WO2012086195A1 - Time-resolved fluorescence measurement device and method - Google Patents

Time-resolved fluorescence measurement device and method Download PDF

Info

Publication number
WO2012086195A1
WO2012086195A1 PCT/JP2011/007143 JP2011007143W WO2012086195A1 WO 2012086195 A1 WO2012086195 A1 WO 2012086195A1 JP 2011007143 W JP2011007143 W JP 2011007143W WO 2012086195 A1 WO2012086195 A1 WO 2012086195A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescence
time
excitation light
measurement object
light
Prior art date
Application number
PCT/JP2011/007143
Other languages
French (fr)
Japanese (ja)
Inventor
真也 荻窪
貴志 足立
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012086195A1 publication Critical patent/WO2012086195A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6408Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence

Definitions

  • the present invention relates to a time-resolved fluorescence measurement apparatus and method, and more particularly, to a time-resolved fluorescence measurement apparatus and method for measuring fluorescence using a time domain measurement method, particularly a time gate method.
  • fluorescence is emitted when a substance emitting fluorescence is irradiated with visible light or ultraviolet light.
  • a substance that emits fluorescence is irradiated with light having a short pulse width
  • fluorescence is observed from the picosecond to nanosecond order after the irradiation.
  • the emission intensity of this fluorescence becomes maximum immediately after light irradiation, and thereafter decays exponentially.
  • the decay constant in this exponential function is called the fluorescence lifetime.
  • FLIM FluorescenceFluorLifetime Imaging Microscopy
  • the characteristic of the fluorescence lifetime is that it can be based on an index that is excellent in time and quantitative. Fluorescence characteristics can also be quantified by fluorescence emission intensity, but fluorescence emission intensity is determined by concentration of fluorescent substance, fading, wavelength of excitation light, intensity, light collection efficiency, detector sensitivity, observation It is affected by various factors such as light attenuation in the sample and transmittance of the optical system. On the other hand, the fluorescence lifetime is different from the fluorescence emission intensity that can change depending on the measurement conditions, and is a value inherent to the substance that emits fluorescence, so that quantitative discussion is possible. Fluorescence lifetime provides important information about the structure and electronic state of the molecule, as well as information about the surrounding environment (ion concentration, pH, oxygen concentration, refractive index, viscosity, temperature, etc.).
  • a time-domain measurement method using pulsed light as excitation light and the other is a frequency-domain measurement method using frequency-modulated light in the form of a sine wave as excitation light.
  • domain measurement In the time domain measurement method, a short pulse laser is incident on a sample, and the time response is observed with a high-speed detector.
  • Typical observation methods in the time domain measurement method include time-correlated single photon counting (TCSPC), time gate method using CCD with image intensifier, and streak camera.
  • TCSPC time-correlated single photon counting
  • CCD time gate method using CCD with image intensifier
  • streak camera streak camera.
  • the fluorescence decay curve is divided into several windows in the time axis direction, and after irradiating the sample with pulsed light, the detector is momentarily moved with a delay time corresponding to the window (time domain) to be measured. Just turn it on. Fluorescence is detected in a plurality of windows, the value of the integrated emission intensity in each window is plotted against time, and the fluorescence lifetime is obtained on the assumption that the integrated emission intensity decays in a single exponential function.
  • the time gate method can shorten the measurement time compared to the time correlated single photon counting method.
  • Patent Document 1 discloses a method of measuring the integrated emission intensity in two windows of a single fluorescence decay curve with a single excitation light.
  • the time-resolved imaging apparatus described in the cited document 1 includes a separation optical system, a delay optical system, and a synthesis optical system.
  • the separation optical system separates and outputs the fluorescence generated in the measurement target into first light and second light.
  • the first light is output to the combining optical system via the delay optical system, and the second light is output to the combining optical system as it is.
  • the delay optical system sets a longer optical path length for the first light than the optical path length of the second light.
  • the combining optical system combines the image of the measurement object formed by each of the second light output from the separation optical system and the first light that has passed through the delay optical system into a non-overlapping region on the imaging surface,
  • the synthesized image is output to the imaging unit. Since the first light is delayed by the amount of delay given by the delay optical system, the integrated light emission intensity in the two time regions can be obtained by imaging the first light and the second light at the same time in the imaging unit. Can be measured.
  • the detector is turned on only for a time corresponding to the window width, and the fluorescence that is incident when the detector is turned on is detected by the detector, but the fluorescence in other time regions is detected. Is not detected by the detector. This is a factor that lowers the detection efficiency of fluorescence with respect to excitation light.
  • the separated first light and second light are imaged by the imaging unit only for the window width, and fluorescence in the time region outside the window is not captured by the imaging unit. Therefore, it is not possible to improve the fluorescence detection efficiency with respect to the excitation light.
  • an object of the present invention is to provide a time-resolved fluorescence measuring apparatus and method capable of improving the detection efficiency of fluorescence emitted from a measurement object.
  • the present invention is a light irradiation means for irradiating a measurement object with light having a predetermined wavelength as excitation light, and a fluorescence detection means for detecting fluorescence emitted from the measurement object.
  • a plurality of detectors arranged in a line along a predetermined direction, a fluorescence detection means, and arranged in an optical path between the fluorescence entering the fluorescence detection means, the excitation light
  • An optical element that changes the traveling direction of the fluorescence so that the fluorescence is detected by different detectors of the plurality of detectors of the detector group over time after the measurement object is irradiated.
  • a time-resolved fluorescence measuring apparatus comprising fluorescence lifetime calculation means for calculating a fluorescence lifetime based on a fluorescence detection result in the detector group.
  • the fluorescence lifetime calculating means obtains the fluorescence emission intensity in each of a plurality of time regions based on the fluorescence detection results by the plurality of detectors, and the obtained fluorescence emission
  • a configuration for calculating the fluorescence lifetime based on the intensity can be employed.
  • the fluorescence lifetime calculating means calculates the fluorescence emission intensity in each time region based on the fluorescence detection result of one or more detectors corresponding to the time region of the fluorescence emission intensity to be obtained among the plurality of detectors. You may ask for it.
  • the optical element may continuously change the traveling direction of the fluorescence from one end side to the other end side of the plurality of detectors arranged in a row over the fluorescence measurement period.
  • the optical element is supported so as to be elastically displaceable, and is movable in a first direction and a second direction opposite to the first direction, and a physical acting force in the first direction on the movable part. It is possible to use an electric device element including a first driving source for applying a second driving source for applying a physical acting force in the second direction to the movable portion.
  • the excitation light can be a point light source.
  • the fluorescence detector means can detect fluorescence emitted from the portion of the measurement object irradiated with the excitation light with a plurality of detectors of the detector group.
  • each of the fluorescence detection means corresponds to an area of n rows ⁇ m columns (n and m are integers of 2 or more) irradiated with the excitation light of the measurement object, each of which is 1 row ⁇ m.
  • the fluorescence detection means emits each of the fluorescence emitted from the m-column region of each row irradiated with the excitation light of the measurement object. What is necessary is just to detect with the corresponding detector group among the several detector groups of a set to perform.
  • the fluorescence detection means may include an image intensifier having a gate function and a charge imaging device.
  • the time-resolved fluorescence measuring apparatus of the present invention includes a scanning unit that scans the excitation light on the surface of the measurement object, the emission intensity of the fluorescence corresponding to each position of the scanned excitation light, and the calculation. And a fluorescence image generating means for generating a fluorescence image representing at least one distribution of the fluorescence lifetime.
  • the scanning unit scans the condensing position of the excitation light on the measurement object in the depth direction in addition to the surface of the measurement object, and the fluorescence image generation unit 3 scans the fluorescence image. It can be generated as dimensional information.
  • the present invention provides a microscope system comprising the time-resolved fluorescence measuring device of the present invention.
  • the present invention also provides an endoscope fiber probe system comprising the time-resolved fluorescence measuring device of the present invention.
  • the present invention further includes a step of irradiating the measurement object with light having a predetermined wavelength as excitation light, and fluorescence emitted from the measurement object after the excitation light is irradiated on the measurement object.
  • the step of changing the traveling direction of the fluorescence so as to be detected by different detectors out of the plurality of detectors arranged in a line along a predetermined direction as time passes, and detection of fluorescence in the plurality of detectors And a step of calculating a fluorescence lifetime based on the result.
  • the time-resolved fluorescence measuring apparatus and method of the present invention when detecting fluorescence emitted from an object to be measured, different detectors out of a plurality of detectors in which the fluorescence is arranged in a line along a predetermined direction over time Change the direction of travel of the fluorescence as detected by. In this way, for example, the fluorescence can be sequentially detected by different detectors over the measurement period, and the detection efficiency of the fluorescence with respect to the excitation light can be increased.
  • FIG. 1 is a block diagram showing a time-resolved fluorescence measuring device according to an embodiment of the present invention.
  • the flowchart which shows the operation
  • the figure which shows a MEMS mirror and CCD typically.
  • the figure which shows a MEMS mirror and CCD typically.
  • the perspective view which shows the basic structure of DMD. Sectional drawing which shows the basic operation principle of DMD. Sectional drawing which shows the basic operation principle of DMD.
  • the graph which shows the relationship between time when a drive signal is supplied, and a rotation angle.
  • the perspective view which shows typically an optical element and fluorescence detection means when the excitation light of a line light source is irradiated.
  • the perspective view which shows typically an optical element and fluorescence detection means when the excitation light of a surface light source is irradiated.
  • the block diagram which shows a microscope system.
  • the block diagram which shows an endoscope probe system.
  • the perspective view which shows the cross section of an endoscope probe.
  • FIG. 1 shows a time-resolved fluorescence measuring apparatus according to an embodiment of the present invention.
  • the time-resolved fluorescence measurement apparatus 10 includes a laser light source 11, a pulse picker 12, mirrors 13 and 21, a beam splitter 14, an excitation light detection means 15, a nonlinear optical crystal 16, a dichroic mirror 17, an objective lens 18, an excitation light removal filter 19, A spectroscope 20, a condensing lens 22, an optical element 23, a fluorescence detection means 24, an optical element control means 25, and a computer (PC: Personal Computer) 26 are provided.
  • PC Personal Computer
  • the time-resolved fluorescence measuring apparatus 10 obtains the fluorescence lifetime using a time gate method. That is, the fluorescence emission decay curve is divided into several divided windows (time domain), the sample is irradiated with pulsed light as excitation light, the fluorescence emission intensity is detected in multiple windows, and the fluorescence emission intensity in each window is detected. Is plotted against time, and the fluorescence lifetime is obtained assuming that the integrated emission intensity decays exponentially.
  • the light to be measured is not limited to the fluorescence emitted from the measurement object, and may be light having characteristics similar to that, for example, phosphorescence. That is, the lifetime of phosphorescence may be obtained using the time-resolved fluorescence measuring device 10.
  • the laser light source 11 generates excitation light having a predetermined wavelength that is irradiated onto the measurement object 30 that is a sample.
  • the laser light source 11 for example, a TiSa laser or the like can be used.
  • the laser light source 11 generates pulsed laser light.
  • the laser light source 11 generates, for example, pulsed light having a pulse time from picoseconds to femtoseconds as pulse excitation light.
  • the pulse picker 12 thins out the pulse excitation light periodically generated by the laser light source 11 at a predetermined rate.
  • the pulse picker 12 thins out the pulse excitation light, the measurement target 30 can be irradiated with the pulse excitation light at a desired cycle.
  • the pulse picker 12 may be omitted.
  • the beam splitter 14 reflects a part of the pulse excitation light and transmits the rest.
  • the excitation light detector 15 detects the light reflected by the beam splitter 14.
  • a photodiode or the like can be used for the excitation light detection means 15.
  • the nonlinear optical crystal 16 receives the light transmitted through the beam splitter 14 and generates a second harmonic or a third harmonic of the wavelength of the incident light.
  • the dichroic mirror 17 transmits light in the excitation light wavelength band and reflects light in the fluorescence wavelength band emitted from the measurement object 30.
  • the objective lens 18 condenses the excitation light transmitted through the dichroic mirror 17 at a desired location on the measurement object 30. Moreover, the objective lens 18 enters the fluorescence generated at the portion irradiated with the excitation light of the measurement object 30 in the opposite direction to the excitation light, and converts it into parallel light and emits it.
  • the excitation light removal filter 19 and the spectroscope 20 remove light in the wavelength band of excitation light from incident light.
  • the condensing lens 23 condenses incident light on the optical element 23.
  • the fluorescence detection means 24 detects fluorescence emitted from the measurement object 30.
  • the fluorescence detection means 24 has a detector group in which a plurality of detectors are arranged in a line along a predetermined direction.
  • the optical element 23 changes the traveling direction of the fluorescence so that the fluorescence is detected by different detectors among the plurality of detectors of the detector group as time elapses after the measurement object 30 is irradiated with the excitation light.
  • the optical element control means 25 drives and controls the optical element 23.
  • the PC 26 performs driving of the fluorescence detection unit 24 and a control instruction to the optical element control unit 25. Further, the PC 26 calculates the fluorescence lifetime based on the detection result of the fluorescence in the detector group of the fluorescence detection means 24.
  • the pulse excitation light emitted from the laser light source 11 is reflected by the mirror 13 to change the traveling direction, is incident on the beam splitter 14, is partially reflected, and the rest is transmitted through the beam splitter 14.
  • the light transmitted through the beam splitter 14 becomes excitation light that is irradiated onto the measurement object 30.
  • the light reflected by the beam splitter 14 is used to detect that the excitation light has been irradiated.
  • the excitation light detection means 15 detects the light reflected by the beam splitter 14 and transmits a signal indicating that the excitation light has been detected to the PC 26.
  • the PC 26 receives a signal indicating that the excitation light has been detected, the PC 26 starts detecting fluorescence in the fluorescence detection means 24.
  • the excitation light that has passed through the beam splitter 14 enters the nonlinear optical crystal 16.
  • the nonlinear optical crystal 16 generates a second harmonic or a third harmonic of the wavelength of incident light.
  • the excitation light emitted from the nonlinear optical crystal 16 enters the dichroic mirror 17.
  • the dichroic mirror 17 transmits light having a wavelength (wavelength band) of excitation light to the objective lens 18 side.
  • the excitation light that has passed through the dichroic mirror 17 is condensed at a desired location on the measurement object 30 by the objective lens 18.
  • positioned in the optical path from the laser light source 11 to the objective lens 18 is corresponded to the excitation light irradiation means which irradiates the measurement object 30 with excitation light.
  • Fluorescence is generated at the location where the excitation light of the measurement object 30 is irradiated.
  • the fluorescence emitted from the measurement object 30 passes through the objective lens 18 in the direction opposite to the excitation light and enters the dichroic mirror 17 as parallel light.
  • the dichroic mirror 17 reflects the incident fluorescence, and the reflected light enters the excitation light removing filter 19 and the spectroscope 20, and only a necessary wavelength is taken out.
  • a low pass filter or a band pass filter may be used.
  • the fluorescence from which the necessary wavelength component has been extracted is reflected by the mirror 21 to change its direction, and is condensed on the optical element 23 by the condenser lens 22.
  • the optical element 23 may be irradiated with fluorescence as parallel light.
  • the optical element 23 is configured as a micromirror, for example.
  • a MENS (Micro Electro Mechanical Systems) mirror created by a semiconductor process can be suitably used.
  • the optical element 23 is supported so as to be elastically displaceable, and is movable in a predetermined direction and in a direction opposite to the predetermined direction, a first drive source that applies a physical acting force in a predetermined direction to the movable part, An electric device element including a second driving source that applies a physical acting force in a direction opposite to the predetermined direction can be used.
  • a reflection mirror is formed on the upper surface of the movable part.
  • An electrostatic force or an electromagnetic force can be used as the physical acting force for driving the movable part.
  • the optical element control means 25 controls driving of the movable part (reflection mirror) in the optical element 23.
  • the fluorescence detection means 24 includes a detector group in which a plurality of detectors are arranged in a line along a predetermined direction.
  • a charge imaging device CCD image sensor: ChargeCharCoupled Device Image Sensor
  • each pixel constituting the CCD corresponds to each detector.
  • the fluorescence detection means 24 may have an image intensifier with a gate function in addition to the CCD.
  • the fluorescence detection unit 24 may detect the fluorescence emitted from the measurement object 30 as fluorescence of one or a plurality of wavelengths.
  • a microlens or a microlens array may be provided in front of the fluorescence detection unit 24, and fluorescence emitted from the measurement object 30 may be incident on each detector as parallel light or convergent light.
  • the PC 26 When the PC 26 receives a signal indicating that the excitation light has been detected from the excitation light detection means 15, the PC 26 rotates and displaces the reflection mirror of the optical element 23 via the optical element control means 25.
  • the optical element 23 changes the traveling direction (reflection direction) of the fluorescence reflected by the reflection mirror surface and directed to the fluorescence detection means 24 by the rotational displacement of the reflection mirror.
  • the optical element 23 allows the fluorescence emitted from the measurement object 30 to be detected by different detectors of the plurality of detectors constituting the detector group of the fluorescence detection means 24 with time. Change the direction of travel.
  • the fluorescence detection means 24 detects fluorescence with the different detectors sequentially as time advances in the detector group.
  • the optical element 23 continuously changes the traveling direction of the fluorescence from one end side to the other end side of the plurality of detectors arranged in a line over the fluorescence measurement period.
  • Each detector of the fluorescence detection means 24 outputs an electrical signal corresponding to the detected fluorescence emission intensity.
  • the emission intensity of the fluorescence detected by each detector is the fluorescence.
  • the PC 26 also functions as a fluorescence lifetime calculation unit, and calculates the fluorescence lifetime based on the detection result of the fluorescence detected by the detector group of the fluorescence detection unit 24.
  • the PC 26 obtains an integrated value of the fluorescence emission intensity in each of a plurality of time regions based on the fluorescence detection results of the plurality of detectors constituting the detector group, and based on these, the fluorescence decay Determine curve and fluorescence lifetime.
  • FIG. 2 shows the operation procedure of fluorescence lifetime measurement.
  • the laser light source 11 emits pulse excitation light (step S1).
  • the pulse excitation light is thinned out by the pulse picker 12 as necessary, then reflected by the mirror 13 and incident on the beam splitter 14.
  • the beam splitter 14 reflects a part of the pulsed excitation light and transmits the rest in the direction of the measurement object 30.
  • the excitation light that has passed through the beam splitter 14 passes through the nonlinear optical crystal 16 and the dichroic mirror 17, and is collected at a desired location on the measurement object 30 by the objective lens 18.
  • the excitation light applied to the measurement object 30 is assumed to be a point light source.
  • Fluorescence is generated at the location irradiated with the excitation light of the measurement object 30 (step S2).
  • the fluorescence passes through the objective lens 18 in the reverse direction, is reflected by the dichroic mirror 17, and the excitation light component is removed through the excitation light removal filter 19 and the spectroscope 20.
  • Fluorescence emitted from the measurement object 30 is reflected by the mirror 21 after the undesired components are removed, and the direction of the fluorescence is changed. Then, the light is condensed on the reflection mirror surface of the optical element 23 by the condenser lens 22.
  • a part of the excitation pulse light reflected by the beam splitter 14 enters the excitation light detection means 15, and the excitation light detection means 15 detects that the excitation light has been irradiated (step S3).
  • the excitation light detection unit 15 notifies the PC 26 that the excitation light irradiation has been detected, and the PC 26 instructs the optical element control unit 25 to rotate the reflection mirror in the optical element 23.
  • the optical element control means 25 gives a signal to the movable part of the optical element 23 and rotationally displaces the movable part.
  • the optical element 23 changes the reflection direction of the fluorescence emitted from the measurement object 30 with the lapse of time as the movable part is rotationally displaced (step S4). As the direction of fluorescence changes with time, the fluorescence emitted from the measurement object 30 moves on a plurality of detectors arranged in a one-dimensional array with respect to the time axis.
  • the instrument detects fluorescence in different time domains.
  • the PC 26 calculates the fluorescence detection result in the fluorescence detection means 24 and calculates the fluorescence decay curve and the fluorescence lifetime value (step S5).
  • step S5 the PC 26 obtains an integrated value of the fluorescence emission intensity in each of the plurality of time regions based on the fluorescence detection results of the plurality of detectors constituting the detector group.
  • the PC 26 obtains the fluorescence emission intensity in each time region based on the detection result of the fluorescence in one or more detectors corresponding to the time region of the fluorescence emission intensity to be obtained among a plurality of detectors. be able to.
  • the PC 26 plots the integrated emission intensity in each window with respect to the time axis, and obtains the fluorescence lifetime assuming that the integrated emission intensity decays exponentially.
  • the PC 26 adjoins a total of 100 detectors.
  • These 20 detectors may be grouped, and the sum of the fluorescence emission intensities detected by the 20 detectors in each group may be used as the integrated value of the fluorescence emission intensities in each window.
  • the number of window divisions for obtaining the fluorescence attenuation characteristic can be increased. Multi-component analysis is also possible by increasing the number of window divisions.
  • FIG. 3A and 3B schematically show a MEMS mirror 51 that is an optical element and a CCD 52 that is fluorescence detection means.
  • the electrostatically driven MEMS mirror 51 is rotationally displaced in accordance with an electrostatic force acting between a movable electrode provided on the back of the mirror and a fixed electrode located below the movable electrode.
  • FIG. 3A shows a state in which no electrostatic force is supplied. At this time, it is assumed that the movable mirror is in a flat state. When the movable mirror is driven in synchronization with the excitation light, the movable mirror is tilted in a predetermined direction with respect to the initial state as shown in FIG. 3B.
  • pixels are arranged in a line along an arc centered on the MEMS mirror.
  • the fluorescence emitted from the measurement object 30 is detected by separate pixels of the CCD 52 in which the pixels are one-dimensionally arranged corresponding to the time axis. It will be.
  • the movable mirror may be tilted in a direction opposite to the predetermined direction in the initial state, and tilted from that state in the predetermined direction.
  • the CCD 52 by arranging the CCD 52 at a position approximately 1.1 m away from the MEMS mirror 51, the fluorescence whose traveling direction changes at a rotation angle of 1 ° during the measurement period of 200 nsec can be detected by the 20 mm CCD.
  • the time resolution is 10 nsec and the number of windows is 20.
  • the number of windows and the time resolution can be arbitrarily set. In the case where the pixels are not arranged along a circular arc centered on the movable mirror in the CCD, for example, when the CCD is a flat surface, the detection pixel may be corrected according to the distance difference from the surface of the MES mirror.
  • the MEMS mirror is used as a general term for a micro-sized mirror manufactured using a semiconductor process or the like.
  • a DMD element Digital Micro-mirror Device
  • DMD is a mirror array device for two-dimensional light modulation, which was invented in 1987 by TI Corporation (Texas Instrument) and mass-produced in 1996. The basic structure and operating principle of the DMD will be described below.
  • FIG. 4 shows the basic structure of DMD.
  • the DMD 60 has a structure in which mirrors 62 each having a side of 10 ⁇ m to 13 ⁇ m are two-dimensionally arranged on a CMOS (Complementary Metal Metal Oxide Semiconductor) driving circuit formed on the Si substrate 61.
  • CMOS Complementary Metal Metal Oxide Semiconductor
  • One of the two-dimensionally arranged mirrors is used as a micromirror that changes the traveling direction of fluorescence emitted from one point of the measurement object 30 (FIG. 1).
  • the mirror 62 is a rotatable structure formed by thin film surface MEMS technology, and can be tilted and displaced by ⁇ 10 deg to 12 deg by electrostatic driving.
  • a 1-bit SRAM Static Random Access Memory
  • data for determining the direction of displacement of the mirror 62 is written.
  • a first electrode and a second electrode are formed on the top of the SRAM circuit via an insulating layer, and each is connected to the output of the SRAM circuit. Address voltages Va1 and Va2 corresponding to the data written in the SRAM circuit and its complementary data are supplied to the first electrode and the second electrode, respectively.
  • a landing pad is formed on the Si substrate 61.
  • a beam called a hinge 63 having both ends supported through a gap is formed on the upper part thereof.
  • a rigid film called a yoke 64 is formed on the hinge 63, and a rigid mirror 62 is formed on the yoke 64 via a support column.
  • the mirror 62 can be elastically twisted integrally with the yoke 64 by a hinge 63.
  • the first electrode, the second electrode, the yoke 64, and the mirror 62 are arranged symmetrically with respect to the hinge axis. Therefore, the yoke 64 and the mirror 62 can be rotated (tilted) left and right by the torsional elasticity of the hinge shaft. Become.
  • the landing pad functions as a stopper.
  • the hinge 63, the yoke 64, the mirror 62, and the landing pad are made of Al or an Al alloy and are electrically at the same potential.
  • a bias voltage Vb is supplied to the hinge 63, the yoke 64, the mirror 62, and the landing pad.
  • a bias voltage Vb is supplied to the yoke 64 / mirror 62 constituting the movable portion 67.
  • the address voltages Va1 and Va2 are supplied to the first electrode 65 and the second electrode 66.
  • the address voltages Va1 and Va2 are digital voltages and are complementary to each other.
  • Electrostatic force electrostatic torque for rotation
  • the movable portion 67 is inclined toward the first electrode 65 as shown in FIG. 5A.
  • the movable portion 67 is inclined toward the second electrode 66 as shown in FIG. 5B.
  • the movable part 67 is tilted to one side when the power is on, and the movable part 67 is tilted to the opposite side of the initial state or the same side as the initial state according to the relationship between ⁇ V1 and ⁇ V2.
  • the operation tilted to the opposite side is called CROSS operation
  • the operation tilted to the same side is called STAY operation.
  • FIG. 6 shows the relationship between the time when the drive signal is supplied and the rotation angle.
  • the relationship between the time and the rotation angle in the CROSS operation is indicated by a solid line
  • the relationship between the time and the rotation angle in the STAY operation is indicated by a dotted line.
  • the optical element 23 is disposed in the optical path until the fluorescence emitted from the measurement object 30 enters the fluorescence detection unit 24, and the fluorescence detection unit 24 is used with time using the optical element 23.
  • the direction of travel of fluorescence toward is changed.
  • the fluorescence detection means 24 sequentially detects the fluorescence emitted from the measurement object 30 with different detectors among a plurality of detectors constituting the detector group over time.
  • fluorescence is sequentially detected by different detectors over a measurement period. For this reason, in the fluorescence detection means 24, the fluorescence emitted from the measuring object 30 can be detected without waste, and the detection efficiency of the fluorescence with respect to the excitation light can be increased.
  • the technique described in Patent Document 1 can reduce the number of times of excitation light pulse irradiation by half, it still requires irradiation of at least two excitation light pulses.
  • the integrated fluorescence emission intensity can be obtained in three or more windows with at least one excitation light pulse irradiation, and a plurality of excitation light pulses can be obtained.
  • the measurement time can be shortened as compared with the prior art that required irradiation.
  • the measurement can be completed with at least one excitation light pulse, it is possible to measure the fluorescence lifetime of a sample such as a cell that changes every moment at the same time.
  • measurement can be performed with one pulse or a small number of pulses, the influence of photobleaching can be suppressed.
  • the integrated fluorescence emission intensity can be obtained with a window corresponding to the number of detectors constituting the detector group in the fluorescence detection means 24 at the maximum.
  • the fluorescence detection result of one detector corresponds to the integrated fluorescence emission intensity in one window.
  • Several detectors may be combined to correspond to one window, and the fluorescence detection results of one or more adjacent detectors may be added together.
  • the number of detectors constituting the detector group increases, the number of windows in the time gate method can be increased, and the number of points for fitting the fluorescence decay curve can be increased to improve the accuracy of analysis.
  • multi-component analysis can be performed by increasing the number of fitting of the fluorescence decay curves.
  • the time-resolved fluorescence measuring apparatus 10 may have a scanning unit that scans the irradiation position of the excitation light on the measurement object 30 in addition to the configuration shown in FIG.
  • the scanning unit scans, for example, the irradiation position of excitation light, which is a point light source, on the surface of the measurement object 30 in two directions, an x direction and a y direction, which are orthogonal to each other.
  • the scanning means for example, a galvanometer mirror, a polygon mirror, a resonant mirror, a piezo stage, or the like can be used.
  • the PC 26 fluorescence lifetime calculation means
  • the PC 26 may function as a fluorescence image generation means for generating a fluorescence image representing the fluorescence emission intensity distribution corresponding to each position of the scanned excitation light. Instead of the fluorescence emission intensity, the PC 26 may generate an image representing a fluorescence lifetime distribution calculated corresponding to each scanned position as a fluorescence image. Alternatively, the PC 26 may generate an image representing the distribution of both the emission intensity and the fluorescence lifetime as a fluorescence image. The PC 26 displays the generated fluorescent image on a display device such as a display.
  • the above scanning means may scan not only the surface of the measurement object 30 but also the condensing position of the excitation light with respect to the measurement object 30 in the depth direction.
  • a piezo stage or a condensing lens (objective lens 18) can be used for scanning in the depth direction.
  • the fluorescence lifetime measuring means only needs to obtain the fluorescence emission intensity (attenuation characteristic) and the fluorescence lifetime not only for each position on the surface of the measurement object but also for each position scanned in the depth direction.
  • the fluorescence image generating means may generate a fluorescence image as three-dimensional information by adding a depth direction to two directions on the surface of the measurement object 30.
  • an electrostatically driven MEMS element is used as the optical element 23.
  • a MEMS element having an electromagnetic force such as an electromagnetic scanner
  • Electromagnetic drive is commonly used in scanner elements. In the case of electromagnetic driving, when a current is passed through the movable part, a Lorentz force is generated by the direction of the current and the direction of the magnetic force of the permanent magnet, thereby driving the movable part. By alternately changing the direction in which the current flows, the movable portion can be oscillated.
  • a point light source is assumed as the excitation light
  • the excitation light is irradiated to one point (one minute region) of the measurement object 30, and the fluorescence emitted from the minute region is converted into the optical element 23.
  • the fluorescence detection means 24 detects the signal.
  • the mechanism in which the fluorescence emitted from each minute region (each point on one line) irradiated with the excitation light of the measurement object 30 is detected by the fluorescence detection unit 24 is described in the above embodiment. It is the same.
  • the optical element 23 applies fluorescence emitted from a portion irradiated with one line of excitation light of the measurement object 30 to the fluorescence detection unit 24 while changing the traveling direction of the fluorescence with time. What is necessary is just to radiate
  • the fluorescence detection means 24 should just have the number of detector groups corresponding to each point of 1 line to which excitation light is irradiated.
  • the fluorescence detection unit 24 may have m detector groups corresponding to a minute region of 1 row ⁇ m columns irradiated with the excitation light (line light) of the measurement target 30.
  • each detector group a plurality of detectors are arranged in a line, and a plurality of detector groups are arranged side by side, so that the plurality of detectors are arranged in a two-dimensional array in the fluorescence detection means 24. .
  • FIG. 7 shows the optical element 23 and the fluorescence detection means 24 when the excitation light of the line light source is irradiated.
  • the optical element 23 is configured as a MEMS mirror array 53, for example.
  • the DMD 60 (FIG. 4) is used for the MEMS mirror array 53, the DMD 60 irradiates the line light of the measurement object 30 using, for example, one row of the two-dimensionally arranged mirrors (each pixel constituting one row). It is only necessary to reflect the fluorescence emitted from the formed portion (a minute region of 1 row ⁇ m columns).
  • the same drive signal (data to be stored in the SRAM) may be supplied to the pixels constituting one row of the DMD at the same timing.
  • a single MEMS mirror having a length corresponding to one line of excitation light for example, the length of five pixels in FIG. 7 may be used. Good.
  • the fluorescence detection means 24 is configured as a CCD array 54 in which pixels are two-dimensionally arranged, for example. Among the two-dimensionally arrayed pixels of the CCD array 54, a plurality of pixels arrayed along a direction corresponding to the rotational displacement direction of the mirror in the MEMS mirror array 53 is one point of the measurement object 30 (one minute region). ) Is configured. In the CCD array 54, the detector groups are arranged in a direction corresponding to the pixel arrangement direction of the MEMS mirror array 53. The CCD array 54 detects each of the fluorescence emitted from the minute region of 1 row ⁇ m columns irradiated with the excitation light of the measurement object 30 by a corresponding detector group among the m detector groups.
  • one line of the measurement object can be excited at a time, and fluorescence emitted from one line can enter the MEMS mirror array 53 at a time. Can do.
  • the MEMS mirror array 53 emits (reflects) the fluorescence emitted from one line toward the CCD array 54 while changing the traveling direction of the fluorescence with time. If a two-dimensional array CCD array 54 is used as the fluorescence detection means 24, it is possible to detect fluorescence from one line by time resolution.
  • imaging can be performed by scanning line excitation light in one direction on the sample surface.
  • the excitation light applied to the measurement object 30 may be a surface light source.
  • the fluorescence detection means 24 corresponds to a micro area of n rows ⁇ m columns irradiated with the excitation light of the measurement object 30, and each is in an area of 1 row ⁇ m columns. It is only necessary to have n sets of a plurality of corresponding detector groups.
  • the optical element 23 reflects the fluorescence emitted from the minute column of m columns in each row irradiated with the excitation light of the measurement object 30 toward a plurality of detector groups in a corresponding set of the fluorescence detection unit 24. (Exit) may be performed.
  • the fluorescence detection means 24 detects each of the fluorescence emitted from the area of m columns of each row irradiated with the excitation light of the measurement object 30 by the corresponding detector group among the plurality of detector groups of the corresponding set. To do.
  • the measurement object 30 is excited at once using a surface light source, and the fluorescence emitted from the region irradiated with the excitation light of the measurement object 30 is detected by the fluorescence detection means 24, whereby the excitation light is detected on the measurement object 30.
  • Fluorescent images can be acquired at once without scanning.
  • the drive signals are supplied from the first row to the third row of the MEMS mirror array 55 at different timings, so that the fluorescence emitted from each region of the first row of the measurement object 30 is transmitted from the first light receiving unit. Fluorescence emitted from each region of the second row of the measurement object 30 is detected by the second light receiving unit, and fluorescence emitted from each region of the third row of the measurement object 30 is detected by the third light receiving unit. Detected. In each light receiving unit, each of the fluorescence emitted from the minute regions of the five columns in each corresponding row of the measurement object 30 is detected by the corresponding detector group among the five detector groups constituting each light receiving unit.
  • the pulse excitation light emitted from the laser light source 11 is thinned to a desired repetition frequency by the pulse picker 12 as necessary, enters the beam splitter 14 via the mirror 13, and is separated into two lights.
  • One of the separated lights is reflected by the beam splitter 14 and travels toward the excitation light detection means 15.
  • the other of the separated lights is incident on the nonlinear optical crystal 16, and the nonlinear optical crystal 16 generates the second harmonic or the third harmonic of the incident wavelength.
  • the excitation light in which the second harmonic or the third harmonic is generated by the nonlinear optical crystal 16 is introduced into the microscope 101.
  • the introduced excitation light enters the dichroic mirror 17 through the excitation filter 102, passes through the dichroic mirror 17, and is irradiated to a desired portion of the measurement object 30 by the objective lens 18.
  • the fluorescence emitted from the measurement object 30 is converted into parallel light by the objective lens 18 and passes through the dichroic mirror 17.
  • the light transmitted through the dichroic mirror 17 passes through the excitation light removal filter 19, is reflected by the mirror 103, and is emitted to the outside of the microscope 101.
  • the excitation light is two-dimensionally fluorescent if it is scanned two-dimensionally on the surface of the measurement object 30 using scanning means such as a galvanometer mirror, polygon mirror, resonant mirror, or piezo stage.
  • An attenuation curve can be obtained, and two-dimensional image information of the fluorescence lifetime can be obtained.
  • a line light source is used for the excitation light
  • two-dimensional image information of the fluorescence lifetime can be obtained by scanning the excitation light in one direction.
  • a surface light source is used for the excitation light
  • a two-dimensional image of fluorescence lifetime can be obtained without using a scanning means.
  • three-dimensional image information is obtained by scanning also in the depth direction (Z-axis direction) with a condenser lens or a piezo stage that collects excitation light on the measurement object 30. Can do.
  • FIG. 10 shows an endoscopic probe system.
  • the configuration of the endoscope probe system 200 is basically the same as that of the time-resolved fluorescence measuring apparatus 10 shown in FIG. 1 except that a part of the means is incorporated in the endoscope probe apparatus 201.
  • the configuration is the same as that of the decomposition fluorescence measuring apparatus 10.
  • FIG. 11 shows a cross section of the endoscope probe 204.
  • the endoscope probe 204 reaches the affected part, which is the measurement object 30, through the forceps opening of the endoscope.
  • the endoscope probe 204 includes an optical fiber 206 formed in the center and a plurality of optical fibers 207 formed in the periphery.
  • the optical fiber 206 formed in the center functions as an incident light that guides the excitation light to the measurement object 30 (FIG. 10).
  • the plurality of optical fibers 207 formed in the periphery function as a light receiving unit for receiving fluorescence emitted from the measurement object 30 and guiding it to the optical fiber 203 side.
  • the light incident on the dichroic mirror 17 from the optical fiber 203 side passes through the excitation light removal filter 19, is reflected by the mirror 205, and is emitted to the outside of the endoscope probe apparatus 201.
  • the light emitted from the endoscope probe device 201 is split by the spectroscope 20, reflected by the mirror 21, passes through the condenser lens 22, and enters the optical element 23 as convergent light.
  • the optical element 23 allows the fluorescence emitted from the measurement object 30 to be detected by different detectors of the plurality of detectors constituting the detector group of the fluorescence detection means 24 with time. Change the direction of travel.
  • the fluorescence detection means 24 detects fluorescence sequentially with different detectors as time advances.
  • the PC 26 calculates the fluorescence lifetime based on the detection result of the fluorescence detected by the detector group of the fluorescence detection means 24.
  • a point light source is used as the excitation light
  • the excitation light is scanned two-dimensionally on the surface of the measurement object 30 using a scanning means such as a MEMS scanner mirror provided at the distal end of the endoscope, the fluorescence is attenuated two-dimensionally.
  • a curve can be obtained, and two-dimensional image information of fluorescence lifetime can be obtained.
  • a fluorescence decay curve may be obtained two-dimensionally by receiving a signal from the measurement object 30 two-dimensionally with a fiber handle or the like.
  • a line light source is used for the excitation light
  • two-dimensional image information of the fluorescence lifetime can be obtained by scanning the excitation light in one direction.
  • a two-dimensional image of fluorescence lifetime can be obtained without using a scanning means.
  • three-dimensional image information can be obtained by scanning in the depth direction (Z-axis direction) with a condensing lens that collects excitation light on the measurement object 30. .
  • the fluorescence detecting means 24 is a one-dimensional array CCD having 2000 pixels and a pixel size of 10 ⁇ m.
  • the time for the scanner element to drive from ⁇ 10 ° to + 10 ° is 5 msec, which is approximately equal to the measurement time of the fluorescence decay curve.
  • the phosphorescence lifetime of Pdmeso-Tetra (4-carboxyphenyl) -porphine was measured by the time gate method using the above apparatus. Since 100 pixels of the CCD correspond to one window, the number of windows is 20. Plots of 20 points were obtained with respect to the time axis, and by fitting these 20 points, the phosphorescence lifetime of Pd meso-Tetra (4 carboxyphenyl) porphine was determined to be about 690 ⁇ sec.
  • time-resolved fluorescence measuring apparatus and method of the present invention are not limited to the above embodiment, and various modifications can be made from the configuration of the above embodiment. Further, modifications and changes are also included in the scope of the present invention.

Abstract

[Problem] To improve the efficiency of detection of fluorescence emitted from an object to be measured in a time-resolved fluorescence measurement device. [Solution] An object to be measured (30) is irradiated with excitation light. A fluorescence detection means (24) detects fluorescence emitted from the object to be measured (30). The fluorescence detection means (24) has a detector group in which a plurality of detectors are arranged in a line in a predetermined direction. An optical element (23) is disposed in a light path to the position of incidence of the fluorescence on the fluorescence detection means (24). The optical element (23) changes the direction of travel of the fluorescence such that the fluorescence is detected by different detectors among the plurality of detectors of the detector group as time passes after the object to be measured (30) is irradiated with the excitation light. A PC (26) calculates the life of the fluorescence on the basis of the result of the detection of the fluorescence by the detector group.

Description

時間分解蛍光測定装置、及び方法Time-resolved fluorescence measuring apparatus and method
 本発明は、時間分解蛍光測定装置及び方法に関し、更に詳しくは、時間領域測定法、特に時間ゲート法を用いて蛍光を測定する時間分解蛍光測定装置及び方法に関する。 The present invention relates to a time-resolved fluorescence measurement apparatus and method, and more particularly, to a time-resolved fluorescence measurement apparatus and method for measuring fluorescence using a time domain measurement method, particularly a time gate method.
 蛍光を発する物質に可視光や紫外光を照射すると、蛍光が発することが知られている。蛍光を発する物質にパルス幅が短い光を照射すると、その照射後、ピコ秒からナノ秒オーダーにわたって蛍光が観察される。一般的に、この蛍光の発光強度は光照射直後で最大となり、その後、指数関数的に減衰していく。この指数関数における減衰定数が、蛍光寿命と呼ばれる。蛍光寿命を顕微鏡下で観測し、2次元的にマッピングを行う手法をFLIM(Fluorescence Lifetime Imaging Microscopy)と呼ぶ。 It is known that fluorescence is emitted when a substance emitting fluorescence is irradiated with visible light or ultraviolet light. When a substance that emits fluorescence is irradiated with light having a short pulse width, fluorescence is observed from the picosecond to nanosecond order after the irradiation. In general, the emission intensity of this fluorescence becomes maximum immediately after light irradiation, and thereafter decays exponentially. The decay constant in this exponential function is called the fluorescence lifetime. A technique for observing the fluorescence lifetime under a microscope and performing two-dimensional mapping is called FLIM (FluorescenceFluorLifetime Imaging Microscopy).
 ここで、蛍光寿命の特徴は、時間という定量性に優れた指標を基準にできることである。蛍光の特性を、蛍光の発光強度で定量化することもできるが、蛍光の発光強度は、蛍光を発する物質の濃度、退色、励起光の波長、強度、集光効率、検出器の感度、観測試料中での光の減衰、光学系の透過率など様々な要因による影響を受ける。一方、蛍光寿命は、測定条件に依存して変化し得る蛍光の発光強度とは異なり、蛍光を発する物質に固有な値となることから、定量的な議論が可能となる。蛍光寿命は、その分子の構造や電子状態に関し重要な情報を与えるほか、周囲の環境(イオン濃度、pH、酸素濃度、屈折率、粘性、温度など)に関する情報も提供する。 Here, the characteristic of the fluorescence lifetime is that it can be based on an index that is excellent in time and quantitative. Fluorescence characteristics can also be quantified by fluorescence emission intensity, but fluorescence emission intensity is determined by concentration of fluorescent substance, fading, wavelength of excitation light, intensity, light collection efficiency, detector sensitivity, observation It is affected by various factors such as light attenuation in the sample and transmittance of the optical system. On the other hand, the fluorescence lifetime is different from the fluorescence emission intensity that can change depending on the measurement conditions, and is a value inherent to the substance that emits fluorescence, so that quantitative discussion is possible. Fluorescence lifetime provides important information about the structure and electronic state of the molecule, as well as information about the surrounding environment (ion concentration, pH, oxygen concentration, refractive index, viscosity, temperature, etc.).
 蛍光寿命を観測する方法は、大きく分けて2つある。1つは、パルス状の光を励起光に用いる時間領域測定法(time-domain measurement)であり、もう1つは、正弦波状に強度変調した光を励起光に用いる周波数領域測定法(frequency-domain measurement)である。時間領域測定法では、短パルスレーザを試料に入射し、その時間応答を高速な検出器で観測する。時間領域測定法における代表的な観測方法として、時間相関単一光子計数法(time-correlated single photon counting:TCSPC)や、イメージインテンシファイア付きCCDを用いた時間ゲート法、ストリークカメラを用い、時空間変換によってスペクトルと時間波形を一度に観測する手法が挙げられる。これらの方法に、アレイタイプの高感度検出器やスキャナミラーを組み合わせることで、蛍光寿命のマッピング、つまりイメージングが可能となる。 There are two main methods for observing the fluorescence lifetime. One is a time-domain measurement method using pulsed light as excitation light, and the other is a frequency-domain measurement method using frequency-modulated light in the form of a sine wave as excitation light. domain measurement). In the time domain measurement method, a short pulse laser is incident on a sample, and the time response is observed with a high-speed detector. Typical observation methods in the time domain measurement method include time-correlated single photon counting (TCSPC), time gate method using CCD with image intensifier, and streak camera. A method of observing a spectrum and a time waveform at one time by spatial transformation is mentioned. By combining these methods with an array-type high-sensitivity detector or scanner mirror, fluorescence lifetime mapping, that is, imaging can be performed.
 時間ゲート法では、蛍光発光の減衰曲線を時間軸方向にいくつかのウィンドウに分割し、パルス光を試料に照射した後、測定すべきウィンドウ(時間領域)に応じた遅延時間で検出器を一瞬だけオンにする。複数のウィンドウで蛍光の検出を行い、各ウィンドウ内の積分発光強度の値を時間に対してプロットし、積分発光強度が単一指数関数的に減衰すると仮定して蛍光寿命を求める。時間ゲート法は、時間相関単一光子計数法に比べ、測定時間を短縮できる。しかし、例えば時間領域を4分割したと仮定した場合、4つのウィンドウのそれぞれにおいて積分発光強度を求めるためには、同一の測定箇所に対して最低でも4回測定を行うことが必要である。このため、例えば細胞などの時々刻々と変化するサンプルに対して、同一時刻での蛍光寿命測定は困難であった。また、何度もパルス光を照射することで蛍光物質の退色が生じ、また、測定箇所が細胞であれば細胞が損傷するなどの問題もあった。 In the time gating method, the fluorescence decay curve is divided into several windows in the time axis direction, and after irradiating the sample with pulsed light, the detector is momentarily moved with a delay time corresponding to the window (time domain) to be measured. Just turn it on. Fluorescence is detected in a plurality of windows, the value of the integrated emission intensity in each window is plotted against time, and the fluorescence lifetime is obtained on the assumption that the integrated emission intensity decays in a single exponential function. The time gate method can shorten the measurement time compared to the time correlated single photon counting method. However, for example, assuming that the time domain is divided into four, in order to obtain the integrated emission intensity in each of the four windows, it is necessary to perform measurement at least four times at the same measurement location. For this reason, it is difficult to measure the fluorescence lifetime at the same time for samples such as cells that change every moment. Further, there are problems that the fluorescent material is discolored by irradiating pulsed light many times, and that if the measurement site is a cell, the cell is damaged.
 上記問題点に対し、特許文献1には、1度の励起光で単一蛍光減衰曲線の2つのウィンドウにおける積分発光強度を測定する方法が開示されている。引用文献1に記載の時間分解イメージング装置は、分離光学系と、遅延光学系と、合成光学系とを有する。分離光学系は、測定対象で発生した蛍光を、第1の光と第2の光とに分離して出力する。第1の光は遅延光学系を介して合成光学系に出力され、第2の光はそのまま合成光学系に出力される。遅延光学系は、第1の光に対して、第2の光の光路長に比して長い光路長を設定する。合成光学系は、分離光学系が出力する第2の光、及び遅延光学系を通った第1の光それぞれが形成する測定対象の像を、結像面上の互いに重ならない領域に合成し、合成した像を撮像部に出力する。第1の光は遅延光学系で遅延が与えられた分だけ遅れるため、撮像部において第1の光と第2の光とを同時刻に撮像することで、2つの時間領域における積分発光強度を測定することができる。 In response to the above problem, Patent Document 1 discloses a method of measuring the integrated emission intensity in two windows of a single fluorescence decay curve with a single excitation light. The time-resolved imaging apparatus described in the cited document 1 includes a separation optical system, a delay optical system, and a synthesis optical system. The separation optical system separates and outputs the fluorescence generated in the measurement target into first light and second light. The first light is output to the combining optical system via the delay optical system, and the second light is output to the combining optical system as it is. The delay optical system sets a longer optical path length for the first light than the optical path length of the second light. The combining optical system combines the image of the measurement object formed by each of the second light output from the separation optical system and the first light that has passed through the delay optical system into a non-overlapping region on the imaging surface, The synthesized image is output to the imaging unit. Since the first light is delayed by the amount of delay given by the delay optical system, the integrated light emission intensity in the two time regions can be obtained by imaging the first light and the second light at the same time in the imaging unit. Can be measured.
特開平9-43146号公報JP 9-43146 A
 ここで、時間ゲート法では、ウィンドウ幅に対応する時間だけ検出器がオンにされ、検出器がオンされたときに入射された蛍光は検出器で検出されるものの、それ以外の時間領域の蛍光は検出器で検出されることはない。このことは、励起光に対する蛍光の検出効率を下げる要因となっている。特許文献1においても、分離された第1の光及び第2の光は、それぞれウィンドウ幅の分しか撮像部において撮像されず、ウィンドウ外の時間領域における蛍光が撮像部で撮影されることはないため、励起光に対する蛍光の検出効率を向上させることはできない。 Here, in the time gate method, the detector is turned on only for a time corresponding to the window width, and the fluorescence that is incident when the detector is turned on is detected by the detector, but the fluorescence in other time regions is detected. Is not detected by the detector. This is a factor that lowers the detection efficiency of fluorescence with respect to excitation light. Also in Patent Document 1, the separated first light and second light are imaged by the imaging unit only for the window width, and fluorescence in the time region outside the window is not captured by the imaging unit. Therefore, it is not possible to improve the fluorescence detection efficiency with respect to the excitation light.
 本発明は、上記に鑑み、測定対象物から発せられた蛍光の検出効率を向上できる時間分解蛍光測定装置及び方法を提供することを目的とする。 In view of the above, an object of the present invention is to provide a time-resolved fluorescence measuring apparatus and method capable of improving the detection efficiency of fluorescence emitted from a measurement object.
 上記目的を達成するために、本発明は、所定の波長を有する光を励起光として測定対象物に照射する光照射手段と、前記測定対象物から発せられる蛍光を検出する蛍光検出手段であって、複数の検出器が所定の方向に沿って一列に配列された検出器群を有する蛍光検出手段と、前記蛍光が前記蛍光検出手段に入射するまでの間の光路中に配置され、前記励起光が前記測定対象物に照射された後、時間経過と共に前記蛍光が前記検出器群の複数の検出器のうちの異なる検出器で検出されるように、前記蛍光の進行方向を変化させる光学素子と、前記検出器群での蛍光の検出結果に基づいて、蛍光寿命を算出する蛍光寿命算出手段とを備えたことを特徴とする時間分解蛍光測定装置を提供する。 In order to achieve the above object, the present invention is a light irradiation means for irradiating a measurement object with light having a predetermined wavelength as excitation light, and a fluorescence detection means for detecting fluorescence emitted from the measurement object. A plurality of detectors arranged in a line along a predetermined direction, a fluorescence detection means, and arranged in an optical path between the fluorescence entering the fluorescence detection means, the excitation light An optical element that changes the traveling direction of the fluorescence so that the fluorescence is detected by different detectors of the plurality of detectors of the detector group over time after the measurement object is irradiated. There is provided a time-resolved fluorescence measuring apparatus comprising fluorescence lifetime calculation means for calculating a fluorescence lifetime based on a fluorescence detection result in the detector group.
 本発明の時間分解蛍光測定装置では、前記蛍光寿命算出手段が、前記複数の検出器での蛍光の検出結果に基づいて複数の時間領域のそれぞれにおける蛍光発光強度を求め、該求められた蛍光発光強度に基づいて前記蛍光寿命を算出する構成を採用できる。 In the time-resolved fluorescence measuring apparatus of the present invention, the fluorescence lifetime calculating means obtains the fluorescence emission intensity in each of a plurality of time regions based on the fluorescence detection results by the plurality of detectors, and the obtained fluorescence emission A configuration for calculating the fluorescence lifetime based on the intensity can be employed.
 前記蛍光寿命算出手段は、前記複数の検出器のうちの、求めるべき蛍光発光強度の時間領域に対応した1以上の検出器での蛍光の検出結果に基づいて、各時間領域における蛍光発光強度を求めてもよい。 The fluorescence lifetime calculating means calculates the fluorescence emission intensity in each time region based on the fluorescence detection result of one or more detectors corresponding to the time region of the fluorescence emission intensity to be obtained among the plurality of detectors. You may ask for it.
 前記光学素子は、前記蛍光の測定期間にわたって、前記蛍光の進行方向を、前記一列に配列された複数の検出器の一端側から他端側へ連続的に変化させてもよい。 The optical element may continuously change the traveling direction of the fluorescence from one end side to the other end side of the plurality of detectors arranged in a row over the fluorescence measurement period.
 前記光学素子には、弾性変位可能に支持され、第1の方向及びこれとは逆方向の第2の方向へ変位可能な可動部と、該可動部へ前記第1の方向の物理的作用力を加える第1の駆動源と、前記可動部へ前記第2の方向の物理的作用力を加える第2の駆動源とを含む電気機器素子を用いることができる。 The optical element is supported so as to be elastically displaceable, and is movable in a first direction and a second direction opposite to the first direction, and a physical acting force in the first direction on the movable part. It is possible to use an electric device element including a first driving source for applying a second driving source for applying a physical acting force in the second direction to the movable portion.
 前記励起光は、点光源とすることができる。この場合、前記蛍光検出器手段は、前記測定対象物の前記励起光が照射された箇所から発せられる蛍光を、前記検出器群の複数の検出器で検出することができる。 The excitation light can be a point light source. In this case, the fluorescence detector means can detect fluorescence emitted from the portion of the measurement object irradiated with the excitation light with a plurality of detectors of the detector group.
 上記に代えて、前記励起光にライン光源を用いてもよ。その場合、前記蛍光検出手段は、前記測定対象物の前記励起光が照射された1行×m列(mは2以上の整数)の領域に対応した複数の検出器群を含み、前記測定対象物の前記励起光が照射された1行のm列の領域から発せられる蛍光のそれぞれを、前記複数の検出器群のうちの対応する検出器群で検出することができる。 Instead of the above, a line light source may be used for the excitation light. In that case, the fluorescence detection means includes a plurality of detector groups corresponding to an area of 1 row × m columns (m is an integer of 2 or more) irradiated with the excitation light of the measurement object, and the measurement object Each of the fluorescence emitted from an area of m columns in one row irradiated with the excitation light of the object can be detected by a corresponding detector group of the plurality of detector groups.
 更に上記に代えて、前記励起光に面光源を用いてもよい。その場合、前記蛍光検出手段が、前記測定対象物の前記励起光が照射されたn行×m列(n、mはそれぞれ2以上の整数)の領域に対応して、それぞれが1行×m列の領域に対応した複数の検出器群をnセット有し、前記光学素子は、前記測定対象領域の励起光が照射された各行のm列の領域から発せられた蛍光を、前記蛍光検出手段の対応するセットの複数の検出器群に向けて出射し、前記蛍光検出手段は、前記測定対象物の前記励起光が照射された各行のm列の領域から発せられる蛍光のそれぞれを、前記対応するセットの複数の検出器群のうちの対応する検出器群で検出すればよい。 Further, instead of the above, a surface light source may be used for the excitation light. In that case, each of the fluorescence detection means corresponds to an area of n rows × m columns (n and m are integers of 2 or more) irradiated with the excitation light of the measurement object, each of which is 1 row × m. N sets of a plurality of detector groups corresponding to the column region, and the optical element emits fluorescence emitted from the m column region of each row irradiated with the excitation light of the measurement target region. The fluorescence detection means emits each of the fluorescence emitted from the m-column region of each row irradiated with the excitation light of the measurement object. What is necessary is just to detect with the corresponding detector group among the several detector groups of a set to perform.
 前記蛍光検出手段は、ゲート機能を有するイメージインテンシファイアと電荷撮像素子とを含んでいてよい。 The fluorescence detection means may include an image intensifier having a gate function and a charge imaging device.
 本発明の時間分解蛍光測定装置は、前記励起光を前記測定対象物の表面上で走査する走査手段と、前記走査された励起光の各位置に対応する前記蛍光の発光強度、及び前記算出された蛍光寿命の少なくとも一方の分布を表す蛍光画像を生成する蛍光画像生成手段とを更に備える構成とすることができる。 The time-resolved fluorescence measuring apparatus of the present invention includes a scanning unit that scans the excitation light on the surface of the measurement object, the emission intensity of the fluorescence corresponding to each position of the scanned excitation light, and the calculation. And a fluorescence image generating means for generating a fluorescence image representing at least one distribution of the fluorescence lifetime.
 前記走査手段は、前記測定対象物の表面上に加えて、前記測定対象物上の前記励起光の集光位置を深さ方向にも走査し、前記蛍光画像生成手段は、前記蛍光画像を3次元情報として生成することができる。 The scanning unit scans the condensing position of the excitation light on the measurement object in the depth direction in addition to the surface of the measurement object, and the fluorescence image generation unit 3 scans the fluorescence image. It can be generated as dimensional information.
 本発明は、本発明の時間分解蛍光測定装置を備えたことを特徴とする顕微鏡システムを提供する。 The present invention provides a microscope system comprising the time-resolved fluorescence measuring device of the present invention.
 また本発明は、本発明の時間分解蛍光測定装置を備えたことを特徴とする内視鏡ファイバプローブシステムを提供する。 The present invention also provides an endoscope fiber probe system comprising the time-resolved fluorescence measuring device of the present invention.
 本発明は、更に、所定の波長を有する光を励起光として測定対象物に照射するステップと、前記励起光が前記測定対象物に照射された後、前記測定対象物から発せられる蛍光が、時間経過と共に所定の方向に沿って一列に配列された複数の検出器のうちの異なる検出器で検出されるように、前記蛍光の進行方向を変化させるステップと、前記複数の検出器における蛍光の検出結果に基づいて、蛍光寿命を算出するステップとを有することを特徴とする時間分解蛍光測定方法を提供する。 The present invention further includes a step of irradiating the measurement object with light having a predetermined wavelength as excitation light, and fluorescence emitted from the measurement object after the excitation light is irradiated on the measurement object. The step of changing the traveling direction of the fluorescence so as to be detected by different detectors out of the plurality of detectors arranged in a line along a predetermined direction as time passes, and detection of fluorescence in the plurality of detectors And a step of calculating a fluorescence lifetime based on the result.
 本発明の時間分解蛍光測定装置及び方法では、測定対象物から発せられた蛍光の検出に際して、蛍光が時間経過と共に所定の方向に沿って一列に配列された複数の検出器のうちの異なる検出器で検出されるように、蛍光の進行方向を変化させる。このようにすることで、例えば測定期間にわたって蛍光を順次に異なる検出器で検出することができ、励起光に対する蛍光の検出効率を高めることができきる。 In the time-resolved fluorescence measuring apparatus and method of the present invention, when detecting fluorescence emitted from an object to be measured, different detectors out of a plurality of detectors in which the fluorescence is arranged in a line along a predetermined direction over time Change the direction of travel of the fluorescence as detected by. In this way, for example, the fluorescence can be sequentially detected by different detectors over the measurement period, and the detection efficiency of the fluorescence with respect to the excitation light can be increased.
本発明の一実施形態の時間分解蛍光測定装置を示すブロック図。1 is a block diagram showing a time-resolved fluorescence measuring device according to an embodiment of the present invention. 蛍光寿命測定の動作手順を示すフローチャート。The flowchart which shows the operation | movement procedure of fluorescence lifetime measurement. MEMSミラーとCCDとを模式的に示す図。The figure which shows a MEMS mirror and CCD typically. MEMSミラーとCCDとを模式的に示す図。The figure which shows a MEMS mirror and CCD typically. DMDの基本構造を示す斜視図。The perspective view which shows the basic structure of DMD. DMDの基本動作原理を示す断面図。Sectional drawing which shows the basic operation principle of DMD. DMDの基本動作原理を示す断面図。Sectional drawing which shows the basic operation principle of DMD. 駆動信号を供給したときの時間と回転角との関係を示すグラフ。The graph which shows the relationship between time when a drive signal is supplied, and a rotation angle. ライン光源の励起光が照射された場合の光学素子と蛍光検出手段とを模式的に示す斜視図。The perspective view which shows typically an optical element and fluorescence detection means when the excitation light of a line light source is irradiated. 面光源の励起光が照射された場合の光学素子と蛍光検出手段とを模式的に示す斜視図。The perspective view which shows typically an optical element and fluorescence detection means when the excitation light of a surface light source is irradiated. 顕微鏡システムを示すブロック図。The block diagram which shows a microscope system. 内視鏡プローブシステムを示すブロック図。The block diagram which shows an endoscope probe system. 内視鏡プローブの断面を示す斜視図。The perspective view which shows the cross section of an endoscope probe.
 以下、図面を参照し、本発明の実施の形態を詳細に説明する。図1は、本発明の一実施形態の時間分解蛍光測定装置を示す。時間分解蛍光測定装置10は、レーザ光源11、パルスピッカー12、ミラー13、21、ビームスプリッター14、励起光検出手段15、非線形光学結晶16、ダイクロイックミラー17、対物レンズ18、励起光除去フィルター19、分光器20、集光レンズ22、光学素子23、蛍光検出手段24、光学素子制御手段25、及びコンピュータ(PC:Personal Computer)26を備える。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a time-resolved fluorescence measuring apparatus according to an embodiment of the present invention. The time-resolved fluorescence measurement apparatus 10 includes a laser light source 11, a pulse picker 12, mirrors 13 and 21, a beam splitter 14, an excitation light detection means 15, a nonlinear optical crystal 16, a dichroic mirror 17, an objective lens 18, an excitation light removal filter 19, A spectroscope 20, a condensing lens 22, an optical element 23, a fluorescence detection means 24, an optical element control means 25, and a computer (PC: Personal Computer) 26 are provided.
 時間分解蛍光測定装置10は、時間ゲート法を用いて蛍光寿命を求める。すなわち、蛍光発光の減衰曲線を数分割のウィンドウ(時間領域)に分割し、励起光としてパルス光を試料に照射した後、複数のウィンドウにおいて蛍光発光強度を検出し、各ウィンドウ内の蛍光発光強度の値(積分値)を時間に対してプロットし、積分発光強度が指数関数的に減衰すると仮定して蛍光寿命を求める。なお、測定対象の光は、測定対象物から発せられた蛍光のみに限定されるわけではなく、それと類似した特徴を持つ光、例えばりん光でもよい。つまり、時間分解蛍光測定装置10を用いてりん光の寿命を求めてもよい。 The time-resolved fluorescence measuring apparatus 10 obtains the fluorescence lifetime using a time gate method. That is, the fluorescence emission decay curve is divided into several divided windows (time domain), the sample is irradiated with pulsed light as excitation light, the fluorescence emission intensity is detected in multiple windows, and the fluorescence emission intensity in each window is detected. Is plotted against time, and the fluorescence lifetime is obtained assuming that the integrated emission intensity decays exponentially. Note that the light to be measured is not limited to the fluorescence emitted from the measurement object, and may be light having characteristics similar to that, for example, phosphorescence. That is, the lifetime of phosphorescence may be obtained using the time-resolved fluorescence measuring device 10.
 レーザ光源11は、試料である測定対象物30に照射される所定波長の励起光を生成する。レーザ光源11には、例えばTiSaレーザなどを用いることができる。レーザ光源11は、パルス的なレーザ光を生成する。レーザ光源11は、例えばピコ秒からフェムト秒のパルス時間であるパルス光をパルス励起光として生成する。パルスピッカー12は、例えばレーザ光源11が周期的に生成するパルス励起光を所定の割合で間引く。パルスピッカー12がパルス励起光を間引くことで、測定対象物30に所望の周期でパルス励起光を照射できる。レーザ光源11がパルス励起光を生成する周期が所望の周期となっている場合、パルスピッカー12は省いてもよい。 The laser light source 11 generates excitation light having a predetermined wavelength that is irradiated onto the measurement object 30 that is a sample. As the laser light source 11, for example, a TiSa laser or the like can be used. The laser light source 11 generates pulsed laser light. The laser light source 11 generates, for example, pulsed light having a pulse time from picoseconds to femtoseconds as pulse excitation light. For example, the pulse picker 12 thins out the pulse excitation light periodically generated by the laser light source 11 at a predetermined rate. When the pulse picker 12 thins out the pulse excitation light, the measurement target 30 can be irradiated with the pulse excitation light at a desired cycle. When the cycle in which the laser light source 11 generates the pulse excitation light is a desired cycle, the pulse picker 12 may be omitted.
 ビームスプリッター14は、パルス励起光の一部を反射し、残りを透過する。励起光検出手段15は、ビームスプリッター14で反射した光を検出する。励起光検出手段15にはフォトダイオードなどを用いることができる。非線形光学結晶16は、ビームスプリッター14を透過した光を入射し、入射光の波長の第2高調波又は第3高調波を発生する。ダイクロイックミラー17は、励起光の波長帯域の光を透過し、測定対象物30から発せられた蛍光の波長帯域の光を反射する。 The beam splitter 14 reflects a part of the pulse excitation light and transmits the rest. The excitation light detector 15 detects the light reflected by the beam splitter 14. A photodiode or the like can be used for the excitation light detection means 15. The nonlinear optical crystal 16 receives the light transmitted through the beam splitter 14 and generates a second harmonic or a third harmonic of the wavelength of the incident light. The dichroic mirror 17 transmits light in the excitation light wavelength band and reflects light in the fluorescence wavelength band emitted from the measurement object 30.
 対物レンズ18は、ダイクロイックミラー17を透過した励起光を、測定対象物30上の所望の箇所に集光する。また、対物レンズ18は、測定対象物30の励起光が照射された箇所で発生した蛍光を、励起光とは逆向きに入射し、平行光化して出射する。励起光除去フィルター19及び分光器20は、入射光から、励起光の波長帯域の光を除去する。集光レンズ23は、入射光を光学素子23上に集光する。 The objective lens 18 condenses the excitation light transmitted through the dichroic mirror 17 at a desired location on the measurement object 30. Moreover, the objective lens 18 enters the fluorescence generated at the portion irradiated with the excitation light of the measurement object 30 in the opposite direction to the excitation light, and converts it into parallel light and emits it. The excitation light removal filter 19 and the spectroscope 20 remove light in the wavelength band of excitation light from incident light. The condensing lens 23 condenses incident light on the optical element 23.
 蛍光検出手段24は、測定対象物30から発せられる蛍光を検出する。蛍光検出手段24は、複数の検出器が所定の方向に沿って一列に配列された検出器群を有する。光学素子23は、励起光が測定対象物30に照射された後、時間経過と共に蛍光が検出器群の複数の検出器のうちの異なる検出器で検出されるように、蛍光の進行方向を変化させる。光学素子制御手段25は、光学素子23を駆動制御する。PC26は、蛍光検出手段24の駆動、及び光学素子制御手段25に対する制御指示などを行う。また、PC26は、蛍光検出手段24の検出器群での蛍光の検出結果に基づいて、蛍光寿命を算出する。 The fluorescence detection means 24 detects fluorescence emitted from the measurement object 30. The fluorescence detection means 24 has a detector group in which a plurality of detectors are arranged in a line along a predetermined direction. The optical element 23 changes the traveling direction of the fluorescence so that the fluorescence is detected by different detectors among the plurality of detectors of the detector group as time elapses after the measurement object 30 is irradiated with the excitation light. Let The optical element control means 25 drives and controls the optical element 23. The PC 26 performs driving of the fluorescence detection unit 24 and a control instruction to the optical element control unit 25. Further, the PC 26 calculates the fluorescence lifetime based on the detection result of the fluorescence in the detector group of the fluorescence detection means 24.
 励起光照射から蛍光寿命算出までの一連の動作について説明する。レーザ光源11から出射したパルス励起光は、ミラー13で反射して進行方向を変え、ビームスプリッター14に入射して一部が反射し、残りがビームスプリッター14を透過する。ビームスプリッター14を透過した光は、測定対象物30に照射される励起光となる。一方、ビームスプリッター14で反射した光は、励起光が照射された旨を検出するために使用される。励起光検出手段15は、ビームスプリッター14で反射した光を検出し、励起光が検出された旨を表す信号をPC26に伝達する。PC26は、励起光が検出された旨を表す信号を受け取ると、蛍光検出手段24における蛍光の検出を開始させる。 A series of operations from excitation light irradiation to fluorescence lifetime calculation will be described. The pulse excitation light emitted from the laser light source 11 is reflected by the mirror 13 to change the traveling direction, is incident on the beam splitter 14, is partially reflected, and the rest is transmitted through the beam splitter 14. The light transmitted through the beam splitter 14 becomes excitation light that is irradiated onto the measurement object 30. On the other hand, the light reflected by the beam splitter 14 is used to detect that the excitation light has been irradiated. The excitation light detection means 15 detects the light reflected by the beam splitter 14 and transmits a signal indicating that the excitation light has been detected to the PC 26. When the PC 26 receives a signal indicating that the excitation light has been detected, the PC 26 starts detecting fluorescence in the fluorescence detection means 24.
 ビームスプリッター14を透過した励起光は、非線形光学結晶16に入射する。非線形光学結晶16は、入射光の波長の第2高調波又は第3高調波を発生する。非線形光学結晶16を出射した励起光は、ダイクロイックミラー17に入射する。ダイクロイックミラー17は、励起光の波長(波長帯域)の光を対物レンズ18側に透過する。ダイクロイックミラー17を透過した励起光は、対物レンズ18により、測定対象物30の所望の箇所に集光される。なお、レーザ光源11から対物レンズ18に至る光路に配置された各部は、励起光を測定対象物30に照射する励起光照射手段に相当する。 The excitation light that has passed through the beam splitter 14 enters the nonlinear optical crystal 16. The nonlinear optical crystal 16 generates a second harmonic or a third harmonic of the wavelength of incident light. The excitation light emitted from the nonlinear optical crystal 16 enters the dichroic mirror 17. The dichroic mirror 17 transmits light having a wavelength (wavelength band) of excitation light to the objective lens 18 side. The excitation light that has passed through the dichroic mirror 17 is condensed at a desired location on the measurement object 30 by the objective lens 18. In addition, each part arrange | positioned in the optical path from the laser light source 11 to the objective lens 18 is corresponded to the excitation light irradiation means which irradiates the measurement object 30 with excitation light.
 測定対象物30の励起光が照射された箇所では、蛍光が発生する。測定対象物30から発せされた蛍光は、対物レンズ18を励起光とは逆向きに通り、平行光としてダイクロイックミラー17に入射する。ダイクロイックミラー17は入射した蛍光を反射し、その反射光は、励起光除去フィルター19及び分光器20に入射して、必要な波長のみが取りだされる。分光器20に代えて、ローパスフィルターやバンドパスフィルターを用いてもよい。必要な波長成分が取り出された蛍光は、ミラー21で反射して方向を変え、集光レンズ22により、光学素子23上に集光される。集光レンズ22を用いずに、蛍光を、平行光として光学素子23に照射してもよい。 Fluorescence is generated at the location where the excitation light of the measurement object 30 is irradiated. The fluorescence emitted from the measurement object 30 passes through the objective lens 18 in the direction opposite to the excitation light and enters the dichroic mirror 17 as parallel light. The dichroic mirror 17 reflects the incident fluorescence, and the reflected light enters the excitation light removing filter 19 and the spectroscope 20, and only a necessary wavelength is taken out. Instead of the spectroscope 20, a low pass filter or a band pass filter may be used. The fluorescence from which the necessary wavelength component has been extracted is reflected by the mirror 21 to change its direction, and is condensed on the optical element 23 by the condenser lens 22. Instead of using the condenser lens 22, the optical element 23 may be irradiated with fluorescence as parallel light.
 光学素子23は、例えば微小ミラーとして構成される。微小ミラーには、半導体プロセスにて作成されたMENS(Micro Electro Mechanical Systems)ミラーを好適に用いることができる。光学素子23には、例えば、弾性変位可能に支持され、所定の方向及びそれとは逆方向へ変位可能な可動部と、可動部へ所定方向の物理的作用力を加える第1の駆動源と、所定方向とは逆方向の物理的作用力を加える第2の駆動源とを含む電気機器素子を用いることができる。可動部の上面には反射ミラーが形成される。可動部を駆動する物理的作用力には、静電気力又は電磁力を用いることができる。光学素子制御手段25は、光学素子23における可動部(反射ミラー)の駆動を制御する。 The optical element 23 is configured as a micromirror, for example. As the micromirror, a MENS (Micro Electro Mechanical Systems) mirror created by a semiconductor process can be suitably used. For example, the optical element 23 is supported so as to be elastically displaceable, and is movable in a predetermined direction and in a direction opposite to the predetermined direction, a first drive source that applies a physical acting force in a predetermined direction to the movable part, An electric device element including a second driving source that applies a physical acting force in a direction opposite to the predetermined direction can be used. A reflection mirror is formed on the upper surface of the movable part. An electrostatic force or an electromagnetic force can be used as the physical acting force for driving the movable part. The optical element control means 25 controls driving of the movable part (reflection mirror) in the optical element 23.
 光学素子23を反射した蛍光は、蛍光を検出する蛍光検出手段24に入射する。蛍光検出手段24は、複数の検出器が所定の方向に沿って一列に配列された検出器群を含んでいる。蛍光検出手段24には、電荷撮像素子(CCDイメージセンサ:Charge Coupled Device Image Sensor)を用いることができる。この場合、CCDを構成する各画素が、各検出器に対応する。蛍光検出手段24は、CCDに加えて、ゲート機能付きのイメージインテンシファイアを有していてもよい。蛍光検出手段24は、測定対象物30から発せられた蛍光を、1つ又は複数の波長の蛍光として検出してもよい。蛍光検出手段24の前段にマイクロレンズ又はマイクロレンズアレイを設け、各検出器に、測定対象物30から発せられた蛍光を平行光又は収束光として入射してもよい。 Fluorescence reflected from the optical element 23 enters the fluorescence detection means 24 that detects fluorescence. The fluorescence detection means 24 includes a detector group in which a plurality of detectors are arranged in a line along a predetermined direction. As the fluorescence detection means 24, a charge imaging device (CCD image sensor: ChargeCharCoupled Device Image Sensor) can be used. In this case, each pixel constituting the CCD corresponds to each detector. The fluorescence detection means 24 may have an image intensifier with a gate function in addition to the CCD. The fluorescence detection unit 24 may detect the fluorescence emitted from the measurement object 30 as fluorescence of one or a plurality of wavelengths. A microlens or a microlens array may be provided in front of the fluorescence detection unit 24, and fluorescence emitted from the measurement object 30 may be incident on each detector as parallel light or convergent light.
 PC26は、励起光検出手段15から励起光を検出した旨の信号を受け取ると、光学素子制御手段25を介して、光学素子23の反射ミラーを回転変位させる。光学素子23は、反射ミラーが回転変位することで、反射ミラー面で反射して蛍光検出手段24へ向かう蛍光の進行方向(反射方向)を変化させる。光学素子23は、時間経過と共に、測定対象物30から発せられた蛍光が、蛍光検出手段24の検出器群を構成する複数の検出器のうちの異なる検出器で検出されるように、蛍光の進行方向を変化させる。言い換えれば、蛍光検出手段24は、検出器群において、時間が進むに連れて順次に異なる検出器で蛍光を検出する。光学素子23は、例えば、蛍光の測定期間にわたって、一列に配列された複数の検出器の一端側から他端側へ、蛍光の進行方向を連続的に変化させる。 When the PC 26 receives a signal indicating that the excitation light has been detected from the excitation light detection means 15, the PC 26 rotates and displaces the reflection mirror of the optical element 23 via the optical element control means 25. The optical element 23 changes the traveling direction (reflection direction) of the fluorescence reflected by the reflection mirror surface and directed to the fluorescence detection means 24 by the rotational displacement of the reflection mirror. The optical element 23 allows the fluorescence emitted from the measurement object 30 to be detected by different detectors of the plurality of detectors constituting the detector group of the fluorescence detection means 24 with time. Change the direction of travel. In other words, the fluorescence detection means 24 detects fluorescence with the different detectors sequentially as time advances in the detector group. For example, the optical element 23 continuously changes the traveling direction of the fluorescence from one end side to the other end side of the plurality of detectors arranged in a line over the fluorescence measurement period.
 蛍光検出手段24の各検出器は、検出した蛍光の発光強度に応じた電気信号を出力する。蛍光検出手段24では、光学素子23が回転変位することで測定対象物30から発せされた蛍光が順次に異なる検出器で検出されるため、各検出器で検出される蛍光の発光強度は、蛍光が1つの検出器を横切る時間幅における蛍光発光強度の積分値を表す。PC26は、蛍光寿命算出手段としても機能し、蛍光検出手段24の検出器群で検出された蛍光の検出結果に基づいて、蛍光寿命を算出する。より詳細には、PC26は、検出器群を構成する複数の検出器での蛍光の検出結果に基づいて、複数の時間領域のそれぞれにおける蛍光発光強度の積分値を求め、それらに基づいて蛍光減衰曲線と蛍光寿命とを求める。 Each detector of the fluorescence detection means 24 outputs an electrical signal corresponding to the detected fluorescence emission intensity. In the fluorescence detection means 24, since the fluorescence emitted from the measurement object 30 is sequentially detected by different detectors when the optical element 23 is rotationally displaced, the emission intensity of the fluorescence detected by each detector is the fluorescence. Represents the integrated value of the fluorescence emission intensity in the time width across one detector. The PC 26 also functions as a fluorescence lifetime calculation unit, and calculates the fluorescence lifetime based on the detection result of the fluorescence detected by the detector group of the fluorescence detection unit 24. More specifically, the PC 26 obtains an integrated value of the fluorescence emission intensity in each of a plurality of time regions based on the fluorescence detection results of the plurality of detectors constituting the detector group, and based on these, the fluorescence decay Determine curve and fluorescence lifetime.
 図2は、蛍光寿命測定の動作手順を示す。レーザ光源11は、パルス励起光を出射する(ステップS1)。このパルス励起光は、必要に応じてパルスピッカー12で間引かれた後、ミラー13で反射してビームスプリッター14に入射する。ビームスプリッター14はパルス励起光の一部を反射し、残りを測定対象物30方向に透過する。ビームスプリッター14を透過した励起光は、非線形光学結晶16及びダイクロイックミラー17を通り、対物レンズ18により測定対象物30の所望の箇所に集光される。このとき測定対象物30に照射される励起光は点光源であるとする。 FIG. 2 shows the operation procedure of fluorescence lifetime measurement. The laser light source 11 emits pulse excitation light (step S1). The pulse excitation light is thinned out by the pulse picker 12 as necessary, then reflected by the mirror 13 and incident on the beam splitter 14. The beam splitter 14 reflects a part of the pulsed excitation light and transmits the rest in the direction of the measurement object 30. The excitation light that has passed through the beam splitter 14 passes through the nonlinear optical crystal 16 and the dichroic mirror 17, and is collected at a desired location on the measurement object 30 by the objective lens 18. At this time, the excitation light applied to the measurement object 30 is assumed to be a point light source.
 測定対象物30の励起光が照射された箇所では蛍光が発生する(ステップS2)。この蛍光は、対物レンズ18を逆向きに通り、ダイクロイックミラー17で反射し、励起光除去フィルター19及び分光器20を通って励起光の成分が除去される。測定対象物30から発せられた蛍光は、不所望な成分が除去された後、ミラー21で反射して向きを変え、集光レンズ22により光学素子23の反射ミラー面上に集光される。 Fluorescence is generated at the location irradiated with the excitation light of the measurement object 30 (step S2). The fluorescence passes through the objective lens 18 in the reverse direction, is reflected by the dichroic mirror 17, and the excitation light component is removed through the excitation light removal filter 19 and the spectroscope 20. Fluorescence emitted from the measurement object 30 is reflected by the mirror 21 after the undesired components are removed, and the direction of the fluorescence is changed. Then, the light is condensed on the reflection mirror surface of the optical element 23 by the condenser lens 22.
 一方、ビームスプリッター14で反射した励起パルス光の一部は励起光検出手段15に入射し、励起光検出手段15は、励起光が照射された旨を検出する(ステップS3)。励起光検出手段15は、PC26に励起光照射を検出した旨を通知し、PC26は、光学素子制御手段25に対して、光学素子23における反射ミラーの回転変位を指示する。光学素子制御手段25は、光学素子23の可動部に対して信号を与え、可動部を回転変位させる。可動部が回転変位することで、光学素子23は、測定対象物30から発せられる蛍光の反射方向を、時間経過と共に変化させる(ステップS4)。蛍光の進行方向が時間経過と共に変化することで、測定対象物30から発せられた蛍光は、時間軸に対して1次元アレイ状に配列された複数の検出器上を移動していき、各検出器は、相互に異なる時間領域の蛍光を検出する。 On the other hand, a part of the excitation pulse light reflected by the beam splitter 14 enters the excitation light detection means 15, and the excitation light detection means 15 detects that the excitation light has been irradiated (step S3). The excitation light detection unit 15 notifies the PC 26 that the excitation light irradiation has been detected, and the PC 26 instructs the optical element control unit 25 to rotate the reflection mirror in the optical element 23. The optical element control means 25 gives a signal to the movable part of the optical element 23 and rotationally displaces the movable part. The optical element 23 changes the reflection direction of the fluorescence emitted from the measurement object 30 with the lapse of time as the movable part is rotationally displaced (step S4). As the direction of fluorescence changes with time, the fluorescence emitted from the measurement object 30 moves on a plurality of detectors arranged in a one-dimensional array with respect to the time axis. The instrument detects fluorescence in different time domains.
 PC26は、蛍光検出手段24における蛍光の検出結果を演算処理し、蛍光減衰曲線と蛍光寿命の値とを計算する(ステップS5)。PC26は、ステップS5において、検出器群を構成する複数の検出器での蛍光の検出結果に基づいて、複数の時間領域のそれぞれにおける蛍光発光強度の積分値を求める。その際、PC26は、例えば複数の検出器のうちの、求めるべき蛍光発光強度の時間領域に対応した1以上の検出器での蛍光の検出結果に基づいて、各時間領域における蛍光発光強度を求めることができる。PC26は、各ウィンドウ内の積分発光強度を時間軸に対してプロットし、積分発光強度が指数関数的に減衰すると仮定して蛍光寿命を求める。 The PC 26 calculates the fluorescence detection result in the fluorescence detection means 24 and calculates the fluorescence decay curve and the fluorescence lifetime value (step S5). In step S5, the PC 26 obtains an integrated value of the fluorescence emission intensity in each of the plurality of time regions based on the fluorescence detection results of the plurality of detectors constituting the detector group. At that time, for example, the PC 26 obtains the fluorescence emission intensity in each time region based on the detection result of the fluorescence in one or more detectors corresponding to the time region of the fluorescence emission intensity to be obtained among a plurality of detectors. be able to. The PC 26 plots the integrated emission intensity in each window with respect to the time axis, and obtains the fluorescence lifetime assuming that the integrated emission intensity decays exponentially.
 PC26は、例えば検出器群を構成する検出器の数が100個で、蛍光減衰特性を求める際に使用するウィンドウ(時間領域)の数が5つであるとき、計100個の検出器を隣接する20個の検出器ずつグループ化し、各グループ20個の検出器で検出された蛍光発光強度の和を、各ウィンドウにおける蛍光発光強度の積分値としてもよい。検出器群を構成する検出器の数が多いほど、蛍光減衰特性を求める際のウィンドウ分割数を増やすことができる。ウィンドウ分割数を増やすことで、多成分解析も可能となる。 For example, when the number of detectors constituting the detector group is 100 and the number of windows (time domain) used for obtaining the fluorescence attenuation characteristics is five, the PC 26 adjoins a total of 100 detectors. These 20 detectors may be grouped, and the sum of the fluorescence emission intensities detected by the 20 detectors in each group may be used as the integrated value of the fluorescence emission intensities in each window. As the number of detectors constituting the detector group increases, the number of window divisions for obtaining the fluorescence attenuation characteristic can be increased. Multi-component analysis is also possible by increasing the number of window divisions.
 続いて、光学素子23として用いるMENSミラーとその周辺について説明する。図3A及び図3Bは、光学素子であるMEMSミラー51と、蛍光検出手段であるCCD52とを模式的に示す。静電駆動のMEMSミラー51は、ミラー裏に備えられた可動電極と、その下部に位置する固定電極との間に働く静電力に応じて回転変位する。図3Aは、静電力が供給されない状態を示しており、このとき可動ミラーはフラットな状態であるとする。可動ミラーを励起光と同期して駆動すると、図3Bに示すように、可動ミラーが初期状態に対して所定方向に傾く。 Subsequently, the MENS mirror used as the optical element 23 and its periphery will be described. 3A and 3B schematically show a MEMS mirror 51 that is an optical element and a CCD 52 that is fluorescence detection means. The electrostatically driven MEMS mirror 51 is rotationally displaced in accordance with an electrostatic force acting between a movable electrode provided on the back of the mirror and a fixed electrode located below the movable electrode. FIG. 3A shows a state in which no electrostatic force is supplied. At this time, it is assumed that the movable mirror is in a flat state. When the movable mirror is driven in synchronization with the excitation light, the movable mirror is tilted in a predetermined direction with respect to the initial state as shown in FIG. 3B.
 CCD52では、MEMSミラーを中心とする円弧に沿って、画素(検出器)が一列に配列されている。蛍光の測定期間にわたって、可動ミラーを回転変位させることで、測定対象物30から発せられた蛍光は、時間軸に対応して画素が1次元的に配列されたCCD52の別々の画素で検出されることになる。なお、可動ミラーをフラットな状態から所定方向に傾けるのに代えて、初期状態で可動ミラーが所定方向とは逆の方向に傾いており、その状態から所定方向へ傾けることとしてもよい。 In the CCD 52, pixels (detectors) are arranged in a line along an arc centered on the MEMS mirror. By rotating and moving the movable mirror over the fluorescence measurement period, the fluorescence emitted from the measurement object 30 is detected by separate pixels of the CCD 52 in which the pixels are one-dimensionally arranged corresponding to the time axis. It will be. Instead of tilting the movable mirror from a flat state in a predetermined direction, the movable mirror may be tilted in a direction opposite to the predetermined direction in the initial state, and tilted from that state in the predetermined direction.
 MEMSミラー51における可動ミラーの回転角を10°とし、可動ミラーがフラットの状態から下部に接触するまでの時間を2μsecとする。つまり、可動ミラーは、2μsecの間に、回転角度を10°だけ変化させるものとする。蛍光測定する時間軸を200nsecとすると、200nsecの間に可動ミラーが回転変位する角度は、10°×(200nsec/2μsec)=1°となる。一次元アレイ状のCCD52の画素数を2000画素とし、1画素のサイズを10μmとすると、CCD52の蛍光検出面の長さは2000×10μm=20mmとなる。MEMSミラー51とCCD52との好適な距離rは、円弧の関係(2πr×(1/360)=20mm)から、およそ1.1mと求まる。言い換えれば、CCD52をMEMSミラー51からおよそ1.1m離れた位置に配置することで、測定期間200nsecの間に回転角1°で進行方向が変化する蛍光を20mmのCCDで検出できる。 The rotation angle of the movable mirror in the MEMS mirror 51 is 10 °, and the time until the movable mirror comes into contact with the lower part from the flat state is 2 μsec. In other words, the movable mirror changes the rotation angle by 10 ° during 2 μsec. Assuming that the time axis for measuring fluorescence is 200 nsec, the angle at which the movable mirror is rotationally displaced during 200 nsec is 10 ° × (200 nsec / 2 μsec) = 1 °. If the number of pixels of the one-dimensional array CCD 52 is 2000 pixels and the size of one pixel is 10 μm, the length of the fluorescence detection surface of the CCD 52 is 2000 × 10 μm = 20 mm. A suitable distance r between the MEMS mirror 51 and the CCD 52 is found to be approximately 1.1 m from the arc relationship (2πr × (1/360) = 20 mm). In other words, by arranging the CCD 52 at a position approximately 1.1 m away from the MEMS mirror 51, the fluorescence whose traveling direction changes at a rotation angle of 1 ° during the measurement period of 200 nsec can be detected by the 20 mm CCD.
 CCD52の10画素を時間ゲート法の1ウィドウに対応させると、ウィンドウ数は、2000画素/10画素=200ウィンドウとなる。1ウィンドウ時間幅は、トータルの測定時間幅が200nsecであるので、200nsec/200ウィンドウ=1nsecとなる。つまり、時間ゲート法の時間分解能は、1nsecとなる。CCDの100画素を時間ゲート法の1ウィンドウに対応させた場合は、時間分解能は10nsecで、ウィンドウ数は20となる。CCD52の何画素を時間ゲート法の1ウィンドウに対応させるかに応じて、ウィンドウの数及び時間分解能を任意に設定することが可能である。なお、CCDにおいて画素が可動ミラーを中心とする円弧に沿って配列されていない場合、例えばCCDが平面の場合は、MESミラー表面からの距離差に応じて検出画素を補正すればよい。 When 10 pixels of the CCD 52 correspond to 1 window of the time gate method, the number of windows is 2000 pixels / 10 pixels = 200 windows. The one window time width is 200 nsec / 200 windows = 1 nsec because the total measurement time width is 200 nsec. That is, the time resolution of the time gate method is 1 nsec. When 100 pixels of the CCD correspond to one window of the time gate method, the time resolution is 10 nsec and the number of windows is 20. Depending on how many pixels of the CCD 52 correspond to one window of the time gate method, the number of windows and the time resolution can be arbitrarily set. In the case where the pixels are not arranged along a circular arc centered on the movable mirror in the CCD, for example, when the CCD is a flat surface, the detection pixel may be corrected according to the distance difference from the surface of the MES mirror.
 次いで、MEMSミラーの構成について説明する。MEMSミラーは、半導体プロセス等を用いて作製された微小サイズのミラーの総称として用いている。本実施形態において、MEMSミラーとして好適に用いることができるDMD素子(Digital Micro-mirror Device)について説明する。DMDは、米国TI社(Texas Instrument)が1987年に発明し、1996年に量産化した2次元光変調用のミラーアレイデバイスである。以下に、DMDの基本的な構造と動作原理とを説明する。 Next, the configuration of the MEMS mirror will be described. The MEMS mirror is used as a general term for a micro-sized mirror manufactured using a semiconductor process or the like. In the present embodiment, a DMD element (Digital Micro-mirror Device) that can be suitably used as a MEMS mirror will be described. DMD is a mirror array device for two-dimensional light modulation, which was invented in 1987 by TI Corporation (Texas Instrument) and mass-produced in 1996. The basic structure and operating principle of the DMD will be described below.
 図4は、DMDの基本構造を示す。DMD60は、Si基板61に形成されたCMOS(Complementary Metal Oxide Semiconductor)の駆動回路上に、1辺が10μm~13μmのミラー62が2次元に配列された構造である。2次元配列されたミラーのうちの1つを、測定対象物30(図1)の一点から発せられた蛍光の進行方向を変化させる微小ミラーとして用いる。ミラー62は、薄膜サーフェースMEMS技術により形成された回転自在な構造であり、静電駆動により±10deg~12degの傾斜変位が可能である。 FIG. 4 shows the basic structure of DMD. The DMD 60 has a structure in which mirrors 62 each having a side of 10 μm to 13 μm are two-dimensionally arranged on a CMOS (Complementary Metal Metal Oxide Semiconductor) driving circuit formed on the Si substrate 61. One of the two-dimensionally arranged mirrors is used as a micromirror that changes the traveling direction of fluorescence emitted from one point of the measurement object 30 (FIG. 1). The mirror 62 is a rotatable structure formed by thin film surface MEMS technology, and can be tilted and displaced by ± 10 deg to 12 deg by electrostatic driving.
 Si基板61上には、1画素ごとにCMOSプロセスによる1bitのSRAM(Static Random Access Memory)回路が形成されている。このSRAMには、ミラー62の変位の方向を定めるデータが書き込まれる。SRAM回路の上部には、第1電極と第2電極とが絶縁層を介して形成され、各々はSRAM回路の出力に接続される。第1電極及び第2電極には、それぞれSRAM回路に書き込まれたデータ及びその相補データに対応するアドレス電圧Va1及びVa2が供給される。 On the Si substrate 61, a 1-bit SRAM (Static Random Access Memory) circuit is formed for each pixel by a CMOS process. In this SRAM, data for determining the direction of displacement of the mirror 62 is written. A first electrode and a second electrode are formed on the top of the SRAM circuit via an insulating layer, and each is connected to the output of the SRAM circuit. Address voltages Va1 and Va2 corresponding to the data written in the SRAM circuit and its complementary data are supplied to the first electrode and the second electrode, respectively.
 また、Si基板61上にはランディングパッドが形成されている。それらの上部に空隙を介して両端が支持されたヒンジ63と称される梁が形成される。ヒンジ63上にはヨーク64と称される剛性のある膜が形成され、ヨーク64の上に支柱を介して剛性のあるミラー62が形成されている。ミラー62は、ヒンジ63により、ヨーク64と一体に弾性捩れ可能となっている。第1電極、第2電極、ヨーク64、及びミラー62は、ヒンジ軸に対して対称に配置され、従って、ヨーク64及びミラー62は、ヒンジ軸のねじれ弾性により左右の回転(傾斜)が可能となる。 Moreover, a landing pad is formed on the Si substrate 61. A beam called a hinge 63 having both ends supported through a gap is formed on the upper part thereof. A rigid film called a yoke 64 is formed on the hinge 63, and a rigid mirror 62 is formed on the yoke 64 via a support column. The mirror 62 can be elastically twisted integrally with the yoke 64 by a hinge 63. The first electrode, the second electrode, the yoke 64, and the mirror 62 are arranged symmetrically with respect to the hinge axis. Therefore, the yoke 64 and the mirror 62 can be rotated (tilted) left and right by the torsional elasticity of the hinge shaft. Become.
 ミラー62及びヨーク64が傾斜すると、ヨーク64の端部がランディングパッドに接触し、ミラー62及びヨーク64はそれ以上傾斜しない。ランディングパッドは、ストッパとして機能する。ヒンジ63、ヨーク64、ミラー62、及びランディングパッドは、Al又はAl合金で形成され、電気的に同電位である。ヒンジ63、ヨーク64、ミラー62、及びランディングパッドには、バイアス電圧Vbが供給される。 When the mirror 62 and the yoke 64 are tilted, the end of the yoke 64 comes into contact with the landing pad, and the mirror 62 and the yoke 64 are not tilted any further. The landing pad functions as a stopper. The hinge 63, the yoke 64, the mirror 62, and the landing pad are made of Al or an Al alloy and are electrically at the same potential. A bias voltage Vb is supplied to the hinge 63, the yoke 64, the mirror 62, and the landing pad.
 図5A及び図5Bは、DMDの基本動作原理を示す。可動部67を構成するヨーク64/ミラー62には、バイアス電圧Vbが供給される。一方、駆動信号、すなわち可動部67(ミラー62)の回転方向に応じたデータがSRAM回路に書込まれると、第1電極65及び第2電極66には、アドレス電圧Va1、Va2が供給される。アドレス電圧Va1とVa2は、デジタル電圧で互いに相補的である。ここで、ΔV1=|Vb-Va1|とし、ΔV2=|Vb-Va2|とすると、ΔV1、ΔV2の値に従って、画素電極(第1電極65及び第2電極66)と、対向する可動部67との間に静電気力(回転に対しては静電トルク)が発生する。ΔV1>ΔV2のとき、可動部67は、図5Aに示すように第1電極65に向かって傾斜する。逆に、ΔV1<ΔV2のときは、可動部67は、図5Bに示すように第2電極66に向って傾斜する。 5A and 5B show the basic operating principle of DMD. A bias voltage Vb is supplied to the yoke 64 / mirror 62 constituting the movable portion 67. On the other hand, when a drive signal, that is, data corresponding to the rotation direction of the movable portion 67 (mirror 62) is written to the SRAM circuit, the address voltages Va1 and Va2 are supplied to the first electrode 65 and the second electrode 66. . The address voltages Va1 and Va2 are digital voltages and are complementary to each other. Here, if ΔV1 = | Vb−Va1 | and ΔV2 = | Vb−Va2 |, the pixel electrode (the first electrode 65 and the second electrode 66) and the movable portion 67 facing each other are set according to the values of ΔV1 and ΔV2. Electrostatic force (electrostatic torque for rotation) is generated during When ΔV1> ΔV2, the movable portion 67 is inclined toward the first electrode 65 as shown in FIG. 5A. Conversely, when ΔV1 <ΔV2, the movable portion 67 is inclined toward the second electrode 66 as shown in FIG. 5B.
 実際のDMDは、電源ONの状態で可動部67がどちらか一方に傾き、ΔV1とΔV2との関係に応じて、可動部67が初期状態とは反対側に傾くか、或いは初期状態と同じ側に傾く。反対側に傾く動作をCROSS動作といい、同じ側に傾く動作をSTAY動作と呼ぶ。図6は、駆動信号を供給したときの時間と回転角との関係を示す。図6において、CROSS動作における時間と回転角との関係を実線で示し、STAY動作における時間と回転角との関係を点線で示す。ΔV1又はΔV2による静電トルクがヒンジ弾性トルクに比べて十分に大きい場合(pull-inトルク以上)、可動部67はランディングパッドに接触して停止し、回転角度が決定される。 In an actual DMD, the movable part 67 is tilted to one side when the power is on, and the movable part 67 is tilted to the opposite side of the initial state or the same side as the initial state according to the relationship between ΔV1 and ΔV2. Lean on. The operation tilted to the opposite side is called CROSS operation, and the operation tilted to the same side is called STAY operation. FIG. 6 shows the relationship between the time when the drive signal is supplied and the rotation angle. In FIG. 6, the relationship between the time and the rotation angle in the CROSS operation is indicated by a solid line, and the relationship between the time and the rotation angle in the STAY operation is indicated by a dotted line. When the electrostatic torque due to ΔV1 or ΔV2 is sufficiently larger than the hinge elastic torque (more than the pull-in torque), the movable portion 67 stops in contact with the landing pad, and the rotation angle is determined.
 本実施形態では、測定対象物30から発せされた蛍光が蛍光検出手段24に入射するまでの間の光路中に光学素子23を配置し、光学素子23を用いて、時間経過と共に蛍光検出手段24に向かう蛍光の進行方向を変化させる。蛍光検出手段24は、測定対象物30から発せられた蛍光を、時間経過と共に検出器群を構成する複数の検出器のうちの異なる検出器で順次に検出する。本実施形態では、複数の検出器が時間軸に対して一次元的に配置された検出器群において、測定期間にわたって、蛍光が順次に異なる検出器で検出される。このため、蛍光検出手段24において、無駄なく測定対象物30から発せられた蛍光を検出でき、励起光に対する蛍光の検出効率を高めることができきる。 In the present embodiment, the optical element 23 is disposed in the optical path until the fluorescence emitted from the measurement object 30 enters the fluorescence detection unit 24, and the fluorescence detection unit 24 is used with time using the optical element 23. The direction of travel of fluorescence toward is changed. The fluorescence detection means 24 sequentially detects the fluorescence emitted from the measurement object 30 with different detectors among a plurality of detectors constituting the detector group over time. In this embodiment, in a detector group in which a plurality of detectors are arranged one-dimensionally with respect to the time axis, fluorescence is sequentially detected by different detectors over a measurement period. For this reason, in the fluorescence detection means 24, the fluorescence emitted from the measuring object 30 can be detected without waste, and the detection efficiency of the fluorescence with respect to the excitation light can be increased.
 また、通常の時間ゲート法において、例えば3つのウィンドウで積分蛍光発光強度を求めるためには、励起光パルスを最低でも3回照射する必要があった。特許文献1に記載の技術では、励起光パルスの照射回数を半分に減らすことはできるものの、それでも最低限2つの励起光パルスの照射が必要となっていた。本実施形態では、検出器群が3以上の検出器を有するとき、最低限1回の励起光パルス照射で、3以上のウィンドウにおいて積分蛍光発光強度を求めることができ、複数回の励起光パルス照射が必要であった従来技術に比して、測定時間を短縮することができる。本実施形態では、最低1つの励起光パルスで測定を完了できるため、細胞などの時々刻々と変化する試料の同一時刻での蛍光寿命測定が可能である。また、1パルス又は少ないパルス数で測定が可能であるため、光退色の影響を抑えることができる。 In the normal time gate method, for example, in order to obtain the integrated fluorescence emission intensity in three windows, it was necessary to irradiate the excitation light pulse at least three times. Although the technique described in Patent Document 1 can reduce the number of times of excitation light pulse irradiation by half, it still requires irradiation of at least two excitation light pulses. In the present embodiment, when the detector group has three or more detectors, the integrated fluorescence emission intensity can be obtained in three or more windows with at least one excitation light pulse irradiation, and a plurality of excitation light pulses can be obtained. The measurement time can be shortened as compared with the prior art that required irradiation. In this embodiment, since the measurement can be completed with at least one excitation light pulse, it is possible to measure the fluorescence lifetime of a sample such as a cell that changes every moment at the same time. In addition, since measurement can be performed with one pulse or a small number of pulses, the influence of photobleaching can be suppressed.
 本実施形態では、最大で、蛍光検出手段24において検出器群を構成する検出器の数の分のウィンドウで、積分蛍光発光強度を求めることができる。その場合、1つの検出器での蛍光検出結果が、1つのウィンドウでの積分蛍光発光強度に対応する。いくつかの検出器をまとめて1ウィンドウに対応させ、隣接する1以上の検出器での蛍光検出結果を合算してもよい。検出器群を構成する検出器の数が多いほど、時間ゲート法におけるウィンドウの数を増やすことができ、蛍光減衰曲線をフィッティングする点の数を増やして、解析の精度を向上することができる。また、蛍光減衰曲線のフィッティング数を増やすことで、多成分の解析も可能となる。 In the present embodiment, the integrated fluorescence emission intensity can be obtained with a window corresponding to the number of detectors constituting the detector group in the fluorescence detection means 24 at the maximum. In that case, the fluorescence detection result of one detector corresponds to the integrated fluorescence emission intensity in one window. Several detectors may be combined to correspond to one window, and the fluorescence detection results of one or more adjacent detectors may be added together. As the number of detectors constituting the detector group increases, the number of windows in the time gate method can be increased, and the number of points for fitting the fluorescence decay curve can be increased to improve the accuracy of analysis. Also, multi-component analysis can be performed by increasing the number of fitting of the fluorescence decay curves.
 時間分解蛍光測定装置10は、図1に示す構成に加えて、測定対象物30上で励起光の照射位置を走査する走査手段を有していてもよい。走査手段は、測定対象物30の表面上で、例えば点光源である励起光の照射位置を互いに直交するx方向とy方向との2方向に走査する。走査手段には、例えばガルバノミラー、ポリゴンミラー、レゾナントミラー、ピエゾステージなどを用いることができる。PC26(蛍光寿命算出手段)は、走査された各位置において、蛍光発光強度(減衰特性)と蛍光寿命とを求める。 The time-resolved fluorescence measuring apparatus 10 may have a scanning unit that scans the irradiation position of the excitation light on the measurement object 30 in addition to the configuration shown in FIG. The scanning unit scans, for example, the irradiation position of excitation light, which is a point light source, on the surface of the measurement object 30 in two directions, an x direction and a y direction, which are orthogonal to each other. As the scanning means, for example, a galvanometer mirror, a polygon mirror, a resonant mirror, a piezo stage, or the like can be used. The PC 26 (fluorescence lifetime calculation means) obtains the fluorescence emission intensity (attenuation characteristic) and the fluorescence lifetime at each scanned position.
 PC26は、蛍光寿命算出手段としての機能に加えて、走査された励起光の各位置に対応する蛍光の発光強度の分布を表す蛍光画像を生成する蛍光画像生成手段として機能してもよい。PC26は、蛍光発光強度に代えて、走査された各位置に対応して算出された蛍光寿命の分布を表す画像を蛍光画像として生成してもよい。または、PC26は、発光強度と蛍光寿命の双方の分布を表す画像を蛍光画像として生成してもよい。PC26は、生成した蛍光画像を、例えばディスプレイなどの表示装置に表示する。 In addition to the function as the fluorescence lifetime calculation means, the PC 26 may function as a fluorescence image generation means for generating a fluorescence image representing the fluorescence emission intensity distribution corresponding to each position of the scanned excitation light. Instead of the fluorescence emission intensity, the PC 26 may generate an image representing a fluorescence lifetime distribution calculated corresponding to each scanned position as a fluorescence image. Alternatively, the PC 26 may generate an image representing the distribution of both the emission intensity and the fluorescence lifetime as a fluorescence image. The PC 26 displays the generated fluorescent image on a display device such as a display.
 上記の走査手段は、測定対象物30の表面だけでなく、測定対象物30に対する励起光の集光位置を深さ方向に走査してもよい。深さ方向の走査には、ピエゾステージ又は集光レンズ(対物レンズ18)を用いることができる。蛍光寿命測定手段は、測定対象物の表面上の各位置だけではなく、深さ方向に走査された各位置についても、蛍光発光強度(減衰特性)と蛍光寿命とを求めればよい。また、蛍光画像生成手段は、測定対象物30の表面上の2方向に深さ方向を加えて、蛍光画像を3次元情報として生成すればよい。 The above scanning means may scan not only the surface of the measurement object 30 but also the condensing position of the excitation light with respect to the measurement object 30 in the depth direction. A piezo stage or a condensing lens (objective lens 18) can be used for scanning in the depth direction. The fluorescence lifetime measuring means only needs to obtain the fluorescence emission intensity (attenuation characteristic) and the fluorescence lifetime not only for each position on the surface of the measurement object but also for each position scanned in the depth direction. Further, the fluorescence image generating means may generate a fluorescence image as three-dimensional information by adding a depth direction to two directions on the surface of the measurement object 30.
 上記実施形態の説明では、光学素子23に静電駆動のMEMS素子を用いる例を説明したが、光学素子23に、駆動力が電磁力のMEMS素子、例えば電磁スキャナを用いることも可能である。電磁駆動は、スキャナ素子で一般に用いられている。電磁駆動の場合、可動部に電流を流すと、電流の向きと永久磁石の磁力の方向とによりローレンツ力が発生し、可動部を駆動させる。電流の流れる向きを交互にすることで、可動部を回転振動させることができる。 In the above description of the embodiment, an example in which an electrostatically driven MEMS element is used as the optical element 23 has been described. However, a MEMS element having an electromagnetic force, such as an electromagnetic scanner, may be used as the optical element 23. Electromagnetic drive is commonly used in scanner elements. In the case of electromagnetic driving, when a current is passed through the movable part, a Lorentz force is generated by the direction of the current and the direction of the magnetic force of the permanent magnet, thereby driving the movable part. By alternately changing the direction in which the current flows, the movable portion can be oscillated.
 上記実施形態の説明では、励起光として点光源を想定しており、測定対象物30の一点(1つの微小領域)に励起光を照射し、その微小領域から発せられた蛍光を、光学素子23を介して蛍光検出手段24で検出するものとして説明した。これに代えて、ライン光源を用い、一度に測定対象物30の複数の箇所に励起光を照射することも可能である。その場合も、測定対象物30の励起光が照射された各微小領域(1ライン上の各地点)から発せられた蛍光が蛍光検出手段24で検出される仕組みは、上記実施形態で説明したものと同様である。 In the description of the above embodiment, a point light source is assumed as the excitation light, the excitation light is irradiated to one point (one minute region) of the measurement object 30, and the fluorescence emitted from the minute region is converted into the optical element 23. In the above description, the fluorescence detection means 24 detects the signal. Instead of this, it is also possible to irradiate the excitation light to a plurality of locations of the measurement object 30 at a time using a line light source. Also in this case, the mechanism in which the fluorescence emitted from each minute region (each point on one line) irradiated with the excitation light of the measurement object 30 is detected by the fluorescence detection unit 24 is described in the above embodiment. It is the same.
 ライン光源を用いる場合、光学素子23は、測定対象物30の1ラインの励起光が照射された箇所から発せられた蛍光を、時間経過と共に蛍光の進行方向を変化させつつ、蛍光検出手段24に向けて出射すればよい。また、蛍光検出手段24は、励起光が照射される1ラインの各地点に対応した数の検出器群を有していればよい。例えば蛍光検出手段24は、測定対象物30の励起光(ライン光)が照射された1行×m列の微小領域に対応して、m個の検出器群を有していればよい。各検出器群では、複数の検出器が一列に配列されており、その検出器群を複数並べて配置するため、複数の検出器は、蛍光検出手段24において2次元配列で配列されることになる。 In the case of using a line light source, the optical element 23 applies fluorescence emitted from a portion irradiated with one line of excitation light of the measurement object 30 to the fluorescence detection unit 24 while changing the traveling direction of the fluorescence with time. What is necessary is just to radiate | emit toward. Moreover, the fluorescence detection means 24 should just have the number of detector groups corresponding to each point of 1 line to which excitation light is irradiated. For example, the fluorescence detection unit 24 may have m detector groups corresponding to a minute region of 1 row × m columns irradiated with the excitation light (line light) of the measurement target 30. In each detector group, a plurality of detectors are arranged in a line, and a plurality of detector groups are arranged side by side, so that the plurality of detectors are arranged in a two-dimensional array in the fluorescence detection means 24. .
 図7は、ライン光源の励起光が照射された場合の光学素子23と蛍光検出手段24とを示す。光学素子23は、例えばMEMSミラーアレイ53として構成される。MEMSミラーアレイ53にDMD60(図4)を用いた場合、DMD60は、例えば2次元配列されたミラーの1行(1行を構成する各画素)を用いて、測定対象物30のライン光が照射された部分(1行×m列の微小領域)から発せられた蛍光を反射すればよい。DMDの1行を構成する各画素には、同じ駆動信号(SRAMに記憶させるデータ)を、同じタイミングで供給すればよい。画素ごとに独立に駆動が可能なMEMSミラーアレイ53に代えて、励起光の1ラインに対応した長さ、例えば図7における画素5つ分の長さを有する1枚のMEMSミラーを用いてもよい。 FIG. 7 shows the optical element 23 and the fluorescence detection means 24 when the excitation light of the line light source is irradiated. The optical element 23 is configured as a MEMS mirror array 53, for example. When the DMD 60 (FIG. 4) is used for the MEMS mirror array 53, the DMD 60 irradiates the line light of the measurement object 30 using, for example, one row of the two-dimensionally arranged mirrors (each pixel constituting one row). It is only necessary to reflect the fluorescence emitted from the formed portion (a minute region of 1 row × m columns). The same drive signal (data to be stored in the SRAM) may be supplied to the pixels constituting one row of the DMD at the same timing. Instead of the MEMS mirror array 53 that can be driven independently for each pixel, a single MEMS mirror having a length corresponding to one line of excitation light, for example, the length of five pixels in FIG. 7 may be used. Good.
 蛍光検出手段24は、例えば画素が2次元配列されたCCDアレイ54として構成される。CCDアレイ54の2次元配列された画素のうち、MEMSミラーアレイ53におけるミラーの回転変位の方向に対応した方向に沿って配列された複数の画素が、測定対象物30の一点(1つの微小領域)に対応した検出器群を構成する。CCDアレイ54では、この検出器群が、MEMSミラーアレイ53の画素の配列方向に対応した方向に並べられている。CCDアレイ54は、測定対象物30の励起光が照射された1行×m列の微小領域から発せられる蛍光のそれぞれを、m個の検出器群のうちの対応する検出器群で検出する。 The fluorescence detection means 24 is configured as a CCD array 54 in which pixels are two-dimensionally arranged, for example. Among the two-dimensionally arrayed pixels of the CCD array 54, a plurality of pixels arrayed along a direction corresponding to the rotational displacement direction of the mirror in the MEMS mirror array 53 is one point of the measurement object 30 (one minute region). ) Is configured. In the CCD array 54, the detector groups are arranged in a direction corresponding to the pixel arrangement direction of the MEMS mirror array 53. The CCD array 54 detects each of the fluorescence emitted from the minute region of 1 row × m columns irradiated with the excitation light of the measurement object 30 by a corresponding detector group among the m detector groups.
 測定対象物30に対し、励起光をライン光として照射するとで、測定対象物の1ラインを一括で励起することができ、1ラインから発せられた蛍光をMEMSミラーアレイ53に一度に入射することができる。MEMSミラーアレイ53は、1ラインから発せられた蛍光を、時間経過と共に蛍光の進行方向を変化させつつ、CCDアレイ54に向けて出射(反射)する。蛍光検出手段24として2次元アレイ状のCCDアレイ54を用いれば、1ラインからの蛍光を時間分解して検出することが可能となる。ライン光を用いる場合、ライン励起光を試料表面の1方向に走査することで、イメージングが可能となる。 By irradiating the measurement object 30 with excitation light as line light, one line of the measurement object can be excited at a time, and fluorescence emitted from one line can enter the MEMS mirror array 53 at a time. Can do. The MEMS mirror array 53 emits (reflects) the fluorescence emitted from one line toward the CCD array 54 while changing the traveling direction of the fluorescence with time. If a two-dimensional array CCD array 54 is used as the fluorescence detection means 24, it is possible to detect fluorescence from one line by time resolution. When line light is used, imaging can be performed by scanning line excitation light in one direction on the sample surface.
 測定対象物30に照射する励起光は、面光源であってもよい。面光源を励起光として照射する場合、蛍光検出手段24は、測定対象物30の励起光が照射されるn行×m列の微小領域に対応して、それぞれが1行×m列の領域に対応した複数の検出器群をnセット有していればよい。また、光学素子23は、測定対象物30の励起光が照射された各行のm列の微小領域から発せられた蛍光を、蛍光検出手段24の対応するセットの複数の検出器群に向けて反射(出射)すればよい。蛍光検出手段24は、測定対象物30の励起光が照射された各行のm列の領域から発せられる蛍光のそれぞれを、対応するセットの複数の検出器群のうちの対応する検出器群で検出する。 The excitation light applied to the measurement object 30 may be a surface light source. When irradiating a surface light source as excitation light, the fluorescence detection means 24 corresponds to a micro area of n rows × m columns irradiated with the excitation light of the measurement object 30, and each is in an area of 1 row × m columns. It is only necessary to have n sets of a plurality of corresponding detector groups. Further, the optical element 23 reflects the fluorescence emitted from the minute column of m columns in each row irradiated with the excitation light of the measurement object 30 toward a plurality of detector groups in a corresponding set of the fluorescence detection unit 24. (Exit) may be performed. The fluorescence detection means 24 detects each of the fluorescence emitted from the area of m columns of each row irradiated with the excitation light of the measurement object 30 by the corresponding detector group among the plurality of detector groups of the corresponding set. To do.
 図8は、面光源の励起光が照射された場合の光学素子23と蛍光検出手段24とを示す。光学素子23は、例えばMEMSミラーが2次元配列されたMEMSミラーアレイ55として構成される。MEMSミラーアレイ55にはDMD60(図4)を用いることができる。蛍光検出手段24は、例えば画素が2次元配列されたCCDアレイ56として構成される。CCDアレイ56は、図7に示すCCDアレイ54が、n個(nセット)連結されたものでよい。図7に示すCCDアレイ54は、測定対象物30の励起光が照射された1行に対応した複数の検出器群を含んでおり、CCDアレイ56は、その1行に対応した複数の検出器群をnセット有している。 FIG. 8 shows the optical element 23 and the fluorescence detection means 24 when the excitation light of the surface light source is irradiated. For example, the optical element 23 is configured as a MEMS mirror array 55 in which MEMS mirrors are two-dimensionally arranged. DMD 60 (FIG. 4) can be used for the MEMS mirror array 55. The fluorescence detection means 24 is configured as a CCD array 56 in which pixels are two-dimensionally arranged, for example. The CCD array 56 may be formed by connecting n (n sets) CCD arrays 54 shown in FIG. The CCD array 54 shown in FIG. 7 includes a plurality of detector groups corresponding to one row irradiated with the excitation light of the measurement object 30, and the CCD array 56 includes a plurality of detectors corresponding to the one row. Has n sets of groups.
 MEMSミラーアレイ55(DMD)の1行を構成する各画素には、同じ駆動信号(SRAMに記憶させるデータ)を、同じタイミングで供給すればよい。DMDの各行には、相互に異なるタイミングで駆動信号を供給する。各行に駆動信号を供給するタイミングは、測定対象物30の励起光が照射された各行から発せられた蛍光が、CCDアレイ56の対応するセットの複数の検出器群に向けて出射されるように調整しておく。CCDアレイ56は、測定対象物30の励起光が照射された各行のm列の微小領域から発せられる蛍光のそれぞれを、対応するセットの複数の検出器群のうちの対応する検出器群で検出する。面光源を用いて測定対象物30を一括励起し、測定対象物30の励起光が照射された領域から発せられた蛍光を蛍光検出手段24で検出することで、励起光を測定対象物30上を走査することなく、一括で蛍光画像が取得可能である。 The same drive signal (data to be stored in the SRAM) may be supplied to each pixel constituting one row of the MEMS mirror array 55 (DMD) at the same timing. A drive signal is supplied to each row of the DMD at a different timing. The timing for supplying the drive signal to each row is such that the fluorescence emitted from each row irradiated with the excitation light of the measurement object 30 is emitted toward a plurality of detector groups in the corresponding set of the CCD array 56. Adjust it. The CCD array 56 detects each of the fluorescence emitted from the minute region of m columns in each row irradiated with the excitation light of the measurement object 30 by the corresponding detector group among the plurality of detector groups in the corresponding set. To do. The measurement object 30 is excited at once using a surface light source, and the fluorescence emitted from the region irradiated with the excitation light of the measurement object 30 is detected by the fluorescence detection means 24, whereby the excitation light is detected on the measurement object 30. Fluorescent images can be acquired at once without scanning.
 例えば、図8において、CCDアレイ56の第1セット(第1受光部)を構成する画素は測定対象物30の第1行の領域に対応し、第2セット(第2受光部)を構成する画素は測定対象物30の第2行の領域に対応し、第3セット(第3受光部)を構成する画素は測定対象物30の第3行の領域に対応する。第1受光部は、第1行の5つの微小領域に対応した5つの検出器群を有し、第2受光部は、第2行の5つの微小領域に対応した5つの検出器群を有し、第3受光部は、第3行の5つの微小領域に対応した5つの検出器群を有する。 For example, in FIG. 8, the pixels constituting the first set (first light receiving portion) of the CCD array 56 correspond to the region of the first row of the measurement object 30 and constitute the second set (second light receiving portion). The pixels correspond to the second row area of the measurement object 30, and the pixels constituting the third set (third light receiving unit) correspond to the third row area of the measurement object 30. The first light receiving unit has five detector groups corresponding to the five micro regions in the first row, and the second light receiving unit has five detector groups corresponding to the five micro regions in the second row. The third light receiving unit has five detector groups corresponding to the five minute regions in the third row.
 MEMSミラーアレイ55の第1行から第3行に、互いにタイミングをずらして駆動信号が供給されることで、測定対象物30の第1行の各領域から発せられた蛍光は第1受光部で検出され、測定対象物30の第2行の各領域から発せられた蛍光は第2受光部で検出され、測定対象物30の第3行の各領域から発せられた蛍光は第3受光部で検出される。各受光部では、測定対象物30の対応する各行の5列の微小領域から発せられる蛍光のそれぞれを、各受光部を構成する5つの検出器群のうちの対応する検出器群で検出する。例えば第1行から第3行の第1列の微小領域から発せられた蛍光は、それぞれ、第1受光部の第1列の微小領域に対応した検出器群、第2受光部の第1列に対応した検出器群、及び第3受光部の第1列に対応した検出器群で検出される。 The drive signals are supplied from the first row to the third row of the MEMS mirror array 55 at different timings, so that the fluorescence emitted from each region of the first row of the measurement object 30 is transmitted from the first light receiving unit. Fluorescence emitted from each region of the second row of the measurement object 30 is detected by the second light receiving unit, and fluorescence emitted from each region of the third row of the measurement object 30 is detected by the third light receiving unit. Detected. In each light receiving unit, each of the fluorescence emitted from the minute regions of the five columns in each corresponding row of the measurement object 30 is detected by the corresponding detector group among the five detector groups constituting each light receiving unit. For example, the fluorescence emitted from the minute regions in the first column of the first row to the third row respectively corresponds to the detector group corresponding to the minute region in the first column of the first light receiving unit and the first column of the second light receiving unit. And a detector group corresponding to the first row of the third light receiving unit.
 次いで、上記の時間分解蛍光計測装置を組み込んだ顕微鏡システムを説明する。図9は、顕微鏡システムを示す。顕微鏡システム100の構成は、図1に示す時間分解蛍光測定装置10を構成する手段のうちの一部が顕微鏡101に組み込まれている点を除けば、基本的に時間分解蛍光測定装置10の構成と同様である。 Next, a microscope system incorporating the above time-resolved fluorescence measuring device will be described. FIG. 9 shows a microscope system. The configuration of the microscope system 100 is basically the same as that of the time-resolved fluorescence measurement device 10 except that a part of the means constituting the time-resolved fluorescence measurement device 10 shown in FIG. It is the same.
 レーザ光源11から出射したパルス励起光は、必要に応じてパルスピッカー12で所望の繰り返し周波数に間引かれ、ミラー13を介してビームスプリッター14に入射し、2つの光に分離される。分離された光のうちの一方は、ビームスプリッター14で反射して励起光検出手段15に向かう。分離された光の他方は非線形光学結晶16に入射し、非線形光学結晶16により入射波長の第2高調波又は第3高調波が発生する。 The pulse excitation light emitted from the laser light source 11 is thinned to a desired repetition frequency by the pulse picker 12 as necessary, enters the beam splitter 14 via the mirror 13, and is separated into two lights. One of the separated lights is reflected by the beam splitter 14 and travels toward the excitation light detection means 15. The other of the separated lights is incident on the nonlinear optical crystal 16, and the nonlinear optical crystal 16 generates the second harmonic or the third harmonic of the incident wavelength.
 非線形光学結晶16により第2高調波又は第3高調波が発生した励起光は、顕微鏡101に導入される。導入された励起光は、励起フィルター102を介してダイクロイックミラー17に入射し、ダイクロイックミラー17を透過して、対物レンズ18により、測定対象物30の所望の箇所に照射される。測定対象物30から発せられた蛍光は、対物レンズ18により平行光化され、ダイクロイックミラー17を透過する。ダイクロイックミラー17を透過した光は、励起光除去フィルター19を通り、ミラー103で反射して、顕微鏡101の外部に出射する。 The excitation light in which the second harmonic or the third harmonic is generated by the nonlinear optical crystal 16 is introduced into the microscope 101. The introduced excitation light enters the dichroic mirror 17 through the excitation filter 102, passes through the dichroic mirror 17, and is irradiated to a desired portion of the measurement object 30 by the objective lens 18. The fluorescence emitted from the measurement object 30 is converted into parallel light by the objective lens 18 and passes through the dichroic mirror 17. The light transmitted through the dichroic mirror 17 passes through the excitation light removal filter 19, is reflected by the mirror 103, and is emitted to the outside of the microscope 101.
 顕微鏡101から出射した光は、分光器20で分光され、ミラー21で反射し、集光レンズ22を経て、収束光として光学素子23に入射する。光学素子23は、時間経過と共に、測定対象物30から発せられた蛍光が、蛍光検出手段24の検出器群を構成する複数の検出器のうちの異なる検出器で検出されるように、蛍光の進行方向を変化させる。蛍光検出手段24は、検出器群において、時間が進むに連れて順次に異なる検出器で蛍光を検出する。PC26は、蛍光検出手段24の検出器群で検出された蛍光の検出結果に基づいて、蛍光寿命を算出する。 The light emitted from the microscope 101 is split by the spectroscope 20, reflected by the mirror 21, passes through the condenser lens 22, and enters the optical element 23 as convergent light. The optical element 23 allows the fluorescence emitted from the measurement object 30 to be detected by different detectors of the plurality of detectors constituting the detector group of the fluorescence detection means 24 with time. Change the direction of travel. In the detector group, the fluorescence detection means 24 detects fluorescence sequentially with different detectors as time advances. The PC 26 calculates the fluorescence lifetime based on the detection result of the fluorescence detected by the detector group of the fluorescence detection means 24.
 励起光に点光源を用いる場合、励起光を、ガルバノミラー、ポリゴンミラー、レゾナントミラー、ピエゾステージなどの走査手段を用いて測定対象物30の表面上を2次元走査すれば、2次元的に蛍光減衰曲線を得ることができ、蛍光寿命の2次元画像情報を得ることができる。励起光にライン光源を用いる場合、励起光を1方向に走査することで、蛍光寿命の2次元画像情報を得ることができる。励起光に面光源を用いる場合、走査手段を用いなくても、蛍光寿命の2次元画像を得ることができる。表面上の2方向に加えて、測定対象物30に励起光を集光する集光レンズ又はピエゾステージにより深さ方向(Z軸方向)にも走査を行うことで、3次元画像情報を得ることができる。 When a point light source is used as the excitation light, the excitation light is two-dimensionally fluorescent if it is scanned two-dimensionally on the surface of the measurement object 30 using scanning means such as a galvanometer mirror, polygon mirror, resonant mirror, or piezo stage. An attenuation curve can be obtained, and two-dimensional image information of the fluorescence lifetime can be obtained. When a line light source is used for the excitation light, two-dimensional image information of the fluorescence lifetime can be obtained by scanning the excitation light in one direction. When a surface light source is used for the excitation light, a two-dimensional image of fluorescence lifetime can be obtained without using a scanning means. In addition to the two directions on the surface, three-dimensional image information is obtained by scanning also in the depth direction (Z-axis direction) with a condenser lens or a piezo stage that collects excitation light on the measurement object 30. Can do.
 引き続き、上記の時間分解蛍光計測装置を組み込んだ内視鏡プローブシステムを説明する。図10は、内視鏡プローブシステムを示す。内視鏡プローブシステム200の構成は、図1に示す時間分解蛍光測定装置10を構成する手段のうちの一部が内視鏡プローブ装置201に組み込まれている点を除けば、基本的に時間分解蛍光測定装置10の構成と同様である。 Next, an endoscopic probe system incorporating the above time-resolved fluorescence measuring device will be described. FIG. 10 shows an endoscopic probe system. The configuration of the endoscope probe system 200 is basically the same as that of the time-resolved fluorescence measuring apparatus 10 shown in FIG. 1 except that a part of the means is incorporated in the endoscope probe apparatus 201. The configuration is the same as that of the decomposition fluorescence measuring apparatus 10.
 レーザ光源11から出射したパルス励起光は、必要に応じてパルスピッカー12で所望の繰り返し周波数に間引かれ、ミラー13を介してビームスプリッター14に入射し、2つの光に分離される。分離された光のうちの一方は、ビームスプリッター14で反射して励起光検出手段15に向かう。分離された光の他方は非線形光学結晶16に入射し、非線形光学結晶16により入射波長の第2高調波又は第3高調波が発生する。 The pulse excitation light emitted from the laser light source 11 is thinned to a desired repetition frequency by the pulse picker 12 as necessary, enters the beam splitter 14 via the mirror 13, and is separated into two lights. One of the separated lights is reflected by the beam splitter 14 and travels toward the excitation light detection means 15. The other of the separated lights is incident on the nonlinear optical crystal 16, and the nonlinear optical crystal 16 generates the second harmonic or the third harmonic of the incident wavelength.
 非線形光学結晶16により第2高調波又は第3高調波が発生した励起光は、内視鏡プローブ装置201に導入される。導入された励起光は、励起フィルター202を介してダイクロイックミラー17に入射し、ダイクロイックミラー17を透過する。ダイクロイックミラー17を透過した励起光は、光ファイバ203を介して内視鏡プローブ204に導かれ、内視鏡プローブ204の先端から測定対象物30の所望の箇所に照射される。測定対象物30から発せられた蛍光は、内視鏡プローブ204を逆向きに通り、光ファイバ203を経てダイクロイックミラー17に入射する。 The excitation light in which the second harmonic or the third harmonic is generated by the nonlinear optical crystal 16 is introduced into the endoscope probe apparatus 201. The introduced excitation light enters the dichroic mirror 17 through the excitation filter 202 and passes through the dichroic mirror 17. The excitation light that has passed through the dichroic mirror 17 is guided to the endoscope probe 204 through the optical fiber 203, and is irradiated to a desired portion of the measurement object 30 from the tip of the endoscope probe 204. Fluorescence emitted from the measurement object 30 passes through the endoscope probe 204 in the reverse direction and enters the dichroic mirror 17 through the optical fiber 203.
 図11は、内視鏡プローブ204の断面を示す。内視鏡プローブ204は、内視鏡の鉗子口を通して、測定対象物30である患部へと到達する。内視鏡プローブ204は、中央に形成された光ファイバ206と、周囲に形成された複数の光ファイバ207とを有する。中央に形成された光ファイバ206は、励起光を測定対象物30(図10)まで導光する入射用として機能する。周囲に形成された複数の光ファイバ207は、測定対象物30から発せられた蛍光を受光し、光ファイバ203側へ導光するための受光用として機能する。 FIG. 11 shows a cross section of the endoscope probe 204. The endoscope probe 204 reaches the affected part, which is the measurement object 30, through the forceps opening of the endoscope. The endoscope probe 204 includes an optical fiber 206 formed in the center and a plurality of optical fibers 207 formed in the periphery. The optical fiber 206 formed in the center functions as an incident light that guides the excitation light to the measurement object 30 (FIG. 10). The plurality of optical fibers 207 formed in the periphery function as a light receiving unit for receiving fluorescence emitted from the measurement object 30 and guiding it to the optical fiber 203 side.
 図10に戻り、光ファイバ203側からダイクロイックミラー17に入射した光は、励起光除去フィルター19を通り、ミラー205で反射して、内視鏡プローブ装置201の外部に出射する。内視鏡プローブ装置201から出射した光は、分光器20で分光され、ミラー21で反射し、集光レンズ22を経て、収束光として光学素子23に入射する。光学素子23は、時間経過と共に、測定対象物30から発せられた蛍光が、蛍光検出手段24の検出器群を構成する複数の検出器のうちの異なる検出器で検出されるように、蛍光の進行方向を変化させる。蛍光検出手段24は、検出器群において、時間が進むに連れて順次に異なる検出器で蛍光を検出する。PC26は、蛍光検出手段24の検出器群で検出された蛍光の検出結果に基づいて、蛍光寿命を算出する。 10, the light incident on the dichroic mirror 17 from the optical fiber 203 side passes through the excitation light removal filter 19, is reflected by the mirror 205, and is emitted to the outside of the endoscope probe apparatus 201. The light emitted from the endoscope probe device 201 is split by the spectroscope 20, reflected by the mirror 21, passes through the condenser lens 22, and enters the optical element 23 as convergent light. The optical element 23 allows the fluorescence emitted from the measurement object 30 to be detected by different detectors of the plurality of detectors constituting the detector group of the fluorescence detection means 24 with time. Change the direction of travel. In the detector group, the fluorescence detection means 24 detects fluorescence sequentially with different detectors as time advances. The PC 26 calculates the fluorescence lifetime based on the detection result of the fluorescence detected by the detector group of the fluorescence detection means 24.
 励起光に点光源を用いる場合、励起光を、内視鏡先端に設けたMEMSスキャナミラーなどの走査手段を用いて測定対象物30の表面上を2次元走査すれば、2次元的に蛍光減衰曲線を得ることができ、蛍光寿命の2次元画像情報を得ることができる。また、ファイバハンドルなどで、測定対象物30からの信号を2次元的に受光することで、2次元的に蛍光減衰曲線を得てもよい。励起光にライン光源を用いる場合、励起光を1方向に走査することで、蛍光寿命の2次元画像情報を得ることができる。励起光に面光源を用いる場合、走査手段を用いなくても、蛍光寿命の2次元画像を得ることができる。表面上の2方向に加えて、測定対象物30に励起光を集光する集光レンズなどにより深さ方向(Z軸方向)にも走査を行うことで、3次元画像情報を得ることができる。 When a point light source is used as the excitation light, if the excitation light is scanned two-dimensionally on the surface of the measurement object 30 using a scanning means such as a MEMS scanner mirror provided at the distal end of the endoscope, the fluorescence is attenuated two-dimensionally. A curve can be obtained, and two-dimensional image information of fluorescence lifetime can be obtained. Further, a fluorescence decay curve may be obtained two-dimensionally by receiving a signal from the measurement object 30 two-dimensionally with a fiber handle or the like. When a line light source is used for the excitation light, two-dimensional image information of the fluorescence lifetime can be obtained by scanning the excitation light in one direction. When a surface light source is used for the excitation light, a two-dimensional image of fluorescence lifetime can be obtained without using a scanning means. In addition to the two directions on the surface, three-dimensional image information can be obtained by scanning in the depth direction (Z-axis direction) with a condensing lens that collects excitation light on the measurement object 30. .
 以下、実施例を説明する。DMSO(dimethyl sulfoxide)を溶媒とし、Pd meso-Tetra(4 carboxyphenyl) porphineを溶かして5.0×10-4mol/Lの溶液を作った。この溶液を、10mm角の密閉可能な石英セルに適量入れ、窒素バブリングにより溶存酸素を除去した後に石英セルに蓋をし、励起波長を405nm、蛍光波長を697nmとして、時間分解蛍光測定装置10(図1)を用いて蛍光寿命測定を行った。試料から発する光はりん光であり、その減衰曲線を5msec程度の時間範囲で測定した。 Examples will be described below. Using DMSO (dimethyl sulfoxide) as a solvent, Pd meso-Tetra (4 carboxyphenyl) porphine was dissolved to prepare a 5.0 × 10 −4 mol / L solution. An appropriate amount of this solution is put into a 10 mm square sealable quartz cell, dissolved oxygen is removed by nitrogen bubbling, the quartz cell is covered, the excitation wavelength is 405 nm, the fluorescence wavelength is 697 nm, and the time-resolved fluorescence measuring apparatus 10 ( The fluorescence lifetime was measured using FIG. The light emitted from the sample was phosphorescence, and its attenuation curve was measured in a time range of about 5 msec.
 光学素子23には、回転角が±10°、駆動周波数が100Hzのスキャナ素子を用いた。また、蛍光検出手段24には、画素数が2000画素、1画素サイズが10μmの1次元アレイ状CCDを用いた。スキャナ素子が-10°から+10°まで駆動する時間は5msecであり、この時間は蛍光減衰曲線の測定時間とほぼ等しい。CCDの100画素を時間ゲート法の1ウィンドウに対応させると、5msec×(100画素/2000画素)=250μsecとなり、時間ゲート法の時間分解能は250μsecとなる。 As the optical element 23, a scanner element having a rotation angle of ± 10 ° and a driving frequency of 100 Hz was used. The fluorescence detecting means 24 is a one-dimensional array CCD having 2000 pixels and a pixel size of 10 μm. The time for the scanner element to drive from −10 ° to + 10 ° is 5 msec, which is approximately equal to the measurement time of the fluorescence decay curve. When 100 pixels of the CCD correspond to one window of the time gate method, 5 msec × (100 pixels / 2000 pixels) = 250 μsec, and the time resolution of the time gate method is 250 μsec.
 上記の装置を用い、時間ゲート法によるPd meso-Tetra(4 carboxyphenyl) porphineのりん光寿命測定を行った。CCDの100画素が1ウィンドウに対応するため、ウィンドウ数は20となる。時間軸に対して20点のプロットが得られ、この20点をフィッティングすることで、Pd meso-Tetra(4 carboxyphenyl) porphineのりん光寿命はおよそ690μsecと求められた。 The phosphorescence lifetime of Pdmeso-Tetra (4-carboxyphenyl) -porphine was measured by the time gate method using the above apparatus. Since 100 pixels of the CCD correspond to one window, the number of windows is 20. Plots of 20 points were obtained with respect to the time axis, and by fitting these 20 points, the phosphorescence lifetime of Pd meso-Tetra (4 carboxyphenyl) porphine was determined to be about 690 μsec.
 以上、本発明をその好適な実施形態に基づいて説明したが、本発明の時間分解蛍光測定装置及び方法は、上記実施形態にのみ限定されるものではなく、上記実施形態の構成から種々の修正及び変更を施したものも、本発明の範囲に含まれる。 Although the present invention has been described based on the preferred embodiment, the time-resolved fluorescence measuring apparatus and method of the present invention are not limited to the above embodiment, and various modifications can be made from the configuration of the above embodiment. Further, modifications and changes are also included in the scope of the present invention.

Claims (17)

  1.  所定の波長を有する光を励起光として測定対象物に照射する光照射手段と、
     前記測定対象物から発せられる蛍光を検出する蛍光検出手段であって、複数の検出器が所定の方向に沿って一列に配列された検出器群を有する蛍光検出手段と、
     前記蛍光が前記蛍光検出手段に入射するまでの間の光路中に配置され、前記励起光が前記測定対象物に照射された後、時間経過と共に前記蛍光が前記検出器群の複数の検出器のうちの異なる検出器で検出されるように、前記蛍光の進行方向を変化させる光学素子と、
     前記検出器群での蛍光の検出結果に基づいて、蛍光寿命を算出する蛍光寿命算出手段とを備えたことを特徴とする時間分解蛍光測定装置。
    A light irradiating means for irradiating the measurement object with light having a predetermined wavelength as excitation light;
    Fluorescence detection means for detecting fluorescence emitted from the measurement object, the fluorescence detection means having a detector group in which a plurality of detectors are arranged in a line along a predetermined direction;
    The fluorescence is arranged in an optical path until it enters the fluorescence detection means, and after the excitation light is irradiated onto the measurement object, the fluorescence is emitted from a plurality of detectors of the detector group over time. An optical element that changes the direction of travel of the fluorescence so that it can be detected by a different detector,
    A time-resolved fluorescence measuring apparatus comprising: a fluorescence lifetime calculating means for calculating a fluorescence lifetime based on a fluorescence detection result in the detector group.
  2.  前記蛍光寿命算出手段が、前記複数の検出器での蛍光の検出結果に基づいて複数の時間領域のそれぞれにおける蛍光発光強度を求め、該求められた蛍光発光強度に基づいて前記蛍光寿命を算出するものであることを特徴とする請求項1に記載の時間分解蛍光測定装置。 The fluorescence lifetime calculating means calculates fluorescence emission intensity in each of a plurality of time regions based on the fluorescence detection results of the plurality of detectors, and calculates the fluorescence lifetime based on the determined fluorescence emission intensity. The time-resolved fluorescence measuring apparatus according to claim 1, wherein
  3.  前記蛍光寿命算出手段が、前記複数の検出器のうちの、求めるべき蛍光発光強度の時間領域に対応した1以上の検出器での蛍光の検出結果に基づいて、各時間領域における蛍光発光強度を求めるものであることを特徴とする請求項2に記載の時間分解蛍光測定装置。 The fluorescence lifetime calculating means calculates the fluorescence emission intensity in each time region based on the fluorescence detection result of one or more detectors corresponding to the time region of the fluorescence emission intensity to be obtained among the plurality of detectors. The time-resolved fluorescence measuring device according to claim 2, wherein the time-resolved fluorescence measuring device is obtained.
  4.  前記光学素子が、前記蛍光の測定期間にわたって、前記蛍光の進行方向を、前記一列に配列された複数の検出器の一端側から他端側へ連続的に変化させるものであることを特徴とする請求項1から3何れかに記載の時間分解蛍光測定装置。 The optical element is configured to continuously change the traveling direction of the fluorescence from one end side to the other end side of the plurality of detectors arranged in a row over the measurement period of the fluorescence. The time-resolved fluorescence measuring device according to any one of claims 1 to 3.
  5.  前記光学素子が、弾性変位可能に支持され、第1の方向及びこれとは逆方向の第2の方向へ変位可能な可動部と、該可動部へ前記第1の方向の物理的作用力を加える第1の駆動源と、前記可動部へ前記第2の方向の物理的作用力を加える第2の駆動源とを含む電気機器素子であることを特徴とする請求項1から4何れかに記載の時間分解蛍光測定装置。 The optical element is supported so as to be elastically displaceable, and is movable in a first direction and a second direction opposite to the first direction, and a physical acting force in the first direction is applied to the movable part. 5. The electric device element according to claim 1, wherein the electric device element includes a first drive source to be applied and a second drive source to apply a physical acting force in the second direction to the movable portion. The time-resolved fluorescence measuring apparatus described.
  6.  前記励起光が点光源であることを特徴とする請求項1から5何れかに記載の時間分解蛍光測定装置。 The time-resolved fluorescence measuring device according to any one of claims 1 to 5, wherein the excitation light is a point light source.
  7.  前記蛍光検出器手段が、前記測定対象物の前記励起光が照射された箇所から発せられる蛍光を、前記検出器群の複数の検出器で検出するものであることを特徴とする請求項6に記載の時間分解蛍光測定装置。 The said fluorescence detector means detects the fluorescence emitted from the location where the said excitation light of the said measuring object was irradiated with the several detector of the said detector group, It is characterized by the above-mentioned. The time-resolved fluorescence measuring apparatus described.
  8.  前記励起光がライン光源であることを特徴とする請求項1から5何れかに記載の時間分解蛍光測定装置。 The time-resolved fluorescence measuring device according to any one of claims 1 to 5, wherein the excitation light is a line light source.
  9.  前記蛍光検出手段が、前記測定対象物の前記励起光が照射された1行×m列(mは2以上の整数)の領域に対応した複数の検出器群を含み、前記測定対象物の前記励起光が照射された1行のm列の領域から発せられる蛍光のそれぞれを、前記複数の検出器群のうちの対応する検出器群で検出するものであることを特徴とする請求項8に記載の時間分解蛍光測定装置。 The fluorescence detection means includes a plurality of detector groups corresponding to an area of 1 row × m columns (m is an integer of 2 or more) irradiated with the excitation light of the measurement object, and the measurement object of the measurement object 9. The method according to claim 8, wherein each of the fluorescence emitted from the region of m columns in one row irradiated with the excitation light is detected by a corresponding detector group of the plurality of detector groups. The time-resolved fluorescence measuring apparatus described.
  10.  前記励起光が面光源であることを特徴とする請求項1から5何れかに記載の時間分解蛍光測定装置。 The time-resolved fluorescence measuring apparatus according to any one of claims 1 to 5, wherein the excitation light is a surface light source.
  11.  前記蛍光検出手段が、前記測定対象物の前記励起光が照射されたn行×m列(n、mはそれぞれ2以上の整数)の領域に対応して、それぞれが1行×m列の領域に対応した複数の検出器群をnセット有し、
     前記光学素子が、前記測定対象領域の励起光が照射された各行のm列の領域から発せられた蛍光を、前記蛍光検出手段の対応するセットの複数の検出器群に向けて出射し、
     前記蛍光検出手段が、前記測定対象物の前記励起光が照射された各行のm列の領域から発せられる蛍光のそれぞれを、前記対応するセットの複数の検出器群のうちの対応する検出器群で検出するものであることを特徴とする請求項10に記載の時間分解蛍光測定装置。
    The fluorescence detection means corresponds to an area of n rows × m columns (n and m are each an integer of 2 or more) irradiated with the excitation light of the measurement object, each of which is an area of 1 row × m columns. N sets of a plurality of detector groups corresponding to
    The optical element emits fluorescence emitted from the m-column region of each row irradiated with the excitation light of the measurement target region toward a plurality of detector groups in a corresponding set of the fluorescence detection unit,
    The fluorescence detection means detects each of the fluorescence emitted from the m-column area of each row irradiated with the excitation light of the measurement object, and the corresponding detector group of the plurality of detector groups of the corresponding set. The time-resolved fluorescence measuring device according to claim 10, wherein the time-resolved fluorescence measuring device is detected by the method.
  12.  前記蛍光検出手段が、ゲート機能を有するイメージインテンシファイアと電荷撮像素子とを含むことを特徴とする請求項1から11何れかに記載の時間分解蛍光測定装置。 12. The time-resolved fluorescence measuring apparatus according to claim 1, wherein the fluorescence detecting means includes an image intensifier having a gate function and a charge image pickup device.
  13.  前記励起光を前記測定対象物の表面上で走査する走査手段と、
     前記走査された励起光の各位置に対応する前記蛍光の発光強度、及び前記算出された蛍光寿命の少なくとも一方の分布を表す蛍光画像を生成する蛍光画像生成手段とを更に備えたことを特徴とする請求項1から12何れかに記載の時間分解蛍光測定装置。
    Scanning means for scanning the excitation light on the surface of the measurement object;
    Fluorescence image generation means for generating a fluorescence image representing at least one distribution of the fluorescence emission intensity corresponding to each position of the scanned excitation light and the calculated fluorescence lifetime, The time-resolved fluorescence measuring device according to any one of claims 1 to 12.
  14.  前記走査手段が、前記測定対象物の表面上に加えて、前記測定対象物上の前記励起光の集光位置を深さ方向にも走査し、前記蛍光画像生成手段が、前記蛍光画像を3次元情報として生成するものであることを特徴とする請求項13に記載の時間分解蛍光測定装置。 The scanning means scans the condensing position of the excitation light on the measurement object in the depth direction in addition to the surface of the measurement object, and the fluorescence image generation means 3 scans the fluorescence image. The time-resolved fluorescence measuring device according to claim 13, wherein the time-resolved fluorescence measuring device is generated as dimensional information.
  15.  請求項1から14何れかに記載の時間分解蛍光測定装置を備えたことを特徴とする顕微鏡システム。 A microscope system comprising the time-resolved fluorescence measuring device according to any one of claims 1 to 14.
  16.  請求項1から14何れかに記載の時間分解蛍光測定装置を備えたことを特徴とする内視鏡ファイバプローブシステム。 An endoscope fiber probe system comprising the time-resolved fluorescence measuring device according to any one of claims 1 to 14.
  17.  所定の波長を有する光を励起光として測定対象物に照射するステップと、
     前記励起光が前記測定対象物に照射された後、前記測定対象物から発せられる蛍光が、時間経過と共に所定の方向に沿って一列に配列された複数の検出器のうちの異なる検出器で検出されるように、前記蛍光の進行方向を変化させるステップと、
     前記複数の検出器における蛍光の検出結果に基づいて、蛍光寿命を算出するステップとを有することを特徴とする時間分解蛍光測定方法。
    Irradiating the object to be measured with light having a predetermined wavelength as excitation light;
    After the excitation light is irradiated onto the measurement object, fluorescence emitted from the measurement object is detected by different detectors out of a plurality of detectors arranged in a line along a predetermined direction over time. Changing the direction of travel of the fluorescence,
    A time-resolved fluorescence measurement method comprising: calculating a fluorescence lifetime based on fluorescence detection results of the plurality of detectors.
PCT/JP2011/007143 2010-12-21 2011-12-20 Time-resolved fluorescence measurement device and method WO2012086195A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010284105A JP2012132742A (en) 2010-12-21 2010-12-21 Time-resolved fluorescence measuring device and method
JP2010-284105 2010-12-21

Publications (1)

Publication Number Publication Date
WO2012086195A1 true WO2012086195A1 (en) 2012-06-28

Family

ID=46313486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/007143 WO2012086195A1 (en) 2010-12-21 2011-12-20 Time-resolved fluorescence measurement device and method

Country Status (2)

Country Link
JP (1) JP2012132742A (en)
WO (1) WO2012086195A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10761011B2 (en) 2015-02-24 2020-09-01 The University Of Tokyo Dynamic high-speed high-sensitivity imaging device and imaging method
CN112714866A (en) * 2018-09-18 2021-04-27 国立大学法人东京大学 Substance specifying device, substance specifying method, and substance specifying program
US11098275B2 (en) 2015-10-28 2021-08-24 The University Of Tokyo Analysis device
US11788948B2 (en) 2018-06-13 2023-10-17 Thinkcyte, Inc. Cytometry system and method for processing one or more target cells from a plurality of label-free cells

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019008677A1 (en) * 2017-07-04 2019-01-10 オリンパス株式会社 Signal acquisition device
JP7197134B2 (en) * 2019-03-12 2022-12-27 株式会社日立ハイテクサイエンス Fluorometer and observation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055650A (en) * 1991-06-27 1993-01-14 Hamamatsu Photonics Kk Solid-state streak camera
JPH0943146A (en) * 1995-07-28 1997-02-14 Hamamatsu Photonics Kk Time-resolved imaging device
JP2000329695A (en) * 1999-05-20 2000-11-30 Hamamatsu Photonics Kk Fluorescene-life measuring apparatus
JP2003344284A (en) * 2002-05-29 2003-12-03 Hamamatsu Photonics Kk Device and method for measuring fluorescent life distribution image
JP2004212257A (en) * 2003-01-06 2004-07-29 Mitsui Eng & Shipbuild Co Ltd Time resolution two-dimensional faint light photodetection method and device
JP2010164468A (en) * 2009-01-16 2010-07-29 Sony Corp Device, method and program for measuring fluorescence lifetime

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055650A (en) * 1991-06-27 1993-01-14 Hamamatsu Photonics Kk Solid-state streak camera
JPH0943146A (en) * 1995-07-28 1997-02-14 Hamamatsu Photonics Kk Time-resolved imaging device
JP2000329695A (en) * 1999-05-20 2000-11-30 Hamamatsu Photonics Kk Fluorescene-life measuring apparatus
JP2003344284A (en) * 2002-05-29 2003-12-03 Hamamatsu Photonics Kk Device and method for measuring fluorescent life distribution image
JP2004212257A (en) * 2003-01-06 2004-07-29 Mitsui Eng & Shipbuild Co Ltd Time resolution two-dimensional faint light photodetection method and device
JP2010164468A (en) * 2009-01-16 2010-07-29 Sony Corp Device, method and program for measuring fluorescence lifetime

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10761011B2 (en) 2015-02-24 2020-09-01 The University Of Tokyo Dynamic high-speed high-sensitivity imaging device and imaging method
US11054363B2 (en) 2015-02-24 2021-07-06 The University Of Tokyo Dynamic high-speed high-sensitivity imaging device and imaging method
US11579075B2 (en) 2015-02-24 2023-02-14 The University Of Tokyo Dynamic high-speed high-sensitivity imaging device and imaging method
US11867610B2 (en) 2015-02-24 2024-01-09 The University Of Tokyo Dynamic high-speed high-sensitivity imaging device and imaging method
US11098275B2 (en) 2015-10-28 2021-08-24 The University Of Tokyo Analysis device
US11542461B2 (en) 2015-10-28 2023-01-03 The University Of Tokyo Analysis device
US11861889B2 (en) 2015-10-28 2024-01-02 The University Of Tokyo Analysis device
US11788948B2 (en) 2018-06-13 2023-10-17 Thinkcyte, Inc. Cytometry system and method for processing one or more target cells from a plurality of label-free cells
CN112714866A (en) * 2018-09-18 2021-04-27 国立大学法人东京大学 Substance specifying device, substance specifying method, and substance specifying program

Also Published As

Publication number Publication date
JP2012132742A (en) 2012-07-12

Similar Documents

Publication Publication Date Title
WO2012086195A1 (en) Time-resolved fluorescence measurement device and method
US8921809B2 (en) Device for microscopy having selective illumination of a plane
EP1835323B1 (en) Fluorescence microscope and observation method
US7576862B2 (en) Measuring time dependent fluorescence
US7999935B2 (en) Laser microscope with a physically separating beam splitter
JP5547868B2 (en) Microscope system and method using the same
US7394063B2 (en) Microscope for investigating the lifetime of excited states in a sample
JP2823970B2 (en) Near-field scanning optical microscope
US20080308730A1 (en) Real-Time, 3D, Non-Linear Microscope Measuring System and Method for Application of the Same
EP2721442B1 (en) Method and apparatus for imaging a structure marked with a fluorescent dye
JP2007179002A (en) Optical microscope and method of measuring spectrum
JP2012507756A (en) Combined microscopy
JP2002062261A (en) Optical system and microscope
JP2010127726A (en) Optical microscope and spectrum measurement method
JP4074136B2 (en) Fluorescence lifetime distribution image measuring apparatus and measuring method thereof
JP2006504140A (en) Random access high-speed confocal microscope
JP2005121796A (en) Laser microscope
US20210011266A1 (en) Improved scanning optical microscope
JP2004361087A (en) Biomolecule analyzer
JP4184228B2 (en) Fluorescence lifetime measuring device
JP3729043B2 (en) Fluorescence image detection method, DNA inspection method and apparatus
WO2008010405A1 (en) Method for observing sample, and microscope
JP2000314839A (en) Laser scanning microscope
EP3101412A1 (en) Mobile apparatus for analyzing a surface area of an object using raman spectroscopy and fluorescence
US20220043248A1 (en) Method and microscope for the high-resolution imaging of a specimen by light microscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11851728

Country of ref document: EP

Kind code of ref document: A1