスチック成形金型に要求される特性としては、被削性が良好なこと、熱伝導率が高いこと、等である。
【0004】
被削性を向上させた鋼としては特許文献1および2に示される鋼があり、熱伝導率を高めた鋼としては特許文献3および4に示される鋼がある。
【0005】
即ち、特許文献1に示される鋼は、硫化物の量を多くするとともに、Siの含有量を0.5%以上とした鋼である。また、特許文献2に示される鋼は、Siの含有量を0.30%以上にするとともに、金属組織をフェライトが15〜40面積%のフェライトとパーライトの2相組織とした鋼である。さらに、特許文献3および4に示される鋼は、C以下の各成分の含有量をバランスさせるとともに、金属組織をマルテンサイト単相またはマルテンサイトとベイナイトの2相組織とした鋼である。
【0006】
しかし、特許文献1および2に示される鋼は、熱伝導率については全く考慮されておらず、熱伝導率が低いという欠点を有している。また、特許文献3および4に示される鋼は、金属組織がマルテンサイト単相またはマルテンサイトとベイナイトの2相組織であるために、被削性が十分でないという欠点を有している。
【0007】
このように、被削性と熱伝導率とを両立させることは困難であり、これを両立させた安価な金型用鋼の開発が望まれていた。
【0008】
【特許文献1】
特許第3141735号公報
【特許文献2】
特開2002-12941号公報
【特許文献3】
特開平8-209298号公報
【特許文献4】
特開平10-96049号公報
【0009】
【発明が解決しようとする課題】
本発明は、上記の実状に鑑みてなされたもので、被削性と熱伝導率とを両立させた安価なプラスチック成形金型用鋼を提供することを目的とする。具体的には、硬さがJIS Z 2243に規定されるHBW(10/3000)で180〜210であり、下記の条件のフライス加工による切削試験における工具最大摩耗量VBmax(mm)が0.40mm以下で、且つ100℃における熱伝導率λ(W/m・℃)が45以上であるプラスチック成形金型用鋼を提供することを目的とする。
【0010】
切削試験の条件;回転数(N):2720rpm、送り速度(F):600mm/min、切り込み深さ(Ad):5mm、切り込み幅(Rd):25mm、切削長さ(L):3m、使用工具:JIS B 4053に規定されるP30の一枚刃。なお、工具最大摩耗量VBmax(mm)とは、工具の逃げ面の最大摩耗幅のことである。
【0011】
【課題を解決するための手段】
本発明の要旨は、下記(1)および(2)のプラスチック成形金型用鋼にある。
【0012】
(1)質量%で、C:0.25〜0.45%、0.15 0.25 、Mn:0.5〜2%、S:0.01〜0.05%、sol.Al:0.02%以下を含有し、残部はFeおよび不純物からなり、金属組織が面積%で15〜30%のフェライトと残部パーライトの2相組織で、且つJIS G 0551に規定されるオーステナイト結晶粒度番号が3以上であるプラスチック成形金型用鋼。
【0013】
(2) 上記(1)に記載の成分に加えて、さらに、質量%で、Cr:0.1〜0.5%およびV:0.03%以上で0.2%未満のうちの1種以上を含有し、残部はFeおよび不純物からなり、金属組織が面積%で15〜30%のフェライトと残部パーライトの2相組織で、且つJIS G 0551に規定されるオーステナイト結晶粒度番号が3以上であるプラスチック成形金型用鋼。
【0014】
本発明者らは、上記の課題を達成するために、前記の汎用鋼S55Cをベースに種々実験を行い、次のことを知得し、上記の本発明を完成させた。
【0015】
(a)合金元素の増量は、いずれの元素も熱伝導率λを低下させる。従って、いずれの元素も熱伝導率λを向上させる観点からは、その含有量はできるだけ低くするのがよい。なかでも、Siの影響が特に大きく、Si含有量は0.25 %以下に制限する必要がある。
【0016】
図1は、後述する実施例の結果を、Si含有量と熱伝導率λについて整理して示した図である。この図から明らかなように、Siが熱伝導率λに大きな影響を及ぼす元素であることがわかる。
【0017】
(b) また、C、Mnおよびsol.Alの含有量は、それぞれ、0.25〜0.45%、0.5〜2%および0.02%以下に制限する必要がある。
【0018】
)被削性は、金属組織をフェライトとパーライトの2相組織とした方がよく、特にフェライト率が15〜30面積%のフェライト・パーライト2相組織で、且つJIS G 0551に規定されるオーステナイト結晶粒度番号が3以上の金属組織にすると、被削性が格段に向上する。
【0019】
表1は、後述する実施例に供した鋼のうちの鋼No.1を対象に、そのフェライト・パーライト組織(フェライト面積率22%)のオーステナイト結晶粒度番号を種々異ならせて前記条件のフライス加工による切削試験を行って工具最大摩耗量VBmax を調べた結果を示す表である。表1から明らかなように、オーステナイト結晶粒度番号が3以上の場合に工具最大摩耗量VBmaxが0.40mm以下となり、良好な被削性が確保されることがわかる。
【0020】
【表1】

Figure 0004192579
【0021】
【発明の実施の形態】
以下、本発明のプラスチック成形金型用鋼を上記のように定めた理由について詳細に説明する。なお、以下において、「%」は特に断らない限り「質量%」を意味する。
【0022】
1.化学組成について、
C:0.25〜0.45%
Cは、強度を確保する上で重要な元素であり、最低でも0.25%の含有量が必要である。一方、その含有量が0.45%を超えると、パーライト量が増加し、後述する量のフェライト量が得られなくなくなり、所望の被削性が確保できなくなる。このため、C含有量は0.25〜0.45%とする。好ましいのは0.28〜0.45%、より好ましいのは0.35〜0.43%である。
【0023】
Si:0.15 0.25
Siは、被削性を向上させる反面、熱伝導率を著しく低下させる元素であるが、組成によりその特性値が事実上決まる熱伝導率を向上させ、所望の被削性と熱伝導率を確保するためには、前述したように、Siは0.25 %以下にする必要がある。なお、熱伝導率を向上させる観点のみからはSi含有量は少ないほどよいが、あまり少なくしすぎると被削性の確保が困難になる場合があるので、その含有量は0.15 0.25 とする
【0024】
Mn:0.5〜2%
Mnは、上記のCと同様に、強度を確保する上で重要な元素であり、最低でも0.5%の含有量が必要である。一方、その含有量が2%を超えると、靱性低下を引き起こす。このため、Mn含有量は0.5〜2%とする。好ましい範囲は0.8〜1.5%、より好ましい範囲は1〜1.3%である。
【0025】
S:0.01〜0.05%
Sは、被削性を確保するうえで重要な元素であり、最低でも0.01%の含有量が必要である。一方、その含有量が0.05%を超えると、靱性、延性および溶接性が低下する。従って、S含有量は0.01〜0.05%とする。好ましいのは0.02〜0.04%、より好ましいのは0.025〜0.04%である。
【0026】
sol.Al:0.02%以下
Alは、脱酸剤として添加される。また、AlはAlNを形成して細粒化に寄与する元素でもある。これらの効果を十分に発揮させるためには、sol.Al含有量で0.001%以上とするのが望ましい。しかし、過剰なAlはアルミナ系の酸化物を形成し、鋼の清浄度を悪くして地疵の問題を招くだけでなく、被削性および熱伝導率をも低下させる。従って、被削性と熱伝導率の両方を向上させた鋼の提供を目的とする本発明においては、Alの含有量は少ないほどよく、上記のSiまたは/およびMnによって脱酸が十分に行われ場合には、鋼中には必ずしも含まれなくてもよい。このため、Alの含有量はsol.Alで0.02%以下とした。好ましい上限は0.01%、より好ましい上限は0.005%である。
【0027】
残部は実質的にFe、言い換えれば残部はFeおよび不純物であるが、本発明のプラスチック成形金型用鋼は、上記の成分に加えて、下記の元素のうちの1種以上を含有させた鋼であってもよい。
【0028】
Cr、V:
CrおよびVは、いずれも、鋼の焼入れ性を高めて強度を向上させる作用を有する。このため、その効果を得たい場合には1種以上を添加することができ、前記の効果は、Crでは0.1%以上、Vでは0.03%以上の含有量で得られる。しかし、Crは、0.5%を超えると、パーライトの強度が高くなりすぎて被削性が低下するだけでなく、熱伝導率も低下する。また、Vは、0.2%以上になると、Vの炭化物量が増加するとともに、フェライトの強度が高くなりすぎて、被削性が低下するだけでなく、熱伝導率も低下する。特に、VはCrに比べ、被削性を低下させる作用が著しい。このため、添加する場合のこれら元素の含有量は、Crは0.1〜0.5%、好ましくは0.1〜0.35%、Vは0.03%以上で0.2%未満、好ましくは0.03〜0.1%とするのがよい。
【0029】
2.金属組織について、
組織は、前述したように、面積%で、フェライトが15〜30、残部がパーライトのフェライト・パーライトの2相組織でなければならない。これは、次の理由による。
【0030】
パーライトは旧オーステナイトの粒内に生じ、フェライトは旧オーステナイトの粒界に生じる。また、パーライトはフェライトに比べて剪断変形しにくい。このため、旧オーステナイト粒が大きいと、パーライトの塊が大きくなり、剪断変形しにくくなる。一方、旧オーステナイト粒が小さいと、パーライトの塊が小さくなり、パーライトの周辺のフェライトが変形し、剪断変形しやすくなる。言い換えれば、被削性が向上する。
【0031】
しかし、フェライト量が15面積%未満では、パーライトが多く、硬度が高すぎて被削性が低下する。一方、30面積%を超えると、強度の確保が困難になるだけでなく、硬度が不足して金型に必要な耐摩耗性の確保が困難になる。このため、本発明では、その金属組織をフェライトが15〜30面積%、残部がパーライトのフェライト・パーライトの2相組織とした。
【0032】
なお、本発明にいうフェライトの面積%とは、次のようにして求められる値のことである。
【0033】
任意な大きさの試料を、JIS G 0552に規定される方法に準じて処理し、処理後の試料の処理表面を、JIS G 0552に規定される方法に従って顕微鏡観察してデジタルカメラで撮影し、得られた画像中の黒色部分(パーライト)を例えば「1」、白色部分(フェライト)を例えば「0」とする二値化画像処理し、撮像面積から「1」と判定された部分の総面積を差し引いた値を撮像面積で除して求められた値に100を乗じて求められる値のことである。
【0034】
また、結晶粒度は、前述したように、JIS G 0551に規定されるオーステナイト結晶粒度番号で3以上の細粒でなければならない。これは、前記の表1に示すように、オーステナイト結晶粒度番号が3未満では、目標とする工具最大摩耗量VBmaxが確保されず、所望の被削性が確保できないからである。なお、結晶粒度は細粒であるほど好ましいので、その上限は規定しない。
【0035】
本発明で規定する上記の金属組織は、本発明で規定する化学組成を有する鋼に、例えば、鍛造温度1100〜1300℃、鍛造終止温度1000℃以下、鍛錬比3以上の熱間加工を施した後、850〜1000℃に加熱し、オーステナイト化した後に450℃/h以下の冷却速度で冷却する焼準処理を施し、次いで、500〜700℃で焼戻す熱処理により得られ、結晶粒度の調整は、鍛錬比、鍛造終止温度および焼準処理温度の調整により行えばよい。
【0036】
以下、本発明を実施例に基づいて説明する。
【0037】
【実施例】
表2に示す化学組成を有する27種類の鋼を高周波溶解炉を用いて溶製し、得られた鋳塊を1200℃に加熱後、鍛錬比2〜5、終止温度800〜1000℃で熱間鍛造し、厚さと幅がいずれも110mmの試験材とした。
【0038】
得られた試験材は、実機のプラスチック射出成形金型の製造を想定し、850〜1000℃に1〜3時間加熱保持した後に90℃/hの冷却速度で冷却する焼準と、580℃に4時間加熱保持する焼戻しの熱処理を施し、オーステナイト結晶粒度番号、フェライト率、組織、硬さ(HBW)、および熱伝導率λが表2に示す値の試験材に調整した。
【0039】
調整後の試験材は、前述したのと同じ条件のフライス加工による切削試験に供して工具最大摩耗量VBmax(mm)を調べ、その結果を表2に併せて示した。
【0040】
なお、フェライト率は前述した方法により測定し、熱伝導率λは100℃における値をレーザフラッシュ法により測定した。
【0041】
表2に示すように、本発明で規定する条件を満たす鋼No.1〜4の本発明鋼は、いずれも、熱伝導率λが45以上、工具最大摩耗量VBmaxが0.40mm以下で、熱伝導率および被削性ともに良好である。
【0042】
これに対し、化学組成、オーステナイト結晶粒度番号、フェライト率および組織のいずれか1つ以上が本発明で規定する範囲を外れる鋼No.5〜27の比較鋼は、熱伝導率λまたは/および工具最大摩耗量VBmaxが本発明の目標値に達しておらず、高い熱伝導率と良好な被削性の両方を兼ね備えていない。
【0043】
【表2】
Figure 0004192579
【0044】
【発明の効果】
本発明のプラスチック成形金型用鋼は、高い熱伝導率と良好な被削性を有している。また、本発明の金型用鋼は、CrやVの合金元素の添加を必ずしも必要としないので安価である。従って、本発明のプラスチック成形金型用鋼によれば、大型の金型を1つの材料で製作することが可能で、金型の製作コストおよび原単位を低減させることができる。
【図面の簡単な説明】
【図1】 Si含有量と熱伝導率との関係を示す図である。
【図2】フェライト率と工具最大摩耗量との関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mold steel used for plastic injection molding and the like.
[0002]
[Prior art]
S55C class general-purpose steel specified in JIS G 4051 is used for molds used for injection molding of large plastic products such as automotive instrument panels, bumpers, TVs for home appliances, and housings for air conditioners. Has been.
[0003]
Properties required for the plastic mold include good machinability and high thermal conductivity.
[0004]
As steel having improved machinability, there are steels shown in Patent Documents 1 and 2, and as steel having improved thermal conductivity, there are steels shown in Patent Documents 3 and 4.
[0005]
That is, the steel shown in Patent Document 1 is a steel in which the amount of sulfide is increased and the Si content is 0.5% or more. The steel shown in Patent Document 2 is a steel in which the Si content is 0.30% or more and the metal structure is a two-phase structure of ferrite and pearlite with 15 to 40 area% of ferrite. Further, the steels disclosed in Patent Documents 3 and 4 are steels that balance the content of each component of C or lower and have a metal structure of martensite single phase or a two-phase structure of martensite and bainite.
[0006]
However, the steels disclosed in Patent Documents 1 and 2 do not take thermal conductivity into consideration at all, and have the disadvantage of low thermal conductivity. Further, the steels disclosed in Patent Documents 3 and 4 have a defect that the machinability is not sufficient because the metal structure is a martensite single phase or a two-phase structure of martensite and bainite.
[0007]
Thus, it is difficult to make both machinability and thermal conductivity compatible, and development of an inexpensive steel for molds that satisfies both has been desired.
[0008]
[Patent Document 1]
Japanese Patent No. 3141735 [Patent Document 2]
JP 2002-12941 A [Patent Document 3]
JP-A-8-209298 [Patent Document 4]
Japanese Patent Laid-Open No. 10-96049
[Problems to be solved by the invention]
This invention is made | formed in view of said actual condition, and it aims at providing the cheap steel for plastic molding dies which made the machinability and heat conductivity compatible. Specifically, the hardness is 180 to 210 in HBW (10/3000) specified in JIS Z 2243, and the maximum tool wear amount VBmax (mm) in a cutting test by milling under the following conditions is 0.40 mm or less. In addition, an object of the present invention is to provide a steel for plastic molds having a thermal conductivity λ (W / m · ° C.) of 45 or more at 100 ° C.
[0010]
Cutting test conditions: Rotational speed (N): 2720rpm, Feed rate (F): 600mm / min, Cutting depth (Ad): 5mm, Cutting width (Rd): 25mm, Cutting length (L): 3m, Use Tool: P30 single blade as defined in JIS B 4053. The tool maximum wear amount VBmax (mm) is the maximum wear width of the flank face of the tool.
[0011]
[Means for Solving the Problems]
The gist of the present invention resides in the following steels for plastic molds (1) and (2).
[0012]
(1) By mass%, C: 0.25 to 0.45%, 0.15 to 0.25 % , Mn: 0.5 to 2%, S: 0.01 to 0.05%, sol. Al: 0.02% or less, the balance from Fe and impurities A steel for plastic molds having a two-phase structure of ferrite and the balance pearlite with a metal structure of 15-30% in area% and an austenite grain size number of 3 or more as defined in JIS G 0551.
[0013]
(2) In addition to the component described in the above (1), it further contains, in mass%, one or more of Cr: 0.1 to 0.5% and V: 0.03% or more and less than 0.2%, with the balance being Fe And a steel for plastic molds having a two-phase structure of ferrite and the remaining pearlite having a metal structure of 15 to 30% in area% and an austenite grain size number of 3 or more as defined in JIS G 0551.
[0014]
In order to achieve the above-mentioned problems, the present inventors conducted various experiments based on the above-mentioned general-purpose steel S55C, learned the following, and completed the above-described present invention.
[0015]
(A) An increase in the amount of alloy elements reduces the thermal conductivity λ for any element. Therefore, the content of any element is preferably as low as possible from the viewpoint of improving the thermal conductivity λ . Among these, the influence of Si is particularly great, and the Si content must be limited to 0.25 % or less .
[0016]
FIG. 1 is a diagram showing the results of Examples to be described later, organized in terms of Si content and thermal conductivity λ. As is apparent from this figure, it can be seen that Si is an element that greatly affects the thermal conductivity λ.
[0017]
(b) Further, the contents of C, Mn and sol.Al need to be limited to 0.25 to 0.45%, 0.5 to 2% and 0.02% or less, respectively.
[0018]
( C ) The machinability is better when the metal structure is a two-phase structure of ferrite and pearlite. In particular, it is a ferrite-pearlite two-phase structure with a ferrite ratio of 15 to 30% by area and is specified in JIS G 0551. When a metal structure having an austenite grain size number of 3 or more is used, machinability is remarkably improved.
[0019]
Table 1 shows a milling process under the above-mentioned conditions by varying the austenite grain size number of the ferrite-pearlite structure (ferrite area ratio 22%) for steel No. 1 among the steels used in the examples described later. 5 is a table showing the results of examining the tool maximum wear amount VBmax by performing a cutting test according to the above. As is apparent from Table 1, when the austenite grain size number is 3 or more, the tool maximum wear amount VBmax is 0.40 mm or less, and it is understood that good machinability is ensured.
[0020]
[Table 1]
Figure 0004192579
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the reason for determining the steel for plastic molding die of the present invention as described above will be described in detail. In the following, “%” means “mass%” unless otherwise specified.
[0022]
1. About chemical composition
C: 0.25 to 0.45%
C is an important element for securing strength, and a content of at least 0.25% is necessary. On the other hand, if the content exceeds 0.45%, the amount of pearlite increases, the amount of ferrite described below cannot be obtained, and the desired machinability cannot be ensured. For this reason, C content shall be 0.25 to 0.45%. The preferred range is 0.28 to 0.45%, and the more preferred range is 0.35 to 0.43%.
[0023]
Si: 0.15 to 0.25 %
While Si improves the machinability, it is an element that significantly lowers the thermal conductivity, but it improves the thermal conductivity, whose characteristics are practically determined by the composition, and ensures the desired machinability and thermal conductivity. In order to achieve this, as described above, Si needs to be 0.25 % or less . From the viewpoint of improving the thermal conductivity, the lower the Si content, the better. However, if the content is too low, it may be difficult to ensure the machinability, so the content should be 0.15 to 0.25 % . .
[0024]
Mn: 0.5-2%
Mn is an important element for securing the strength, as in the case of C described above, and a content of at least 0.5% is necessary. On the other hand, if the content exceeds 2%, the toughness is reduced. For this reason, Mn content shall be 0.5 to 2%. A preferable range is 0.8 to 1.5%, and a more preferable range is 1 to 1.3%.
[0025]
S: 0.01-0.05%
S is an important element for securing machinability, and a content of 0.01% is required at the minimum. On the other hand, when the content exceeds 0.05%, toughness, ductility and weldability are deteriorated. Therefore, the S content is set to 0.01 to 0.05%. Preferable is 0.02 to 0.04%, and more preferable is 0.025 to 0.04%.
[0026]
sol.Al: 0.02% or less
Al is added as a deoxidizer. Al is also an element that contributes to fine grain formation by forming AlN. In order to sufficiently exhibit these effects, the content of sol.Al is preferably 0.001% or more. However, excessive Al forms an alumina-based oxide, which not only deteriorates the cleanliness of steel and causes ground problems, but also reduces machinability and thermal conductivity. Therefore, in the present invention for the purpose of providing a steel with improved both machinability and thermal conductivity, the lower the Al content, the better, and the above-described Si or / and Mn sufficient deoxidation. In the case of cracking, it does not necessarily have to be contained in the steel. For this reason, the content of Al is set to 0.02% or less in sol.Al. A preferable upper limit is 0.01%, and a more preferable upper limit is 0.005%.
[0027]
The balance is substantially Fe, in other words, the balance is Fe and impurities, but the plastic molding steel of the present invention contains one or more of the following two elements in addition to the above components. Steel may be used.
[0028]
Cr, V:
Both Cr and V have the effect of increasing the hardenability of the steel and improving the strength. For this reason, when it is desired to obtain the effect, one or more kinds can be added, and the above effect can be obtained with a content of 0.1% or more for Cr and 0.03% or more for V. However, if Cr exceeds 0.5%, the strength of pearlite becomes too high, and not only the machinability is lowered, but also the thermal conductivity is lowered. Further, when V is 0.2% or more, the amount of carbide of V increases, and the strength of ferrite becomes too high, so that not only machinability is lowered but also thermal conductivity is lowered. In particular, V has a remarkable effect of reducing the machinability as compared with Cr. Therefore, the content of these elements when added is 0.1 to 0.5% for Cr, preferably 0.1 to 0.35%, and V is 0.03% or more and less than 0.2%, preferably 0.03 to 0.1%.
[0029]
2. About metal structure
As described above, the structure should be a two-phase structure of ferrite and pearlite with area%, ferrite of 15 to 30, and the balance of pearlite. This is due to the following reason.
[0030]
Pearlite occurs in the grains of prior austenite, and ferrite occurs in the grain boundaries of prior austenite. Pearlite is less susceptible to shear deformation than ferrite. For this reason, when the prior austenite grains are large, the lumps of pearlite become large, and shear deformation is difficult. On the other hand, when the prior austenite grains are small, the pearlite lump becomes small, the ferrite around the pearlite is deformed, and shear deformation becomes easy. In other words, machinability is improved.
[0031]
However, if the ferrite content is less than 15 area%, the amount of pearlite is large, the hardness is too high, and the machinability is lowered. On the other hand, if it exceeds 30% by area, not only is it difficult to ensure the strength, but it is also difficult to ensure the wear resistance necessary for the mold due to insufficient hardness. For this reason, in the present invention, the metal structure is a two-phase structure of ferrite and pearlite in which ferrite is 15 to 30% by area and the balance is pearlite.
[0032]
The area% of ferrite referred to in the present invention is a value obtained as follows.
[0033]
A sample of an arbitrary size is processed according to the method specified in JIS G 0552, and the treated surface of the processed sample is observed with a microscope according to the method specified in JIS G 0552 and photographed with a digital camera. The total area of the portion determined to be “1” from the imaging area by performing binarized image processing in which the black portion (perlite) in the obtained image is “1”, for example, and the white portion (ferrite) is “0”, for example. The value obtained by dividing the value obtained by subtracting the value by the imaging area and multiplying by 100.
[0034]
Further, as described above, the crystal grain size must be a fine grain having an austenite grain size number of 3 or more as defined in JIS G 0551. This is because, as shown in Table 1 above, when the austenite grain size number is less than 3, the target tool maximum wear amount VBmax is not ensured and desired machinability cannot be ensured. In addition, since a crystal grain size is so preferable that it is fine, the upper limit is not prescribed | regulated.
[0035]
The above-mentioned metal structure defined in the present invention is obtained by subjecting steel having the chemical composition defined in the present invention to hot working with a forging temperature of 1100 to 1300 ° C, a forging end temperature of 1000 ° C or less, and a forging ratio of 3 or more. Then, after heating to 850-1000 ° C, austenitizing, cooling at a cooling rate of 450 ° C / h or less, and then tempering at 500-700 ° C. The forging ratio, the forging end temperature and the normalizing temperature may be adjusted.
[0036]
Hereinafter, the present invention will be described based on examples.
[0037]
【Example】
27 types of steel having the chemical composition shown in Table 2 were melted using a high-frequency melting furnace, and the resulting ingot was heated to 1200 ° C and then hot at a forging ratio of 2 to 5 and an end temperature of 800 to 1000 ° C. It was forged and used as a test material having a thickness and width of 110 mm.
[0038]
The obtained test material is assumed to be a plastic injection mold for actual machine, heated to 850 to 1000 ° C for 1 to 3 hours, then cooled at a cooling rate of 90 ° C / h, and to 580 ° C. A tempering heat treatment was performed by heating and holding for 4 hours, and the austenite grain size number, ferrite ratio, structure, hardness (HBW), and thermal conductivity λ were adjusted to the values shown in Table 2.
[0039]
The adjusted test material was subjected to a cutting test by milling under the same conditions as described above, and the tool maximum wear amount VBmax (mm) was examined. The results are also shown in Table 2.
[0040]
The ferrite rate was measured by the method described above, and the thermal conductivity λ was measured at 100 ° C. by the laser flash method.
[0041]
As shown in Table 2, the steels Nos. 1 to 4 of the present invention satisfying the conditions specified in the present invention all have a thermal conductivity λ of 45 or more and a tool maximum wear amount VBmax of 0.40 mm or less. Both conductivity and machinability are good.
[0042]
On the other hand, the comparative steel of steel Nos. 5 to 27 in which any one or more of the chemical composition, austenite grain size number, ferrite rate and structure deviate from the range defined in the present invention is the thermal conductivity λ or / and the tool. The maximum wear amount VBmax does not reach the target value of the present invention, and it does not have both high thermal conductivity and good machinability.
[0043]
[Table 2]
Figure 0004192579
[0044]
【The invention's effect】
The steel for plastic molds of the present invention has high thermal conductivity and good machinability. The mold steel of the present invention is inexpensive because it does not necessarily require addition of Cr or V alloy elements. Therefore, according to the steel for plastic molds of the present invention, it is possible to manufacture a large mold with one material, and to reduce the manufacturing cost and basic unit of the mold.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between Si content and thermal conductivity.
FIG. 2 is a diagram showing a relationship between a ferrite rate and a tool maximum wear amount.

Claims (2)

質量%で、C:0.25〜0.45%、Si:0.15 0.25 、Mn:0.5〜2%、S:0.01〜0.05%、sol.Al:0.02%以下を含有し、残部はFeおよび不純物からなり、金属組織が面積%で15〜30%のフェライトと残部パーライトの2相組織で、且つJIS G 0551に規定されるオーステナイト結晶粒度番号が3以上であることを特徴とするプラスチック成形金型用鋼。In mass%, C: 0.25 to 0.45%, Si: 0.15 to 0.25 % , Mn: 0.5 to 2%, S: 0.01 to 0.05%, sol. Al: 0.02% or less, with the balance being Fe and impurities A steel for plastic molds, characterized in that the metal structure is a two-phase structure of ferrite and the remaining pearlite with an area percentage of 15-30% and the austenite grain size number specified in JIS G 0551 is 3 or more . 請求項1に記載の成分に加えて、さらに、質量%で、Cr:0.1〜0.5%およびV:0.03%以上で0.2%未満のうちの1種以上を含有し、残部はFeおよび不純物からなり、金属組織が面積%で15〜30%のフェライトと残部パーライトの2相組織で、且つJIS G 0551に規定されるオーステナイト結晶粒度番号が3以上であることを特徴とするプラスチック成形金型用鋼。  In addition to the components according to claim 1, the composition further contains at least one of Cr: 0.1 to 0.5% and V: 0.03% or more and less than 0.2% by mass, with the balance being Fe and impurities. A steel for plastic molds, characterized in that the metal structure is a two-phase structure of 15-30% ferrite and the remaining pearlite in area% and the austenite grain size number specified in JIS G 0551 is 3 or more .
JP2002348314A 2002-11-29 2002-11-29 Steel for plastic mold Expired - Fee Related JP4192579B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002348314A JP4192579B2 (en) 2002-11-29 2002-11-29 Steel for plastic mold
CNB2003801043485A CN100360697C (en) 2002-11-29 2003-11-28 Steel for mold for use in molding plastic
PCT/JP2003/015303 WO2004050933A1 (en) 2002-11-29 2003-11-28 Steel for mold for use in molding plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002348314A JP4192579B2 (en) 2002-11-29 2002-11-29 Steel for plastic mold

Publications (2)

Publication Number Publication Date
JP2004183008A JP2004183008A (en) 2004-07-02
JP4192579B2 true JP4192579B2 (en) 2008-12-10

Family

ID=32462911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002348314A Expired - Fee Related JP4192579B2 (en) 2002-11-29 2002-11-29 Steel for plastic mold

Country Status (3)

Country Link
JP (1) JP4192579B2 (en)
CN (1) CN100360697C (en)
WO (1) WO2004050933A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524494B2 (en) * 2005-04-11 2010-08-18 国立大学法人福井大学 Crystal structure inspection support device and support method for metal material
JP4589885B2 (en) * 2006-03-03 2010-12-01 住友金属工業株式会社 Crankshaft
EP1887096A1 (en) 2006-08-09 2008-02-13 Rovalma, S.A. Hot working steel
JP5213168B2 (en) * 2008-07-07 2013-06-19 株式会社日本製鋼所 Steel for plastic molding dies excellent in thermal conductivity and manufacturing method thereof
JP5515442B2 (en) 2009-06-16 2014-06-11 大同特殊鋼株式会社 Hot tool steel and steel products using the same
JP2011001572A (en) 2009-06-16 2011-01-06 Daido Steel Co Ltd Tool steel for hot work and steel product using the same
CN103014488B (en) * 2012-12-01 2015-07-15 滁州市成业机械制造有限公司 Die steel for alloy compression casting and processing method thereof
CN105177410B (en) * 2015-07-24 2017-03-15 成都三强轧辊股份有限公司 A kind of large-scale collars cold mould and its application and manufacturing process
CN105112794B (en) * 2015-08-25 2017-03-22 石家庄钢铁有限责任公司 Low-cost plastic mold steel and production method thereof
JP6859623B2 (en) * 2015-09-11 2021-04-14 大同特殊鋼株式会社 Mold steel and molding tools
CN105177429B (en) * 2015-10-20 2017-07-28 宁波德科精密模塑有限公司 A kind of plastic die steel and plastic shaping mould
US10239245B2 (en) * 2016-02-01 2019-03-26 A. Finkl & Sons Co. Economical plastic tooling cores for mold and die sets
CN107650321A (en) * 2016-07-25 2018-02-02 北京白菊汽车零部件有限公司 A kind of new type of safe automobile bumper injection molding process
CN109182909B (en) * 2018-10-12 2021-06-04 攀钢集团攀枝花钢铁研究院有限公司 Medium carbon steel for automobile steering system and production method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136426A (en) * 1983-01-25 1984-08-06 Nippon Steel Corp Directly heat-treated austenite stainless steel wire material having excellent surface properties
JPS63286554A (en) * 1987-05-18 1988-11-24 Kobe Steel Ltd Steel for metal mold having superior machinability
JP3208960B2 (en) * 1993-10-20 2001-09-17 株式会社神戸製鋼所 High surface fatigue strength parts for machine structural use and their manufacturing method
FR2745587B1 (en) * 1996-03-01 1998-04-30 Creusot Loire STEEL FOR USE IN PARTICULAR FOR THE MANUFACTURE OF MOLDS FOR INJECTION OF PLASTIC MATERIAL
JPH11158579A (en) * 1997-11-26 1999-06-15 Daido Steel Co Ltd Steel for plastic molding die
JP2934424B2 (en) * 1998-01-12 1999-08-16 日本高周波鋼業株式会社 Steel for free-cutting plastic molds with excellent finished surface roughness
JP2000303140A (en) * 1999-04-19 2000-10-31 Daido Steel Co Ltd Steel for plastic molding die
JP2001294973A (en) * 2000-04-05 2001-10-26 Daido Steel Co Ltd Steel for plastic molding die excellent in powder electric discharge machinability
JP3589619B2 (en) * 2000-06-27 2004-11-17 日本高周波鋼業株式会社 Steel for free-cutting plastic molds with excellent finished surface roughness
JP2003253383A (en) * 2002-02-27 2003-09-10 Daido Steel Co Ltd Steel for plastic molding die

Also Published As

Publication number Publication date
JP2004183008A (en) 2004-07-02
CN1717503A (en) 2006-01-04
WO2004050933A1 (en) 2004-06-17
CN100360697C (en) 2008-01-09

Similar Documents

Publication Publication Date Title
JP4192579B2 (en) Steel for plastic mold
EP2357262B1 (en) Production method for a crankshaft
EP2423344B1 (en) High strength, high toughness steel wire rod, and method for manufacturing same
JP4808828B2 (en) Induction hardening steel and method of manufacturing induction hardening steel parts
JP5407178B2 (en) Steel wire rod for cold forging excellent in cold workability and manufacturing method thereof
JP5929963B2 (en) Hardening method of steel
JP3764586B2 (en) Manufacturing method of case-hardened steel with excellent cold workability and low carburizing strain characteristics
CN105164296A (en) Age hardening steel
WO2019198539A1 (en) Machine component and method for producing same
EP3272896B1 (en) Age-hardenable steel, and method for manufacturing components using age-hardenable steel
JP5432590B2 (en) Hot forged parts excellent in fracture splitting property, manufacturing method thereof, and automotive internal combustion engine parts
JP3739958B2 (en) Steel with excellent machinability and its manufacturing method
JP5043529B2 (en) Steel for plastic molding dies with excellent specularity
JP2002146480A (en) Wire rod/steel bar having excellent cold workability, and manufacturing method
JP3737298B2 (en) Steel for large molds for plastic molding excellent in machinability and weldability and method for producing the same
JP3534146B2 (en) Non-heat treated steel excellent in fatigue resistance and method for producing the same
EP1553197B1 (en) Steel material for mechanical structure excellent in suitability for rolling, quenching crack resistance, and torsional property and drive shaft
JP4393344B2 (en) Manufacturing method of case hardening steel with excellent cold workability and grain coarsening resistance
JP3579558B2 (en) Bearing steel with excellent resistance to fire cracking
EP1666621A1 (en) Hot forged non-heat treated steel for induction hardening
JP4158390B2 (en) Hot forged steel for cold work with excellent fatigue resistance and cold workability
JP2001220646A (en) Prehardened steel for plastic molding die
JP2003321711A (en) Method of producing gear obtained by using steel for carburization having excellent grain size property as stock
JPH05339676A (en) Steel for machine structure excellent in cold workability and its manufacture
CN106536775B (en) Mechanical structure rolling bar steel and its manufacture method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4192579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees