JP4184228B2 - Fluorescence lifetime measuring device - Google Patents

Fluorescence lifetime measuring device Download PDF

Info

Publication number
JP4184228B2
JP4184228B2 JP2003359616A JP2003359616A JP4184228B2 JP 4184228 B2 JP4184228 B2 JP 4184228B2 JP 2003359616 A JP2003359616 A JP 2003359616A JP 2003359616 A JP2003359616 A JP 2003359616A JP 4184228 B2 JP4184228 B2 JP 4184228B2
Authority
JP
Japan
Prior art keywords
fluorescence
excitation light
fluorescence lifetime
region
lifetime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003359616A
Other languages
Japanese (ja)
Other versions
JP2005121602A (en
Inventor
雅弘 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2003359616A priority Critical patent/JP4184228B2/en
Publication of JP2005121602A publication Critical patent/JP2005121602A/en
Application granted granted Critical
Publication of JP4184228B2 publication Critical patent/JP4184228B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、試料に励起光を照射し、励起した試料が励起状態から基底状態に遷移する間に発する蛍光を測定し、蛍光寿命を算出する蛍光寿命測定装置に関するものである。   The present invention relates to a fluorescence lifetime measuring apparatus that irradiates a sample with excitation light, measures fluorescence emitted while the excited sample transitions from an excited state to a ground state, and calculates a fluorescence lifetime.

近年、生物化学分野におけるゲノム、DNA、遺伝子、タンパク質分子等の構造解析、また、環境変化に対する応答解析を調べる上で、走査型蛍光顕微鏡による蛍光観察が有効な手段となっている。その中において、蛍光寿命の測定は、蛍光色素濃度に無関係であること、また蛍光波長が分離できないような試料においてもその違いが観察できるなどの多くの利点を有している。本発明にかかる蛍光寿命の測定は、励起光を観察対象に照射し、観察対象から放出される蛍光光子を測定し、測定した蛍光光子にもとづいて蛍光寿命を算出するものである。従来は、全試料中を励起光により一様に走査し、観察対象の有無に係わりなく蛍光寿命を算出し、蛍光寿命の分布画像を作成していた。蛍光寿命の算出には多大な時間がかかるため、蛍光寿命の算出を高効率に行う方法が提示されている(特許文献1参照)。   In recent years, fluorescence observation by a scanning fluorescence microscope has become an effective means for examining structural analysis of genomes, DNAs, genes, protein molecules, and the like in the field of biochemistry and analysis of responses to environmental changes. Among them, the measurement of the fluorescence lifetime has many advantages such that it is independent of the concentration of the fluorescent dye and that the difference can be observed even in a sample where the fluorescence wavelength cannot be separated. The measurement of the fluorescence lifetime according to the present invention is to irradiate the observation object with the excitation light, measure the fluorescence photons emitted from the observation object, and calculate the fluorescence lifetime based on the measured fluorescence photons. Conventionally, the entire sample was scanned uniformly with excitation light, the fluorescence lifetime was calculated regardless of the presence or absence of the observation target, and a fluorescence lifetime distribution image was created. Since it takes a long time to calculate the fluorescence lifetime, a method for calculating the fluorescence lifetime with high efficiency has been proposed (see Patent Document 1).

特開2003−202292号公報JP 2003-202292 A

しかしながら、試料の全体を一様に励起光により照射し、蛍光寿命を算出することは、観察対象外の領域の蛍光寿命を算出することになり、このような励起光の照射は、時間の浪費になるばかりでなく、励起光源の寿命を縮め、また試料への不必要な損傷を招くという問題点があった。   However, irradiating the entire sample uniformly with excitation light and calculating the fluorescence lifetime results in calculation of the fluorescence lifetime of a region outside the observation target. Such excitation light irradiation is a waste of time. In addition to this, there are problems that the life of the excitation light source is shortened and unnecessary damage to the sample is caused.

特に、蛍光光子数を複数の時間帯で測定し、蛍光寿命を算出する方法(以下、時間ゲート法と称す。)においては、1つの蛍光寿命の分布画像を作成するために数十秒から数分という長時間を要する場合もあり、観察対象が短時間に移動する場合や、観察対象自体の蛍光寿命が変化したりする場合に蛍光寿命の分布画像の作成が迅速に対応できず、蛍光寿命の経時変化が観察できないという問題点があった。   In particular, in a method for calculating the fluorescence lifetime by measuring the number of fluorescence photons in a plurality of time zones (hereinafter referred to as a time gate method), several tens of seconds to several seconds are required to create one fluorescence lifetime distribution image. In some cases, it may take a long time, so when the observation object moves in a short time or when the fluorescence life of the observation object itself changes, the creation of a fluorescence life distribution image cannot be handled quickly, and the fluorescence life There was a problem that the change with time cannot be observed.

本発明は、上記に鑑みてなされたものであって、簡易な方法により短時間に蛍光寿命の分布画像を取得できる蛍光寿命測定装置を提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a fluorescence lifetime measuring apparatus capable of acquiring a fluorescence lifetime distribution image in a short time by a simple method.

上述した課題を解決し、目的を達成するために、請求項1にかかる蛍光寿命測定装置は、試料に励起光を照射し、該試料が励起状態から基底状態に遷移する間に発する蛍光光子を複数の時間帯において測定し、該複数の時間帯で測定した蛍光光子から蛍光寿命を算出する蛍光寿命測定装置において、前記試料に照射する励起光の走査を制御する励起光制御手段と、前記励起光の走査領域を特定する領域特定手段と、前記領域特定手段によって特定された走査領域からの蛍光光子をもとに前記蛍光寿命を算出する蛍光寿命算出手段と、前記励起光制御手段が前記励起光を前記試料広域に照射し、この照射によって発する蛍光をもとに前記領域特定手段が蛍光寿命を算出する領域を特定し、前記励起光制御手段がこの特定した領域のみに励起光を照射し、前記蛍光寿命算出手段がこの照射した領域から放出される蛍光光子を測定し、この測定した蛍光光子にもとづいて蛍光寿命を算出させる制御を行う制御手段と、を備えたことを特徴とする。   In order to solve the above-described problems and achieve the object, a fluorescence lifetime measuring apparatus according to claim 1 irradiates a sample with excitation light, and generates fluorescent photons generated while the sample transitions from an excited state to a ground state. In a fluorescence lifetime measuring apparatus that measures in a plurality of time zones and calculates a fluorescence lifetime from fluorescence photons measured in the plurality of time zones, an excitation light control unit that controls scanning of excitation light irradiated on the sample, and the excitation A region specifying unit for specifying a scanning region of light, a fluorescence lifetime calculating unit for calculating the fluorescence lifetime based on fluorescent photons from the scanning region specified by the region specifying unit, and the excitation light control unit The light is irradiated over a wide area of the sample, the region specifying unit specifies a region for calculating the fluorescence lifetime based on the fluorescence emitted by the irradiation, and the excitation light control unit applies the excitation light only to the specified region. And a control means for controlling the fluorescence lifetime to be calculated based on the measured fluorescence photons by the fluorescence lifetime calculation means measuring the fluorescence photons emitted from the irradiated region. To do.

この請求項1の発明によれば、励起光を試料広域に走査させ、蛍光を発する領域を検知し、検知した領域にもとづいて蛍光寿命を算出する領域を特定し、この特定した領域のみに蛍光寿命算出のための励起光を照射し、短時間に蛍光寿命の分布画像が取得できる。   According to the first aspect of the present invention, the excitation light is scanned over a wide area of the sample, the region emitting fluorescence is detected, the region for calculating the fluorescence lifetime is specified based on the detected region, and the fluorescence is applied only to the specified region. By irradiating excitation light for lifetime calculation, a fluorescence lifetime distribution image can be acquired in a short time.

また、請求項2にかかる蛍光寿命測定装置は、上記発明において、前記領域特定手段は、前記励起光によって蛍光を発する領域を前記走査領域として特定することを特徴とする。   According to a second aspect of the present invention, in the fluorescence lifetime measuring apparatus according to the present invention, the region specifying unit specifies a region that emits fluorescence by the excitation light as the scanning region.

また、請求項3にかかる蛍光寿命測定装置は、上記発明において、前記領域特定手段は、前記励起光によって所定強度の蛍光を発する領域を前記走査領域として特定することを特徴とする。   According to a third aspect of the present invention, in the above-described invention, the region specifying unit specifies a region that emits fluorescence of a predetermined intensity by the excitation light as the scanning region.

また、請求項4にかかる蛍光寿命測定装置は、上記発明において、前記領域特定手段は、前記励起光によって所定強度と所定面積の蛍光を発する領域を前記走査領域として特定することを特徴とする。   According to a fourth aspect of the present invention, in the fluorescence lifetime measuring apparatus according to the above invention, the region specifying unit specifies a region that emits fluorescence having a predetermined intensity and a predetermined area by the excitation light as the scanning region.

また、請求項5にかかる蛍光寿命測定装置は、上記発明において、前記領域特定手段は、前記励起光によって蛍光を発する領域の少なくとも一部分を含む矩形状領域を前記走査領域として特定することを特徴とする。   In addition, the fluorescence lifetime measuring apparatus according to claim 5 is characterized in that, in the above invention, the region specifying means specifies a rectangular region including at least a part of a region emitting fluorescence by the excitation light as the scanning region. To do.

本発明にかかる蛍光寿命測定装置は、励起光を試料広域に走査させ、蛍光を発する領域を検知し、検知した領域にもとづいて蛍光寿命を算出する領域を特定し、この特定した領域のみに蛍光寿命算出のための励起光を照射し、短時間に蛍光寿命の分布画像が取得できるという効果を奏する。   The fluorescence lifetime measuring apparatus according to the present invention scans excitation light over a wide area of a sample, detects a region emitting fluorescence, specifies a region for calculating a fluorescence lifetime based on the detected region, and detects fluorescence only in the specified region. There is an effect that the excitation light for the lifetime calculation is irradiated and a distribution image of the fluorescence lifetime can be acquired in a short time.

(実施の形態)
以下に添付図面を参照して、この発明にかかる蛍光寿命測定装置の実施の形態を詳細に説明する。
(Embodiment)
Embodiments of a fluorescence lifetime measuring apparatus according to the present invention will be described below in detail with reference to the accompanying drawings.

図1は、この発明の実施の形態である蛍光寿命測定装置1の構成概要を示すブロック図である。制御部2からの制御信号により、レーザ光源3からパルス状、正弦波状、または連続な励起光が発振され、コリメータレンズ4とNDフィルタ5とを順次介し、ダイクロイックミラー6に入射する。ダイクロイックミラー6は、励起光の波長成分の光を反射し、蛍光の波長成分の光を透過するため、励起光はダイクロイックミラー6により反射され、ガルバノミラーユニット7に入射する。ガルバノミラ−ユニット7は、制御部2からの制御信号により、1対のミラーを可変に制御し入射した励起光を試料14上の所定面を走査させる機能を有している。   FIG. 1 is a block diagram showing a schematic configuration of a fluorescence lifetime measuring apparatus 1 according to an embodiment of the present invention. In response to a control signal from the control unit 2, pulsed, sinusoidal, or continuous excitation light is oscillated from the laser light source 3 and is incident on the dichroic mirror 6 through the collimator lens 4 and the ND filter 5 in order. Since the dichroic mirror 6 reflects the light having the wavelength component of the excitation light and transmits the light having the wavelength component of the fluorescence, the excitation light is reflected by the dichroic mirror 6 and enters the galvanometer mirror unit 7. The galvano mirror unit 7 has a function of variably controlling a pair of mirrors according to a control signal from the control unit 2 and scanning a predetermined surface on the sample 14 with incident excitation light.

ガルバノミラーユニット7に入射した励起光は、所定の光路に制御されて出射し、瞳投影レンズ8を介して反射ミラー9で反射される。反射ミラー9で反射した励起光は、観察鏡筒10と結像レンズ11とハーフミラー12と対物レンズ13とを順次介し、試料14に集光する。ハーフミラー12は、観察用照明ユニット15からの照明光を反射させて試料14を照明し、観察鏡筒10から試料14を目視観察できるようにしている。   The excitation light that has entered the galvanomirror unit 7 is controlled to have a predetermined optical path and is emitted, and is reflected by the reflection mirror 9 through the pupil projection lens 8. The excitation light reflected by the reflection mirror 9 is condensed on the sample 14 through the observation barrel 10, the imaging lens 11, the half mirror 12, and the objective lens 13 in order. The half mirror 12 reflects the illumination light from the observation illumination unit 15 to illuminate the sample 14 so that the sample 14 can be visually observed from the observation barrel 10.

試料14に集光した励起光により試料14は励起され、励起状態から基底状態に遷移する間に試料14は蛍光を発する。試料14から発した蛍光は、励起光が通る光路と同じ光路をダイクロイックミラー6まで逆行し、ダイクロイックミラー6を透過し、集光レンズ16とピンホール17と吸収フィルタ18とを順次介して光検出器19に入射する。   The sample 14 is excited by the excitation light collected on the sample 14, and the sample 14 emits fluorescence during the transition from the excited state to the ground state. The fluorescence emitted from the sample 14 travels back to the dichroic mirror 6 through the same optical path as the excitation light passes, passes through the dichroic mirror 6, and is detected through the condenser lens 16, the pinhole 17, and the absorption filter 18 in order. The light enters the container 19.

時間ゲート法では、前記励起光は、一般に低速繰返しのパルス波であり、光検出器19に入射した蛍光は電気信号に変換され、複数の時間帯に設定された複数の時間ゲートからなるゲート回路20を介して、前記複数の時間ゲートに対応した複数のカウンタからなるカウンタ21により、それぞれ前記電気信号を蛍光光子数としてカウントする。カウントされた蛍光光子数は制御部2に出力される。制御部2は入力した蛍光光子数と蛍光光子数をカウントした複数の時間帯とにもとづいて蛍光寿命の算出を行い、算出した蛍光寿命を表示装置22に出力し、表示装置22は、入力した蛍光寿命にもとづいて蛍光寿命の分布画像を表示する。   In the time gate method, the excitation light is generally a low-speed repetitive pulse wave, and the fluorescence incident on the photodetector 19 is converted into an electric signal, and a gate circuit comprising a plurality of time gates set in a plurality of time zones. The electric signal is counted as the number of fluorescent photons by a counter 21 including a plurality of counters corresponding to the plurality of time gates. The counted number of fluorescent photons is output to the control unit 2. The control unit 2 calculates the fluorescence lifetime based on the input fluorescence photon count and a plurality of time zones in which the fluorescence photon count is counted, and outputs the calculated fluorescence lifetime to the display device 22. A distribution image of the fluorescence lifetime is displayed based on the fluorescence lifetime.

図2は、制御部2の詳細を示す概要構成ブロック図である。制御部2は、蛍光寿命算出制御部2Aと、励起光制御部2Bと、蛍光画像取得部2Cと、領域特定部2Dと、蛍光寿命算出部2Eとを有している。   FIG. 2 is a schematic configuration block diagram showing details of the control unit 2. The control unit 2 includes a fluorescence lifetime calculation control unit 2A, an excitation light control unit 2B, a fluorescence image acquisition unit 2C, a region specifying unit 2D, and a fluorescence lifetime calculation unit 2E.

蛍光寿命算出制御部2Aは、励起光制御部2Bを制御して励起光の出射タイミングを制御し、蛍光寿命算出部2Eを制御して蛍光寿命の算出タイミングを制御するとともに、蛍光寿命算出部2Eが算出した蛍光寿命を入力し、表示装置22に出力する。励起光制御部2Bは、レーザ光源3を制御して励起光であるレーザ光の出射を制御し、ガルバノミラーユニット7を制御して励起光の走査を制御するとともに、励起光の走査を制御している制御信号を蛍光画像取得部2Cに出力する。   The fluorescence lifetime calculation control unit 2A controls the excitation light control unit 2B to control the emission timing of the excitation light, controls the fluorescence lifetime calculation unit 2E to control the calculation timing of the fluorescence lifetime, and also controls the fluorescence lifetime calculation unit 2E. Is input to the display device 22. The excitation light control unit 2B controls the laser light source 3 to control the emission of the laser light that is the excitation light, and controls the galvano mirror unit 7 to control the scanning of the excitation light, and also controls the scanning of the excitation light. The control signal is output to the fluorescence image acquisition unit 2C.

蛍光寿命算出部2Eは、ゲート回路20を制御して複数の時間ゲートを制御するとともに、カウンタ21から蛍光光子数を入力して蛍光寿命を算出し、算出した蛍光寿命を蛍光寿命算出制御部2Aに出力する。   The fluorescence lifetime calculation unit 2E controls the gate circuit 20 to control a plurality of time gates, calculates the fluorescence lifetime by inputting the number of fluorescence photons from the counter 21, and calculates the calculated fluorescence lifetime to the fluorescence lifetime calculation control unit 2A. Output to.

蛍光画像取得部2Cは、光検出器19が蛍光から電気信号に変換した電気信号と励起光制御部2Bが励起光の走査制御を行う制御信号とを入力し、2次元の蛍光画像を作成し、作成した2次元の蛍光画像を領域特定部2Dに出力する。領域特定部2Dは、入力した2次元の蛍光画像から蛍光寿命を算出すべき領域を特定し、特定した領域を蛍光寿命算出制御部2Aに出力する。   The fluorescence image acquisition unit 2C receives the electrical signal converted from the fluorescence to the electrical signal by the light detector 19 and the control signal for the excitation light control unit 2B to perform scanning control of the excitation light, and creates a two-dimensional fluorescence image. Then, the created two-dimensional fluorescence image is output to the region specifying unit 2D. The region specifying unit 2D specifies a region where the fluorescence lifetime is to be calculated from the input two-dimensional fluorescence image, and outputs the specified region to the fluorescence lifetime calculation control unit 2A.

まず、蛍光寿命算出制御部2Aは、励起光制御部2Bに指示出力すると、励起光制御部2Bはレ−ザ光源3とガルバノミラーユニット7とに制御信号を出力し、レーザ光源3からは励起光であるレーザ光が発振され、ガルバノミラーユニット7は、励起光が試料14の広域を走査するように励起光を制御する。この動作時の励起光は、連続光、もしくは高速繰返しのパルス光、および/または高パルス波高値の励起光であることが望ましい。   First, when the fluorescence lifetime calculation control unit 2A outputs an instruction to the excitation light control unit 2B, the excitation light control unit 2B outputs a control signal to the laser light source 3 and the galvanometer mirror unit 7, and the laser light source 3 performs excitation. Laser light, which is light, is oscillated, and the galvanometer mirror unit 7 controls the excitation light so that the excitation light scans a wide area of the sample 14. The excitation light during this operation is desirably continuous light, high-speed pulse light, and / or high pulse peak value excitation light.

励起光が試料14の広域を走査することによって、蛍光物質が存在する領域から蛍光が発せられ、蛍光は、励起光が通る光路と同じ光路を逆行してダイクロイックミラー6を透過し、光検出器19に到達する。光検出器19は、到達した蛍光をその蛍光強度に対応する電気信号に変換し、電気信号を蛍光画像取得部2Cに出力する。   When the excitation light scans a wide area of the sample 14, fluorescence is emitted from the region where the fluorescent substance exists, and the fluorescence travels through the dichroic mirror 6 in the same optical path as the path through which the excitation light passes. 19 is reached. The photodetector 19 converts the reached fluorescence into an electrical signal corresponding to the fluorescence intensity, and outputs the electrical signal to the fluorescence image acquisition unit 2C.

蛍光画像取得部2Cは、光検出器19からの電気信号と、励起光制御部2Bからの励起光の走査制御を行う制御信号とを入力し、励起光が試料14の広域を走査した領域の2次元の蛍光画像を作成し、領域特定部2Dに出力する。領域特定部2Dは、入力した2次元画像から所定強度と所定面積とを満たす領域を特定し、この特定した領域を蛍光寿命算出制御部2Aに出力する。ここまでの過程は、全画面の全ての点について蛍光寿命を算出する時間に比較して桁違いに速い速度で実行することができる。   The fluorescence image acquisition unit 2C receives an electric signal from the photodetector 19 and a control signal for performing scanning control of the excitation light from the excitation light control unit 2B, and the excitation light scans a wide area of the sample 14. A two-dimensional fluorescent image is created and output to the region specifying unit 2D. The region specifying unit 2D specifies a region satisfying a predetermined intensity and a predetermined area from the input two-dimensional image, and outputs the specified region to the fluorescence lifetime calculation control unit 2A. The process so far can be executed at an order of magnitude faster than the time for calculating the fluorescence lifetime for all points on the entire screen.

図3は、励起光が試料広域30を走査する様子を示した図であり、この時点では、蛍光寿命の算出対象である核31A,31B,31Cとそれらを内包する蛍光寿命の算出対象外である細胞25A,25B,25Cの存在とその存在領域は分らない。従来、核31A,31B,31Cの存在領域に係わらず試料広域30の全域に対して蛍光寿命の算出を行っていたため、蛍光寿命の分布画像を得るために多大な時間を要していた。   FIG. 3 is a diagram showing how the excitation light scans the sample wide area 30. At this time, the nuclei 31A, 31B, and 31C that are the calculation targets of the fluorescence lifetime and the calculation of the fluorescence lifetime that includes them are not included. The existence of certain cells 25A, 25B, and 25C and their existing regions are unknown. Conventionally, since the fluorescence lifetime is calculated for the entire sample wide area 30 regardless of the existence area of the nuclei 31A, 31B, and 31C, it takes a lot of time to obtain a fluorescence lifetime distribution image.

図4は、蛍光画像取得部2Cが作成した2次元の蛍光画像を示している。この2次元の蛍光画像は、細胞25A,25B,25Cと内包される核31A,31B,31Cとの存在とその存在領域とを示している。蛍光画像取得部2Cは、作成した2次元の蛍光画像を領域特定部2Dに出力する。領域特定部2Dは、入力した2次元の蛍光画像を蛍光強度とその蛍光強度を満たす面積とにより選別し、核31A,31B,31Cを蛍光寿命の算出対象として特定し、その位置と領域とを蛍光寿命算出制御部2Aに出力する。2次元の蛍光画像には、蛍光を発する細胞25A,25B,25Cも示されているが、これらは、所定の蛍光強度を満たさないことにより、蛍光寿命の算出の対象外としている。   FIG. 4 shows a two-dimensional fluorescence image created by the fluorescence image acquisition unit 2C. This two-dimensional fluorescence image shows the presence of the cells 25A, 25B, and 25C and the contained nuclei 31A, 31B, and 31C and their existing areas. The fluorescence image acquisition unit 2C outputs the created two-dimensional fluorescence image to the region specifying unit 2D. The area specifying unit 2D selects the input two-dimensional fluorescence image based on the fluorescence intensity and the area satisfying the fluorescence intensity, specifies the nuclei 31A, 31B, and 31C as calculation targets of the fluorescence lifetime, and determines the position and the area. It outputs to the fluorescence lifetime calculation control part 2A. Although the cells 25A, 25B, and 25C that emit fluorescence are also shown in the two-dimensional fluorescence image, these are excluded from the calculation of the fluorescence lifetime because they do not satisfy the predetermined fluorescence intensity.

蛍光寿命算出制御部2Aは、核31A,31B,31Cの領域にのみ励起光を照射し、蛍光寿命の算出を行うこととする。時間ゲート法による蛍光寿命の算出において励起光の照射は、上述の蛍光画像を取得するための照射方法と異なり、比較的低波高値のパルス光で、繰返し間隔の長い励起光を同じ点に相当数の所定回数照射する必要がある。この照射によって放出された蛍光光子数にもとづいて蛍光寿命の算出を行う。したがって、まず、蛍光寿命算出制御部2Aは、蛍光寿命の算出のために核31Aの所定の点に励起光を照射するよう励起光制御部2Bに指示出力し、励起光制御部2Bは、レ−ザ光源3とガルバノミラーユニット7とに制御信号を出力し、レーザ光源から発振した励起光は核31Aの所定の点を照射する。   The fluorescence lifetime calculation control unit 2A irradiates excitation light only to the regions of the nuclei 31A, 31B, and 31C and calculates the fluorescence lifetime. In the calculation of fluorescence lifetime by the time gate method, the excitation light irradiation is different from the irradiation method for acquiring the fluorescence image described above, and the pulse light with a relatively low peak value is equivalent to the excitation light having a long repetition interval. It is necessary to irradiate a certain number of times. The fluorescence lifetime is calculated based on the number of fluorescent photons emitted by this irradiation. Therefore, first, the fluorescence lifetime calculation control unit 2A outputs an instruction to the excitation light control unit 2B to irradiate a predetermined point of the nucleus 31A for calculation of the fluorescence lifetime, and the excitation light control unit 2B A control signal is output to the light source 3 and the galvanometer mirror unit 7, and the excitation light oscillated from the laser light source irradiates a predetermined point of the nucleus 31A.

励起光が照射された核31Aの所定の点から発した蛍光は、光検出器19まで到達し、光検出器19により、蛍光が電気信号に変換され、変換された電気信号は、ゲート回路20とカウンタ21とを順次介することにより、設定された時間ゲートに入射した蛍光光子数がカウントされ、蛍光寿命算出部2Eに出力される。核31Aの所定の点に対する励起光の照射と蛍光光子数のカウントとを所定回繰り返し、蛍光寿命算出部2Eは、設定された時間ゲートに入射した蛍光光子数にもとづいて蛍光寿命の算出を行う。   The fluorescence emitted from a predetermined point of the nucleus 31A irradiated with the excitation light reaches the photodetector 19, and the fluorescence is converted into an electrical signal by the photodetector 19, and the converted electrical signal is converted into the gate circuit 20. And the counter 21 sequentially, the number of fluorescent photons incident on the set time gate is counted and output to the fluorescence lifetime calculation unit 2E. The irradiation of excitation light and the counting of the number of fluorescent photons with respect to a predetermined point of the nucleus 31A are repeated a predetermined number of times, and the fluorescence lifetime calculation unit 2E calculates the fluorescence lifetime based on the number of fluorescence photons incident on the set time gate. .

核31Aの所定の点の蛍光寿命が算出されると蛍光寿命算出部2Eは、算出された蛍光寿命を蛍光寿命算出制御部2Aに出力し、蛍光寿命算出制御部2Aは、核31Aの所定の点の算出された蛍光寿命とその点の情報を表示装置22に出力するとともに、核31Aの次の所定の点の蛍光寿命の算出のために上述と同様な指示出力を励起光制御部2Bに対して行う。このようにして、核31A全体の蛍光寿命の算出が終了したならば、蛍光寿命算出制御部2Aは、核31B全体の蛍光寿命の算出を行うよう励起光制御部2Bに指示出力を行い、核31B全体の蛍光寿命の算出が終了したならば、同様に核31C全体の蛍光寿命の算出を行うよう励起光制御部2Bに指示出力を行う。   When the fluorescence lifetime of a predetermined point of the nucleus 31A is calculated, the fluorescence lifetime calculation unit 2E outputs the calculated fluorescence lifetime to the fluorescence lifetime calculation control unit 2A, and the fluorescence lifetime calculation control unit 2A outputs the predetermined fluorescence lifetime of the nucleus 31A. The calculated fluorescence lifetime of the point and information on the point are output to the display device 22, and an instruction output similar to that described above is output to the excitation light control unit 2B in order to calculate the fluorescence lifetime of the next predetermined point of the nucleus 31A. Against. When the calculation of the fluorescence lifetime of the entire nucleus 31A is thus completed, the fluorescence lifetime calculation control unit 2A outputs an instruction to the excitation light control unit 2B so as to calculate the fluorescence lifetime of the entire nucleus 31B. When the calculation of the fluorescence lifetime of the entire 31B is completed, an instruction is output to the excitation light control unit 2B so as to calculate the fluorescence lifetime of the entire nucleus 31C.

図5は、蛍光寿命の算出対象である核31Aに励起光を照射し、核31Aの蛍光寿命の算出が終了次第、順次核31B,31Cに対して励起光の照射と蛍光寿命の算出とを行い、さらに、核31Cの蛍光寿命の算出が終了次第、再び核31Aの蛍光寿命の算出を行うことを示している。   FIG. 5 shows that the excitation light is irradiated to the nucleus 31A, which is the calculation target of the fluorescence lifetime, and the excitation light irradiation and the fluorescence lifetime calculation are sequentially performed on the nuclei 31B and 31C as soon as the calculation of the fluorescence lifetime of the nucleus 31A is completed. In addition, as soon as the calculation of the fluorescence lifetime of the nucleus 31C is completed, the calculation of the fluorescence lifetime of the nucleus 31A is performed again.

このようにして蛍光寿命算出制御部2Aは、核31A,31B,31C全体の蛍光寿命を入力するとともに、入力した蛍光寿命と位置の情報を表示装置22に出力する。表示装置22は、入力した蛍光寿命とその位置の情報にもとづいて、蛍光寿命の分布画像を作成して表示する。図6は、表示装置22が表示した蛍光寿命の分布画像を示している。核31A,31B,31Cに異なる蛍光寿命の成分が存在していることが分かる。さらに、上述したように、表示装置22には全画面に対して、非常に限られた範囲にある核31A,31B,31Cの蛍光寿命とその位置情報とが入力され、核31A,31B,31Cの蛍光寿命の分布画像は、極めて高速に形成されるので、繰返し測定によりその蛍光寿命の比較的早い経時変化も表示できる。核31A,31B,31Cの領域が移動するような場合は、核31Cの蛍光寿命の算出が終了した時点で、試料広域30の励起光の走査を行い領域の特定を再度行い、核31A,31B,31Cの領域の移動に追随して蛍光寿命の分布画像を表示するようにしてもよい。   In this way, the fluorescence lifetime calculation control unit 2A inputs the fluorescence lifetimes of the nuclei 31A, 31B, and 31C as a whole, and outputs the input fluorescence lifetime and position information to the display device 22. The display device 22 creates and displays a fluorescence lifetime distribution image based on the input fluorescence lifetime and its position information. FIG. 6 shows a distribution image of the fluorescence lifetime displayed on the display device 22. It can be seen that components having different fluorescence lifetimes exist in the nuclei 31A, 31B, and 31C. Further, as described above, the fluorescence lifetime of the nuclei 31A, 31B, and 31C in a very limited range and the position information thereof are input to the display device 22 with respect to the entire screen, and the nuclei 31A, 31B, and 31C are input. Since the fluorescence lifetime distribution image is formed at a very high speed, it is possible to display a relatively fast change in the fluorescence lifetime with time by repeated measurement. When the regions of the nuclei 31A, 31B, and 31C move, when the calculation of the fluorescence lifetime of the nuclei 31C is completed, the excitation light of the sample wide area 30 is scanned to specify the region again, and the nuclei 31A and 31B , 31C, a fluorescence lifetime distribution image may be displayed following the movement of the region 31C.

励起光は、蛍光寿命の算出対象外の領域をスキップし照射しているため、不必要な照射が避けられ、短時間に蛍光寿命分布が作成できるのみならず、不必要な励起光の照射が抑制できレーザ光源の寿命を延ばすこともできる。上述の実施の形態では、蛍光寿命の算出の順を核31A,31B,31Cとしたが、観察の重要度に対応して、あるいは技術的な難易度に対応してこれらの順を入れ替えてもよい。   Excitation light is emitted by skipping areas that are not subject to calculation of fluorescence lifetime, so unnecessary irradiation can be avoided and not only can a fluorescence lifetime distribution be created in a short time, but also irradiation of unnecessary excitation light. The life of the laser light source can be extended. In the above-described embodiment, the order of calculation of the fluorescence lifetime is set to the nuclei 31A, 31B, and 31C. However, the order may be changed in accordance with the importance of observation or in accordance with the technical difficulty. Good.

図7は、蛍光寿命の分布画像を取得するまでの動作を説明するフローチャートである。まず、励起光制御部2Bは、励起光を制御して試料広域30を走査させる(ステップS101)。次に、この励起光の走査によって蛍光画像取得部2Cは、2次元の蛍光画像を取得する(ステップS102)。次に、領域特定部2Dは、入力した2次元の蛍光画像に所定の蛍光強度を有する領域が有るかを判断する(ステップS103)。所定強度を満たす部分が無ければ(ステップS103,No)、蛍光寿命の算出対象が存在しないと判断し、再び励起光による試料広域30の走査を行う(ステップS101)。この場合、所定強度を変化させることにより、蛍光寿命の算出対象を選別することができる。所定強度を満たす部分が有れば(ステップS103,Yes)、次に、所定面積を満たしているかを判断する(ステップS104)。所定面積を満たす部分が無ければ(ステップS104,No)、蛍光寿命の算出対象が存在しないと判断し、再び励起光による試料広域30の走査を行う(ステップS101)。この所定面積を基準にすることで、ノイズや迷光による単なる輝点を除去できる。また、逆に、この判断(ステップS104)を除くことにより、新たな蛍光寿命の算出領域を発見することもできる。   FIG. 7 is a flowchart for explaining the operation until a fluorescence lifetime distribution image is acquired. First, the excitation light control unit 2B controls the excitation light to scan the sample wide area 30 (step S101). Next, the fluorescence image acquisition unit 2C acquires a two-dimensional fluorescence image by scanning with the excitation light (step S102). Next, the region specifying unit 2D determines whether there is a region having a predetermined fluorescence intensity in the input two-dimensional fluorescence image (step S103). If there is no portion satisfying the predetermined intensity (No at Step S103), it is determined that there is no fluorescence lifetime calculation target, and the sample wide area 30 is scanned again with excitation light (Step S101). In this case, the fluorescence lifetime calculation target can be selected by changing the predetermined intensity. If there is a portion satisfying the predetermined strength (step S103, Yes), it is then determined whether the predetermined area is satisfied (step S104). If there is no portion satisfying the predetermined area (No at Step S104), it is determined that there is no fluorescent lifetime calculation target, and the sample wide area 30 is scanned again with excitation light (Step S101). By using this predetermined area as a reference, it is possible to remove simple bright spots due to noise or stray light. Conversely, by removing this determination (step S104), a new fluorescence lifetime calculation region can be found.

所定面積を満たす部分が有れば(ステップS104,Yes)、蛍光寿命の算出対象が存在すると判断し、領域特定部2Dは蛍光寿命の算出領域を特定する(ステップS105)。次に、蛍光寿命算出制御部2Aは、領域特定部2Dが特定した領域のみの蛍光寿命の算出を行うため、励起光制御部2Bに励起光の照射を指示出力し、励起光制御部2Bは、特定領域に励起光を照射する(ステップS106)。特定領域から発した蛍光にもとづいて蛍光寿命算出部2Eは、蛍光寿命の算出を行い、蛍光寿命算出制御部2Aに出力する(ステップS107)。蛍光寿命算出制御部2Aは、入力した蛍光寿命とその位置を表示装置22に出力し(ステップS108)、表示装置22は、蛍光寿命と位置とにもとづいて蛍光寿命の分布画像を表示する(ステップS109)。さらに、蛍光寿命の分布画像を表示した(ステップS109)後、蛍光寿命の算出対象の経時変化を観察するため、特定領域に励起光を照射する(ステップS106)動作に戻るようにする。また、蛍光寿命の算出対象の移動に対応するために、特定領域に励起光を照射する(ステップS106)と励起光による試料広域30の走査(ステップS101)とを組み合わせるようにさせると、蛍光寿命の算出対象の経時変化と移動との両方が観察できる。   If there is a portion satisfying the predetermined area (Yes in step S104), it is determined that there is a fluorescence lifetime calculation target, and the region specifying unit 2D specifies a fluorescence lifetime calculation region (step S105). Next, in order to calculate the fluorescence lifetime of only the region specified by the region specifying unit 2D, the fluorescence lifetime calculation control unit 2A instructs the excitation light control unit 2B to output the excitation light, and the excitation light control unit 2B Then, the excitation light is irradiated to the specific area (step S106). Based on the fluorescence emitted from the specific region, the fluorescence lifetime calculation unit 2E calculates the fluorescence lifetime and outputs it to the fluorescence lifetime calculation control unit 2A (step S107). The fluorescence lifetime calculation control unit 2A outputs the input fluorescence lifetime and its position to the display device 22 (step S108), and the display device 22 displays a fluorescence lifetime distribution image based on the fluorescence lifetime and position (step S108). S109). Further, after the distribution image of the fluorescence lifetime is displayed (step S109), the process returns to the operation of irradiating the specific region with the excitation light (step S106) in order to observe the temporal change of the fluorescence lifetime calculation target. Further, in order to cope with the movement of the fluorescence lifetime calculation target, if the specific region is irradiated with excitation light (step S106) and scanning of the sample wide area 30 with the excitation light (step S101), the fluorescence lifetime is combined. Both the change with time and the movement of the calculation object can be observed.

上述の実施の形態では、領域特定部2Dは、所定の基準として蛍光強度等にもとづいて領域を特定したが、観察状況に応じて、または技術上の観点に応じて変化させることが可能である。図8は、領域特定部2Dが、核31Aを含む矩形状領域を特定領域32Aとしていることを示している。これは、核31Aの形状が扁平であった場合、不規則な形状に沿って励起光を照射し、走査することにより不要な技術的過程を増やさずに、より簡易に蛍光寿命の分布画像を取得するためである。   In the above-described embodiment, the region specifying unit 2D specifies a region based on the fluorescence intensity or the like as a predetermined reference, but it can be changed according to an observation situation or a technical viewpoint. . FIG. 8 shows that the area specifying unit 2D defines a rectangular area including the nucleus 31A as the specific area 32A. This is because when the shape of the nucleus 31A is flat, irradiation with excitation light along an irregular shape and scanning do not increase unnecessary technical processes, and the distribution image of the fluorescence lifetime can be more easily obtained. It is for acquiring.

図9は、核31Aのみならず細胞25A全体を含む矩形状に領域33Aを特定した場合を示している。このようにすると、細胞25Aと核31Aとの対比をも見ることができからである。   FIG. 9 shows a case where the region 33A is specified in a rectangular shape including not only the nucleus 31A but the entire cell 25A. This is because the contrast between the cell 25A and the nucleus 31A can also be seen.

図10は、核31Aに所定のマージンを含んだ領域34Aを特定した場合を示している。このようにすると、核31Aの領域が経時的に微妙に変化する場合にも対応することができるからである。   FIG. 10 shows a case where a region 34A including a predetermined margin in the nucleus 31A is specified. This is because it is possible to cope with the case where the region of the nucleus 31A slightly changes with time.

なお、上述の実施の形態では、領域特定部2Dは、所定の基準を用いて領域を自動的に特定するようにしていたが、蛍光画像取得部2Cが作成した2次元の蛍光画像を観察者が観察することにより、観察者が領域を特定するようにしてもよい。観察者の個々の要求に応じることができるからである。また、この実施の形態は、時間ゲート法で説明したが、本発明はすべての蛍光寿命の測定に有効であることは自明である。   In the above-described embodiment, the region specifying unit 2D automatically specifies a region using a predetermined reference. However, the two-dimensional fluorescent image created by the fluorescent image acquiring unit 2C is used as an observer. By observing, the observer may specify the region. It is because it can respond to the individual demands of the observer. Further, although this embodiment has been described by the time gate method, it is obvious that the present invention is effective for measuring all fluorescence lifetimes.

この発明の実施の形態である蛍光寿命測定装置の概要構成を示すブロック図である。It is a block diagram which shows schematic structure of the fluorescence lifetime measuring apparatus which is embodiment of this invention. この発明の実施の形態の制御部の概要構成を示すブロック図である。It is a block diagram which shows schematic structure of the control part of embodiment of this invention. この発明の実施の形態の励起光が試料広域を走査する様子を説明する説明図である。It is explanatory drawing explaining a mode that the excitation light of embodiment of this invention scans a sample wide area | region. この発明の実施の形態の蛍光画像取得部が取得する2次元の蛍光画像を示す説明図である。It is explanatory drawing which shows the two-dimensional fluorescence image which the fluorescence image acquisition part of embodiment of this invention acquires. この発明の実施の形態の励起光が特定領域のみを照射する様子を説明する説明図である。It is explanatory drawing explaining a mode that the excitation light of embodiment of this invention irradiates only a specific area | region. この発明の実施の形態の表示装置が表示する蛍光寿命の分布画像を示す説明図である。It is explanatory drawing which shows the distribution image of the fluorescence lifetime which the display apparatus of embodiment of this invention displays. この発明の実施の形態の制御部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the control part of embodiment of this invention. この発明の実施の形態の領域特定部が特定する領域を示す説明図である。It is explanatory drawing which shows the area | region which the area | region specific part of embodiment of this invention specifies. この発明の実施の形態の領域特定部が特定する領域を示す説明図である。It is explanatory drawing which shows the area | region which the area | region specific part of embodiment of this invention specifies. この発明の実施の形態の領域特定部が特定する領域を示す説明図である。It is explanatory drawing which shows the area | region which the area | region specific part of embodiment of this invention specifies.

符号の説明Explanation of symbols

1 蛍光寿命測定装置
2 制御部
2A 蛍光寿命算出制御部
2B 励起光制御部
2C 蛍光画像取得部
2D 領域特定部
2E 蛍光寿命算出部
3 レーザ光源
4 コリメータレンズ
5 NDフィルタ
6 ダイクロイックミラー
7 ガルバノミラーユニット
8 瞳投影レンズ
9 反射ミラー
10 観察鏡筒
11 結像レンズ
12 ハーフミラー
13 対物レンズ
14 試料
15 観察用照明ユニット
16 集光レンズ
17 ピンホール
18 吸収フィルタ
19 光検出器
20 ゲート回路
21 カウンタ
22 表示装置
25A,25B,25C 細胞
30 試料広域
31A,31B,31C 核
32A,33A,34A 特定領域
DESCRIPTION OF SYMBOLS 1 Fluorescence lifetime measuring apparatus 2 Control part 2A Fluorescence lifetime calculation control part 2B Excitation light control part 2C Fluorescence image acquisition part 2D Area | region identification part 2E Fluorescence lifetime calculation part 3 Laser light source 4 Collimator lens 5 ND filter 6 Dichroic mirror 7 Galvanometer mirror unit 8 Pupil projection lens 9 Reflecting mirror 10 Observation barrel 11 Imaging lens 12 Half mirror 13 Objective lens 14 Sample 15 Observation illumination unit 16 Condensing lens 17 Pinhole 18 Absorption filter 19 Photo detector 20 Gate circuit 21 Counter 22 Display device 25A , 25B, 25C cell 30 sample wide area 31A, 31B, 31C nucleus 32A, 33A, 34A specific area

Claims (4)

試料に励起光を照射し、該試料が励起状態から基底状態に遷移する間に発する蛍光光子を測定し、該測定した蛍光光子から蛍光寿命を算出する蛍光寿命測定装置において、
前記試料に照射する励起光の走査を制御する励起光制御手段と、
前記励起光の走査領域を特定する領域特定手段と、
前記領域特定手段によって特定された走査領域内の複数の測定位置である励起光照射位置からの蛍光光子をもとに前記それぞれの励起光照射位置での前記蛍光寿命を算出する蛍光寿命算出手段と、
前記励起光制御手段が前記励起光を前記試料に対して広域に照射し、この照射によって発する蛍光をもとに前記領域特定手段が蛍光寿命を算出する領域を特定し、前記励起光制御手段がこの特定した領域内の測定位置である励起光照射位置のみに励起光を照射し、前記蛍光寿命算出手段がこの照射した位置から放出される蛍光光子を前記各励起光照射位置で測定し、この測定した蛍光光子にもとづいて前記各励起光照射位置の蛍光寿命を算出させる制御を行う制御手段と、
算出された前記各励起光照射位置の蛍光寿命を、二次元の分布画像として表示する表示手段と、
を備え、前記領域特定手段は、前記励起光によって所定強度の蛍光を発する領域を前記走査領域として特定することを特徴とする蛍光寿命測定装置。
In a fluorescence lifetime measuring apparatus that irradiates a sample with excitation light, measures a fluorescence photon emitted while the sample transitions from an excited state to a ground state, and calculates a fluorescence lifetime from the measured fluorescence photon.
Excitation light control means for controlling scanning of excitation light applied to the sample;
Area specifying means for specifying a scanning area of the excitation light;
Fluorescence lifetime calculating means for calculating the fluorescence lifetime at each excitation light irradiation position based on fluorescence photons from the excitation light irradiation position which are a plurality of measurement positions within the scanning region specified by the area specifying means; ,
The excitation light control unit irradiates the sample with the excitation light over a wide area, the region specifying unit specifies a region where the fluorescence lifetime is calculated based on the fluorescence emitted by the irradiation, and the excitation light control unit Only the excitation light irradiation position, which is the measurement position in the specified region, is irradiated with excitation light, and the fluorescence lifetime calculating means measures the fluorescence photons emitted from the irradiated position at each excitation light irradiation position. Control means for performing control to calculate the fluorescence lifetime of each excitation light irradiation position based on the measured fluorescence photons;
Display means for displaying the calculated fluorescence lifetime of each excitation light irradiation position as a two-dimensional distribution image;
The region specifying means specifies, as the scanning region, a region that emits fluorescence having a predetermined intensity by the excitation light.
前記領域特定手段は、前記励起光によって所定強度と所定面積の蛍光を発する領域を前
記走査領域として特定することを特徴とする請求項1に記載の蛍光寿命測定装置。
The fluorescence lifetime measuring apparatus according to claim 1, wherein the region specifying unit specifies a region that emits fluorescence having a predetermined intensity and a predetermined area by the excitation light as the scanning region.
前記領域特定手段は、前記励起光によって蛍光を発する領域の少なくとも一部分を含む
矩形状領域を前記走査領域として特定することを特徴とする請求項1または2に記載の蛍光寿命測定装置。
The fluorescence lifetime measuring apparatus according to claim 1, wherein the region specifying unit specifies a rectangular region including at least a part of a region that emits fluorescence by the excitation light as the scanning region.
前記蛍光寿命は、蛍光光子数を複数の時間帯で測定する時間ゲート法によって算出することを特徴とする請求項1〜3のいずれか一つに記載の蛍光寿命測定装置。   The fluorescence lifetime measuring apparatus according to any one of claims 1 to 3, wherein the fluorescence lifetime is calculated by a time gate method in which the number of fluorescence photons is measured in a plurality of time zones.
JP2003359616A 2003-10-20 2003-10-20 Fluorescence lifetime measuring device Expired - Fee Related JP4184228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003359616A JP4184228B2 (en) 2003-10-20 2003-10-20 Fluorescence lifetime measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003359616A JP4184228B2 (en) 2003-10-20 2003-10-20 Fluorescence lifetime measuring device

Publications (2)

Publication Number Publication Date
JP2005121602A JP2005121602A (en) 2005-05-12
JP4184228B2 true JP4184228B2 (en) 2008-11-19

Family

ID=34615785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003359616A Expired - Fee Related JP4184228B2 (en) 2003-10-20 2003-10-20 Fluorescence lifetime measuring device

Country Status (1)

Country Link
JP (1) JP4184228B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4792580B2 (en) * 2006-07-26 2011-10-12 国立大学法人北海道大学 Luminescent lifetime measuring device and measuring method thereof
JP5386742B2 (en) * 2009-10-02 2014-01-15 独立行政法人放射線医学総合研究所 Fluorescence measurement method
JP2016080563A (en) 2014-10-20 2016-05-16 日本光電工業株式会社 Analysis system and analyzer
KR101835815B1 (en) 2016-12-16 2018-03-07 (주) 인텍플러스 Apparatus and method for measuring fluorescence lifetime
KR101859172B1 (en) * 2016-12-22 2018-05-16 (주) 인텍플러스 Measuring apparatus to obtain multiple fluorescence lifetimes by calculating least square errors using imaginay fluorescence distribution model using the signal from the analong mean delay method and measuring method thereof
KR101886764B1 (en) * 2017-03-31 2018-08-08 연세대학교 산학협력단 Measuring apparatus to obtain high-speed data analysis method for multiple exponential decaying functions and measuring method thereof
JP2018116060A (en) * 2018-02-09 2018-07-26 日本光電工業株式会社 Image cytometer
US20230102868A1 (en) * 2020-03-25 2023-03-30 Nec Corporation Optical coherence tomography (oct) apparatus and method for controlling an opticalcoherence tomography apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8900612D0 (en) * 1989-02-22 1989-02-22 Jonas Johansson TISSUE CHARACTERIZATION USING A BLOOD-FREE FLUORESCENCE CRITERIA
JP2575270B2 (en) * 1992-11-10 1997-01-22 浜松ホトニクス株式会社 Method for determining base sequence of nucleic acid, method for detecting single molecule, apparatus therefor and method for preparing sample
JPH0918772A (en) * 1995-06-27 1997-01-17 Olympus Optical Co Ltd Microscopic image analyzer
JPH10293094A (en) * 1997-02-24 1998-11-04 Olympus Optical Co Ltd Sight meter
US7139073B1 (en) * 2000-09-04 2006-11-21 Hamamatsu Photonics K.K. Imaging apparatus
EP1207387A1 (en) * 2000-11-20 2002-05-22 Institut Curie Multi-photon imaging installation.
JP3999662B2 (en) * 2000-12-14 2007-10-31 オリンパス株式会社 Fluorescence analyzer and fluorescence analysis method
JP2005504561A (en) * 2001-03-01 2005-02-17 トラスティーズ・オブ・ダートマウス・カレッジ Fluorescence lifetime spectrometer (FLS) and detection method of diseased tissue

Also Published As

Publication number Publication date
JP2005121602A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
JP5802653B2 (en) Optical analysis apparatus, optical analysis method, and computer program for optical analysis
JP5392406B2 (en) Microscope device, observation method
JP5485289B2 (en) Resolution-enhanced microscopy
JP5265408B2 (en) Correlation spectroscopy analysis method and correlation spectroscopy analyzer
JP6587004B2 (en) Apparatus, system, method, and program
US20050082494A1 (en) Scanning microscope system
JP5265070B2 (en) Light source device for illumination in scanning microscope inspection, and scanning microscope
US9739715B2 (en) Laser scanning microscope system and method of setting laser-light intensity value
JP6120858B2 (en) Optical analyzer using optical system of confocal microscope or multiphoton microscope, optical analysis method, and computer program for optical analysis
JP2012507756A (en) Combined microscopy
JP4792580B2 (en) Luminescent lifetime measuring device and measuring method thereof
CN101821608A (en) Method and system for imaging samples
US10416427B2 (en) Scan-based imaging with variable scan speed using predictions of region-of-interest positions
JP4184228B2 (en) Fluorescence lifetime measuring device
JP4074136B2 (en) Fluorescence lifetime distribution image measuring apparatus and measuring method thereof
WO2012086195A1 (en) Time-resolved fluorescence measurement device and method
JP2004069428A (en) Atomic force and molecular force microscope
JP4968337B2 (en) Confocal microscope
JP4065249B2 (en) Fluorescence lifetime measuring device
JP2004333579A (en) Laser scanning microscope
JP2004184379A (en) Method of reading microarray
WO2013005765A1 (en) Microscope device
JP2004212204A (en) Fluorescence microscope, measuring method of fluorescent lifetime, and measuring program of fluorescent lifetime
JP5655434B2 (en) Observation apparatus and observation method
JP2004212203A (en) Fluorescence microscope, measuring method of fluorescent lifetime, and measuring program of fluorescent lifetime

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4184228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees