JP2002067746A - Feeder system - Google Patents

Feeder system

Info

Publication number
JP2002067746A
JP2002067746A JP2000223830A JP2000223830A JP2002067746A JP 2002067746 A JP2002067746 A JP 2002067746A JP 2000223830 A JP2000223830 A JP 2000223830A JP 2000223830 A JP2000223830 A JP 2000223830A JP 2002067746 A JP2002067746 A JP 2002067746A
Authority
JP
Japan
Prior art keywords
power supply
track
supply device
primary
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000223830A
Other languages
Japanese (ja)
Inventor
Atsushi Okuno
敦 奥野
Mitsuyoshi Kuroda
光義 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP2000223830A priority Critical patent/JP2002067746A/en
Publication of JP2002067746A publication Critical patent/JP2002067746A/en
Pending legal-status Critical Current

Links

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve electric feeding efficiency in noncontact electric feeding. SOLUTION: This electric feeding device is provided with a pair of primary electric feeding wires 3 provided between a rail 1 constituted of an electrically conductive material having no ferromagnetism and a vehicle 10 travelling along the rail, laid along the track and on which a high frequency electric current flows and a secondary coil 15 to supply an electric power source to a driving source of the vehicle by generating the electric current by electromagnetic induction work between itself and the primary electric feeding wire, and a ferromagnetic body plate 4 is provided on a surface of the track facing against the vehicle by holding the primary electric feeding wire on the electric feeding device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体工場や病院
など発塵防止が要求されるクリーン環境で使用される搬
送装置に好適な給電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply device suitable for a transfer device used in a clean environment such as a semiconductor factory or a hospital where dust prevention is required.

【0002】[0002]

【従来の技術】図6は上記用途に用いられる非接触給電
装置の一従来例を示すものである。この非接触給電装置
20は、磁性体コア21を有し、この磁性体コア21
は、一対の外部磁性体コア22a、22bと、これらの
間に配置された内部磁性体コア23とから構成されてい
て、全体として断面がE字状をなしている。
2. Description of the Related Art FIG. 6 shows a conventional example of a non-contact power supply device used for the above-mentioned application. This non-contact power supply device 20 has a magnetic core 21, and the magnetic core 21
Is composed of a pair of external magnetic cores 22a and 22b and an internal magnetic core 23 disposed therebetween, and has an E-shaped cross section as a whole.

【0003】前記外部磁性体コア22a,22bと内部
磁性体コア23との間には、各々一次給電線26a,2
6bが敷設されている。これら一次給電線26a,26
bは往復の給電路をなすもので、軌道30に固定された
支持台27a,27bにより、所定間隔で支持されてい
る。前記内部磁性体コア23には二次巻線28が巻かれ
ていて、全体として二次コイル29が構成されている。
[0003] Between the outer magnetic cores 22a, 22b and the inner magnetic core 23, primary feeders 26a, 2b are provided, respectively.
6b is laid. These primary feeders 26a, 26
Reference numeral b denotes a reciprocating power supply path, which is supported at predetermined intervals by support tables 27a and 27b fixed to the track 30. A secondary winding 28 is wound around the internal magnetic core 23 to form a secondary coil 29 as a whole.

【0004】上記構成において、一次給電線26a,2
6bに高周波電流を流すことにより磁性体コア21内部
に磁界が発生し、前記高周波電流の磁束の向きや磁束数
の時間的変化に応じて電磁誘導作用により二次巻線28
に電圧が誘起される。この二次巻線28に誘起された電
流は、必要に応じて変圧、整流などの処理の後、搬送装
置の自動走行車(図示略)の駆動源たるモータ(リニア
誘導モータやリニア直流モータ)に供給される。
In the above configuration, the primary power supply lines 26a, 26
When a high-frequency current flows through the magnetic core 6b, a magnetic field is generated inside the magnetic core 21, and the secondary winding 28 is formed by electromagnetic induction in accordance with the temporal change of the direction and the number of magnetic fluxes of the high-frequency current.
, A voltage is induced. After the current induced in the secondary winding 28 is subjected to processing such as voltage transformation and rectification as necessary, a motor (linear induction motor or linear DC motor) as a drive source of an automatic traveling vehicle (not shown) of the transfer device is used. Supplied to

【0005】[0005]

【発明が解決しようとする課題】ところで、上記給電装
置にあっては、二次側の共振周波数を高周波電流の周波
数と一致させることが伝送効率の面で望ましいが、搬送
車を案内する軌道30の精度、あるいは、走行経路変更
に伴うこれらの相対位置の変化によって二次側の共振周
波数が変化し、この共振周波数の変化によって伝送効率
が低下することが避けられない。また、このような非接
触給電における損失は、そのほとんどが銅のような導体
を用いた給電線における伝送損失(I2R I=給電電
流、R=給電線の電気抵抗)である。さらに、このシス
テムは、給電線を常時通電し、前述のように、必要に応
じて二次側を共振させて給電を行うものであるから、前
記給電線における伝送損失の大小がシステム全体の消費
電力に大きく影響することが避けられない。
By the way, in the above-mentioned power supply device, it is desirable to make the resonance frequency on the secondary side coincide with the frequency of the high-frequency current in terms of transmission efficiency. , Or a change in the relative position due to a change in the traveling route, changes the resonance frequency on the secondary side, and the change in the resonance frequency inevitably lowers the transmission efficiency. Most of the loss in such non-contact power supply is transmission loss (I 2 RI = supply current, R = electrical resistance of the supply line) in a power supply line using a conductor such as copper. Further, in this system, the power supply line is always energized and, as described above, power is supplied by resonating the secondary side as necessary. It is inevitable that power will be greatly affected.

【0006】本発明は上記事情に鑑みてなされたもの
で、二次側の共振周波数の変化を低減させることにより
非接触給電の伝送効率を高め、さらに、この伝送効率の
向上により、一次給電線へ常時供給すべき電流を軽減し
てシステムの消費電力を削減することを目的とする。
The present invention has been made in view of the above circumstances, and improves the transmission efficiency of non-contact power supply by reducing the change in the resonance frequency on the secondary side, and further improves the primary power supply line by improving the transmission efficiency. It is an object of the present invention to reduce the current to be constantly supplied to the power supply to reduce the power consumption of the system.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の給電装置は、強磁性を持たない導電性材
料から構成された軌道と該軌道に沿って走行する車両と
の間に設けられ、前記軌道に沿って敷設されて高周波電
流が流れる一対の一次給電線と、該一次給電線との間の
電磁誘導作用により電流を生じて前記車両の駆動源に電
源を供給する二次巻線とから構成された給電装置におい
て、前記一次給電線を挟んで前記車両と対向する前記軌
道の表面に強磁性体板を設けたことを特徴とする。請求
項2の給電装置は、前記軌道がアルミニウムにより形成
されたことを特徴とする。請求項3の給電装置は、前記
強磁性体板はフェライト系またはマルテンサイト系ステ
ンレス鋼からなることを特徴とする。請求項4の給電装
置は、前記二次巻線は、前記一対の一次給電線の間に配
置される内部磁性体コアの周囲に設けられ、該内部磁性
体コアとの間に前記一対の給電線をそれぞれ介在させて
対向する位置に前記内部磁性体コアと一体の外部磁性体
コアが設けられたことを特徴とする。請求項5の給電装
置は、前記一次給電線は、前記軌道の表面から突出する
支柱の先端に前記軌道との間に所定の間隔をおいて支持
されたことを特徴とする。請求項6の給電装置は、前記
支柱が前記磁性体板の表面から突出して設けられたこと
を特徴とする。請求項7の給電装置は、前記強磁性体板
は、前記内部磁性体コアから外部磁性体に至る磁束と交
叉する位置に存在する前記軌道の表面を覆うことを特徴
とする。
According to a first aspect of the present invention, there is provided a power supply apparatus comprising: a track formed of a conductive material having no ferromagnet; and a vehicle traveling along the track. A pair of primary power supply lines, which are laid along the track and through which high-frequency current flows, and a secondary that supplies current to a drive source of the vehicle by generating current by electromagnetic induction between the primary power supply lines In a power supply device including a winding, a ferromagnetic plate is provided on a surface of the track facing the vehicle with the primary power supply line interposed therebetween. According to another aspect of the present invention, the track is formed of aluminum. According to a third aspect of the present invention, the ferromagnetic plate is made of ferritic or martensitic stainless steel. 5. The power supply device according to claim 4, wherein the secondary winding is provided around an internal magnetic core disposed between the pair of primary power supply lines, and the secondary winding is provided between the internal magnetic core. 6. An external magnetic core integrated with the internal magnetic core is provided at a position facing each other with an electric wire interposed therebetween. According to a fifth aspect of the present invention, in the power supply device, the primary power supply line is supported at a tip end of a column projecting from a surface of the track at a predetermined distance from the track. According to a sixth aspect of the present invention, in the power supply device, the support is provided so as to protrude from a surface of the magnetic plate. According to a seventh aspect of the present invention, in the power supply device, the ferromagnetic plate covers a surface of the orbit located at a position crossing a magnetic flux from the internal magnetic core to the external magnetic material.

【0008】[0008]

【発明の実施の形態】図1において符号1はレールであ
って、このレール1は、強磁性を持たないアルミニウム
により構成されて車両10を案内している。このレール
1には、車両10の走行方向へ所定間隔をおいて支柱2
が設けられており、この支柱2により、高周波一次電流
が流れる一次給電線3が対毎に所定の相互間隔をおいて
支持されている。なお、この支柱2は一次給電線3に対
して電気的に絶縁されている。前記レール1における一
次給電線3が設けられている側には、ステンレス鋼(実
施形態ではSUS430)などから構成された強磁性体
板4が設けられている。また、符号5は前記一次給電線
3を上方から覆うカバー、符号6は車両10側のリニア
直流モータ17との間に生じる磁力により車両10を推
進させる磁石ユニットである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, reference numeral 1 denotes a rail, and this rail 1 is made of aluminum having no ferromagnetism and guides a vehicle 10. The rail 1 is provided with a support 2 at a predetermined interval in the traveling direction of the vehicle 10.
The primary feeder line 3 through which the high-frequency primary current flows is supported by the support 2 at a predetermined mutual interval for each pair. The column 2 is electrically insulated from the primary feed line 3. On the side of the rail 1 where the primary feeder line 3 is provided, a ferromagnetic plate 4 made of stainless steel (SUS430 in the embodiment) or the like is provided. Reference numeral 5 denotes a cover that covers the primary power supply line 3 from above, and reference numeral 6 denotes a magnet unit that propels the vehicle 10 by a magnetic force generated between the primary power supply line 3 and the linear DC motor 17 on the vehicle 10 side.

【0009】前記車両10は、フレーム11を有し、こ
のフレーム11には、レール1上を転がって車両10お
よび積み荷の重量を支持する車輪12と、レール1の側
面を転がって車両10の方向を案内する案内輪13とが
設けられている。前記フレーム11の内部には、前記一
次給電線との間の電磁誘導作用により電流を生じる二次
コイル14が設けられている。この二次コイルは、図6
の従来例と同様に、内部磁性体コア14aと外部磁性体
コア14bとを有し、内部磁性体コア14aには二次巻
線15が巻かれている。
The vehicle 10 has a frame 11, on which the wheels 12 roll on the rails 1 to support the weight of the vehicle 10 and the load, and the sides of the rails 1 roll in the direction of the vehicle 10. And a guide wheel 13 for guiding the vehicle. Inside the frame 11, a secondary coil 14 that generates a current by an electromagnetic induction action between the frame 11 and the primary power supply line is provided. This secondary coil is shown in FIG.
In the same manner as in the conventional example, an internal magnetic core 14a and an external magnetic core 14b are provided, and a secondary winding 15 is wound around the internal magnetic core 14a.

【0010】前記二次巻線15には、前記一次給電線3
に交流を供給することにより電磁誘導作用による二次電
圧が発生し、この電流は電源装置16を介して整流ある
いは電圧変換処理を受け、リニア直流モータ17に供給
されている。このリニア直流モータ17は、前述の磁石
ユニット6との間に作用する磁力により、前記レール1
に沿う推進力を車両10に与える。
The secondary winding 15 is connected to the primary feeder line 3.
, A secondary voltage is generated by an electromagnetic induction action. This current is subjected to rectification or voltage conversion processing via a power supply device 16 and supplied to a linear DC motor 17. The linear DC motor 17 is driven by the magnetic force acting between the linear DC motor 17 and the magnet unit 6.
Is applied to the vehicle 10.

【0011】上記構成の給電装置の動作について説明す
る。一次給電線3に高周波電流を供給し、図4に示すよ
うに一対の一次給電線3に互いに逆方向に電流を流す
と、図4(イ)にあっては、内部磁性体コア14aの先
端と両方の外部磁性体コア14bの先端とを結ぶ磁路が
形成される。本実施形態の如く走行経路の側面に設けら
れたレール1に給電線を設けた場合、経路の曲がりや分
岐によるレール1と二次コイル14との距離Xの変化が
避けられない。この距離Xが所定以下まで接近すると、
レール1を構成するアルミニウム等の強磁性を持たない
導電体の磁気遮蔽作用により、レール1と二次コイル1
4との間の空間に内部磁性体コア14aと外部磁性体コ
ア14bとの間の磁束が集中して磁気抵抗が上昇し、二
次コイルのインダクタンスの低下を招いて二次側の共振
周波数が変化することとなる。この結果、一次側の高周
波電流の周波数との差が大きくなって伝送効率の低下が
避けられない。
The operation of the power supply device having the above configuration will be described. When a high-frequency current is supplied to the primary power supply line 3 and currents are supplied to the pair of primary power supply lines 3 in opposite directions as shown in FIG. 4, the tip of the internal magnetic core 14 a in FIG. A magnetic path is formed between the first magnetic core and the outer magnetic cores 14b. When the power supply line is provided on the rail 1 provided on the side surface of the traveling route as in the present embodiment, a change in the distance X between the rail 1 and the secondary coil 14 due to the bending or branching of the route is inevitable. When this distance X approaches a predetermined value or less,
The rail 1 and the secondary coil 1 are formed by the magnetic shielding action of a conductor having no ferromagnetism such as aluminum which constitutes the rail 1.
The magnetic flux between the internal magnetic core 14a and the external magnetic core 14b concentrates in the space between the magnetic cores 4 and 4, the magnetic resistance increases, and the inductance of the secondary coil decreases. Will change. As a result, the difference between the frequency of the high-frequency current on the primary side and the frequency of the high-frequency current increases, and a reduction in transmission efficiency cannot be avoided.

【0012】これに対して、図4(ロ)の場合には、同
様に距離Xが所定値以下となるまで接近したとしても、
レール1の表面に張られた磁気抵抗の小さな強磁性体板
4を経由する磁路が形成されるため、二次側のインダク
タンスを増大させるように作用する。この結果、導電性
材料からなるレール1の存在による前述のインダクタン
ス低下を補って二次側の共振周波数の変化が抑制され
る。
On the other hand, in the case of FIG. 4B, even if the distance X becomes close to the predetermined value or less,
Since a magnetic path is formed on the surface of the rail 1 via the ferromagnetic plate 4 having a small magnetic resistance, the magnetic path acts to increase the inductance on the secondary side. As a result, the above-described reduction in inductance due to the presence of the rail 1 made of a conductive material is compensated for, and the change in the resonance frequency on the secondary side is suppressed.

【0013】図4(イ)および(ロ)における内部磁性
体コア14aおよび外部磁性体コア14bの先端とレー
ル1との間の距離の変化による二次コイルのインダクタ
ンス変化の測定結果は図5に示す通りである。すなわ
ち、二次コイルを構成する巻線15に容量Cのコンデン
サを接続してなる共振回路の共振周波数を測定した結
果、図5に示すように、(イ)の場合には距離Xの変化
によって共振周波数が大きく変化しているのに対して、
(ロ)の場合には、強磁性体板4の存在によって磁気抵
抗の小さい磁路が形成されるため、距離Xの変化による
共振周波数の変化が小さい。このように、距離Xの変化
にかかわらず二次側のインダクタンス変化を最小限に抑
制することにより、一次給電線3に対する二次側の共振
状態を維持して伝送効率を高めることができる。この実
施形態にあっては、図4(イ)の場合に6%の周波数変
動があったのに対して、図4(ロ)の場合には2%の周
波数変動に抑制することができた。また、本発明で用い
られるステンレス鋼は、一般的な磁性材料としてのフェ
ライトに比して加工性が良好であり、レール1の形状な
ど、種々の設置条件に応じて容易に必要な形状に加工す
ることができる。また、ステンレス鋼は、耐候性に優
れ、しかもフェライトに比して低コストで調達すること
ができるという長所がある。
FIGS. 5A and 5B show the measurement results of the change in the inductance of the secondary coil due to the change in the distance between the tip of the inner magnetic core 14a and the outer magnetic core 14b and the rail 1 in FIGS. As shown. That is, as a result of measuring the resonance frequency of the resonance circuit in which the capacitor having the capacitance C is connected to the winding 15 constituting the secondary coil, as shown in FIG. While the resonance frequency has changed greatly,
In the case of (b), a magnetic path having a small magnetic resistance is formed due to the presence of the ferromagnetic plate 4, so that a change in the resonance frequency due to a change in the distance X is small. As described above, by suppressing the change in the inductance on the secondary side to a minimum irrespective of the change in the distance X, it is possible to maintain the resonance state of the secondary side with respect to the primary feeder line 3 and increase the transmission efficiency. In this embodiment, the frequency variation was 6% in the case of FIG. 4A, whereas the frequency variation was 2% in the case of FIG. 4B. . In addition, the stainless steel used in the present invention has better workability than ferrite as a general magnetic material, and is easily processed into a required shape according to various installation conditions such as the shape of the rail 1. can do. Further, stainless steel has an advantage that it has excellent weather resistance and can be procured at a lower cost than ferrite.

【0014】距離Xにかかわらず良好な伝送効率が得ら
れる結果、特に、走行経路の側面に設けられたレールに
給電線を設けた場合に好適に用いられて、経路の曲がり
や分岐によるレールと車両との距離の変化(より具体的
にはレール側の給電線と車両側の二次コイルとの距離の
変化)にかかわらず安定した給電を行うことができる。
なお、強磁性体板4の厚さは、一次給電線を流れる高周
波電流の周波数に応じて、当該周波数の磁束の浸透でき
る深さよりわずかに大きい程度で上記効果を得ることが
できる。高周波電流の周波数10KHzにおいて、SU
S430を用いた場合に必要な強磁性体4の浸透深さは
0.15mm程度である。なお実験の結果、厚さ0.3
mmのSUS430を軌道面に張ることにより、給電電
流を4%低減することができ、この結果、伝送損(I2
R)を8%減少させることができた。また強磁性体板4
には、SUS430のようなフェライト系ステンレス鋼
のみならず、マルテンサイト系のステンレス鋼など、強
磁性を有する他の金属材料を使用することができるのは
勿論である。
As a result of obtaining good transmission efficiency irrespective of the distance X, it is suitably used particularly when a power supply line is provided on a rail provided on the side surface of the traveling route, and the rail is formed by bending or branching the route. Stable power supply can be performed regardless of a change in the distance to the vehicle (more specifically, a change in the distance between the rail-side power supply line and the vehicle-side secondary coil).
The above effect can be obtained only when the thickness of the ferromagnetic plate 4 is slightly larger than the depth at which the magnetic flux of the frequency can penetrate according to the frequency of the high-frequency current flowing through the primary feeder. At a frequency of 10 KHz of the high-frequency current, SU
When S430 is used, the necessary penetration depth of the ferromagnetic material 4 is about 0.15 mm. As a result of the experiment, a thickness of 0.3
mm SUS430 on the track surface can reduce the feed current by 4%, resulting in a transmission loss (I 2
R) could be reduced by 8%. Ferromagnetic plate 4
As a matter of course, not only ferrite-based stainless steel such as SUS430 but also other ferromagnetic metal materials such as martensite-based stainless steel can be used.

【0015】[0015]

【発明の効果】以上説明したように、本発明によれば、
強磁性を有しない導電性材料により構成された軌道と該
軌道に沿って走行する車両との間に設けられ、前記軌道
に沿って敷設されて高周波電流が流れる一対の一次給電
線と、該一次給電線との間の電磁誘導作用により電流を
生じて前記車両の駆動源に電源を供給する二次巻線とか
ら構成された給電装置において、前記一次給電線を挟ん
で前記車両と対向する前記軌道の表面に強磁性体板を設
けたから、車両の走行に伴う一次側と二次側との距離の
変化によって磁束が軌道と車両との間の空間に集中した
場合であっても、この領域に存在する強磁性体板によ
り、前記磁束の集中によるインダクタンス低下を補正す
ることができ、したがって、二次側の共振周波数の変化
を抑制して良好な伝送効率を維持することができる。ま
た、システムが共振周波数変化に対して鈍感になるた
め、一次側と二次側との距離に影響を与えるレールの据
え付けにさほど高い精度が要求されず、したがって、据
え付けコストを低減することができる。さらに、一次側
と二次側との磁気結合の効率が向上するので、同一の電
力を供給するために必要な一次給電線の電流が少なくて
すみ、したがって、一次給電線における送電損を減少さ
せることができる。
As described above, according to the present invention,
A pair of primary power supply lines provided between a track made of a conductive material having no ferromagnetism and a vehicle traveling along the track, laid along the track, and through which a high-frequency current flows; And a secondary winding that generates current by an electromagnetic induction action between the power supply line and supplies power to a drive source of the vehicle, and a secondary winding that faces the vehicle with the primary power supply line interposed therebetween. Since the ferromagnetic plate is provided on the surface of the track, even if the magnetic flux is concentrated in the space between the track and the vehicle due to the change in the distance between the primary side and the secondary side due to the running of the vehicle, this area , It is possible to correct the decrease in inductance due to the concentration of the magnetic flux, so that a change in the resonance frequency on the secondary side can be suppressed and good transmission efficiency can be maintained. Also, since the system is insensitive to changes in the resonance frequency, not very high accuracy is required for rail installation that affects the distance between the primary side and the secondary side, and thus the installation cost can be reduced. . Further, the efficiency of the magnetic coupling between the primary side and the secondary side is improved, so that the current in the primary feeder line required to supply the same power is reduced, and therefore, the power transmission loss in the primary feeder line is reduced. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態における給電装置の斜視
図。
FIG. 1 is a perspective view of a power supply device according to an embodiment of the present invention.

【図2】 一実施形態の給電装置を備えた搬送装置の斜
視図。
FIG. 2 is a perspective view of a transport device including the power supply device according to the embodiment.

【図3】 給電装置の横断面図。FIG. 3 is a cross-sectional view of the power supply device.

【図4】 強磁性体の作用の説明図。FIG. 4 is an explanatory diagram of an action of a ferromagnetic material.

【図5】 軌道とコアとの間の距離と共振周波数との関
係を示すグラフ。
FIG. 5 is a graph showing a relationship between a distance between a track and a core and a resonance frequency.

【図6】 給電装置の一従来例の横断面図。FIG. 6 is a cross-sectional view of a conventional power supply device.

【符号の説明】[Explanation of symbols]

1 レール 2 支柱 3 一次給電線
4 強磁性体板 1 車両 14 二次コイル 15 二次巻線
DESCRIPTION OF SYMBOLS 1 Rail 2 Prop 3 Primary feed line 4 Ferromagnetic plate 1 Vehicle 14 Secondary coil 15 Secondary winding

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 強磁性を有しない導電性材料により構成
された軌道と該軌道に沿って走行する車両との間に設け
られ、前記軌道に沿って敷設されて高周波電流が流れる
一対の一次給電線と、該一次給電線との間の電磁誘導作
用により電流を生じて前記車両の駆動源に電源を供給す
る二次巻線とから構成された給電装置において、前記一
次給電線を挟んで前記車両と対向する前記軌道の表面に
強磁性体板を設けたことを特徴とする給電装置。
1. A pair of primary power supplies provided between a track made of a conductive material having no ferromagnetism and a vehicle traveling along the track, and laid along the track and through which a high-frequency current flows. In a power supply device including an electric wire and a secondary winding that generates current by an electromagnetic induction action between the primary power supply line and supplies power to a drive source of the vehicle, the power supply device includes: A power supply device comprising a ferromagnetic plate provided on a surface of the track facing a vehicle.
【請求項2】 前記軌道がアルミニウムからなることを
特徴とする請求項1記載の給電装置。
2. The power supply device according to claim 1, wherein the track is made of aluminum.
【請求項3】 前記強磁性体板はフェライト系またはマ
ルテンサイト系ステンレス鋼からなることを特徴とする
請求項1または2に記載の給電装置。
3. The power supply device according to claim 1, wherein the ferromagnetic plate is made of ferritic or martensitic stainless steel.
【請求項4】 前記二次巻線は、前記一対の一次給電線
の間に配置される内部磁性体コアの周囲に設けられ、該
内部磁性体コアとの間に前記一対の給電線をそれぞれ介
在させて対向する位置に前記内部磁性体コアと一体の外
部磁性体コアが設けられたことを特徴とする請求項1な
いし3のいずれかに記載の給電装置。
4. The secondary winding is provided around an internal magnetic core disposed between the pair of primary power supply lines, and each of the pair of power supply lines is provided between the secondary winding and the internal magnetic core. The power supply device according to any one of claims 1 to 3, wherein an external magnetic core integrated with the internal magnetic core is provided at a position facing and interposed therebetween.
【請求項5】 前記一次給電線は、前記軌道の表面から
突出する支柱の先端に前記軌道との間に所定の間隔をお
いて支持されたことを特徴とする請求項1ないし4のい
ずれかに記載の給電装置。
5. The device according to claim 1, wherein the primary feeder is supported at a predetermined distance from the track at a tip end of a column projecting from a surface of the track. A power supply device according to claim 1.
【請求項6】 前記支柱が前記磁性体板の表面から突出
して設けられたことを特徴とする請求項5に記載の給電
装置。
6. The power supply device according to claim 5, wherein the support is provided so as to protrude from a surface of the magnetic plate.
【請求項7】 前記強磁性体板は、前記内部磁性体コア
から外部磁性体に至る磁束と交叉する位置に存在する前
記軌道の表面を覆うことを特徴とする請求項1ないし6
のいずれかに記載の給電装置。
7. The ferromagnetic plate covers a surface of the orbit located at a position crossing a magnetic flux from the internal magnetic core to the external magnetic material.
A power supply device according to any one of the above.
JP2000223830A 2000-06-05 2000-07-25 Feeder system Pending JP2002067746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000223830A JP2002067746A (en) 2000-06-05 2000-07-25 Feeder system

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000168295 2000-06-05
JP2000-177523 2000-06-13
JP2000177523 2000-06-13
JP2000-168295 2000-06-13
JP2000223830A JP2002067746A (en) 2000-06-05 2000-07-25 Feeder system

Publications (1)

Publication Number Publication Date
JP2002067746A true JP2002067746A (en) 2002-03-08

Family

ID=27343628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000223830A Pending JP2002067746A (en) 2000-06-05 2000-07-25 Feeder system

Country Status (1)

Country Link
JP (1) JP2002067746A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158775A1 (en) * 2010-06-15 2011-12-22 株式会社Ihi Power-saving driving apparatus and power-saving driving method for apparatus with uniform load pattern
CN103199636A (en) * 2013-04-03 2013-07-10 无锡市顺达物流涂装设备有限公司 Non-contact electricity harvesting device of super-heavy super-large engineering mechanical conveying line
WO2024077848A1 (en) * 2022-10-14 2024-04-18 上海果栗自动化科技有限公司 Conveying apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158775A1 (en) * 2010-06-15 2011-12-22 株式会社Ihi Power-saving driving apparatus and power-saving driving method for apparatus with uniform load pattern
US9007002B2 (en) 2010-06-15 2015-04-14 Ihi Corporation Device and method for power-saving driving of device having same load pattern
CN103199636A (en) * 2013-04-03 2013-07-10 无锡市顺达物流涂装设备有限公司 Non-contact electricity harvesting device of super-heavy super-large engineering mechanical conveying line
WO2024077848A1 (en) * 2022-10-14 2024-04-18 上海果栗自动化科技有限公司 Conveying apparatus

Similar Documents

Publication Publication Date Title
US5855261A (en) Non-contact electric power supplying system for vehicle
JP2010093180A (en) Non-contact power supply
US20120153741A1 (en) Non-contact power feeding apparatus
US10272789B2 (en) Wireless power supply system and wireless power transmission system
JP4437135B2 (en) Transportation system
US20140285138A1 (en) Device for inductive energy transfer
JP2010035300A (en) Non-contact power supply apparatus
JP2024103559A (en) Conductor arrangement for inductive power transfer, inductive power transfer device, and method for forming a conductor arrangement for inductive power transfer
JP6354437B2 (en) Non-contact power feeding device
JP2013050018A (en) Track coil and track coil set for magnetic levitation type railway
JP2002067746A (en) Feeder system
JP4051878B2 (en) Non-contact power feeding device
JPH08340650A (en) Noncontact power supply facility of mover
JP3522413B2 (en) Non-contact power supply device for ground moving objects
JP2002354713A (en) Impedance converter circuit of noncontact power feeder system
JP4165523B2 (en) Contactless power supply
JP3811912B2 (en) Non-contact power supply equipment
JP4218656B2 (en) Pickup unit and non-contact power supply equipment including the pickup unit
JP4006602B2 (en) Feed loop connection structure in contactless power feeder
JP3909550B2 (en) Non-contact power supply equipment
JP3298348B2 (en) Contactless power supply system
JPH0993704A (en) Non-contact power supply for ground traveling body
JPH1189004A (en) Power receiving equipment in moving body, and moving body
JP2003092808A (en) Linear motor
JP3380886B2 (en) Contactless power supply system for mobile objects

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091117