JP4184869B2 - High corrosion resistance duplex stainless steel - Google Patents

High corrosion resistance duplex stainless steel Download PDF

Info

Publication number
JP4184869B2
JP4184869B2 JP2003153133A JP2003153133A JP4184869B2 JP 4184869 B2 JP4184869 B2 JP 4184869B2 JP 2003153133 A JP2003153133 A JP 2003153133A JP 2003153133 A JP2003153133 A JP 2003153133A JP 4184869 B2 JP4184869 B2 JP 4184869B2
Authority
JP
Japan
Prior art keywords
mass
corrosion resistance
stainless steel
duplex stainless
austenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003153133A
Other languages
Japanese (ja)
Other versions
JP2004353041A (en
Inventor
裕 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP2003153133A priority Critical patent/JP4184869B2/en
Publication of JP2004353041A publication Critical patent/JP2004353041A/en
Application granted granted Critical
Publication of JP4184869B2 publication Critical patent/JP4184869B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高耐食性が要求される二相ステンレス鋼の鋼板、鋼管、鍛造棒、鋳造品、またはそれらの部品などに適用され、成分設計から期待される耐食性を上回る耐食性を有すると共に、それを安価に得ることができる二相ステンレス鋼に関するものである。
【0002】
【従来の技術】
二相ステンレス鋼は、フェライト相とオーステナイト相との2相組織からなり、フェライト系ステンレス鋼とオーステナイト系ステンレス鋼の利点を兼ね備えた高耐食ステンレス鋼として知られている。この二相ステンレス鋼の幾つかは、JISにおいて、例えばSUS 329J1,SUS 329J3L,SUS 329J4Lなどとして規格化されているが、その他にも例えば、特許文献1として示す公報には、高Mo、W含有二相ステンレス鋼など、より高耐食性を有する二相ステンレス鋼の提案がある。
【0003】
上記の二相ステンレス鋼を含む一般的なステンレス鋼は、その表面に金属光沢を現出させるため、表面酸化を起させない光輝熱処理を行うのが普通である。この光輝熱処理は、大気中での通常の熱処理とは異なり、水素、水素と窒素の混合ガス、あるいはアンモニア分解ガスなどが用いられ、露点を下げた雰囲気において表面酸化を抑制した雰囲気中で行われる熱処理であり、熱処理後の酸洗が不要になるために表面が荒れず、光沢度の高い表面が得られるという特徴がある。
【0004】
ところで、光輝熱処理は、上述したように、鋼の表面酸化を抑制するために行われる方法であるが、その他にも、例えば、窒素を含まない水素雰囲気での処理によって表面からの脱窒素を目的とした処理があり、また、窒素を含む雰囲気中で行う方法の場合であっても、表面への窒素の吸収を抑制し耐食性の劣化を防止する方法(例えば、特許文献2)も知られている。
【0005】
【特許文献1】
特開平5-132741号公報
【特許文献2】
特開平11-100613号公報
【0006】
【発明が解決しようとする課題】
しかしながら、特許文献1に示すような技術の場合、耐食性を向上させるためにMoやWを多く含有させるために鋼の製造コストを上昇させるという問題がある。また、特許文献2に示すような技術の場合、含有合金成分に対応した耐食性が期待できる反面、その添加成分以上の耐食性を期待することはできないという問題がある。
【0007】
そこで、本発明の目的は、従来技術が抱えている上述した問題に鑑み、合金設計のみによって耐食性の向上を図るのではなく、従来の二相ステンレス鋼の成分組成のままでも従来得られていたよりもさらに優れた耐食性を示し、かつ、それが安価である高耐食二相ステンレス鋼を提供することにある。
【0008】
【課題を解決するための手段】
上記目的の実現に向けて研究の中で、上記課題解決のためには、二相ステンレス鋼を後述する光輝熱処理を施すと、鋼材表面の最表層部のみに適量窒素を吸収させることができ、とくにそれが適量であれば耐食性の劣化を招くと考えられている窒化物を生成させることなく窒素の含有量の多いオーステナイト量が相対的に多い層とすることができるため、もともとの二相ステンレス鋼の含有成分の下で得られる耐食性以上の特性が得られることを知見し、本発明を開発するに到った。
【0009】
即ち、本発明は、オーステナイト相比が20〜80%の二相ステンレス鋼において、その表層部に、オーステナイト相比が90%以上のオーステナイト富化層を有することを特徴とする高耐食二相ステンレス鋼である。
【0010】
本発明において、前記オーステナイト富化層は、母材N含有量の1.0倍とする。そして、この層は、好ましくは1.1倍以上、より好ましくは1.5倍以上、さらに好ましくは2.0倍以上を越える窒素を吸収した層であり、1 50μm以上の厚みを有する光輝熱処理によって生成した層である
【0011】
また、本発明にかかる二相ステンレス鋼において、オーステナイト相比が20〜80mass%である母材部分の成分組成は、C:0.030mass%以下、Si:0.01〜1.00%、Mn:1.50mass%以下、P:0.040mass%以下、S:0.030mass%以下、Ni:3.00〜10.00mass%、Cr:16.00〜30.00mass%、Mo:2.00〜4.00mass%、N:0.08〜0.50mass%を含有し、残部が実質的にFe及び不可避的不純物よりなるものである。さらに、W:0.01〜1.00mass%、Cu:0.01〜1.00mass%、V:0.01〜1.00mass%、Co:0.01〜1.00mass%、Nb:0.01〜1.00mass%、Ti:0.01〜1.00mass%、B:0.001〜0.0050mass%、Al:0.01〜0.10mass%、Ca:0.0001〜0.0050mass%およびMg:0.0001〜0.0050mass%から1選ばれるいずれか1種、または2種以上を含むものであることが好ましい。
【0012】
上記の説明において、オーステナイト相比とは、断面金属組織を光学顕微鏡で観察し、フェライト相とオーステナイト相との面積割合を、JIS G 0555で規定される格子を用いて算出したものである。
また、母材のオーステナイト相比は、母材の厚み方向の中心部を3回測定した平均値であり、表層部のオーステナイト相比は、幅1.0mmのオーステナイト富化層を上記格子により3回測定して得られた値の平均値である。
【0013】
【発明の実施の形態】
所定の成分組成からなる本発明にかかる二相ステンレス鋼は、窒素を含有する雰囲気において、雰囲気中の窒素含有量や熱処理温度、加熱時間などを制御して光輝熱処理を行うことにより、窒化物を析出させないようにして、鋼の表層部に窒素を積極的に吸収させ、このことによって該表層部のオーステナイト相を増加させて耐食性の向上を図るようにしたことを特徴とするものである。
【0014】
即ち、本発明に係る二相ステンレス鋼の特徴の第1は、この鋼の表層部に、オーステナイト相比が90%以上であるオーステナイト富化層を形成したことにある。そして、その表層部はまた、所定量の窒素、即ち、母材のN含有量を越えるNを吸収したオーステナイト富化層であり、その厚みは1μm以上とする。なお、実用的な厚みの上限は、50μm程度、好ましくは40μm程度、さらに好ましくは30μm程度である。
以下に、このような表層部を有する二相ステンレス鋼の耐食性が優れる理由を、発明者らが行った実験に基づいて説明する。
【0015】
図1は、75vol%水素と25vol%窒素の混合ガス、露点-47℃中において1100℃で30秒間加熱保持したNi:6.7mass%、Cr:24.7mass%、Mo:3.3mass%、N:0.16mass%を含有する二相ステンレス鋼と、950℃で30秒間加熱保持した同ステンレス鋼との断面光学顕微鏡写真を示すものである。これらの鋼を1100℃加熱した場合、厚み中央部(母材)の組織はフェライト相が約70mass%、オーステナイト相が約30mass%であるが、表面から約1μmまでの表層部においてはオーステナイト相がほぼ100mass%であり、フェライト相が消失している。
一方、これらの鋼を950℃に加熱した場合、厚み中心部と表層部の組織はどちらもフェライト相約60%、オーステナイト相約40%であった。
【0016】
このような組織を有する2種類の二相ステンレス鋼の耐食性を、20%NaClを含有する80 ℃水溶液中において、JIS G 0577に準じた孔食電位測定を実施したところ、表層部がオーステナイト相である1100℃加熱材では孔食の発生が認められなかったのに対し、950℃加熱材は約0V(対飽和カロメル電極)で孔食が発生した。このことから、窒素を吸収した鋼の表層部は、組織が、オーステナイト相優先となり、母材のオーステナイト相比、即ち鋼材の厚み中心部に比べその表層部ではオーステナイト相比が高いことが明らかであって、このことによって、二相ステンレス鋼の耐食性は大幅に向上することがわかった。
【0017】
なお、鋼材表層部のオーステナイト相比が90%以下のオーステナイト相を有する場合は、窒素吸収があっても耐食性の向上は十分ではない。その理由は、オーステナイト相比が90%に至るまでは母材に比べて耐食性が劣化するためである。
従って、本発明における二相ステンレス鋼は、表層部のオーステナイト相比が90%以上からなるオーステナイト富化層であると同時に、所定量の窒素を吸収したオーステナイト富化層であることが必要である。また、オーステナイト富化層の厚みは、好ましくは1μm以上、より好ましくは1.5μm以上、さらに、好ましくは2μm以上である。本発明において、前記富化層の厚みを限定する理由は、富化層の厚みが厚いほど耐食性が向上するためである。
【0018】
次に、本発明で用いられる二相ステンレス鋼について、好適な成分組成の範囲を説明する。
C:0.030mass%以下
Cは、溶接時に鋭敏化を誘発し耐食性を低下させる元素であるので少ない方が望ましいが、極端に低減させることは強度の低下を招くと共に製造コストの上昇を招く、このことからCの含有量は、0.030mass%までは許容できるのでこの値を上限値とした。好ましいC含有量は、0.025mass%以下である。
【0019】
Si:0.01〜1.00mass%以下
Siは、脱酸のために有効な元素であり、0.01mass%以上の添加が必要である。しかしながら、あまりに過剰に添加しても、その効果が飽和すると共に、延性の低下や強度の上昇を招き、さらにはσ相やχ相などの金属間化合物の析出を助長して耐食性を劣化させるため、その上限を1.00mass%とした。好ましくは、0.01〜0.50mass%とする。
【0020】
Mn:1.50mass%以下
Mnは、オーステナイト生成元素であり、二相ステンレス鋼の耐食性、加工性の適正化を図るためのオーステナイト相/フェライト相の相比率を調整するのに有効な元素である。一方でσ相やχ相などの金属間化合物の析出を抑制し、また耐食性劣化を抑制するにはあまり多くない方が望ましい。しかしながら、極端に低減させることは製造コストが増加するので、その上限を1.50mass%とした。好ましいMn含有量は、0.01〜1.00mass%以下である。
【0021】
P:0.040mass%以下
Pは、不純物として不可避的に混入する元素であり、結晶粒界に偏析しやすく耐食性および熱間加工性の観点からは少ない方が望ましい。しかしながら、Pの含有量を極端に低減させることは製造コストの増加を招く。Pの含有量は0.040mass%までは許容できるのでこの値を上限値とした。ただし、望ましくは0.030mass%以下がよい。
【0022】
S:0.030mass%以下
Sは、Pと同様に不純物として不可避的に混入する元素であり、結晶粒界に偏析しやすく耐食性および熱間加工性の観点からは少ない方が望ましい。特に、0.030mass%を超えて含有すると、その有害性が顕著に現れるので、S含有量は0.030mass%以下とした。望ましくは0.020mass%以下がよい。
【0023】
Ni:3.00〜10.00mass%
Niは、オーステナイト生成元素であり、高耐食化のためにフェライト生成元素であるCrやMoを多量に含有したステンレス鋼の構成組織をフェライト相/オーステナイト相の二相にするためには3.00mass%以上の添加が必要である。しかし、10.00mass%を越えると、オーステナイト相の増加と共にフェライト相の減少を招き、二相ステンレス鋼を維持するのが難しくなるため、その上限を10.00mass%とした。好ましくは4.0〜8.0mass%である。
【0024】
Cr:16.00〜30.00mass%
Crは、耐食性を向上させる元素であると共に、フェライト生成元素でもあるので積極的に添加する元素である。耐食性を向上させるためには16.00mass%以上含有させる必要があるが、26.00mass%を超えて含有するとσ相やχ相などの金属間化合物の形成を助長し、かえって耐食性を劣化させる。また、フェライト相の増加を招き二相組織を維持するのが困難になる。そこでCrの含有量を16.00〜30.00mass%とした。なお、Crの含有量は20.00mass%以上であることが好ましく、23.00mass%以上であればさらに好ましい。
【0025】
Mo:2.00〜4.00mass%
Moも耐食性を向上させるのに有効な元素であり、その効果を得るためには2.00mass%以上含有する必要がある。しかしながら、4.00mass%を超えて含有すると、金属間化合物の析出を助長し、耐食性を逆に劣化させてしまうので、その範囲を2.00〜4.00mass%とした。なお、Moの含有量は3.00mass%以上であることが好ましい。
【0026】
N:0.08〜0.50mass%
Nは、強力なオーステナイト生成元素であると共に、耐食性を向上させる元素である。このNは0.08mass%以下の含有量ではCrやMoが多量に含有された場合に、オーステナイト相の生成が不十分になると共に耐食性の向上も期待できなくなる。一方、N含有量がまた0.50mass%を越えると、特に窒素を含む雰囲気中での輝熱処理においてN固溶限を越えてしまい窒化物を形成しやすくなり、耐食性の劣化を招くので、その範囲を0.08〜0.50mass%とした。なお、Nの含有量は0.10mass%以上が好ましく、0.15mass%以上であればなお好ましい。
【0027】
W:0.01〜1.00mass%、Cu:0.01〜1.00mass%、V:0.01〜1.00mass%、Co:0.01〜1.00mass%、Nb:0.01〜1.00mass%、Ti:0.01〜1.00mass%
本発明において、使用可能な二相ステンレス鋼は、上記成分に加えてさらに、W:0.01〜1.00mass%、Cu:0.01〜1.00mass%、V:0.01〜1.00mass%、Co:0.01〜1.00mass%、Nb:0.01〜1.00mass%、Ti:0.01〜1.00mass%の1種または2種以上を含有させることができる。これら元素は一般的な耐食性の向上に有効であるが、その効果を得るためには0.01mass%以上含有させる必要がある。一方、1.0mass%を超えて含有するとσ相やχ相などの金属間化合物の析出を助長して耐食性が劣化し、また熱間加工性を阻害するので、それぞれの含有量を0.01〜1.00mass%とした。
【0028】
B:0.001〜0.0050mass%
本発明では、上記成分に加えて、B:0.001〜0.0050mass%を含有することができる。Bは、熱間加工性の向上に極めて有効であるが、0.0001mass%以下ではその効果が少なく、0.050mass%を上回ると逆に熱間加工性が劣化する。よって、Bの含有量は0.001〜0.0050mass%とした。
【0029】
Al:0.01〜0.10mass%
本発明では、上記成分に加えて、Al:0.01〜0.10mass%を含有することができる。Alは強力な脱酸剤であるが、0.01mass%以下ではその効果はなく、また0.10mass%を超えて含有させるとその効果が飽和すると共に、金属間化合物の析出を助長させるので、その含有量を0.01〜0.10mass%とした。
【0030】
Ca:0.0001〜0.0050mass%、Mg:0.0001〜0.0050mass%
本発明では、上記成分に加えて、Ca:0.0001〜0.0050mass%、Mg:0.0001〜0.0050mass%を含有することができる。Ca、Mgは脱酸剤であるが、それぞれ0.0001mass%以下ではその効果はなく、また0.0050mass%を越えて含有するとその効果が飽和すると共に、非金属介在物として鋼中に多量に析出して腐食の起点となり耐食性劣化を招くので、それぞれ含有量を0.0001〜0.0050mass%とした。
【0031】
次に、本発明に係る高耐食二相ステンレス鋼を得るための光輝熱処理の条件について説明する。
熱処理温度:本発明の高耐食二相ステンレス鋼が得られるために光輝熱処理に当たっては、その温度は1050〜1150℃に制御する。窒素を含有する雰囲気においては、その雰囲気温度が1050℃以下の温度では最表層部への窒素の吸収が十分に行われないため、耐食性向上の効果が得られなくなる。一方、1150℃を越えると最表層部への窒素吸収が過剰になり、鋼中の窒素量が固溶限を越えて耐食性の劣化を招く窒化物が析出するようになる。
【0032】
加熱保持時間:上記の光輝熱処理において、加熱保持時間は120秒以下とする。その理由は、窒素を含有する雰囲気においては、1050〜1150℃の範囲で120秒を越えずに加熱すると、前記最表層部に十分な窒素の吸収が生じ、耐食性が向上するが、120秒を超えて加熱すると、最表層部への窒素吸収が過剰になり、鋼中の窒素量が固溶限を越えて耐食性の劣化を招く窒化物が析出するようになるからである。
なお、所定の温度まで達したら直ちに冷却しても、最表層部への窒素吸収は達成され、耐食性の向上が認められるので、1050〜1150℃の温度に達していれば、保持時間が実質的に数秒(2〜3秒)であっても本発明の目的は達せられる。
【0033】
光輝熱処理雰囲気:上記光輝熱処理の雰囲気は、窒素ガスを10.0〜50.0vol%、残部が実質的に水素ガスと不活性ガスを含む不可避的な不純物ガスで構成されるか、あるいはアンモニア分解ガスからなり、露点が−10℃以下の雰囲気ガスとする。その理由は、窒素ガスが10.0vol%以下だと、最表層部への窒素吸収が不十分で、耐食性の向上が得られない。一方、窒素ガスが50.0vol%を越えると最表層部への窒素吸収が過剰になり、鋼中の窒素量が固溶限を越えて耐食性の劣化をもたらす窒化物が析出するようになるからである。
【0034】
なお、上記の雰囲気は、アンモニア分解ガス中でも同様の効果が得られる。これは、高温でアンモニアが分解すると、体積%でおよそ75%の水素と25%の窒素に相当する混合ガス雰囲気になるからである。
なお、雰囲気ガスの露点は−10℃以下であるが、これはそれ以上の露点雰囲気では表面の酸化が優先的になり、表面に形成される酸化皮膜が窒素の最表層部への吸収を妨げ、耐食性の向上が阻害されるからである。好ましくは−30℃以下である。
【0035】
【実施例】
次に、本発明を以下に示す実施例に基づいて説明する。
まず、通常の製造方法により、表1に示す成分組成を有する二相ステンレス鋼からなる厚さ0.3mmの冷延板を作製した。次いで、その冷延板から、30mm×20mm×0.3mm、及び25mm×25mm×0.3mmの供試片をそれぞれ採取して、エメリー紙400番にて湿式研磨、脱脂後、以下の条件にて光輝熱処理を行い、以下の腐食試験と熱処理後試片の断面金属組織観察を実施した。
雰囲気:窒素ガス5%、10%、25 %、50%、70%、残部は水素ガス(体積%)
温度:1000℃、1050℃、1100℃、1150℃、1200℃
加熱保持時間(加熱温度に達した後の温度):0秒、30秒、60秒、120秒、600秒
腐食試験条件:20%NaCl、80℃水溶液中での孔食電位測定。濃度、温度以外はJSC G 0577に準拠。
断面金属組織観察条件:10規定水酸化カリウム水溶液中で、10mA/cm2の電流密度になるように電圧印加を5秒間行い、断面のオーステナイト相及びフェライト相を現出させる。
上記オーステナイト相比は、断面金属組織を400倍の光学顕微鏡で観察し、JIS G 0555で規定される格子による格子点法により算出した。なお、JIS G 0555は、介在物の面積率を測定するための規定であるが、この面積率を相比測定のための格子点法に利用したのである。
また、オーステナイト富化層とは、オーステナイト相比が母材より多くなっている部分の厚みのことであって、前記顕微鏡観察により直接計測した値である。
【0036】
【表1】

Figure 0004184869
【0037】
表2に光輝熱処理条件、及び孔食電位測定による腐食試験結果を示す。
この表2から明らかなように、本発明鋼においては、10〜50vol%窒素ガス+残水素ガス雰囲気、温度1050〜1150℃、加熱保持時間0〜120秒の光輝熱処理した本発明鋼の表層部は、オーステナイト相90mass%以上の富化層を有し、かつ1μm以上の厚みを有する金属学的組織であり、明らかに耐食性の向上が認められた。なお、上記腐食試験条件では、通常、孔食の発生が認められる。
【0038】
【表2】
Figure 0004184869
【0039】
【発明の効果】
以上説明したように、本発明の二相ステンレス鋼は、窒素を含有する雰囲気において、光輝熱処理を行うことにより、窒化物を析出させない範囲で表層部に窒素を積極的に吸収させ、表層部のオーステナイト相を増加させることで耐食性を向上させたものである。従って、本発明によれば、二相ステンレス鋼の鋼板、鋼管、鍛造棒、鋳造品、及びそれらからなる部品に適用された場合、含有成分から期待される耐食性を上回る耐食性を示す二相ステンレス鋼を安価に提供することができる。
【図面の簡単な説明】
【図1】 75%水素と25%窒素の混合ガス、露点-47℃中において1100℃で30秒間加熱保持した二相ステンレス鋼と、950℃で30秒間加熱保持した同ステンレス鋼の断面光学顕微鏡写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention is applied to a duplex stainless steel sheet, a steel pipe, a forged bar, a cast product, or a component thereof that requires high corrosion resistance, and has a corrosion resistance that exceeds the corrosion resistance expected from the component design. The present invention relates to a duplex stainless steel that can be obtained at low cost.
[0002]
[Prior art]
The duplex stainless steel is known as a highly corrosion resistant stainless steel having a two-phase structure of a ferrite phase and an austenitic phase and having the advantages of a ferritic stainless steel and an austenitic stainless steel. Some of these duplex stainless steels are standardized in JIS as, for example, SUS 329J1, SUS 329J3L, SUS 329J4L, etc. In addition, for example, the publication shown as Patent Document 1 includes high Mo and W content. There are proposals for duplex stainless steels with higher corrosion resistance, such as duplex stainless steels.
[0003]
In general stainless steels including the above-mentioned duplex stainless steel, a bright heat treatment that does not cause surface oxidation is usually performed in order to reveal a metallic luster on the surface. Unlike the normal heat treatment in the atmosphere, this bright heat treatment is performed in an atmosphere in which surface oxidation is suppressed in an atmosphere in which dew point is lowered using hydrogen, a mixed gas of hydrogen and nitrogen, or ammonia decomposition gas. Since it is a heat treatment and pickling after the heat treatment is not required, the surface is not rough, and a surface having a high glossiness is obtained.
[0004]
By the way, the bright heat treatment is a method performed to suppress the surface oxidation of the steel as described above. In addition, for example, the purpose of denitrification from the surface by treatment in a hydrogen atmosphere not containing nitrogen is used. In addition, even in the case of a method performed in an atmosphere containing nitrogen, a method for suppressing the absorption of nitrogen to the surface and preventing deterioration of corrosion resistance (for example, Patent Document 2) is also known. Yes.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 5-132741 [Patent Document 2]
JP-A-11-100613 [0006]
[Problems to be solved by the invention]
However, in the case of the technique as shown in Patent Document 1, there is a problem that the manufacturing cost of steel is increased in order to contain a large amount of Mo and W in order to improve the corrosion resistance. In the case of the technique shown in Patent Document 2, corrosion resistance corresponding to the contained alloy component can be expected, but on the other hand, there is a problem that corrosion resistance higher than the additive component cannot be expected.
[0007]
Therefore, in view of the above-mentioned problems of the prior art, the object of the present invention is not to improve the corrosion resistance only by alloy design, but rather to the conventional composition even with the component composition of the conventional duplex stainless steel. It is another object of the present invention to provide a high-corrosion-resistant duplex stainless steel that exhibits excellent corrosion resistance and is inexpensive.
[0008]
[Means for Solving the Problems]
In the research for the realization of the above purpose, in order to solve the above problems, when performing the bright heat treatment described later on the duplex stainless steel, it is possible to absorb an appropriate amount of nitrogen only in the outermost layer portion of the steel material surface, In particular, if it is the proper amount, it is possible to form a layer having a relatively large amount of austenite with a high nitrogen content without producing nitrides that are thought to cause deterioration of corrosion resistance. The inventors have found that characteristics higher than the corrosion resistance obtained under the steel components can be obtained, and have developed the present invention.
[0009]
That is, the present invention relates to a duplex stainless steel having an austenite phase ratio of 20 to 80%, and a surface layer portion having an austenite enriched layer having an austenite phase ratio of 90% or more. It is steel.
[0010]
In the present invention, the austenite-enriched layer is 1.0 times the N content of the base material . This layer is a layer that has absorbed nitrogen that is preferably 1.1 times or more, more preferably 1.5 times or more, and even more preferably 2.0 times or more, and is a layer formed by a bright heat treatment having a thickness of 1 to 50 μm or more. It is .
[0011]
Further, in the duplex stainless steel according to the present invention, the composition of the base material portion having an austenite phase ratio of 20 to 80 mass% is C: 0.030 mass% or less, Si: 0.01 to 1.00%, Mn: 1.50 mass% hereinafter, P: 0.040 mass% or less, S: 0.030 mass% or less, Ni: 3.00~10.00 mass%, Cr : 16.00~30.00 mass%, Mo: 2.00~4.00 mass%, N: 0.08~0.50 containing mass% , Ru der the balance being substantially Fe and inevitable impurities. Et al is, W: 0.01~1.00 mass%, Cu : 0.01~1.00 mass%, V: 0.01~1.00 mass%, Co: 0.01~1.00 mass%, Nb: 0.01~1.00 mass%, Ti: 0.01~1.00 mass % , B: 0.001 to 0.0050 mass% , Al: 0.01 to 0.10 mass% , Ca: 0.0001 to 0.0050 mass%, and Mg: 0.0001 to 0.0050 mass% , one selected from two or more Is preferred.
[0012]
In the above description, the austenite phase ratio is obtained by observing the cross-sectional metal structure with an optical microscope and calculating the area ratio of the ferrite phase and the austenite phase using a lattice defined by JIS G 0555.
In addition, the austenite phase ratio of the base material is an average value obtained by measuring the central portion in the thickness direction of the base material three times, and the austenite phase ratio of the surface layer portion is obtained by applying the austenite-enriched layer having a width of 1.0 mm three times by the above lattice. It is an average value of values obtained by measurement.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The duplex stainless steel according to the present invention having a predetermined component composition is obtained by performing a bright heat treatment in a nitrogen-containing atmosphere by controlling the nitrogen content, heat treatment temperature, heating time, etc. in the atmosphere. It is characterized in that nitrogen is actively absorbed in the surface layer portion of the steel so as not to be precipitated, thereby increasing the austenite phase of the surface layer portion and improving the corrosion resistance.
[0014]
That is, the first feature of the duplex stainless steel according to the present invention is that an austenite-enriched layer having an austenite phase ratio of 90% or more is formed on the surface layer portion of the steel. The surface layer portion is also an austenite-enriched layer that has absorbed a predetermined amount of nitrogen, that is, N exceeding the N content of the base material, and has a thickness of 1 μm or more. The upper limit of the practical thickness is about 50 μm, preferably about 40 μm, and more preferably about 30 μm.
The reason why the duplex stainless steel having such a surface layer portion is excellent in corrosion resistance will be described below based on experiments conducted by the inventors.
[0015]
Figure 1 shows a mixture gas of 75vol% hydrogen and 25vol% nitrogen, heated at 1100 ℃ for 30 seconds at a dew point of -47 ℃, Ni: 6.7 mass% , Cr: 24.7 mass% , Mo: 3.3 mass% , N: 0.16 2 is a cross-sectional optical micrograph of a duplex stainless steel containing mass% and the stainless steel heated and held at 950 ° C. for 30 seconds. When these steels are heated at 1100 ° C, the structure of the central part (base metal) is about 70 mass% ferrite phase and about 30 mass% austenite phase, but in the surface layer from the surface to about 1 μm austenite The phase is almost 100 mass% , and the ferrite phase has disappeared.
On the other hand, when these steels were heated to 950 ° C., the structures of the thickness center portion and the surface layer portion were both about 60% ferrite phase and about 40% austenite phase.
[0016]
The corrosion resistance of two types of duplex stainless steels with such a structure was measured in a 80 ° C. aqueous solution containing 20% NaCl in accordance with JIS G 0577. While no pitting corrosion was observed for a certain 1100 ° C heating material, pitting corrosion occurred at about 0 V (vs. saturated calomel electrode). From this, it is clear that the structure of the steel surface layer that has absorbed nitrogen has a higher austenite phase structure, and the austenite phase ratio of the base material, that is, the austenite phase ratio is higher in the surface layer portion than the thickness center portion of the steel material. Thus, it has been found that the corrosion resistance of the duplex stainless steel is greatly improved.
[0017]
Note that, when the austenite phase ratio of the steel surface layer portion is 90% or less, the corrosion resistance is not sufficiently improved even if nitrogen is absorbed. The reason is that the corrosion resistance is deteriorated as compared with the base material until the austenite phase ratio reaches 90%.
Therefore, the duplex stainless steel according to the present invention is required to be an austenite-enriched layer having an austenite phase ratio of the surface layer portion of 90% or more and an austenite-enriched layer that has absorbed a predetermined amount of nitrogen. . The thickness of the austenite-enriched layer is preferably 1 μm or more, more preferably 1.5 μm or more, and further preferably 2 μm or more. In the present invention, the reason for limiting the thickness of the enriched layer is that the thicker the enriched layer, the better the corrosion resistance.
[0018]
Next, the range of a suitable component composition is demonstrated about the duplex stainless steel used by this invention.
C: 0.030 mass% or less C is an element that induces sensitization at the time of welding and lowers the corrosion resistance, so it is desirable to reduce the amount. However, extremely reducing causes a decrease in strength and an increase in manufacturing cost. Therefore, the C content is acceptable up to 0.030 mass%, so this value was taken as the upper limit. A preferable C content is 0.025 mass% or less.
[0019]
Si: 0.01 to 1.00 mass% or less
Si is an effective element for deoxidation and needs to be added in an amount of 0.01 mass% or more. However, even if it is added excessively, the effect is saturated, the ductility is lowered and the strength is increased, and further, precipitation of intermetallic compounds such as σ phase and χ phase is promoted to deteriorate the corrosion resistance. The upper limit was set to 1.00 mass% . Preferably, the content is 0.01 to 0.50 mass% .
[0020]
Mn: 1.50 mass% or less
Mn is an austenite-forming element and is an element effective for adjusting the phase ratio of the austenite phase / ferrite phase in order to optimize the corrosion resistance and workability of the duplex stainless steel. On the other hand, it is desirable that the amount is not so large in order to suppress precipitation of intermetallic compounds such as σ phase and χ phase and to suppress deterioration of corrosion resistance. However, extremely reducing it increases the manufacturing cost, so the upper limit was made 1.50 mass% . A preferable Mn content is 0.01 to 1.00 mass% or less.
[0021]
P: 0.040 mass% or less P is an element that is inevitably mixed in as an impurity, and is preferably segregated at the grain boundaries from the viewpoint of corrosion resistance and hot workability. However, extremely reducing the P content causes an increase in manufacturing cost. Since the content of P is acceptable up to 0.040 mass%, this value was taken as the upper limit. However, 0.030 mass% or less is desirable.
[0022]
S: 0.030 mass% or less S is an element that is inevitably mixed as an impurity as in the case of P, and is preferably segregated at the grain boundary from the viewpoint of corrosion resistance and hot workability. In particular, when the content exceeds 0.030 mass% , the harmful effect appears remarkably, so the S content is set to 0.030 mass% or less. Desirably, it is 0.020 mass% or less.
[0023]
Ni: 3.0-10.00 mass%
Ni is an austenite-forming element, and 3.00 mass% to make the structural structure of stainless steel containing a large amount of ferrite-forming elements Cr and Mo for high corrosion resistance into a ferrite phase / austenite phase. The above addition is necessary. However, if it exceeds 10.00 mass% , the austenite phase will increase and the ferrite phase will decrease, making it difficult to maintain the duplex stainless steel, so the upper limit was made 10.00 mass% . Preferably it is 4.0-8.0 mass% .
[0024]
Cr: 16.00-30.00 mass%
Cr is an element that is actively added because it is an element that improves corrosion resistance and is also a ferrite-forming element. In order to improve the corrosion resistance, it is necessary to contain 16.00 mass% or more. However, if it exceeds 26.00 mass% , the formation of intermetallic compounds such as σ phase and χ phase is promoted and the corrosion resistance is deteriorated. In addition, the ferrite phase is increased and it becomes difficult to maintain a two-phase structure. Therefore, the Cr content was set to 16.00-30.00 mass% . The Cr content is preferably 20.00 mass% or more, more preferably 23.00 mass% or more.
[0025]
Mo: 2.00 to 4.00 mass%
Mo is also an effective element for improving the corrosion resistance. In order to obtain the effect, it is necessary to contain 2.00 mass% or more. However, if the content exceeds 4.00 mass% , the precipitation of intermetallic compounds is promoted and the corrosion resistance is deteriorated conversely, so the range was set to 2.00 to 4.00 mass% . The Mo content is preferably 3.00 mass% or more.
[0026]
N: 0.08 ~ 0.50 mass%
N is a strong austenite-generating element and an element that improves corrosion resistance. When the N content is 0.08 mass% or less, when a large amount of Cr or Mo is contained, the austenite phase is not sufficiently generated and the corrosion resistance cannot be expected. On the other hand, if the N content exceeds 0.50 mass% , the N solid solubility limit is exceeded in the bright heat treatment particularly in an atmosphere containing nitrogen, and nitrides are easily formed, resulting in deterioration of corrosion resistance. Was set to 0.08 to 0.50 mass% . The N content is preferably 0.10 mass% or more, more preferably 0.15 mass% or more.
[0027]
W: 0.01-1.00 mass% , Cu: 0.01-1.00 mass% , V: 0.01-1.00 mass% , Co: 0.01-1.00 mass% , Nb: 0.01-1.00 mass% , Ti: 0.01-1.00 mass%
In the present invention, in addition to the above components, usable duplex stainless steel is further W: 0.01 to 1.00 mass% , Cu: 0.01 to 1.00 mass% , V: 0.01 to 1.00 mass% , Co: 0.01 to 1.00 mass % , Nb: 0.01 to 1.00 mass% , Ti: 0.01 to 1.00 mass% , or one or more of them can be contained. These elements are effective in improving general corrosion resistance, but in order to obtain the effect, it is necessary to contain 0.01 mass% or more. On the other hand, if the content exceeds 1.0 mass% , the corrosion resistance deteriorates by promoting precipitation of intermetallic compounds such as σ phase and χ phase, and hot workability is inhibited, so each content is 0.01-1.00 mass. % .
[0028]
B: 0.001 to 0.0050 mass%
In this invention, in addition to the said component, B: 0.001-0.0050 mass% can be contained. B is extremely effective in improving hot workability, but the effect is small at 0.0001 mass% or less, and hot workability is deteriorated when it exceeds 0.050 mass% . Therefore, the content of B is set to 0.001 to 0.0050 mass% .
[0029]
Al: 0.01-0.10 mass%
In this invention, in addition to the said component, Al: 0.01-0.10 mass% can be contained. Al is a strong deoxidizer, but there is no effect at 0.01 mass% or less, and if it exceeds 0.10 mass% , the effect is saturated and the precipitation of intermetallic compounds is promoted. The amount was set to 0.01 to 0.10 mass% .
[0030]
Ca: 0.0001 to 0.0050 mass% , Mg: 0.0001 to 0.0050 mass%
In the present invention, in addition to the above components, Ca: 0.0001 to 0.0050 mass% , Mg: 0.0001 to 0.0050 mass% can be contained. Ca and Mg are deoxidizers, but there is no effect at 0.0001 mass% or less, and when the content exceeds 0.0050 mass% , the effect is saturated and a large amount of non-metallic inclusions precipitate in the steel. Therefore, the content is set to 0.0001 to 0.0050 mass% , respectively, since it becomes a starting point of corrosion and causes deterioration of corrosion resistance.
[0031]
Next, the conditions of the bright heat treatment for obtaining the high corrosion resistance duplex stainless steel according to the present invention will be described.
Heat treatment temperature: In order to obtain the high corrosion resistance duplex stainless steel of the present invention, the temperature is controlled to 1050 to 1150 ° C. in the bright heat treatment. In an atmosphere containing nitrogen, if the atmospheric temperature is 1050 ° C. or lower, nitrogen is not sufficiently absorbed into the outermost layer portion, so that the effect of improving corrosion resistance cannot be obtained. On the other hand, when the temperature exceeds 1150 ° C., nitrogen absorption into the outermost layer becomes excessive, and the amount of nitrogen in the steel exceeds the solid solubility limit, and nitrides that cause corrosion resistance deterioration are precipitated.
[0032]
Heating and holding time: In the above bright heat treatment, the heating and holding time is 120 seconds or less. The reason for this is that in an atmosphere containing nitrogen, heating in the range of 1050 to 1150 ° C. without exceeding 120 seconds results in sufficient absorption of nitrogen in the outermost layer portion, which improves the corrosion resistance. This is because, if the heating is exceeded, nitrogen absorption into the outermost layer becomes excessive, and the amount of nitrogen in the steel exceeds the solid solubility limit, and nitrides that cause deterioration in corrosion resistance are precipitated.
Even if it is cooled immediately after reaching a predetermined temperature, nitrogen absorption into the outermost layer is achieved and an improvement in corrosion resistance is recognized. Therefore, if the temperature reaches 1050 to 1150 ° C, the holding time is substantially reduced. Even in a few seconds (2 to 3 seconds), the object of the present invention can be achieved.
[0033]
Bright heat treatment atmosphere: The atmosphere of the above bright heat treatment is composed of 10.0 to 50.0 vol% of nitrogen gas, and the balance is composed of inevitable impurity gas substantially containing hydrogen gas and inert gas, or consists of ammonia decomposition gas The atmospheric gas has a dew point of -10 ° C or lower. The reason for this is that when the nitrogen gas is 10.0 vol% or less, the absorption of nitrogen into the outermost layer is insufficient, and the corrosion resistance cannot be improved. On the other hand, if the nitrogen gas exceeds 50.0 vol%, the absorption of nitrogen into the outermost layer will be excessive, and the amount of nitrogen in the steel will exceed the solid solubility limit, leading to precipitation of nitrides that cause deterioration in corrosion resistance. is there.
[0034]
Note that the above-described atmosphere can achieve the same effect even in ammonia decomposition gas. This is because when ammonia decomposes at a high temperature, a mixed gas atmosphere corresponding to approximately 75% hydrogen and 25% nitrogen by volume is obtained.
Note that the dew point of the atmospheric gas is -10 ° C or lower. However, in this atmosphere with higher dew point, oxidation of the surface is preferential, and the oxide film formed on the surface hinders absorption of nitrogen into the outermost layer. This is because the improvement in corrosion resistance is hindered. Preferably it is -30 degrees C or less.
[0035]
【Example】
Next, this invention is demonstrated based on the Example shown below.
First, a cold-rolled sheet having a thickness of 0.3 mm made of a duplex stainless steel having the component composition shown in Table 1 was produced by a normal production method. Next, specimens of 30 mm x 20 mm x 0.3 mm and 25 mm x 25 mm x 0.3 mm were collected from the cold rolled sheet, wet-polished with emery paper No. 400, degreased, and brightened under the following conditions: After heat treatment, the following corrosion test and observation of the cross-sectional metal structure of the specimen after heat treatment were performed.
Atmosphere: Nitrogen gas 5%, 10%, 25%, 50%, 70%, balance is hydrogen gas (volume%)
Temperature: 1000 ° C, 1050 ° C, 1100 ° C, 1150 ° C, 1200 ° C
Heat holding time (temperature after reaching the heating temperature): 0 seconds, 30 seconds, 60 seconds, 120 seconds, 600 seconds Corrosion test conditions: Pitting corrosion potential measurement in 20% NaCl, 80 ° C. aqueous solution. Except for concentration and temperature, it conforms to JSC G 0577.
Cross-sectional metal structure observation conditions: In a 10 N aqueous potassium hydroxide solution, voltage is applied for 5 seconds so that the current density is 10 mA / cm 2 , and the austenite phase and ferrite phase of the cross section appear.
The austenite phase ratio was calculated by observing the cross-sectional metal structure with a 400 × optical microscope and using a lattice point method based on a lattice defined by JIS G 0555. Note that JIS G 0555 is a rule for measuring the area ratio of inclusions, but this area ratio was used for the lattice point method for phase ratio measurement.
The austenite-enriched layer is the thickness of the portion where the austenite phase ratio is larger than that of the base material, and is a value directly measured by the microscopic observation.
[0036]
[Table 1]
Figure 0004184869
[0037]
Table 2 shows the bright heat treatment conditions and the corrosion test results by pitting potential measurement.
As is apparent from Table 2, in the steel of the present invention, the surface layer portion of the steel of the present invention which has been subjected to a bright heat treatment in an atmosphere of 10 to 50 vol% nitrogen gas + residual hydrogen gas, a temperature of 1050 to 1150 ° C, and a heating and holding time of 0 to 120 seconds. Is a metallographic structure having an enriched layer of 90 mass% or more of austenite phase and a thickness of 1 μm or more, and clearly improved corrosion resistance. In addition, generation | occurrence | production of pitting corrosion is recognized normally on the said corrosion test conditions.
[0038]
[Table 2]
Figure 0004184869
[0039]
【The invention's effect】
As described above, the duplex stainless steel of the present invention actively absorbs nitrogen in the surface layer part in a range in which nitride is not precipitated by performing bright heat treatment in an atmosphere containing nitrogen, Corrosion resistance is improved by increasing the austenite phase. Therefore, according to the present invention, when applied to a duplex stainless steel sheet, a steel pipe, a forged bar, a cast product, and a component made thereof, the duplex stainless steel exhibiting a corrosion resistance exceeding the corrosion resistance expected from the contained components. Can be provided at low cost.
[Brief description of the drawings]
[Figure 1] Cross-sectional optical microscope of a duplex stainless steel heated and held at 1100 ° C for 30 seconds in a mixed gas of 75% hydrogen and 25% nitrogen at a dew point of -47 ° C, and the same stainless steel heated and held at 950 ° C for 30 seconds It is a photograph.

Claims (3)

母材の成分組成が、C: 0.030mass% 以下、 Si 0.01 1.00mass% Mn 1.50mass% 以下、P: 0.040mass% 以下、S: 0.030mass% 以下、 Ni 4.00 8.00mass% Cr 16.00 30.00mass% Mo 2.00 4.00mass% 、N: 0.08 0.50mass% を含有し、残部が Fe 及び不可避的不純物よりなり、かつオーステナイト相比が20〜80%である二相ステンレス鋼の、その表層部に、上記成分組成からなる母材のN含有量に対し 1.0 倍を越える窒素を吸収した1μ m 〜50μ m 厚みの光輝熱処理によって生成させた層であって、オーステナイト相比が90%以上であるオーステナイト富化層を有することを特徴とする、高耐食二相ステンレス鋼。 The composition of the base material is C: 0.030 mass% or less, Si : 0.01 to 1.00 mass% , Mn : 1.50 mass% or less, P: 0.040 mass% or less, S: 0.030 mass% or less, Ni : 4.00 to 8.00 mass% , Cr: 16.00 ~ 30.00mass%, Mo: 2.00 ~ 4.00mass%, N: contains 0.08 ~ 0.50%, the balance being Fe and unavoidable impurities, and the austenite phase ratio of 20% to 80% two phase stainless steel, its surface layer portion, a layer was produced by bright heat treatment of m ~50μ m thickness that has absorbed nitrogen exceeding 1.0 times the N content of the base material having the above chemical composition, austenite A highly corrosion-resistant duplex stainless steel having an austenite-enriched layer having a phase ratio of 90% or more. 母材は、さらに、W:0.01〜1.00mass%、Cu:0.01〜1.00mass%、V:0.01〜1.00mass%、Co:0.01〜1.00mass%、Nb:0.01〜1.00mass%、Ti:0.01〜1.00mass%、B:0.001〜0.0050mass%、Al:0.01〜0.10mass%、Ca:0.0001〜0.0050mass%およびMg:0.0001〜0.0050mass%から選ばれるいずれか1種、または2種以上を含むことを特徴とする、請求項1に記載の高耐食二相ステンレス鋼。The base material is further W: 0.01 to 1.00 mass% , Cu: 0.01 to 1.00 mass% , V: 0.01 to 1.00 mass% , Co: 0.01 to 1.00 mass% , Nb: 0.01 to 1.00 mass% , Ti: 0.01 to 1.00 mass% , B: 0.001 to 0.0050 mass% , Al: 0.01 to 0.10 mass% , Ca: 0.0001 to 0.0050 mass%, and Mg: 0.0001 to 0.0050 mass% , or one or more types The high corrosion resistance duplex stainless steel according to claim 1, characterized in that: 前記オーステナイト富化層は、加熱保持温度: 1050 ℃〜 1150 ℃、加熱保持時間120秒以下の条件で行われる光輝熱処理によって生成した層であることを特徴とする、請求項1または2に記載の高耐食二相ステンレス鋼。 The austenite-enriched layer is a layer formed by a bright heat treatment performed under a heating and holding temperature of 1050 ° C to 1150 ° C and a heating and holding time of 120 seconds or less . High corrosion resistance duplex stainless steel.
JP2003153133A 2003-05-29 2003-05-29 High corrosion resistance duplex stainless steel Expired - Lifetime JP4184869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003153133A JP4184869B2 (en) 2003-05-29 2003-05-29 High corrosion resistance duplex stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003153133A JP4184869B2 (en) 2003-05-29 2003-05-29 High corrosion resistance duplex stainless steel

Publications (2)

Publication Number Publication Date
JP2004353041A JP2004353041A (en) 2004-12-16
JP4184869B2 true JP4184869B2 (en) 2008-11-19

Family

ID=34048175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003153133A Expired - Lifetime JP4184869B2 (en) 2003-05-29 2003-05-29 High corrosion resistance duplex stainless steel

Country Status (1)

Country Link
JP (1) JP4184869B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108220813A (en) * 2018-03-29 2018-06-29 东北大学 A kind of spy's super-duplex stainless steel and its alloying component optimum design method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7807028B2 (en) 2005-03-09 2010-10-05 Xstrata Queensland Limited Stainless steel electrolytic plates
JP6771963B2 (en) * 2016-06-28 2020-10-21 日本冶金工業株式会社 Duplex stainless steel
KR101867734B1 (en) * 2016-12-23 2018-06-14 주식회사 포스코 Duplex stainless steel having exceleent corrosin resistance and method for manufacturing the same
JP2020094266A (en) * 2018-12-10 2020-06-18 日本製鉄株式会社 Two-phase stainless steel and manufacturing method therefor
JP7433111B2 (en) 2020-03-30 2024-02-19 日鉄ステンレス株式会社 Duplex stainless steel plate
CN112522642A (en) * 2020-12-24 2021-03-19 福州大学 Tungsten-containing rare earth-free economical duplex stainless steel and preparation method thereof
CN115725910A (en) * 2022-11-24 2023-03-03 上海交通大学内蒙古研究院 Method and device for preparing stainless steel for casting, electronic equipment and storage medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108220813A (en) * 2018-03-29 2018-06-29 东北大学 A kind of spy's super-duplex stainless steel and its alloying component optimum design method

Also Published As

Publication number Publication date
JP2004353041A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
JP4519505B2 (en) Ferritic stainless steel sheet having excellent formability and method for producing the same
US9487849B2 (en) Ferritic stainless steel
US9249475B2 (en) Ferritic stainless steel
EP3418416B1 (en) Ferritic-austenitic two-phase stainless steel material and method for manufacturing same
JP6206624B1 (en) Ferritic stainless steel sheet
WO2012018074A1 (en) Ferritic stainless steel
JP2009235555A (en) Heat resistant ferritic stainless steel sheet having excellent oxidation resistance
WO2014136866A1 (en) Ferritic stainless steel sheet having excellent heat resistance
KR101598742B1 (en) Ferrite-based stainless steel plate having excellent resistance against scale peeling, and method for manufacturing same
WO2019189174A1 (en) Ferritic stainless steel and method for manufacturing same, ferritic stainless steel plate and method for manufacturing same, and fuel cell member
TWI653346B (en) Black ferrous iron-based stainless steel plate
EP3249067B1 (en) Ferritic stainless steel for exhaust system member having excellent corrosion resistance after heating
JP5703075B2 (en) Ferritic stainless steel plate with excellent heat resistance
JP4184869B2 (en) High corrosion resistance duplex stainless steel
JP6426617B2 (en) Method of manufacturing ferritic stainless steel
JP7224141B2 (en) Ferritic stainless steel sheet, manufacturing method thereof, and fuel cell member
JP5700182B1 (en) Ferritic stainless steel with excellent corrosion resistance of welds
JP2019178364A (en) Ferritic stainless steel excellent in salt damage corrosion resistance
JP2020063499A (en) Stainless steel
JP6783343B2 (en) Austenitic stainless steel and its manufacturing method
JP7076258B2 (en) Ferritic stainless steel sheets and their manufacturing methods, as well as fuel cell components
KR20210107657A (en) Ferritic stainless steel
JP2008285718A (en) Ferritic stainless steel sheet having high strength of welded joint for water heater, and manufacturing method therefor
JP2019173072A (en) Ferritic stainless steel and manufacturing method therefor, and fuel battery member
JP2019173075A (en) Ferritic stainless steel and manufacturing method therefor, and fuel battery member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4184869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term