JP3909550B2 - Non-contact power supply equipment - Google Patents

Non-contact power supply equipment Download PDF

Info

Publication number
JP3909550B2
JP3909550B2 JP2000123902A JP2000123902A JP3909550B2 JP 3909550 B2 JP3909550 B2 JP 3909550B2 JP 2000123902 A JP2000123902 A JP 2000123902A JP 2000123902 A JP2000123902 A JP 2000123902A JP 3909550 B2 JP3909550 B2 JP 3909550B2
Authority
JP
Japan
Prior art keywords
power supply
core
mounting seat
transport vehicle
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000123902A
Other languages
Japanese (ja)
Other versions
JP2001309502A (en
Inventor
正平 古川
康正 荒居
肇 飯沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2000123902A priority Critical patent/JP3909550B2/en
Publication of JP2001309502A publication Critical patent/JP2001309502A/en
Application granted granted Critical
Publication of JP3909550B2 publication Critical patent/JP3909550B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電磁誘導による搬送車の非接触給電設備に関し、特に、給電線の漏れ磁束を抑制することにより、この漏れ磁束の渦電流によって発生する発熱や電力損失を少なくし、給電特性を安定させることができる非接触給電設備に関するものである。
【0002】
【従来の技術】
例えば、半導体の製造工場等では、クリーンな環境下で部品等を搬送するために無人搬送車が用いられるが、この無人搬送車の走行台車への給電を発塵することなく行うために、非接触で給電を行うようにしている。
従来の非接触給電設備は、予め設定された走行レールに沿って給電線を敷設し、給電線に高周波電源装置を接続して高周波電流を流し、搬送車側に設けたピックアップコイルを介して電磁誘導によって電力を供給するようになっている。
そして、給電線は、建屋やレールの構造材上に、絶縁体からなる支持部材により、その長さ方向に沿って所定間隔毎に支持されており、搬送車側ピックアップコイルのE型コアの溝に非接触状態で挿通される。
【0003】
【発明が解決しようとする課題】
ところで、従来の非接触給電設備では、給電線の支持部材は、一般に金属製の導電体の取付座を介して構造材に取り付けられるが、この導電体の取付座がピックアップコイルのコアの開口部側全面に亘って設けられることから、給電線の漏れ磁束による渦電流によって取付座が発熱するとともに、電力の損失が増大し、さらに、ピックアップコイルのインダクタンスが変化して給電性能が変化するなどの問題があった。
【0004】
また、搬送車の停止位置において、ピックアップコイルと対向する位置に導電体がある場合は、渦電流によって導電体が発熱し、電力の損失が増大するとともに、ピックアップコイルのインダクタンスが変化し給電性能が変化するなどの問題があった。
【0005】
本発明は、上記従来の非接触給電設備が有する問題点に鑑み、給電線の漏れ磁束を抑制することにより、この漏れ磁束の渦電流によって発生する発熱や電力損失を少なくし、給電特性を安定させることができる非接触給電設備を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するため、本第1発明の非接触給電設備は、走行レールに沿って敷設され、高周波電流を流す給電線と、搬送車側に設けたピックアップコイルを介して電磁誘導によって電力の供給を受ける受電装置とを備えた非接触給電設備において、給電線の支持部材を固定する取付座を、少なくともピックアップコイルのコアと対向する位置に設けないようにしたことを特徴とする。
【0007】
この非接触給電設備では、給電線の支持部材を固定する取付座を、少なくともピックアップコイルのコアと対向する位置に設けないようにしたことから、漏れ磁束の渦電流による取付座の発熱を防止するとともに、電力の損失を少なくし、さらに、ピックアップコイルのインダクタンスを安定させて給電特性を安定させることができる。
【0008】
また、本第2発明の非接触給電設備は、走行レールに沿って敷設され、高周波電流を流す給電線と、搬送車側に設けたピックアップコイルを介して電磁誘導によって電力の供給を受ける受電装置とを備えた非接触給電設備において、給電線の支持部材を固定する導電体からなる取付座を、ピックアップコイルのコアの長さより大きいピッチで間欠的に設けるとともに、該取付座を、搬送車のステーション停止位置でコアと対向しない位置に配設したことを特徴とする。
【0009】
この非接触給電設備では、給電線の支持部材を固定する導電体からなる取付座を、ピックアップコイルのコアの長さより大きいピッチで間欠的に設けるとともに、該取付座を、搬送車のステーション停止位置でコアと対向しない位置に配設したことから、特に、搬送車のステーション停止時における、漏れ磁束の渦電流による取付座の発熱を防止するとともに、電力の損失を少なくし、さらに、ピックアップコイルのインダクタンスを安定させて給電特性を安定させることができる。
【0010】
また、この第2発明の非接触給電設備場合において、搬送車に導電体を検出する導電体検出センサを設け、該導電体検出センサの検出結果に基づいて制御装置によって搬送車の停止制御を行って、コアの対向位置に取付座が位置しないように搬送車を停止させることができる。
【0011】
これにより、搬送車の一時停止時においても、漏れ磁束の渦電流による取付座の発熱を防止するとともに、電力の損失を少なくし、さらに、ピックアップコイルのインダクタンスを安定させて給電特性を安定させることができる。
【0012】
さらに、取付座とコアとの間隔を、コアの開口部の溝幅以上とすることもできる。
【0013】
これにより、取付座が導電体であっても、漏れ磁束の渦電流による発熱を抑制し、電力の損失を少なくすることができる。
【0014】
【発明の実施の形態】
以下、本発明の非接触給電設備の実施の形態を図面に基づいて説明する。
【0015】
図1に本発明の非接触給電設備の第1実施例を示す。
この非接触給電設備は、走行レール1に沿って敷設され、高周波電流を流す給電線2と、搬送車3側に設けたピックアップコイル4を介して電磁誘導によって電力の供給を受ける受電装置5とを備えている。
給電線2は、支持部材6によって、ピックアップコイル4が巻回されたE型コア7の開口部の溝7a内に位置するように支持されている。なお、給電線2は、コア7の溝7aの半分より奥に位置するように支持されている。
また、ピックアップコイル4は、搬送車3に所定間隔で複数配設されている。
【0016】
支持部材6は、2本の給電線2をそれぞれ支持する縦2本の支柱6aと、これらの支柱6aを連結する横支柱6bとからなり、支持部材全体が絶縁体で形成されている。
この支持部材6は、取付座8を介して建屋の構造材9に固定されるが、本実施例では、この取付座8を、ピックアップコイル4のコア7と対向する位置に設けないようにするとともに、支持部材6の横支柱6bをこれに対応して所要延長するようにしている。
【0017】
ところで、一般に、給電線に高周波電流を流して、ピックアップコイルで受電する場合、コアの開口部側に対向するように導電体があると、例えば、図6や図7に示すように、コイルのインダクタンスLが大きく変動する。(図6では、コイルのインダクタンスが減少すると、共振点がずれ、出力電圧がAからBのように低下することを示している。)
このため、例えば、図8に示すような受電回路において、共振回路C1,C2の共振点が変化し、給電効率が低下するとともに、コア開口部側の漏れ磁束により導電体に過電流が発生し、導電体が加熱される。
また、コアと対向する位置に導電体がある場合、コアとの離隔距離によっても異なるが、過電流によって電力損失が発生し、対向して導電体がない場合が一番損失は少なくなる。
【0018】
これに対し、本発明の第1実施例の非接触給電設備では、給電線2の支持部材6を固定する取付座8を、ピックアップコイル4のコア7と対向する位置に設けないようにしたことから、漏れ磁束の渦電流による取付座8の発熱を防止するとともに、電力の損失を少なくし、さらに、ピックアップコイル4のインダクタンスを安定させて給電特性を安定させることができる。
【0019】
次に、図2〜図3を参照して、非接触給電設備の参考例を説明する。
この参考例の非接触給電設備は、第1実施例と同様に、走行レール1に沿って敷設され、高周波電流を流す給電線2と、搬送車3側に設けたピックアップコイル4を介して電磁誘導によって電力の供給を受ける受電装置5とを備えている。
そして、給電線2の支持部材6を絶縁体で形成するとともに、該支持部材6が取り付けられる取付座8全体を合成樹脂等の絶縁体によって形成している。
なお、取付座8は、図3(a)に示すように、少なくともピックアップコイル4のコア7が対向する部分8aのみを絶縁体により形成することができ、また、同図(b)に示すように、取付座8を片側だけで支持する構成とすることもできる。
【0020】
かくして、この参考例の非接触給電設備では、給電線2の支持部材6を固定する取付座8を、少なくともピックアップコイル4のコア7と対向する位置で絶縁体により形成したことから、漏れ磁束の渦電流による取付座の発熱を防止するとともに、電力の損失を少なくし、さらに、ピックアップコイル4のインダクタンスを安定させて給電特性を安定させることができる。
【0021】
さらに、図4を参照して、本発明の非接触給電設備の第2実施例を説明する。
この第2実施例の非接触給電設備は、走行レール1に沿って敷設され、高周波電流を流す給電線2と、搬送車3側に設けたピックアップコイル4を介して電磁誘導によって電力の供給を受ける受電装置5とを備えている。
そして、給電線2の支持部材6を固定する導電体からなる取付座8を、ピックアップコイル4のコア7の長さより大きいピッチで間欠的に設けるとともに、図4(b)に示す搬送車3のステーション停止位置で、取付座8をコア7と対向しない位置に配設するようにしている。
【0022】
また、この実施例では、導電体を検出する導電体検出センサ10を搬送車3に設け、搬送車3が一時停止するような場合でも、図示しない制御装置によって、コア7の対向位置に導電体からなる取付座8が位置しないように搬送車3を停止させるようにしている。
具体的には、例えば、図4(b)に示すように、コア7の中間に配設した導電体検出センサ10が取付座8の上にくる状態で、搬送車3が停止するようにしている。
【0023】
これにより、搬送車のステーション停止時や一時停止時においても、給電線2の漏れ磁束の渦電流による導電体からなる取付座8の発熱を防止するとともに、電力の損失を少なくし、さらに、ピックアップコイル4のインダクタンスを安定させて給電特性を安定させることができる。
【0024】
また、この実施例では、図5に示すように、取付座8とコア7の間隔dを、コア7の開口部の溝7aの幅D以上としており、これにより、取付座8が導電体であっても、漏れ磁束の渦電流による発熱を抑制し、電力の損失を少なくしている。
【0025】
【発明の効果】
本第1発明の非接触給電設備によれば、給電線の支持部材を固定する取付座を、少なくともピックアップコイルのコアと対向する位置に設けないようにしたことから、漏れ磁束の渦電流による取付座の発熱を防止するとともに、電力の損失を少なくし、さらに、ピックアップコイルのインダクタンスを安定させて給電特性を安定させることができる。
【0026】
また、本第2発明の非接触給電設備によれば、給電線の支持部材を固定する取付座を、ピックアップコイルのコアの長さより大きいピッチで間欠的に設けるとともに、該取付座を、搬送車のステーション停止位置でコアと対向しない位置に配設したことから、特に、搬送車のステーション停止時における、漏れ磁束の渦電流による取付座の発熱を防止するとともに、電力の損失を少なくし、さらに、ピックアップコイルのインダクタンスを安定させて給電特性を安定させることができる。
【0027】
また、本第2発明の非接触給電設備場合において、搬送車に導電体を検出する導電体検出センサを設け、該導電体検出センサの検出結果に基づいて制御装置によって搬送車の停止制御を行って、コアの対向位置に導電体からなる取付座が位置しないように搬送車を停止させることにより、搬送車の一時停止時においても、漏れ磁束の渦電流による取付座の発熱を防止するとともに、電力の損失を少なくし、さらに、ピックアップコイルのインダクタンスを安定させて給電特性を安定させることができる。
【0028】
さらに、取付座とコアとの間隔を、コアの開口部の溝幅以上とすることにより、取付座が導電体であっても、漏れ磁束の渦電流による発熱を抑制し、電力の損失を少なくすることができる。
【図面の簡単な説明】
【図1】 本発明の非接触給電設備の第1実施例を示し、(a)は正面図、(b)は側面図、(c)は平面図である。
【図2】 非接触給電設備の参考例を示し、(a)は正面図、(b)は側面図、(c)は平面図である。
【図3】 同参考例の取付座の例を示し、(a)は一部を絶縁体にした状態を示す正面図、(b)は片側のみを支持するようにした状態を示す正面図である。
【図4】 本発明の非接触給電設備の第2実施例を示し、(a)は正面図、(b)は側面図である。
【図5】 同実施例の取付座とコアの間隔を示す正面図である。
【図6】 ピックアップコイルの出力の特性変化を示すグラフである。
【図7】 (a)はコアと導電体の間隔に対するコイルのインダクタンスの変化を示すグラフ、(b)はコアと導電体の位置関係を示す説明図である。
【図8】 走行車側の受電回路を示す回路図である。
【符号の説明】
1 走行レール
2 給電線
3 搬送車
4 ピックアップコイル
5 受電装置
6 支持部材
6a 支柱
6b 横支柱
7 コア
7a 溝
8 取付座
8a コイル対向部分
9 構造材
10 導電体検出センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a contactless power supply facility for a carrier vehicle by electromagnetic induction, and in particular, by suppressing leakage magnetic flux of a power supply line, heat generation and power loss generated by eddy current of the leakage magnetic flux is reduced, and power supply characteristics are stabilized. It is related with the non-contact electric power feeding equipment which can be made to do.
[0002]
[Prior art]
For example, in a semiconductor manufacturing factory or the like, an automatic guided vehicle is used to transport parts and the like in a clean environment, but in order to perform power feeding to a traveling carriage of the automatic guided vehicle without generating dust, Power is supplied by contact.
In the conventional non-contact power supply equipment, a power supply line is laid along a preset traveling rail, a high-frequency power supply device is connected to the power supply line, a high-frequency current flows, and electromagnetic waves are picked up via a pickup coil provided on the carrier vehicle side. Electric power is supplied by induction.
The feeder line is supported on the structural material of the building or rail by a support member made of an insulator at predetermined intervals along the length direction thereof, and the groove of the E-type core of the pickup coil on the transport vehicle side Is inserted in a non-contact state.
[0003]
[Problems to be solved by the invention]
By the way, in the conventional non-contact power supply equipment, the support member of the power supply line is generally attached to the structural material via the mounting seat of the metal conductor, and this mounting seat of the conductor is the opening of the core of the pickup coil Since the mounting seat is heated by the eddy current due to the leakage magnetic flux of the feeder line, the power loss is increased, the inductance of the pickup coil is changed, and the feeding performance is changed. There was a problem.
[0004]
Also, if there is a conductor at the position facing the pickup coil at the stop position of the transport vehicle, the conductor will generate heat due to eddy current, increasing the power loss and changing the inductance of the pickup coil, thereby improving the power feeding performance. There were problems such as changes.
[0005]
In view of the problems of the conventional non-contact power supply equipment, the present invention suppresses the magnetic flux leakage of the power supply line, thereby reducing heat generation and power loss caused by the eddy current of the magnetic flux leakage and stabilizing the power supply characteristics. It is an object of the present invention to provide a non-contact power supply facility that can be made to operate.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the non-contact power feeding facility according to the first aspect of the present invention is constructed along a traveling rail, and generates electric power by electromagnetic induction through a power feeding line for passing a high-frequency current and a pickup coil provided on the carrier side. In a non-contact power supply facility including a power receiving device that receives power, a mounting seat for fixing a support member of a power supply line is not provided at least at a position facing a core of a pickup coil.
[0007]
In this non-contact power supply equipment, since the mounting seat for fixing the support member of the power supply line is not provided at least at a position facing the core of the pickup coil, heat generation of the mounting seat due to eddy current of leakage magnetic flux is prevented. At the same time, the power loss can be reduced, and the inductance of the pickup coil can be stabilized to stabilize the power feeding characteristics.
[0008]
Further, the non-contact power feeding facility of the second invention is a power receiving device that is laid along the traveling rail and receives power supply by electromagnetic induction via a power feeding line for passing a high-frequency current and a pickup coil provided on the carrier vehicle side. In the non-contact power supply equipment provided with the mounting seat, the mounting seat made of a conductor for fixing the support member of the power supply line is intermittently provided at a pitch larger than the length of the core of the pickup coil. It is characterized in that it is disposed at a position not facing the core at the station stop position.
[0009]
In this non-contact power supply facility, a mounting seat made of a conductor for fixing a support member of the power supply line is intermittently provided at a pitch larger than the length of the core of the pickup coil, and the mounting seat is provided at a station stop position of the transport vehicle. In particular, when the station of the transport vehicle is stopped, the mounting seat is prevented from being heated due to the eddy current of the leakage magnetic flux, and the loss of power is reduced. It is possible to stabilize the power feeding characteristics by stabilizing the inductance.
[0010]
In the case of the non-contact power supply facility according to the second aspect of the present invention , a conductor detection sensor for detecting a conductor is provided in the transport vehicle, and the control device performs stop control of the transport vehicle based on the detection result of the conductor detection sensor. Thus, the transport vehicle can be stopped so that the mounting seat is not located at the facing position of the core.
[0011]
This prevents heat generation of the mounting seat due to the eddy current of the leakage magnetic flux even when the transport vehicle is temporarily stopped, reduces power loss, and stabilizes the pickup coil inductance and stabilizes the feeding characteristics. Can do.
[0012]
Furthermore, the interval between the mounting seat and the core can be made equal to or greater than the groove width of the opening of the core.
[0013]
Thereby, even if the mounting seat is a conductor, heat generation due to the eddy current of the leakage magnetic flux can be suppressed, and power loss can be reduced.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the non-contact power supply facility of the present invention will be described with reference to the drawings.
[0015]
FIG. 1 shows a first embodiment of the non-contact power supply equipment of the present invention.
This non-contact power supply facility is laid along the traveling rail 1 and has a power supply line 2 for passing a high-frequency current, and a power receiving device 5 that receives power supply by electromagnetic induction via a pickup coil 4 provided on the side of the carrier 3. It has.
The feeder 2 is supported by the support member 6 so as to be positioned in the groove 7a of the opening of the E-type core 7 around which the pickup coil 4 is wound. The power supply line 2 is supported so as to be located behind half of the groove 7 a of the core 7.
In addition, a plurality of pickup coils 4 are arranged on the transport vehicle 3 at predetermined intervals.
[0016]
The support member 6 includes two vertical columns 6a that respectively support the two power supply lines 2 and horizontal columns 6b that connect these columns 6a, and the entire support member is formed of an insulator.
The support member 6 is fixed to the structural material 9 of the building via the mounting seat 8. In this embodiment, the mounting seat 8 is not provided at a position facing the core 7 of the pickup coil 4. At the same time, the horizontal struts 6b of the support member 6 are extended correspondingly.
[0017]
By the way, generally, when a high-frequency current is passed through a feeder line and power is received by a pickup coil, if there is a conductor so as to face the opening side of the core, for example, as shown in FIGS. The inductance L varies greatly. (In FIG. 6, when the inductance of the coil decreases, the resonance point shifts and the output voltage decreases from A to B.)
For this reason, for example, in the power receiving circuit as shown in FIG. 8, the resonance points of the resonance circuits C1 and C2 change, the power feeding efficiency is lowered, and an overcurrent is generated in the conductor due to the leakage magnetic flux on the core opening side. The conductor is heated.
In addition, when there is a conductor at a position facing the core, power loss occurs due to overcurrent, but the loss is the smallest when there is no conductor facing the core, although it depends on the distance from the core.
[0018]
On the other hand, in the non-contact power supply facility of the first embodiment of the present invention, the mounting seat 8 for fixing the support member 6 of the power supply line 2 is not provided at a position facing the core 7 of the pickup coil 4. Therefore, heat generation of the mounting seat 8 due to the eddy current of the leakage magnetic flux can be prevented, power loss can be reduced, and further, the inductance of the pickup coil 4 can be stabilized and the power feeding characteristics can be stabilized.
[0019]
Next, a reference example of the non-contact power supply facility will be described with reference to FIGS.
As in the first embodiment, the non-contact power supply facility of this reference example is electromagnetically laid along the traveling rail 1 through a power supply line 2 for flowing a high-frequency current and a pickup coil 4 provided on the side of the carrier 3. And a power receiving device 5 that receives power supply by induction.
The support member 6 of the feeder 2 is formed of an insulator, and the entire mounting seat 8 to which the support member 6 is attached is formed of an insulator such as synthetic resin.
As shown in FIG. 3A, the mounting seat 8 can be formed of an insulator at least at a portion 8a facing the core 7 of the pickup coil 4, and as shown in FIG. 3B. Further, the mounting seat 8 can be supported only on one side.
[0020]
Thus, in the non-contact power supply facility of this reference example , the mounting seat 8 for fixing the support member 6 of the power supply line 2 is formed of an insulator at least at a position facing the core 7 of the pickup coil 4. Heat generation of the mounting seat due to eddy currents can be prevented, power loss can be reduced, and the inductance of the pickup coil 4 can be stabilized to stabilize power feeding characteristics.
[0021]
Furthermore, with reference to FIG. 4, 2nd Example of the non-contact electric power supply equipment of this invention is described.
The non-contact power supply facility of the second embodiment is laid along the traveling rail 1 and supplies power by electromagnetic induction via a power supply line 2 for passing a high-frequency current and a pickup coil 4 provided on the side of the carrier 3. And a power receiving device 5 for receiving the power.
And the mounting seat 8 which consists of a conductor which fixes the supporting member 6 of the feeder 2 is intermittently provided with a pitch larger than the length of the core 7 of the pickup coil 4, and the carrier 3 shown in FIG. At the station stop position, the mounting seat 8 is arranged at a position not facing the core 7.
[0022]
Further, in this embodiment, a conductor detection sensor 10 for detecting a conductor is provided in the transport vehicle 3, and even when the transport vehicle 3 is temporarily stopped, the conductor is placed at a position facing the core 7 by a control device (not shown). The transporting vehicle 3 is stopped so that the mounting seat 8 is not located.
Specifically, for example, as shown in FIG. 4B, the transport vehicle 3 is stopped while the conductor detection sensor 10 disposed in the middle of the core 7 is on the mounting seat 8. Yes.
[0023]
This prevents heat generation of the mounting seat 8 made of the conductor due to the eddy current of the leakage magnetic flux of the feeder line 2 even when the station of the transport vehicle is stopped or temporarily stopped, reduces power loss, and further The inductance of the coil 4 can be stabilized and the power feeding characteristics can be stabilized.
[0024]
Further, in this embodiment, as shown in FIG. 5, the distance d between the mounting seat 8 and the core 7 is set to be not less than the width D of the groove 7a in the opening of the core 7, so that the mounting seat 8 is made of a conductor. Even if it exists, the heat_generation | fever by the eddy current of a leakage magnetic flux is suppressed, and the loss of electric power is decreased.
[0025]
【The invention's effect】
According to the non-contact power supply facility of the first invention, since the mounting seat for fixing the support member of the power supply line is not provided at least at a position facing the core of the pickup coil, the mounting by the eddy current of the leakage magnetic flux is performed. Heat generation of the seat can be prevented, power loss can be reduced, and the inductance of the pickup coil can be stabilized to stabilize the power feeding characteristics.
[0026]
According to the non-contact power supply facility of the second invention , the mounting seat for fixing the support member of the power supply line is intermittently provided at a pitch larger than the length of the core of the pickup coil, and the mounting seat is mounted on the transport vehicle. Since the station stop position is not opposed to the core, the mounting seat is prevented from being heated due to the eddy current of the leakage magnetic flux, especially when the carrier station stops, and the loss of power is reduced. The inductance of the pickup coil can be stabilized to stabilize the power feeding characteristics.
[0027]
In the case of the non-contact power supply facility according to the second aspect of the present invention , a conductor detection sensor for detecting a conductor is provided in the transport vehicle, and the stop control of the transport vehicle is performed by the control device based on the detection result of the conductor detection sensor. In addition, by stopping the transport vehicle so that the mounting seat made of the conductor is not located at the opposed position of the core, even when the transport vehicle is temporarily stopped, the mounting seat is prevented from being heated due to the eddy current of the leakage magnetic flux, It is possible to reduce power loss and stabilize the pickup coil inductance to stabilize the power feeding characteristics.
[0028]
Furthermore, by setting the gap between the mounting seat and the core to be equal to or greater than the groove width of the opening of the core, even if the mounting seat is a conductor, heat generation due to eddy current of leakage magnetic flux is suppressed, and power loss is reduced. can do.
[Brief description of the drawings]
FIG. 1 shows a first embodiment of a non-contact power feeding facility according to the present invention, where (a) is a front view, (b) is a side view, and (c) is a plan view.
2A and 2B show a reference example of a non-contact power supply facility, where FIG. 2A is a front view, FIG. 2B is a side view, and FIG. 2C is a plan view.
FIG. 3 shows an example of a mounting seat of the reference example , (a) is a front view showing a state where a part is an insulator, and (b) is a front view showing a state where only one side is supported. is there.
4A and 4B show a second embodiment of the non-contact power feeding equipment of the present invention, where FIG. 4A is a front view and FIG. 4B is a side view.
FIG. 5 is a front view showing the distance between the mounting seat and the core of the embodiment.
FIG. 6 is a graph showing changes in output characteristics of a pickup coil.
7A is a graph showing a change in coil inductance with respect to the distance between the core and the conductor, and FIG. 7B is an explanatory diagram showing the positional relationship between the core and the conductor.
FIG. 8 is a circuit diagram showing a power receiving circuit on the traveling vehicle side.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Traveling rail 2 Feeding line 3 Carriage vehicle 4 Pickup coil 5 Power receiving apparatus 6 Support member 6a Support | pillar 6b Horizontal support | pillar 7 Core 7a Groove 8 Mounting seat 8a Coil opposing part 9 Structural material 10 Conductor detection sensor

Claims (4)

走行レールに沿って敷設され、高周波電流を流す給電線と、搬送車側に設けたピックアップコイルを介して電磁誘導によって電力の供給を受ける受電装置とを備えた非接触給電設備において、給電線の支持部材を固定する取付座を、少なくともピックアップコイルのコアと対向する位置に設けないようにしたことを特徴とする非接触給電設備。  In a non-contact power supply facility including a power supply line that is laid along a traveling rail and flows a high-frequency current, and a power receiving device that receives power supply by electromagnetic induction via a pickup coil provided on a transport vehicle side, A non-contact power supply facility characterized in that a mounting seat for fixing the support member is not provided at least at a position facing the core of the pickup coil. 走行レールに沿って敷設され、高周波電流を流す給電線と、搬送車側に設けたピックアップコイルを介して電磁誘導によって電力の供給を受ける受電装置とを備えた非接触給電設備において、給電線の支持部材を固定する導電体からなる取付座を、ピックアップコイルのコアの長さより大きいピッチで間欠的に設けるとともに、該取付座を、搬送車のステーション停止位置でコアと対向しない位置に配設したことを特徴とする非接触給電設備。  In a non-contact power supply facility including a power supply line that is laid along a traveling rail and flows a high-frequency current, and a power receiving device that receives power supply by electromagnetic induction via a pickup coil provided on a transport vehicle side, A mounting seat made of a conductor for fixing the support member is intermittently provided at a pitch larger than the length of the core of the pickup coil, and the mounting seat is disposed at a position not facing the core at the station stop position of the transport vehicle. A non-contact power supply facility characterized by that. 搬送車に導電体を検出する導電体検出センサを設け、該導電体検出センサの検出結果に基づいて制御装置によって搬送車の停止制御を行って、コアの対向位置に取付座が位置しないように搬送車を停止させるようにしたことを特徴とする請求項2記載の非接触給電設備。A conductor detection sensor for detecting a conductor is provided in the transport vehicle, and the control device performs stop control of the transport vehicle based on the detection result of the conductor detection sensor so that the mounting seat is not positioned at the opposite position of the core. non-contact power feeding apparatus according to claim 2, characterized in that so as to stop the transport vehicle. 取付座とコアとの間隔を、コアの開口部の溝幅以上としたことを特徴とする請求項2又は3記載の非接触給電設備。The non-contact power feeding equipment according to claim 2 or 3 , wherein a distance between the mounting seat and the core is equal to or greater than a groove width of the opening of the core.
JP2000123902A 2000-04-25 2000-04-25 Non-contact power supply equipment Expired - Fee Related JP3909550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000123902A JP3909550B2 (en) 2000-04-25 2000-04-25 Non-contact power supply equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000123902A JP3909550B2 (en) 2000-04-25 2000-04-25 Non-contact power supply equipment

Publications (2)

Publication Number Publication Date
JP2001309502A JP2001309502A (en) 2001-11-02
JP3909550B2 true JP3909550B2 (en) 2007-04-25

Family

ID=18634121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000123902A Expired - Fee Related JP3909550B2 (en) 2000-04-25 2000-04-25 Non-contact power supply equipment

Country Status (1)

Country Link
JP (1) JP3909550B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100573769B1 (en) 2003-12-10 2006-04-25 삼성전자주식회사 Non-contact feeder system
JP5071530B2 (en) * 2010-06-23 2012-11-14 村田機械株式会社 Feed line holding structure
JP6232958B2 (en) * 2013-11-18 2017-11-22 株式会社Ihi Contactless power supply system
WO2016167667A1 (en) * 2015-04-17 2016-10-20 3I Innovation Limited Inductive power transfer apparatus with improved coupling

Also Published As

Publication number Publication date
JP2001309502A (en) 2001-11-02

Similar Documents

Publication Publication Date Title
KR101948276B1 (en) Inductive power transfer apparatus
JPH08175233A (en) Noncontact power feeding system
JPWO2010001540A1 (en) Traveling vehicle system
KR100670409B1 (en) Non-contact power supply apparatus
US5808537A (en) Inductor core for transferring electric power to a conveyor carriage
US6425468B1 (en) Non-contact power supply apparatus and pickup portion used therein
JP3909550B2 (en) Non-contact power supply equipment
JP4051878B2 (en) Non-contact power feeding device
JP2002354713A (en) Impedance converter circuit of noncontact power feeder system
JP3811912B2 (en) Non-contact power supply equipment
JP4006602B2 (en) Feed loop connection structure in contactless power feeder
JP2002078103A (en) Non-contact power feeder pickup, carrier and carrier system
JP3789528B2 (en) Non-contact power supply device for ground mobile
JP4188521B2 (en) Induction heating type snow melting equipment
JP2005261200A (en) Contactless power feeding apparatus
JP4218656B2 (en) Pickup unit and non-contact power supply equipment including the pickup unit
KR20120057038A (en) Power supply module for electromagnet of magnetic levitation vehicle
JPH08196003A (en) Noncontact power supply device
JP3250545B2 (en) Rail joint for wireless power transfer system
JP2004249887A (en) Non-contact power feeding device
JP3598715B2 (en) Non-contact power supply
JPH08126107A (en) Power feeder deevice without contact
JP2002067746A (en) Feeder system
JPH1189004A (en) Power receiving equipment in moving body, and moving body
JP2973703B2 (en) Magnetic levitation type transfer equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050328

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140202

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees