JP4188521B2 - Induction heating type snow melting equipment - Google Patents

Induction heating type snow melting equipment Download PDF

Info

Publication number
JP4188521B2
JP4188521B2 JP31477799A JP31477799A JP4188521B2 JP 4188521 B2 JP4188521 B2 JP 4188521B2 JP 31477799 A JP31477799 A JP 31477799A JP 31477799 A JP31477799 A JP 31477799A JP 4188521 B2 JP4188521 B2 JP 4188521B2
Authority
JP
Japan
Prior art keywords
heater body
snow melting
floor plate
substrate
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31477799A
Other languages
Japanese (ja)
Other versions
JP2001131901A (en
Inventor
康次 大木
Original Assignee
株式会社新陽社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社新陽社 filed Critical 株式会社新陽社
Priority to JP31477799A priority Critical patent/JP4188521B2/en
Publication of JP2001131901A publication Critical patent/JP2001131901A/en
Application granted granted Critical
Publication of JP4188521B2 publication Critical patent/JP4188521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/30Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways

Landscapes

  • Railway Tracks (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、レールを支持する床板内部にヒータを装填して床板を加熱する融雪装置であって、ヒータに誘導コイルが組み込まれ、誘導磁界により床板を加熱する方式のものに関する。
【0002】
【従来の技術】
鉄道・軌道用のレールポイント部及びその周辺部(以下、ポイント部という)には、氷雪が付着・凍結して切り換え動作に支障が生じることを防止するため、ポイント部を加熱する融雪装置が取り付けられる。
その一つとして、レール下側に敷設する床板の内部に発熱体を装着し、発熱体が発する熱量で床板を加熱してポイント部を融雪する床板差込型融雪器が知られている(実公平1−18643号公報等)。
また、発熱体を用いずに加熱する方式のものとして、レールに誘導コイルを取り付け、コイルで誘導した磁界でレールに渦電流を生じさせ、これに伴い発生するジュール熱によってレール自体を発熱させる誘導加熱式融雪器が知られている(実開平1−150601号公報等)。
【0003】
【発明が解決しようとする課題】
従来技術の内、前者においては、発熱体が床板内に収納されているので、発熱体から雰囲気中に直接放散する熱量は少ないものの、ポイント部の加熱は発熱体を介して二次的に行われ、発熱体から床板に熱量が伝導する際に損失を生じ、ポイント部に対する加熱効率は悪く、消費電力も多いという問題がある。
後者においては、レールが直に発熱し、誘導コイルの内部発熱以外に損失がないため、原理的には発熱体を用いる加熱方式のものと比較してポイント部に対する加熱効率を良好にできるものの、誘導コイルの巻き数が少ないため誘導結合率が悪く、レールが発熱するに十分な磁界を誘導するためには、商用電源よりも高周波の専用の電源装置を用いなければならないという問題がある。
【0004】
一方、この種融雪装置以外の技術分野では、渦巻型の誘導コイルを用いて誘導加熱する装置が知られており(特開昭60−89号公報等)、これをポイント部の加熱に利用することも考えられる。しかし、前述の通り、誘導加熱式の融雪装置には、第1に耐震性及び耐候性を備えポイント部に安定的に設置できる構造であること、第2にポイント部が発熱するに十分な大きさの磁界を誘導できるとともに発生熱量の損失が少ないこと、第3に現場での取り付け作業が容易であることなどが必要とされ、公知の渦巻型の誘導コイルをそのまま融雪装置に適用できない。
【0005】
本発明はこのような問題点に鑑み、誘導コイルを用いてポイント部の融雪を行う装置において、安定的且つ簡易に設置でき、ポイント部に大きな磁界を誘導して加熱できるようにすることを課題とする。
【0006】
【課題を解決するための手段】
前記課題を解決するため、本発明は、レールを支持する鉄製の床板の内部に設けられた空間部内に設置されて床板を加熱する融雪装置であって、誘導磁界により渦電流を発生させてポイント部を直接発熱させる誘導加熱方式のものであり、表面が絶縁樹脂で覆われた平角マグネットワイヤを隣接ワイヤ同士で隙間を開けずに密に同心渦巻き状に巻回してなる空心複層巻構造の複数個の誘導コイルが直列に接続されて矩形状基板の上面に一列に並べられ、且つ各誘導コイル全体が絶縁体で被覆されて前記基板上に固定されてなる薄板状のヒータ本体を、その上面に板状の高熱伝導部材を重ねて前記空間部内に配置し、ヒータ本体に商用周波数電源電圧を供給して前記床板を誘導加熱することを特徴としている。
【0007】
これによれば、誘導コイルを具備したヒータ本体を床板内部に配置することにより、床板に磁界を漏れなく誘導させることができ、ヒータ本体と床板とのギャップ(距離)も小さいので、床板に効率的に渦電流を発生させて発熱させることができる。
また、平角マグネットワイヤを用いることで誘導コイルの巻き数を多くすることができるので、床板に大きな磁束密度で磁界を誘導できて被加熱体の渦電流が大きくなり、商用周波数電源を用いてもポイント部を融雪するに十分な発熱量を得ることができる。
ヒータ本体は、誘導コイル全体を絶縁体で被覆して形成されているので、雨水や埃塵に対する耐久性に優れ、衝撃や振動を受けても接続配線が外れたりせず、床板内に安定的に設置しておくことができる。また、本装置は床板差込型なので、設置や取り外し作業も容易である。
【0008】
ヒータ本体は、床板内部の空間部の広さや必要とされる発熱量などの設置条件に応じ、適宜な数の誘導コイルを用いて構成することができる。
詳しくは、例えば絶縁材からなる薄板を基板としてその上に誘導コイルを載せ、誘導コイルを複数個用いる場合は隣接させて並置し、短絡を起こさないようにコイルの両端部を基板の上下両面にそれぞれ取り回して配線し、その上でシリコンなどの絶縁樹脂やゴムなどの絶縁材で誘導コイルと基板を一体にモールドし、さらにテフロンなどの絶縁樹脂フィルムで全体を包被して形成される。誘導コイルと基板に絶縁樹脂フィルムを巻きつける方法で絶縁封止できる場合は、絶縁体によるモールド工程を省いても一体化することができる。
【0009】
前記構成において、ヒータ本体は、一本のマグネットワイヤで複数個の誘導コイルを連続一体化して構成し、電源供給端子との接続部以外に導線の接続部がない構造とすることができる。
【0010】
また、前記構成において、ヒータ本体下面に部分的に接触するバネ片などの押圧部材をヒータ本体とともに床板内部の空間部内に設け、ヒータ本体上面側が床板に圧接するように設けることが好ましい。
ヒータ本体上面側が床板に圧接していれば、誘導コイルと被加熱体である床板との接近状態を維持できるので、レールを支持する床板上面部に渦電流を効率的且つ無駄なく発生させて発熱量を増加させることができる。
また、ヒータ本体の下側に押圧部材が設けてあれば、ヒータ本体と床板が密着してヒータ本体が安定的に固定されるとともに、床板空間部の下側部分とヒータ本体との間にギャップが形成され、且つ押圧部材がヒータ本体下面に部分的に接触する構造のものであれば、ヒータ本体下面が他の部材と接触する面積が小さくなって下面方向への熱絶縁性が高くなり、被加熱体方面以外、すなわちヒータ本体上面方向以外への放熱を減じて床板に対する加熱効率を良好にすることができる。ヒータ本体の絶縁体の部分の温度も比較的低く保つことができる。
なお、押圧部材としては、バネ片やスプリングコイル、ゴムなどの弾性体、その他ヒータ本体を上方に押圧する作用をなす適宜な部材を用いることができる。
【0011】
さらに上記構成において、ヒータ本体上面に銅板などの高熱伝導部材を配して床板全体が均一に加熱されるように設けることが好ましい。
誘導コイルを介して床板を発熱させた場合、誘導磁界が強い部分と弱い部分では発熱量が異なり、床板内で発熱の偏りが生じるが、発熱領域であるヒータ本体との接触部分に高熱伝導部材を設けておけば、この熱伝導部材を通じて床板上面部全体を均一にムラ無く温度上昇させることができる。
なお、高熱伝導部材としては、銅などの高い熱伝導性を有する部材を用いることができ、また、ヒータ本体上面全体又は空間部内の上面部全体に接合する大きさのものを用いることが好ましい。
【0012】
また、上記構成において、平角マグネットワイヤを空心複層巻構造とした誘導コイルを用いることにより誘導磁界をより大きくして発熱量の増加が可能となる。
【0013】
【発明の実施の形態】
本発明の融雪装置は、床板を内部から加熱してポイント部の融雪を行う方式の融雪装置であって、加熱方式として渦電流を生じさせて床板自体を直接発熱させるとともに、励磁コイル損に伴う発熱エネルギーも被加熱体である床板に、より効率的に伝達させる方式のものである。以下、本発明の好適な実施例を図面を参照して説明する。
【0014】
図1及び図2は本発明の融雪装置が設置されたポイント部を示している。図中、符号1は柱木、2は柱木の上面に固定された鉄製の床板、3は床板の上面で支持されたレール、4は融雪装置、5は融雪装置の位置を固定する脱落防止金具である。床板2は、その内部に少なくとも後述のヒータ本体を配置可能な大きさを有する空間部21が設けられ、この空間部と通ずる挿入口22が側面に形成されている(図7参照)。
【0015】
本例の融雪装置4は、図3に示されているように、ヒータ本体41、ヒータ本体を支持する枠板42、枠板の端部に取り付けられたコネクターボックス43及び配電ケーブル44により構成されている。
【0016】
ヒータ本体41は、図4に示されているように、導線を偏平な渦巻状に密に巻回してなる四つの誘導コイル411を備え、これらを絶縁材からなる基板412の上に一列に並べて直列に接続し、各コイル及び基板の表面を絶縁体により被覆して薄板状に形成されている。
【0017】
詳しくは、四つの誘導コイル411は、表面が絶縁樹脂411bでコーティングされた一本の平角マグネットワイヤ411aで連続一体化され、且つマグネットワイヤを空心単層で密に巻きつけて構成されており、それぞれ基板412の上面に並置されている。
また、基板412は、図5に示されているように、短手方向を誘導コイル411の直径よりも若干大きな寸法とした矩形状を呈しており、その一方の側部に所定の間隔を開けて切り欠き412aを設け、誘導コイル411を載せたときに各コイルの中心部と重なる位置には開口412bを設け、他方の側部には縁端部から各開口412bまで連ねたスリット412cをそれぞれ設けて形成されている。
【0018】
各コイルは、同心状に巻かれたコイル外周から隣接するコイルの中心に延びるワイヤ部分を、基板412の側部に設けた切り欠き412aに挿通させて基板裏面側に取り回し、さらに他側部に設けたスリット412cに挿通させて当該スリット内を開口412bまでずらし、開口412bから基板表面側に取り回して再び同心状にコイルが巻かれて、交差し合うコイルのワイヤ部分が基板412を挟んで短絡せず、且つ一本のワイヤ411aで一体化して設けてある。
【0019】
基板412上に並置された各誘導コイル411は、シリコンなどの絶縁樹脂413やゴムなどの絶縁材で基板と一体にモールドされて薄板状に固化され、さらにテフロンなどの絶縁樹脂フィルム414で全体が包被されてヒータ本体41を構成する。
なお、基板412上に並べた誘導コイル411を薄肉のシリコンゴムで薄く被覆し、これをプレス成形して各コイルが基板上に固定されるようにしてもよく、また、誘導コイル411を絶縁状態で基板412上に固定可能であれば、前記モールド工程を省き、例えばテフロン製の粘着テープを誘導コイル411と基板412に巻きつけて一体化してもよい。
【0020】
薄板状にモールドされたヒータ本体41は、側部にコネクターボックス43が連結した皿状の枠板42の上面に固着され、コネクターボックス43内で配電ケーブル44と誘導コイル411群の両端のワイヤとが接続される。なお、ヒータ本体41と枠板42及びコネクターボックス43の境界部分、コネクターボックス43内の配線部分には、それぞれシリコン樹脂が注入され一体に固化される。
【0021】
このように構成される融雪装置4は、図7に示されているように、矩形鋼板を短手方向に湾曲させてなるバネ片6がヒータ本体41の下側に当てがわれ、ヒータ本体41がバネ片6とともに前記挿入口22から床板2の空間部21内へ装填され、床板2の側面に当接したコネクターボックス43に脱落防止金具5を係合させて柱木1上に固定される。
【0022】
床板2の空間部21内に装填されたヒータ本体41は、図8に示されているように、その下面の略々中央部分にバネ片6の湾曲頂部が接して上方に押圧され、誘導コイル411を並置させた上面が床板2の上面部に密着状態で圧接する。
そして、この状態で配電ケーブル44に通電すれば、各誘導コイル411が誘導する磁界で床板2に渦電流を生じさせ、これに伴い発生するジュール熱によって床板2の上面部を発熱させ、ポイント部を融雪することができる。
【0023】
この場合、誘導磁界は床板2に密着して接する各誘導コイル411の配置位置によって強弱が有り、そのため床板2の位置によって発熱量が異なり、床板2には温度ムラが生じるが、図9に示されているように、空間部21の上面部の略全体に接合する大きさを有する銅板などの高熱伝導部材7をヒータ本体41の上面に設置すれば、高熱伝導部材7を通じて床板2の上面部全体を均一にムラ無く温度上昇させることができる。
【0024】
なお、実施例のヒータ本体41は四つの誘導コイル411を一列に並べて構成したが、誘導コイルの使用数やその配置は適宜変更可能である。誘導コイル411は平角マグネットワイヤを空心単層巻構造としたものを用いたが、より大きな誘導磁界を得るため、複層巻構造としたものを用いてもよい。ヒータ本体41とともに空間部21内に設置する押圧部材は、ヒータ本体41の下面に部分的に接してヒータ本体41を上方に押圧するものであれば、バネ片6以外の形態のものを用いることができる。
【0025】
また、本発明の装置は誘導コイルを内蔵したヒータ本体を床板に差し込む構造のものであるが、従来から利用されているレール腹部側面に取り付ける構造の融雪装置に同構成のヒータ本体を内蔵させることにより、直接レール腹部に渦電流を発生させる融雪器として利用することを制限するものではない。
【図面の簡単な説明】
【図1】本発明の一実施例の融雪装置がポイント部に設置された状態を上方から見た図である。
【図2】本発明の一実施例の融雪装置がポイント部に設置された状態を側方から見た図である。
【図3】図1の融雪装置の平面図である。
【図4】融雪装置を構成するヒータ本体の上面側と下面側を示した図である。
【図5】ヒータ本体を構成する基板の平面図である。
【図6】ヒータ本体の部分拡大断面を示した図である。
【図7】図1の融雪装置を取り付ける手順を説明するための図である。
【図8】ヒータ本体が装填された床板の断面を示す図である。
【図9】高熱伝導部材とともにヒータ本体が装填された床板の断面を示す図である。
【符号の説明】
1 柱木
2 床板
21 空間部
22 挿入口
3 レール
4 融雪装置
41 ヒータ本体
411 誘導コイル
412 基板
42 枠板
43 コネクターボックス
44 配電ケーブル
5 脱落防止金具
6 バネ片
7 高熱伝導部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a snow melting device that heats a floor board by loading a heater inside the floor board that supports a rail, and an induction coil is incorporated in the heater and the floor board is heated by an induced magnetic field.
[0002]
[Prior art]
A snow melting device that heats the point part is attached to the rail point part for railroads and tracks and its peripheral part (hereinafter referred to as the point part) in order to prevent the snow from adhering to and freezing. It is done.
As one, inside the heating element is attached to the floor to be laid on the rail under side, floorboards plug-snow melting device for melting snow point portion by heating the floorboards are known in heat heating element emits (actual No. 1-18643, etc.).
In addition, as a method of heating without using a heating element, an induction coil is attached to the rail, an eddy current is generated in the rail by a magnetic field induced by the coil, and the rail itself is heated by Joule heat generated thereby. Heated snow melters are known ( Japanese Utility Model Laid-Open No. 1-150601 ).
[0003]
[Problems to be solved by the invention]
Among the prior arts, in the former, since the heating element is housed in the floor board, although the amount of heat directly dissipated from the heating element into the atmosphere is small, the heating of the point part is performed secondarily through the heating element. However, there is a problem that a loss occurs when heat is conducted from the heating element to the floor board, the heating efficiency for the point portion is poor, and power consumption is large.
In the latter, since the rail generates heat directly and there is no loss other than the internal heating of the induction coil, in principle the heating efficiency for the point part can be improved compared to the heating method using a heating element, Since the number of windings of the induction coil is small, the inductive coupling rate is poor, and there is a problem that a dedicated power supply device having a higher frequency than the commercial power supply must be used to induce a magnetic field sufficient for the rail to generate heat.
[0004]
On the other hand, in technical fields other than this type of snow melting device, a device for induction heating using a spiral induction coil is known (Japanese Patent Laid-Open No. 60-89), and this is used for heating the point portion. It is also possible. However, as described above, the induction heating type snow melting device has firstly a structure that is seismic and weather resistant and can be stably installed on the point portion, and secondly, the point portion is large enough to generate heat. In addition, it is necessary to induce a magnetic field with a small loss of the amount of generated heat, and thirdly, it must be easy to install on site, and a known spiral induction coil cannot be applied to a snow melting device as it is.
[0005]
SUMMARY OF THE INVENTION In view of such problems, the present invention is an apparatus for melting snow at a point portion using an induction coil, and can be installed stably and easily, and it is possible to induce and heat a large magnetic field at the point portion. And
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a snow melting device that heats a floor board installed in a space provided inside an iron floor board that supports a rail, and generates a eddy current by an induced magnetic field. This is an induction heating method that directly heats the part, and has an air-core multi-layer winding structure in which a rectangular magnet wire whose surface is covered with an insulating resin is wound closely in a concentric spiral shape without opening a gap between adjacent wires. a plurality of induction coils are connected in series arranged in a row on the upper surface of a rectangular substrate, and each entire induction coil a thin plate-like heater body formed is fixed to the substrate being coated with an insulator, the A plate-like high heat conductive member is placed on the upper surface and disposed in the space, and a commercial frequency power supply voltage is supplied to the heater body to inductively heat the floor plate.
[0007]
According to this, by arranging the heater body equipped with the induction coil inside the floor plate, the magnetic field can be guided to the floor plate without leakage, and the gap (distance) between the heater body and the floor plate is also small, so the floor plate is efficient. It is possible to generate eddy current and generate heat.
In addition, since the number of turns of the induction coil can be increased by using a flat magnet wire, a magnetic field can be induced with a large magnetic flux density on the floor plate, and the eddy current of the heated body becomes large. A calorific value sufficient to melt the snow at the point can be obtained.
The heater body is formed by covering the entire induction coil with an insulator, so it has excellent durability against rainwater and dust, and the connection wiring does not come off even when subjected to shock or vibration, and is stable within the floorboard. Can be installed in. Moreover, since this apparatus is a floor board insertion type, installation and removal work are also easy.
[0008]
The heater body can be configured using an appropriate number of induction coils according to the installation conditions such as the size of the space inside the floorboard and the required amount of heat generation.
Specifically, for example, an induction coil is placed on a thin plate made of an insulating material as a substrate, and when a plurality of induction coils are used, they are arranged side by side, and both ends of the coil are placed on the upper and lower surfaces of the substrate so as not to cause a short circuit. Each of them is routed and wired, and then the induction coil and the substrate are integrally molded with an insulating resin such as silicon or an insulating material such as rubber, and the whole is covered with an insulating resin film such as Teflon. If the insulating coil can be insulated and sealed by winding the insulating resin film around the induction coil and the substrate, they can be integrated even if the molding process using an insulator is omitted.
[0009]
In the above-described configuration, the heater main body may be configured by continuously integrating a plurality of induction coils with a single magnet wire, and having no connection portion of the conductive wire other than the connection portion with the power supply terminal.
[0010]
Moreover, in the said structure, it is preferable to provide a pressing member, such as a spring piece which contacts a lower surface of a heater main body, in the space part inside a floor board with a heater main body so that the upper surface side of a heater main body may press-contact with a floor board.
If the upper surface of the heater body is in pressure contact with the floor plate, the induction coil and the floor plate that is the object to be heated can be kept close to each other, so eddy currents are generated efficiently and wastefully on the upper surface of the floor plate that supports the rail. The amount can be increased.
Further, if a pressing member is provided on the lower side of the heater body, the heater body and the floor board are in close contact with each other, the heater body is stably fixed, and a gap is formed between the lower part of the floor board space and the heater body. Is formed, and the pressing member has a structure in which the lower surface of the heater body is in partial contact with the lower surface of the heater body, the area where the lower surface of the heater body is in contact with other members is reduced and the thermal insulation in the lower surface direction is increased. It is possible to improve the heating efficiency for the floor board by reducing the heat radiation to the direction other than the heated body direction, that is, the direction other than the upper surface of the heater body. The temperature of the insulator portion of the heater body can also be kept relatively low.
As the pressing member, a spring piece, a spring coil, an elastic body such as rubber, and other appropriate members that act to press the heater body upward can be used.
[0011]
Furthermore, in the said structure, it is preferable to arrange | position high heat conductive members, such as a copper plate, on a heater main body upper surface so that the whole floor board may be heated uniformly.
When the floor plate is heated through the induction coil, the amount of heat generated is different between the strong and weak portions of the induction magnetic field, and the heat generation is uneven within the floor plate. If this is provided, the temperature of the entire upper surface of the floor plate can be increased uniformly and uniformly through the heat conducting member.
In addition, as the high thermal conductivity member, a member having high thermal conductivity such as copper can be used, and it is preferable to use a member having a size that can be joined to the entire upper surface of the heater body or the entire upper surface of the space.
[0012]
Further, Oite the above configuration, it is greater to increase the heating value of the induced magnetic field by using an inductive coil a rectangular magnet wire was air-core multilayer winding structure becomes possible.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The snow melting device of the present invention is a snow melting device of the type that heats the floor plate from the inside and melts snow at the point portion, and as the heating method, the eddy current is generated and the floor plate itself is directly heated and accompanied with the excitation coil loss. This is a system in which the heat generation energy is more efficiently transmitted to the floor plate that is the object to be heated. Preferred embodiments of the present invention will be described below with reference to the drawings.
[0014]
FIG.1 and FIG.2 has shown the point part in which the snow melting apparatus of this invention was installed. In the figure, reference numeral 1 is a pillar, 2 is an iron floor fixed to the upper surface of the pillar, 3 is a rail supported on the upper surface of the floor, 4 is a snow melting device, and 5 is a drop prevention for fixing the position of the snow melting device. It is a metal fitting. The floor plate 2 is provided with a space portion 21 having a size capable of disposing at least a heater main body, which will be described later, and an insertion port 22 communicating with the space portion is formed on a side surface (see FIG. 7).
[0015]
As shown in FIG. 3, the snow melting device 4 of this example includes a heater main body 41, a frame plate 42 that supports the heater main body, a connector box 43 attached to an end of the frame plate, and a power distribution cable 44. ing.
[0016]
As shown in FIG. 4, the heater body 41 includes four induction coils 411 formed by densely winding a conductive wire in a flat spiral shape, and these are arranged in a row on a substrate 412 made of an insulating material. They are connected in series, and the surface of each coil and substrate is covered with an insulator to form a thin plate.
[0017]
Specifically, the four induction coils 411 are continuously integrated by a single flat magnet wire 411a whose surface is coated with an insulating resin 411b, and the magnet wire is tightly wound with an air-core single layer. Each is juxtaposed on the upper surface of the substrate 412.
Further, as shown in FIG. 5, the substrate 412 has a rectangular shape in which the lateral direction is slightly larger than the diameter of the induction coil 411, and a predetermined interval is provided on one side thereof. The notch 412a is provided, and when the induction coil 411 is placed, an opening 412b is provided at a position overlapping with the center of each coil, and a slit 412c connected from the edge to each opening 412b is provided on the other side. It is provided and formed.
[0018]
In each coil, a wire portion extending from the outer periphery of the coil wound concentrically to the center of the adjacent coil is inserted into a notch 412a provided on the side portion of the substrate 412 and routed to the back side of the substrate, and further to the other side portion. The slit 412c is inserted into the slit, and the inside of the slit is shifted to the opening 412b. The coil is wound again concentrically from the opening 412b, and the wire portions of the intersecting coils are short-circuited across the substrate 412. Without being integrated with a single wire 411a.
[0019]
Each induction coil 411 juxtaposed on the substrate 412 is molded integrally with the substrate with an insulating resin 413 such as silicon or an insulating material such as rubber and solidified into a thin plate shape, and further, the whole is formed with an insulating resin film 414 such as Teflon. The heater body 41 is configured by being covered.
The induction coil 411 arranged on the substrate 412 may be thinly covered with a thin silicon rubber and press-molded to fix each coil on the substrate. The induction coil 411 may be insulated. If it can be fixed on the substrate 412, the molding step may be omitted, and for example, a Teflon adhesive tape may be wound around the induction coil 411 and the substrate 412 to be integrated.
[0020]
The heater body 41 molded in a thin plate shape is fixed to the upper surface of a dish-shaped frame plate 42 having a connector box 43 connected to the side, and the distribution cable 44 and the wires at both ends of the induction coil 411 group are connected in the connector box 43. Is connected. Silicon resin is injected into the boundary portion between the heater main body 41, the frame plate 42 and the connector box 43, and the wiring portion in the connector box 43, and is solidified integrally.
[0021]
As shown in FIG. 7, the snow melting device 4 configured in this way has a spring piece 6 formed by curving a rectangular steel plate in the short direction applied to the lower side of the heater body 41. Is loaded together with the spring piece 6 into the space 21 of the floor board 2 from the insertion port 22, and the drop-off prevention metal fitting 5 is engaged with the connector box 43 in contact with the side surface of the floor board 2 to be fixed on the pillar 1. .
[0022]
As shown in FIG. 8, the heater main body 41 loaded in the space portion 21 of the floor board 2 is pressed upward with the curved top portion of the spring piece 6 in contact with the substantially central portion of the lower surface thereof, and the induction coil. The upper surface on which 411 is juxtaposed is pressed against the upper surface portion of the floor plate 2 in close contact.
If the distribution cable 44 is energized in this state, an eddy current is generated in the floor plate 2 by the magnetic field induced by each induction coil 411, the upper surface portion of the floor plate 2 is heated by Joule heat generated thereby, and the point portion Can melt snow.
[0023]
In this case, the induction magnetic field is strong and weak depending on the arrangement position of each induction coil 411 that is in close contact with the floor plate 2, so that the amount of heat generation varies depending on the position of the floor plate 2, and temperature unevenness occurs in the floor plate 2, but is shown in FIG. As described above, if the high heat conductive member 7 such as a copper plate having a size to be joined to substantially the entire upper surface portion of the space portion 21 is installed on the upper surface of the heater body 41, the upper surface portion of the floor plate 2 is passed through the high heat conductive member 7. The temperature can be raised uniformly and uniformly.
[0024]
In addition, although the heater main body 41 of the Example comprised the four induction coils 411 arranged in a line, the use number and arrangement | positioning of an induction coil can be changed suitably. As the induction coil 411, a flat magnet wire having an air-core single-layer winding structure is used, but in order to obtain a larger induction magnetic field , a multi-layer winding structure may be used. The pressing member installed in the space portion 21 together with the heater main body 41 may be in a form other than the spring piece 6 as long as the pressing member is in partial contact with the lower surface of the heater main body 41 and presses the heater main body 41 upward. Can do.
[0025]
In addition, the apparatus of the present invention has a structure in which a heater main body incorporating an induction coil is inserted into a floor plate, but a conventional snow melting apparatus that is attached to the side of the rail abdomen has a built-in heater main body. Therefore, it is not limited to use as a snow melter that directly generates eddy currents in the rail abdomen.
[Brief description of the drawings]
FIG. 1 is a view of a snow melting device according to an embodiment of the present invention installed at a point portion as viewed from above.
FIG. 2 is a side view of a snow melting device according to an embodiment of the present invention installed at a point portion.
FIG. 3 is a plan view of the snow melting device of FIG. 1;
FIG. 4 is a view showing an upper surface side and a lower surface side of a heater body constituting the snow melting device.
FIG. 5 is a plan view of a substrate constituting the heater body.
FIG. 6 is a partial enlarged cross-sectional view of a heater body.
7 is a view for explaining a procedure for attaching the snow melting device of FIG. 1; FIG.
FIG. 8 is a diagram showing a cross-section of a floor board loaded with a heater body.
FIG. 9 is a view showing a cross section of a floor board in which a heater main body is loaded together with a high heat conduction member.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Pillar 2 Floor board 21 Space part 22 Insertion slot 3 Rail 4 Snow melting apparatus 41 Heater main body 411 Induction coil 412 Board | substrate 42 Frame board 43 Connector box 44 Power distribution cable 5 Fall-off prevention metal fitting 6 Spring piece 7 High heat conductive member

Claims (2)

レールを支持する鉄製の床板の内部に設けられた空間部内に設置されて床板を加熱する融雪装置であって、
表面が絶縁樹脂で覆われた平角マグネットワイヤを隣接ワイヤ同士で隙間を開けずに密に同心渦巻き状に巻回してなる空心複層巻構造の複数個の誘導コイルが直列に接続されて矩形状基板の上面に一列に並べられ、且つ各誘導コイル全体が絶縁体で被覆されて前記基板上に固定されてなる薄板状のヒータ本体を、
その上面に板状の高熱伝導部材を重ねて前記空間部内に配置し、ヒータ本体に商用周波数電源電圧を供給して前記床板を誘導加熱することを特徴とする誘導加熱式融雪装置。
A snow melting device that is installed in a space provided inside an iron floor plate that supports a rail and heats the floor plate,
A rectangular magnet wire with a plurality of air-core multi-layer winding structures, in which a flat rectangular magnet wire whose surface is covered with an insulating resin is closely wound in a concentric spiral shape without a gap between adjacent wires, is connected in series. A thin plate-like heater body arranged in a line on the upper surface of the substrate, and the entire induction coil is covered with an insulator and fixed on the substrate ,
An induction heating type snow melting device characterized in that a plate-like high heat conductive member is placed on the upper surface and arranged in the space, and a commercial frequency power supply voltage is supplied to a heater body to inductively heat the floor plate.
ヒータ本体下面に部分的に接触するバネ片などの押圧部材をヒータ本体とともに床板内部の空間部内に設け、ヒータ本体の上面に配した高熱伝導部材が床板に圧接するようにしたことを特徴とする請求項1に記載の誘導加熱式融雪装置。A pressing member such as a spring piece that partially contacts the lower surface of the heater body is provided in the space inside the floor plate together with the heater body, and a high heat conductive member disposed on the upper surface of the heater body is pressed against the floor plate. The induction heating type snow melting apparatus according to claim 1 .
JP31477799A 1999-11-05 1999-11-05 Induction heating type snow melting equipment Expired - Fee Related JP4188521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31477799A JP4188521B2 (en) 1999-11-05 1999-11-05 Induction heating type snow melting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31477799A JP4188521B2 (en) 1999-11-05 1999-11-05 Induction heating type snow melting equipment

Publications (2)

Publication Number Publication Date
JP2001131901A JP2001131901A (en) 2001-05-15
JP4188521B2 true JP4188521B2 (en) 2008-11-26

Family

ID=18057475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31477799A Expired - Fee Related JP4188521B2 (en) 1999-11-05 1999-11-05 Induction heating type snow melting equipment

Country Status (1)

Country Link
JP (1) JP4188521B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160081286A (en) * 2014-12-31 2016-07-08 삼표이앤씨 주식회사 Module Type Rail Heating Apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE531380C2 (en) * 2007-05-04 2009-03-17 Swedesafe Marketing Ab Heating
KR101626615B1 (en) * 2009-09-15 2016-06-01 엘지전자 주식회사 A heater unit and air conditioner including the same
JP6008212B2 (en) * 2014-06-09 2016-10-19 吉原鉄道工業株式会社 Snow melter
EP3141657B1 (en) 2015-09-09 2018-05-02 Track Tec S.A. Rail switch heating device
JP7153904B2 (en) * 2018-05-17 2022-10-17 鉄道機器株式会社 floor board
CN108824101A (en) * 2018-08-15 2018-11-16 成都森川科技股份有限公司 Melting snow on turnout junction equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160081286A (en) * 2014-12-31 2016-07-08 삼표이앤씨 주식회사 Module Type Rail Heating Apparatus
KR101641103B1 (en) * 2014-12-31 2016-07-27 삼표이앤씨 주식회사 Module Type Rail Heating Apparatus

Also Published As

Publication number Publication date
JP2001131901A (en) 2001-05-15

Similar Documents

Publication Publication Date Title
US5389766A (en) Rail snow-melting by electromagnetic induction heating
CN105144317B (en) magnetic device
CN104103408A (en) Transformer
JP4188521B2 (en) Induction heating type snow melting equipment
EP2648477A1 (en) Induction heating coil and induction heating device
EP2448095A1 (en) Stator structure and method for producing stator
US5808537A (en) Inductor core for transferring electric power to a conveyor carriage
WO2018190729A1 (en) Thermal regulation in inductive power transfer coupling structures
JPH06342725A (en) Wire transformer, its manufacture, and power supply equipment mounting wire transformer
JP4794725B2 (en) Heating coil for induction heating device
JP3909550B2 (en) Non-contact power supply equipment
JP2000358301A (en) Noncontact load-dispatching equipment
NZ274939A (en) Inductive power pick-up coils best aligned activated by controller
JPH0993704A (en) Non-contact power supply for ground traveling body
CN105655114A (en) Film coil element and manufacturing method thereof, and charging device element having same
JP4613425B2 (en) Heating coil for induction heating device
JP3653889B2 (en) Induction heating device
CN113579450B (en) Electromagnetic welding structure
JPH114502A (en) Non contact feed device for carrier system
JP2003003403A (en) Snow-melting device for switch part of track
CN212209087U (en) Flexible circuit board overlapping coil and aerosol generating device
JP2003187950A (en) Single-turn induction heating coil
JP3675015B2 (en) Induction heating device manufacturing method
JP3825830B2 (en) Rail heating device
JPS60258301A (en) Track crosstie

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees