JP4183412B2 - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery Download PDF

Info

Publication number
JP4183412B2
JP4183412B2 JP2001355855A JP2001355855A JP4183412B2 JP 4183412 B2 JP4183412 B2 JP 4183412B2 JP 2001355855 A JP2001355855 A JP 2001355855A JP 2001355855 A JP2001355855 A JP 2001355855A JP 4183412 B2 JP4183412 B2 JP 4183412B2
Authority
JP
Japan
Prior art keywords
mass
positive electrode
battery
secondary battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001355855A
Other languages
Japanese (ja)
Other versions
JP2003157892A (en
Inventor
英郎 坂田
春樹 上剃
房次 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2001355855A priority Critical patent/JP4183412B2/en
Publication of JP2003157892A publication Critical patent/JP2003157892A/en
Application granted granted Critical
Publication of JP4183412B2 publication Critical patent/JP4183412B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水二次電池に関し、さらに詳しくは過充電時の安全性が高く、かつ高温貯蔵特性が優れた非水二次電池に関する。
【0002】
【従来の技術】
正極活物質として金属酸化物を用い、負極活物質として炭素材料を用いたリチウムイオン電池に代表される非水二次電池は、高電圧、高エネルギー密度であることから、その需要がますます増えている。しかし、高エネルギー密度になるにつれて安全性が低下していくため、安全性の向上も高エネルギー密度の電池ではより重要になる。また、通常の安全対策ではエネルギー密度が低下する傾向にあるため、エネルギー密度を維持した状態で安全性を改善することが要望されている。
【0003】
上記のような要望に応えるべく、これまでにも、高電圧で重合し過充電時の安全性を向上させる化合物としてビフェニル(特開平9−171840号公報)やシクロヘキシルベンゼン(特開2001−015155号公報)などが提案されている。これらの添加剤は過充電時にガスが発生して電流遮断弁を作動させやすくし、電流遮断弁との併用によって安全性を確保するものである。
【0004】
しかしながら、角形電池では、通常、電流遮断弁が設置されていないため、それらの添加剤による安全性向上効果は、電流遮断弁が設置されている円筒形電池に比べて充分とはいえなかった。例えば、本発明者らが検討したところでは、少量、つまり2質量%程度の添加では過充電時の安全性を向上させる効果が少なく、また、充電状態では添加剤そのものの安定性が充分でないため、電池を高温で長時間放置しておくと、正極と電解液とが反応して電解液の分解などが起こり、その電解液の分解によって発生するガスにより電池に膨れが生じたり、内部抵抗が上昇するという問題があった。
【0005】
上記のように電解液の分解が生じ、電池内部にガスが発生した場合、円筒形電池では、外装材としての電池ケースの耐圧性が優れているので、電池内圧での上昇でとどまるものの、角形電池やラミネート電池(アルミニウム箔などの金属箔を芯材とするラミネートフィルムを外装した電池)では、外装材の耐圧性が充分でないため、電池にふくれ(膨れ)が生じて、電池の外形寸法が変化し、そのため電池が所定のスペース内に収まり切らなくなったり、外観を損なうことになる。したがって、貯蔵時のガス発生が少なく、かつ過充電時の安全性を向上できる手段の確立が望まれる。
【0006】
【発明が解決しようとする課題】
本発明は、上記のような非水二次電池における問題点を解決し、過充電時の安全性が高く、かつ高温貯蔵時のガス発生が少なく、高温貯蔵特性が優れた非水二次電池を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、金属酸化物を正極活物質とし、導電助剤を含む正極合剤を有する正極、炭素材料またはLi挿入可能な材料を負極活物質とした負極、セパレータおよび非水電解液(以下、簡略化して「電解液」という)を有する非水二次電池において、電解液中にベンゼン環にアルキル基が結合した化合物(A)とリン酸エステル(B)とを含有させ、前記リン酸エステル(B)の含有量を前記化合物(A)に対して0.1質量%以上10質量%以下にし、前記正極の導電助剤にカーボンブラックと黒鉛とを併用し、正極合剤中における導電助剤の量を1質量%以上2.5質量%以下とし、前記正極、前記負極、および前記セパレータにより構成された扁平状巻回構造の積層電極体を備えさせ、電池の形態を角形電池またはラミネート電池とすることによって、上記課題を解決したものである。
【0008】
また、本発明においては、リン酸エステル(B)が一般式(R1 O)3 P=O(R1 :炭素数1以上のアルキル基)で表されるリン酸トリエステル、一般式(R2 O)2 P(OH)=O(R2 :炭素数1以上のアルキル基)で表されるリン酸ジエステルおよび一般式(R3 O)P(OH)2 =O(R3 :炭素数1以上のアルキル基)で表されるリン酸モノエステルよりなる群から選ばれる少なくとも1種であること、ベンゼン環にアルキル基が結合した化合物(A)が電解液中に3質量%以上7質量%以下含有され、リン酸エステル(B)が上記化合物(A)に対して0.1質量%以上5質量%以下含有されていること、非水二次電池の形態が角形電池またはラミネート電池であることなどを好ましい態様としている。
【0009】
【発明の実施の形態】
本発明においては、電解液中にベンゼン環にアルキル基が結合した化合物(A)とリン酸エステル(B)とが含まれていることが必要であるが、上記化合物(A)としては、例えば、シクロヘキシルベンゼン、イソプロピルベンゼン、n−ブチルベンゼン、オクチルベンゼン、トルエン、キシレン、それらの誘導体などが挙げられるが、特にベンゼン環と結合した炭素が水素を有するシクロヘキシルベンゼンやその誘導体などが過充電時の安全性を向上させることから好ましい。また、アルキル基はある程度長く(炭素数4以上)、分岐構造などで立体的にかさばる構造であることが好ましく、そのような化合物(A)の中では、特にシクロヘキシルベンゼンやその誘導体などが好ましい。
【0010】
上記ベンゼン環にアルキル基が結合した化合物(A)の電解液中の含有量としては、1質量%以上が好ましく、3質量%以上がより好ましく、4質量%以上がさらに好ましく、また、10質量%以下が好ましく、7質量%以下がより好ましく、6質量%以下がさらに好ましい。すなわち、上記化合物(A)の電解液中の含有量を上記のように1〜10質量%の範囲にすることによって、高温貯蔵による電池の膨れを抑制しながら過充電時の安全性を向上させることができる。
【0011】
リン酸エステル(B)としては、特に限定されることはないが、例えば、リン酸トリメチル、リン酸トリエチル、リン酸トリプロピル、リン酸トリブチル、リン酸トリヘキシル、リン酸トリオクチルなどの一般式(R1 O)3 P=O(R1 :炭素数1以上のアルキル基)などで表されるリン酸トリエステル、リン酸ジメチル、リン酸ジエチル、リン酸ジプロピル、リン酸ジブチル、リン酸ジヘキシル、リン酸ジオクチルなどの一般式(R2 O)2 P(O)(OH)(R2 :炭素数1以上のアルキル基)などで表されるリン酸ジエステル、リン酸メチル、リン酸エチル、リン酸プロピル、リン酸ブチル、リン酸ヘキシル、リン酸オクチルなどの一般式(R3 O)P(O)(OH)2 (R3 :炭素数1以上のアルキル基)などで表されるリン酸モノエステルなどが好ましい。そして、R1 、R2 、R3 などの炭素数は、大きくなってもさしつかえないが、いずれも10程度のものまでが実用的である。
【0012】
上記リン酸エステル(B)の化合物(A)に対する割合は10質量%以下であることが必要であり、5質量%以下が好ましく、2.5質量%以下がより好ましく、また、0.1質量%以上であることが必要であり、1質量%以上が好ましく、2質量%以上がより好ましい。このリン酸エステル(B)の作用については、現在のところ必ずしも明確ではないが、以下のように推定される。すなわち、リン酸エステル(B)を化合物(A)に対して少量混合することで充電時に化合物(A)より先にリン酸エステル(B)が正極の活性部位と反応して、正極の活性部位を一部放電させるとともに、正極の表面に薄い皮膜を形成することによって、化合物(A)の正極上での反応を調整するので、電池が膨れるのを抑制できるものと考えられる。しかし、リン酸エステル(B)が化合物(A)に対して多くなると、リン酸エステル(B)も電池の膨れに影響を及ぼしたりインピーダンスを上昇させるので、前記のように化合物(A)に対して10質量%以下であることが必要である。リン酸エステル(B)が少なすぎると、正極の活性部位の放電が不充分になったり充分な膜の形成ができなくなるため、ある程度の量で混合されていることが必要であり、そのため、前記のように化合物(A)に対して0.1質量%以上であることが必要である。
【0013】
本発明において、電解液は、通常、液状のまま用いるが、それをゲル化剤でゲル状にして用いることもできる。
【0014】
電解液としては、有機溶媒などの非水溶媒にリチウム塩などの電解質塩を溶解させることによって調製した非水系の電解液が用いられるが、その非水溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどの炭酸エステルや、γ−ブチロラクトン、酢酸メチルなどのエステル類などを用いることができる。また、それ以外に、1,3−ジオキソラン、1,2−ジメトキシエタンなどのエーテル類、スルホランなどの硫黄化合物、含窒素化合物、含珪素化合物、含フッ素化合物、含リン化合物などの非水溶媒を単独でまたは2種以上混合して用いることができる。
【0015】
電解液の調製にあたって、非水溶媒に溶解させる電解質塩としては、例えば、LiPF6 、LiCF3 SO3 などのLiCn 2n+1SO3 (n>1)、LiClO4 、LiBF4 、LiAsF6 、(Cn 2n+1SO2 )(Cm 2m+1SO2 )NLi(m、n≧1)、(RfOSO2)2 NLi〔Rfは炭素数が2以上のハロゲンを含むアルキル基であって、Rfは同一であってもよいし、異なるものであってもよいし、Rf同士が互いに結合していてもよく、例えばポリマー状に結合していてもよい。このRfがポリマー状に結合したものとしては、例えば、(CH2 (CF2 4 CH2 OSO2 N(Li)SO2 O)n (nは整数)がある〕などをそれぞれ単独で用いることができるし、また、2種以上を併用することができるが、特にLiPF6 や炭素数2以上の含フッ素有機リチウム塩などが好ましい。そして、それらの電解質塩は前記非水溶媒に通常0.1〜2mol/l程度溶解させることが好ましい。
【0016】
上記電解液をゲル化してゲル状にするには、例えば、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリアクリルニトリル、フッ化ビニリデン−六フッ化プロピレン共重合体などの直鎖状のポリマーを用い、その直鎖状のポリマーを加熱することにより電解液に溶解させた後、冷却することによって電解液をゲル化する方法や、紫外線などの活性光線で重合可能なモノマーやプレポリマーなどを電解液に溶解させ、そのモノマーやプレポリマーなどを溶解させた電解液に活性光線を照射することによりモノマーやプレポリマーなどをポリマー化し、そのポリマーによって電解液をゲル化する方法などが採用される。
【0017】
また、電解液中にイオウ化合物を含有させておくと、電池の膨れをより少なくすることができることから好ましい。上記イオウ化合物としては、特に−OSO2 −結合を有するものが好ましく、そのようなイオウ化合物の具体例としては、例えば、1,3−プロパンスルトン、メチルエチルスルフォネート、ジエチルサルフェートなどが挙げられ、特に1,3−プロパンスルトンが好ましい。そして、このイオウ化合物の電解液中の含有量としては、0.5質量%以上が好ましく、1質量%以上がより好ましく、また10質量%以下が好ましく、5質量%以下がより好ましい。
【0018】
本発明において、正極活物質としては、金属酸化物を用いるが、そのような金属酸化物としては、例えば、LiCoO2 などのリチウムコバルト酸化物、LiMn2 4 などのリチウムマンガン酸化物、LiNiO2 などのリチウムニッケル酸化物、LiNiO2 のNiの一部をCoで置換したLiCox Ni1-x 2 (0<x<1)、酸化マンガン、五酸化ハナジウム、クロム酸化物などが挙げられるが、特にLiNiO2 、LiCoO2 、LiMn2 4 、LiCox Ni1-x 2 などのように充電されたときに正極の開路電圧がLi基準で4.2V以上を示すリチウム複合酸化物が好ましく、特にLi基準で4.3V以上を示すリチウム複合酸化物が好ましい。
【0019】
正極の作製にあたって、上記正極活物質以外にも、通常、導電助剤とバインダーが用いられるが、その導電助剤としては、種々のものを用い得るが、特に炭素材料を用い、その正極合剤(つまり、正極活物質と導電助剤とバインダーとの混合物)中の量を2.5質量%以下にする。これは正極合剤中における導電助剤としての炭素材料の量が2.5質量%より多くなると、充電状態で電解液溶媒との反応によりガスが発生するおそれがあるからであり、また、少なすぎると正極の導電性が低下して電池特性を低下させる傾向があるので、1質量%以上が好ましく、1.5質量%以上がより好ましく、2質量%以上がさらに好ましい。
【0020】
そして、この正極における導電助剤の炭素材料としては、結晶性の低いカーボンブラックを用いると高温貯蔵時の電池の膨れを抑制できることから好ましく、また、この結晶性の低いカーボンブラックに結晶性の高い黒鉛を一部併用すると導電性が向上し、導電助剤の使用量を低減できることから好ましい。このように、導電助剤として結晶性の低いカーボンブラックと結晶性の高い黒鉛とを併用する場合、結晶性の低いカーボンブラックの量を全導電助剤中の50質量%以上にすることが好ましく、70質量%以上にすることがより好ましく、また、95質量%以下にすることが好ましく、80質量%以下にすることがより好ましい。
【0021】
また、正極を作製するに当たり、バインダーとしては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアクリル酸、スチレンブタジエンゴム、フッ素ゴムなどを用いることができる。
【0022】
正極は、上記正極活物質に導電助剤やバインダーなどとを加えて混合して正極合剤を調製し、その正極合剤を溶剤に分散させて正極合剤含有ペーストを調製し(バインダーはあらかじめ溶剤に溶解または分散させておいてから、正極活物質や導電助剤などと混合してもよい)、その正極合剤含有ペーストをアルミニウム箔などからなる正極集電体に塗布し、乾燥して正極合剤層を形成し、必要に応じて加圧成形する工程を経ることによって作製される。ただし、正極の作製方法は、上記例示のものに限られることなく、他の方法によってもよい。
【0023】
負極には、その活物質として、炭素材料またはLi挿入可能な材料などが用いられるが、その炭素材料としては、例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭、グラファイト、炭素コロイドなどが好適に用いられ、また、Li挿入可能な材料としては、Liが挿入可能な金属酸化物や金属窒化物などが挙げられ、そのLiが挿入可能な金属酸化物としては、例えば、スズやシリコンを含む金属酸化物(例えば、Sn x 、SiOx など)などが好適に用いられる。
【0024】
負極は、上記負極活物質に前記正極の場合と同様のバインダーや必要に応じて導電助剤などを加えて混合して負極合剤を調製し、その負極合剤を溶剤に分散させて負極合剤含有ペーストを調製し(バインダーはあらかじめ溶剤に溶解または分散させておいてから負極活物質などと混合してもよい)、その負極合剤含有ペーストを負極集電体に塗布し、乾燥して負極合剤層を形成し、必要に応じて加圧成形する工程を経ることによって作製される。ただし、負極の作製方法は、上記例示のものに限られることなく、他の方法によってもよい。
【0025】
正極や負極の作製にあたって用いる集電体としては、アルミニウム、銅、ニッケル、ステンレウ鋼などの箔、パンチングメタル、網、エキスパンドメタルなどを挙げられるが、正極集電体としてはアルミニウム箔が特に好適に用いられ、負極集電体としては銅箔が特に好適に用いられる。
【0026】
前記正極と負極は、通常、その間にセパレータを介在させて巻回し、扁平状になるように加圧して扁平状巻回構造の積層体にするが、高容量化を図るためには、前記電極積層体の単位体積当りの放電容量は130mAh/cm以上であることが好ましい。本発明において、電極積層体の体積とは、正極、負極およびセパレータを折り曲げもしくは積層したもの、または正極、負極およびセパレータを巻回したものの嵩体積(それらにタブなどが付いているときは、そのタブなどの嵩体積も含む)であって、後者のように巻回したものにあっては、巻回に際して使用した軸に基づく巻回体中心部の透孔などは体積としては含まない。要は正極、負極およびセパレータなどが占める体積であって、これら3つの体積は電池の容量を決定する重要な要因であり、電池の大きさにかかわらず、電極積層体の単位体積当りの放電容量(放電容量/電極積層体の体積)を計算することによって、電池の容量密度を比較することができる。また、ここでいう放電容量とは、その電池の標準使用条件で充放電させた場合の放電容量である。なお、標準使用条件とは、25℃において1C(その電池を1時間で放電できる電流)の定電流で4.2Vまで充電し、4.2Vに達した後は、4.2Vの定電圧で2.5時間充電し、その充電後に、0.2Cで2.75Vまで放電を行うことを意味し、そのときの放電容量を測定し、電極積層体の単位体積当りの放電容量を求める。そして、より高容量化を図るという観点からは、電極積層体の単位体積当りの放電容量は140mAh/cm以上がより好ましく、150mAh/cm以上がさらに好ましい。
【0027】
本発明の非水二次電池の形態は、従来技術では電池膨れを生じやすい角形電池やラミネート電池であり、このような形態の電池においても、その高温貯蔵による電池膨れを抑制することができ、その効果を顕著に発現する。
【0028】
【実施例】
つぎに、実施例を挙げて本発明をより具体的に説明する。ただし、本発明はそれらの実施例のみに限定されるものではない。
【0029】
実施例1
まず、LiPF6 をエチレンカーボネートに溶解させたのち、メチルエチルカーボネートを加えて混合し、エチレンカーボネートとメチルエチルカーボネートとの体積比が1:2の混合溶媒にLiPF6 を1.2mol/l相当溶解させ、さらに添加剤としてシクロヘキシルベンゼンを4質量%とリン酸トリオクチルを0.1質量%溶解させ、さらに1,3−プロパンスルトンを2質量%溶解させ、電解液を調製した。
【0030】
正極は、LiCoO2 93.5質量部にカーボンブラック2.0質量部と黒鉛〔ロンザ社製KS−6(商品名)〕0.5質量部を加えて混合し、得られた混合物をあらかじめポリフッ化ビニリデン4質量部をN−メチルピロリドンに溶解させておいた溶液に加えて混合して正極合剤含有ペーストを調製した。得られた正極合剤含有ペーストを厚さ15μmのアルミニウム箔からなる正極集電体の両面に均一に塗布し(ただし、作製後の正極をセパレータと介して負極と巻回した巻回構造の電極積層体において、負極と対向しない最内周部の内面側となる部分には正極合剤含有ぺーストを塗布しなかった)、乾燥して正極合剤層を形成し、その後、ローラプレス機により加圧成形した後、所定の大きさに切断し、リード体を溶接して、帯状の正極を作製した。なお、上記正極合剤中における導電助剤(カーボンブラックと黒鉛)の量は2.5質量%であった。
【0031】
これとは別に、メソカーボンマイクロビーズ95質量部を、あらかじめポリフッ化ビニリデン5質量部をN−メチルピロリドンに溶解させておいた溶液に加えて混合して負極合剤含有ペーストを調製した。得られた負極合剤含有ペーストを厚さ10μmの銅箔からなる負極集電体の両面に塗布し(ただし、作製後の負極をセパレータと介して正極と巻回した巻回構造の電極積層体において、正極と対向しない最外周部の外面側には負極合剤含有ペーストを塗布しなかった)、乾燥して負極合剤層を形成し、その後、ローラープレス機により加圧成形し、所定の大きさに切断後、リード体を溶接して、帯状の負極を作製した。
【0032】
つぎに、前記の正極と負極のそれぞれに集電タブを取り付け、それらの正極と負極を厚さ25μmの微孔性ポリエチレンフィルムからなるセパレータを介して重ね、渦巻状に巻回した後、扁平状になるように加圧して扁平状巻回構造の積層電極体としたのち、絶縁テープを取り付け、外寸が5mm×30mm×48mmの角形の電池ケース〔厚み(奥行き)5mm、幅30mm、高さ48mmの角形の電池ケース〕内に挿入し、リード体の溶接と封口用蓋板の電池ケースの開口端部へのレーザー溶接を行い、封口用蓋板に設けた電解液注入口から前記の電解液を電池ケース内に注入し、電解液がセパレータなどに充分に浸透した後、電解液注入口を封止して密閉状態にした後、予備充電、エイジングを行い、図1に示すような構造で図2に示すような外観を有する角形の非水二次電池を作製した。
【0033】
ここで図1〜2に示す電池について説明すると、正極1と負極2は前記のようにセパレータ3を介して渦巻状に巻回した後、扁平状になるように加圧して扁平状巻回構造の電極積層体6として、角形の電池ケース4に上記電解液とともに収容されている。ただし、図1では、煩雑化を避けるため、正極1や負極2の作製にあたって使用した集電体としての金属箔や電解液などは図示していない。
【0034】
電池ケース4はアルミニウム合金製で電池の外装材となるものであり、この電池ケース4は正極端子を兼ねている。そして、電池ケース4の底部にはポリテトラフルオロエチレンシートからなる絶縁体5が配置され、前記正極1、負極2およびセパレータ3からなる扁平状巻回構造の電極積層体6からは正極1および負極2のそれぞれ一端に接続された正極リード体7と負極リード体8が引き出されている。また、電池ケース4の開口部を封口するアルミニウム合金製の蓋板9にはポリプロピレン製の絶縁パッキング10を介してステンレス鋼製の端子11が取り付けられ、この端子11には絶縁体12を介してステンレス鋼製のリード板13が取り付けられている。
【0035】
そして、この蓋板9は上記電池ケース4の開口部に挿入され、両者の接合部を溶接することによって、電池ケース4の開口部が封口され、電池内部が密閉されている。
【0036】
この実施例1の電池では、正極リード体7を蓋板9に直接溶接することによって電池ケース4と蓋板9とが正極端子として機能し、負極リード体8をリード板13に溶接し、そのリード板13を介して負極リード体8と端子11とを導通させることによって端子11が負極端子として機能するようになっているが、電池ケース4の材質などによっては、その正負が逆になる場合もある。
【0037】
図2は上記図1に示す電池の外観を模式的に示す斜視図であり、この図2は上記電池が角形電池であることを示すことを目的として図示されたものであって、この図2では電池を概略的に示しており、電池の構成部材のうち特定のものしか図示していない。また、図1においても、電極積層体の内周側の部分は断面にしていない。
【0038】
実施例2
実施例1と同様にLiPF6 をエチレンカーボネートに溶解させたのち、メチルエチルカーボネートを加えて混合し、エチレンカーボネートとメチルエチルカーボネートの体積比が1:2の混合溶媒にLiPF6 を1.2mol/l相当溶解させ、さらに、添加剤としてシクロヘキシルベンゼンを4質量%溶解させ、かつ実施例1で用いたリン酸トリオクチルに代えてリン酸ジオクチルを0.1質量%溶解させ、さらに1,3−プロパンスルトンを2質量%溶解させて、電解液を調製し、その電解液を用いた以外は、実施例1と同様に角形の非水二次電池を作製した。
【0039】
比較例1
リン酸トリオクチルを含有させなかった以外は、実施例1と同様に電解液を調製し、その電解液を用いた以外は実施例1と同様に角形の非水二次電池を作製した。
【0040】
比較例2
シクロヘキシルベンゼンを含有させなかった以外は、実施例1と同様に電解液を調製し、その電解液を用いた以外は、実施例1と同様に角形の非水二次電池を作製した。
【0041】
上記実施例1〜2および比較例1〜2の電池を、室温で1CmAで3.0Vまで放電させ、1Cの定電流で電池電圧が4.2Vに達するまで充電し、さらに4.2Vの定電圧で2.5時間充電した後、0.2mAで3.0Vまで放電させて、放電容量を測定した。その放電容量を電極積層体のかさ体積(電極、セパレータ、タブの体積の総和)で割って電極積層体の単位体積当たりの放電容量(mAh/cm3 )を求めた。その結果を表1に示す。なお、上記のように4.2Vまで充電したときの正極電位はLi基準で4.3Vであった。
【0042】
また、電池の過充電時の安全性を調べるために、以下に示すように過充電安全試験を行った。すなわち、上記実施例1〜2および比較例1〜2の電池を1CmAで4.2Vまで充電し、4.2Vに達した後は4.2Vの定電圧で2.5時間充電して満充電状態にし、その充電後、6Vを上限電圧として0.5A、1A、2A、5Aの電流値で過充電した。その過充電時に、電池の表面温度が135℃以下であった最大電流を過充電安全電流値とした。その結果を表1に示す。
【0043】
また、電池の高温貯蔵特性を調べるために、以下に示すように貯蔵試験を行った。上記実施例1〜2および比較例1〜2の電池を1CmAの定電流で電池電圧が4.2Vに達するまで充電し、さらに4.2Vの定電圧で2.5時間充電を行い、1CmAで3.0Vまで放電させて放電容量を測定した。このときの放電容量を貯蔵前の放電容量とした。その後、1CmAで4.2Vまで充電し、さらに4.2Vの定電圧で2.5時間充電を行った。その充電後、電池を60℃の恒温槽に20日貯蔵した後、1CmAで3.0Vで放電させて放電容量を測定した。このときの放電容量を貯蔵後の放電容量とし、次の式により、貯蔵による自己放電率を求めた。その結果を表1に示す。

Figure 0004183412
【0044】
【表1】
Figure 0004183412
【0045】
表1に示す結果から明らかなように、実施例1〜2の電池は、電解液中にベンゼン環にアルキル基が結合した化合物(A)に属するシクロヘキシルベンゼンを含有させなかった比較例2の電池に比べて、過充電安全電流が10倍以上大きく、過充電時の安全性を10倍以上高めることができた。また、実施例1〜2の電池は、電解液中にリン酸エステル(B)に属するリン酸トリオクチルを含有させなかった比較例1の電池に比べて、高温貯蔵による自己放電が少なく、高温貯蔵特性も優れていた。
【0046】
これに対して、シクロヘキシルベンゼンを含有させたが、リン酸トリオクチルを含有させなかった比較例1の電池は、過充電時の安全性は高かったものの、高温貯蔵での自己放電が多く、高温貯蔵特性が悪かった。また、リン酸トリオクチルが含有させたものの、シクロヘキシルベンゼンを含有させなかった比較例2の電池は、高温貯蔵による自己放電は少なかったものの、過充電時の安全性に欠けていた。
【0047】
【発明の効果】
以上説明したように、本発明では、過充電時の安全性が高く、かつ高温貯蔵特性が優れた非水二次電池を提供することができた。
【図面の簡単な説明】
【図1】本発明に係る非水二次電池の一例を模式的に示す図で、(a)はその平面図、(b)はその部分縦断面図である。
【図2】図1に示す非水二次電池の斜視図である。
【符号の説明】
1 正極
2 負極
3 セパレータ
4 電池ケース
5 絶縁体
6 電極積層体
7 正極リード体
8 負極リード体
9 蓋板
11 端子
12 絶縁体
13 リード板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous secondary battery, and more particularly to a non-aqueous secondary battery having high safety during overcharge and excellent high-temperature storage characteristics.
[0002]
[Prior art]
Non-aqueous secondary batteries represented by lithium ion batteries using metal oxide as the positive electrode active material and carbon material as the negative electrode active material have high voltage and high energy density, and the demand for them is increasing. ing. However, since the safety decreases as the energy density becomes higher, the improvement in safety becomes more important in a battery with a higher energy density. Moreover, since the energy density tends to decrease in the usual safety measures, it is desired to improve the safety while maintaining the energy density.
[0003]
In order to meet the above demands, biphenyl (Japanese Patent Laid-Open No. 9-171840) and cyclohexylbenzene (Japanese Patent Laid-Open No. 2001-015155) are compounds that have been polymerized at a high voltage to improve safety during overcharge. Publication) etc. are proposed. These additives generate gas during overcharge and facilitate the operation of the current cutoff valve, and ensure safety by using in combination with the current cutoff valve.
[0004]
However, since the current cutoff valve is not usually installed in the rectangular battery, the safety improvement effect by these additives is not sufficient compared to the cylindrical battery in which the current cutoff valve is installed. For example, the inventors have studied that a small amount, that is, about 2% by mass of addition has little effect of improving safety during overcharging, and that the additive itself is not sufficiently stable in the charged state. If the battery is left at a high temperature for a long time, the positive electrode and the electrolytic solution react to cause decomposition of the electrolytic solution. The gas generated by the decomposition of the electrolytic solution causes the battery to swell, or the internal resistance is reduced. There was a problem of rising.
[0005]
As described above, when the electrolytic solution is decomposed and gas is generated inside the battery, the cylindrical battery has excellent pressure resistance of the battery case as an exterior material. In batteries and laminated batteries (batteries with a laminated film having a metal foil such as an aluminum foil as a core), the pressure resistance of the outer packaging material is not sufficient. Therefore, the battery does not fit in the predetermined space or the appearance is deteriorated. Therefore, it is desired to establish a means for generating less gas during storage and improving safety during overcharge.
[0006]
[Problems to be solved by the invention]
The present invention solves the problems in the non-aqueous secondary battery as described above, has high safety during overcharge, little gas generation during high-temperature storage, and excellent high-temperature storage characteristics. The purpose is to provide.
[0007]
[Means for Solving the Problems]
The present invention includes a positive electrode having a positive electrode active material and a positive electrode mixture containing a conductive additive, a negative electrode, a separator, and a non-aqueous electrolyte (hereinafter, referred to as a negative electrode active material made of a carbon material or a Li-insertable material). In a non-aqueous secondary battery having a simplified “electrolyte solution”, a compound (A) in which an alkyl group is bonded to a benzene ring and a phosphate ester (B) are contained in the electrolyte solution. The content of (B) is 0.1% by mass or more and 10% by mass or less with respect to the compound (A), and carbon black and graphite are used in combination for the positive electrode conductive assistant, and the conductive assistant in the positive electrode mixture is used. The amount of the agent is 1% by mass or more and 2.5% by mass or less, and a laminated electrode body having a flat winding structure constituted by the positive electrode, the negative electrode, and the separator is provided, and the battery is formed in a rectangular battery or laminate. Battery And the one in which the above-mentioned problems are eliminated.
[0008]
In the present invention, the phosphate ester (B) is represented by the general formula (R 1 O) Three P = O (R 1 : Phosphoric acid triester represented by the general formula (R) 2 O) 2 P (OH) = O (R 2 : An alkyl group having 1 or more carbon atoms) and a general formula (R Three O) P (OH) 2 = O (R Three : At least one selected from the group consisting of phosphoric monoesters represented by: an alkyl group having 1 or more carbon atoms), and 3% by mass of the compound (A) in which an alkyl group is bonded to the benzene ring in the electrolyte. 7 mass% or less is contained, phosphoric acid ester (B) is contained 0.1 mass% or more and 5 mass% or less with respect to the said compound (A), and the form of a non-aqueous secondary battery is a square battery or A preferred embodiment is a laminated battery.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, it is necessary that the electrolyte solution contains the compound (A) having an alkyl group bonded to the benzene ring and the phosphate ester (B). As the compound (A), for example, Cyclohexyl benzene, isopropyl benzene, n-butyl benzene, octyl benzene, toluene, xylene, and derivatives thereof. In particular, cyclohexyl benzene having carbon bonded to a benzene ring and hydrogen or its derivatives are overcharged. It is preferable from the viewpoint of improving safety. In addition, the alkyl group is preferably long to some extent (4 or more carbon atoms) and has a sterically bulky structure such as a branched structure. Among such compounds (A), cyclohexylbenzene and derivatives thereof are particularly preferable.
[0010]
The content of the compound (A) in which the alkyl group is bonded to the benzene ring in the electrolytic solution is preferably 1% by mass or more, more preferably 3% by mass or more, further preferably 4% by mass or more, and 10% by mass. % Or less is preferable, 7 mass% or less is more preferable, and 6 mass% or less is more preferable. That is, by making the content of the compound (A) in the electrolytic solution in the range of 1 to 10% by mass as described above, the safety during overcharge is improved while suppressing the swelling of the battery due to high temperature storage. be able to.
[0011]
Although it does not specifically limit as phosphate ester (B), For example, general formula (R, such as a trimethyl phosphate, a triethyl phosphate, a tripropyl phosphate, a tributyl phosphate, a trihexyl phosphate, a trioctyl phosphate, etc. 1 O) Three P = O (R 1 : General formula (R) such as phosphate triester, dimethyl phosphate, diethyl phosphate, dipropyl phosphate, dibutyl phosphate, dihexyl phosphate, dioctyl phosphate 2 O) 2 P (O) (OH) (R 2 : General formula (R) such as phosphoric acid diester, methyl phosphate, ethyl phosphate, propyl phosphate, butyl phosphate, hexyl phosphate, octyl phosphate Three O) P (O) (OH) 2 (R Three : Phosphoric acid monoester represented by, for example, an alkyl group having 1 or more carbon atoms. And R 1 , R 2 , R Three The number of carbons such as can be increased, but up to about 10 is practical.
[0012]
The ratio of the phosphate ester (B) to the compound (A) needs to be 10% by mass or less, preferably 5% by mass or less, more preferably 2.5% by mass or less, and 0.1% by mass. % Or more, preferably 1% by mass or more, and more preferably 2% by mass or more. About the effect | action of this phosphate ester (B), although it is not necessarily clear at present, it estimates as follows. That is, by mixing a small amount of the phosphate ester (B) with respect to the compound (A), the phosphate ester (B) reacts with the active site of the positive electrode prior to the compound (A) during charging, so that the active site of the positive electrode Since the reaction of the compound (A) on the positive electrode is adjusted by forming a thin film on the surface of the positive electrode, it is considered that the battery can be prevented from swelling. However, when the amount of the phosphate ester (B) increases with respect to the compound (A), the phosphate ester (B) also affects the swelling of the battery or increases the impedance. And 10% by mass or less. If the amount of the phosphate ester (B) is too small, the active site of the positive electrode may not be sufficiently discharged or a sufficient film cannot be formed. Therefore, it is necessary that the phosphoric acid ester (B) is mixed in a certain amount. Thus, it is necessary to be 0.1% by mass or more based on the compound (A).
[0013]
In the present invention, the electrolytic solution is usually used in a liquid state, but it can also be used after being gelled with a gelling agent.
[0014]
As the electrolytic solution, a nonaqueous electrolytic solution prepared by dissolving an electrolyte salt such as a lithium salt in a nonaqueous solvent such as an organic solvent is used. Examples of the nonaqueous solvent include ethylene carbonate and propylene carbonate. Carbonates such as butylene carbonate, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate, and esters such as γ-butyrolactone and methyl acetate can be used. In addition, non-aqueous solvents such as ethers such as 1,3-dioxolane and 1,2-dimethoxyethane, sulfur compounds such as sulfolane, nitrogen-containing compounds, silicon-containing compounds, fluorine-containing compounds, and phosphorus-containing compounds are used. It can be used alone or in combination of two or more.
[0015]
In preparing the electrolytic solution, as an electrolyte salt dissolved in a non-aqueous solvent, for example, LiPF 6 , LiCF Three SO Three LiC n F 2n + 1 SO Three (N> 1), LiClO Four , LiBF Four , LiAsF 6 , (C n F 2n + 1 SO 2 ) (C m F 2m + 1 SO 2 ) NLi (m, n ≧ 1), (RfOSO 2 ) 2 NLi [Rf is an alkyl group containing a halogen having 2 or more carbon atoms, and Rf may be the same or different, and Rf may be bonded to each other. It may be bonded in a polymer form. Examples of the Rf bonded in a polymer form include (CH 2 (CF 2 ) Four CH 2 OSO 2 N (Li) SO 2 O) n (N is an integer) can be used alone, or two or more of them can be used together. 6 And fluorine-containing organic lithium salts having 2 or more carbon atoms are preferred. And it is preferable that those electrolyte salts are normally dissolved in the said non-aqueous solvent about 0.1-2 mol / l.
[0016]
In order to gel the electrolyte solution into a gel, for example, a linear polymer such as polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, or vinylidene fluoride-hexafluoropropylene copolymer is used. A method in which a chain polymer is dissolved in an electrolytic solution by heating and then cooled, and the electrolytic solution is gelled, or a monomer or prepolymer that can be polymerized with actinic rays such as ultraviolet rays is dissolved in the electrolytic solution. For example, a method of polymerizing a monomer or prepolymer by irradiating an electrolytic solution in which the monomer or prepolymer is dissolved to polymerize the monomer or prepolymer, and then gelling the electrolytic solution with the polymer is employed.
[0017]
In addition, it is preferable that a sulfur compound is contained in the electrolytic solution because the swelling of the battery can be further reduced. As the sulfur compound, in particular, -OSO 2 -A compound having a bond is preferable, and specific examples of such a sulfur compound include 1,3-propane sultone, methyl ethyl sulfonate, diethyl sulfate and the like, and 1,3-propane sultone is particularly preferable. . And as content in the electrolyte solution of this sulfur compound, 0.5 mass% or more is preferable, 1 mass% or more is more preferable, 10 mass% or less is preferable, and 5 mass% or less is more preferable.
[0018]
In the present invention, a metal oxide is used as the positive electrode active material. As such a metal oxide, for example, LiCoO 2 Lithium cobalt oxide such as LiMn 2 O Four Lithium manganese oxide such as LiNiO 2 Lithium nickel oxide such as LiNiO 2 LiCo in which a part of Ni is replaced by Co x Ni 1-x O 2 (0 <x <1), manganese oxide, hanadium pentoxide, chromium oxide, etc. 2 LiCoO 2 , LiMn 2 O Four LiCo x Ni 1-x O 2 A lithium composite oxide in which the open circuit voltage of the positive electrode shows 4.2 V or more on the basis of Li when charged as in the above is preferable, and a lithium composite oxide that shows 4.3 V or more on the basis of Li is particularly preferable.
[0019]
In the production of the positive electrode, in addition to the positive electrode active material, a conductive aid and a binder are usually used. As the conductive aid, various materials can be used, and in particular, a carbon material is used, and the positive electrode mixture. That is, the amount in (a mixture of the positive electrode active material, the conductive additive and the binder) is 2.5 mass% or less. This is because if the amount of the carbon material as the conductive additive in the positive electrode mixture is more than 2.5% by mass, gas may be generated due to reaction with the electrolyte solvent in a charged state, If it is too high, the conductivity of the positive electrode tends to be lowered and the battery characteristics tend to be lowered.
[0020]
As the carbon material of the conductive assistant in this positive electrode, it is preferable to use carbon black having low crystallinity because it can suppress the swelling of the battery during high-temperature storage, and the carbon black having high crystallinity has high crystallinity. It is preferable that a part of graphite is used in combination because the conductivity is improved and the amount of the conductive auxiliary agent can be reduced. Thus, when carbon black with low crystallinity and graphite with high crystallinity are used in combination as a conductive assistant, the amount of carbon black with low crystallinity is preferably 50% by mass or more based on the total conductive assistant. 70% by mass or more, more preferably 95% by mass or less, and more preferably 80% by mass or less.
[0021]
Moreover, in producing the positive electrode, as the binder, for example, polyvinylidene fluoride, polytetrafluoroethylene, polyacrylic acid, styrene butadiene rubber, fluorine rubber, or the like can be used.
[0022]
The positive electrode is prepared by adding a conductive additive or a binder to the positive electrode active material and mixing the mixture to prepare a positive electrode mixture, and then dispersing the positive electrode mixture in a solvent to prepare a positive electrode mixture-containing paste (the binder is prepared in advance). It may be dissolved or dispersed in a solvent and then mixed with a positive electrode active material or a conductive auxiliary agent), and the positive electrode mixture-containing paste is applied to a positive electrode current collector made of an aluminum foil and dried. It is produced by forming a positive electrode mixture layer and subjecting it to pressure molding as necessary. However, the method for manufacturing the positive electrode is not limited to the above-described examples, and other methods may be used.
[0023]
For the negative electrode, a carbon material or a material capable of inserting Li is used as the active material. Examples of the carbon material include graphite, pyrolytic carbons, cokes, glassy carbons, and organic polymer compounds. The sintered body, mesocarbon microbead, carbon fiber, activated carbon, graphite, carbon colloid, etc. are preferably used, and examples of the material capable of inserting Li include metal oxides and metal nitrides into which Li can be inserted. As the metal oxide into which Li can be inserted, for example, a metal oxide containing tin or silicon (for example, S n O x , SiO x Etc.) are preferably used.
[0024]
The negative electrode is prepared by adding the same binder as in the case of the positive electrode to the negative electrode active material and, if necessary, adding a conductive additive and mixing them to prepare a negative electrode mixture, and then dispersing the negative electrode mixture in a solvent. An agent-containing paste is prepared (the binder may be previously dissolved or dispersed in a solvent and then mixed with the negative electrode active material), and the negative electrode mixture-containing paste is applied to the negative electrode current collector and dried. It is produced by forming a negative electrode mixture layer and subjecting it to pressure molding as necessary. However, the manufacturing method of the negative electrode is not limited to the above-described examples, and other methods may be used.
[0025]
Examples of the current collector used in the production of the positive electrode and the negative electrode include foils such as aluminum, copper, nickel, and stainless steel, punching metal, nets, and expanded metal. An aluminum foil is particularly preferable as the positive electrode current collector. A copper foil is particularly preferably used as the negative electrode current collector.
[0026]
The positive electrode and the negative electrode are usually wound with a separator interposed therebetween, and pressed to form a flat shape to form a laminated body having a flat wound structure. To increase the capacity, the electrode The discharge capacity per unit volume of the laminate is 130 mAh / cm. 3 The above is preferable. In the present invention, the volume of the electrode laminate refers to a volume obtained by folding or laminating the positive electrode, the negative electrode and the separator, or a volume of the positive electrode, the negative electrode and the separator wound (when a tab or the like is attached thereto) In the latter case, the through hole in the central part of the wound body based on the shaft used for winding is not included in the volume. The point is the volume occupied by the positive electrode, negative electrode, separator, etc., and these three volumes are important factors that determine the capacity of the battery, and the discharge capacity per unit volume of the electrode stack regardless of the size of the battery. By calculating (discharge capacity / volume of electrode laminate), the capacity densities of the batteries can be compared. The discharge capacity here is the discharge capacity when charging and discharging under the standard use conditions of the battery. Note that the standard use condition is that the battery is charged to 4.2V with a constant current of 1C (current that can discharge the battery in 1 hour) at 25 ° C, and after reaching 4.2V, the constant voltage is 4.2V. This means that the battery is charged for 2.5 hours and then discharged to 0.25 V at 0.2 C. The discharge capacity at that time is measured, and the discharge capacity per unit volume of the electrode stack is obtained. From the viewpoint of increasing the capacity, the discharge capacity per unit volume of the electrode laminate is 140 mAh / cm. 3 More preferably, 150 mAh / cm 3 The above is more preferable.
[0027]
The form of the non-aqueous secondary battery of the present invention is a rectangular battery or a laminated battery that easily causes battery swelling in the prior art, and even in such a battery, battery swelling due to high-temperature storage can be suppressed, The effect is remarkably expressed.
[0028]
【Example】
Next, the present invention will be described more specifically with reference to examples. However, this invention is not limited only to those Examples.
[0029]
Example 1
First, LiPF 6 Is dissolved in ethylene carbonate, methyl ethyl carbonate is added and mixed, and LiPF is added to a mixed solvent having a volume ratio of ethylene carbonate to methyl ethyl carbonate of 1: 2. 6 Is dissolved in an amount equivalent to 1.2 mol / l, 4 mass% of cyclohexylbenzene and 0.1 mass% of trioctyl phosphate are dissolved as additives, and 2 mass% of 1,3-propane sultone is further dissolved. Prepared.
[0030]
The positive electrode is LiCoO 2 To 93.5 parts by mass, 2.0 parts by mass of carbon black and 0.5 parts by mass of graphite [KS-6 (trade name) manufactured by Lonza Co., Ltd.] were added and mixed, and the obtained mixture was preliminarily 4 parts by mass of polyvinylidene fluoride. Was added to a solution dissolved in N-methylpyrrolidone and mixed to prepare a positive electrode mixture-containing paste. The obtained positive electrode mixture-containing paste was uniformly applied to both surfaces of a positive electrode current collector made of an aluminum foil having a thickness of 15 μm (however, the wound positive electrode was wound around the negative electrode through a separator) In the laminated body, the positive electrode mixture-containing paste was not applied to the inner surface portion of the innermost peripheral portion that does not face the negative electrode), dried to form a positive electrode mixture layer, and then a roller press After the pressure forming, it was cut into a predetermined size, and the lead body was welded to produce a belt-like positive electrode. In addition, the quantity of the conductive support agent (carbon black and graphite) in the said positive electrode mixture was 2.5 mass%.
[0031]
Separately, 95 parts by mass of mesocarbon microbeads were added to and mixed with a solution in which 5 parts by mass of polyvinylidene fluoride was previously dissolved in N-methylpyrrolidone to prepare a negative electrode mixture-containing paste. The obtained negative electrode mixture-containing paste was applied to both surfaces of a negative electrode current collector made of a copper foil having a thickness of 10 μm (however, the electrode laminate having a winding structure in which the prepared negative electrode was wound around the positive electrode via a separator) In this case, the negative electrode mixture-containing paste was not applied to the outer surface side of the outermost peripheral portion not facing the positive electrode), dried to form a negative electrode mixture layer, and then press-molded with a roller press machine, After cutting to size, the lead body was welded to produce a strip-shaped negative electrode.
[0032]
Next, a current collecting tab is attached to each of the positive electrode and the negative electrode, and the positive electrode and the negative electrode are stacked with a separator made of a microporous polyethylene film having a thickness of 25 μm, wound in a spiral shape, and then flattened. After pressurizing to form a laminated electrode body having a flat winding structure, an insulating tape is attached, and a rectangular battery case having an outer dimension of 5 mm × 30 mm × 48 mm [thickness (depth) 5 mm, width 30 mm, height 48 mm square battery case], the lead body is welded and laser welding is performed on the opening end of the battery case of the sealing cover plate, and the above-mentioned electrolysis is performed from the electrolyte injection port provided on the sealing cover plate. After the liquid is injected into the battery case and the electrolyte sufficiently penetrates into the separator, etc., the electrolyte injection port is sealed and sealed, and then precharge and aging are performed, as shown in FIG. As shown in FIG. It was used to fabricate a non-aqueous secondary battery of the prismatic with appearance Una.
[0033]
The battery shown in FIGS. 1 and 2 will now be described. The positive electrode 1 and the negative electrode 2 are spirally wound through the separator 3 as described above, and then pressed so as to be flattened, thereby forming a flat winding structure. The electrode laminate 6 is housed in the rectangular battery case 4 together with the electrolyte solution. However, in FIG. 1, in order to avoid complication, a metal foil, an electrolytic solution, and the like as a current collector used for manufacturing the positive electrode 1 and the negative electrode 2 are not illustrated.
[0034]
The battery case 4 is made of an aluminum alloy and serves as a battery exterior material. The battery case 4 also serves as a positive electrode terminal. An insulator 5 made of a polytetrafluoroethylene sheet is disposed at the bottom of the battery case 4, and the positive electrode 1 and the negative electrode are formed from the flat electrode structure 6 made of the positive electrode 1, the negative electrode 2 and the separator 3. A positive electrode lead body 7 and a negative electrode lead body 8 connected to one end of each of the two are drawn out. A stainless steel terminal 11 is attached to an aluminum alloy cover plate 9 that seals the opening of the battery case 4 via a polypropylene insulating packing 10, and an insulator 12 is connected to the terminal 11. A stainless steel lead plate 13 is attached.
[0035]
And this cover plate 9 is inserted in the opening part of the said battery case 4, and the opening part of the battery case 4 is sealed by welding the junction part of both, and the inside of a battery is sealed.
[0036]
In the battery of Example 1, the battery case 4 and the cover plate 9 function as positive terminals by directly welding the positive electrode lead body 7 to the cover plate 9, and the negative electrode lead body 8 is welded to the lead plate 13, The terminal 11 functions as a negative electrode terminal by conducting the negative electrode lead body 8 and the terminal 11 through the lead plate 13, but depending on the material of the battery case 4, the sign may be reversed. There is also.
[0037]
FIG. 2 is a perspective view schematically showing the external appearance of the battery shown in FIG. 1. FIG. 2 is shown for the purpose of showing that the battery is a square battery. FIG. 1 schematically shows a battery, and only specific members of the battery are shown. Also in FIG. 1, the inner peripheral portion of the electrode laminate is not cross-sectional.
[0038]
Example 2
LiPF as in Example 1 6 Is dissolved in ethylene carbonate, methyl ethyl carbonate is added and mixed, and LiPF is added to a mixed solvent having a volume ratio of ethylene carbonate to methyl ethyl carbonate of 1: 2. 6 Was dissolved in an amount equivalent to 1.2 mol / l, and further 4 mass% of cyclohexylbenzene was dissolved as an additive, and 0.1 mass% of dioctyl phosphate was dissolved in place of trioctyl phosphate used in Example 1, A rectangular non-aqueous secondary battery was produced in the same manner as in Example 1 except that 2% by mass of 1,3-propane sultone was dissolved to prepare an electrolytic solution, and that electrolytic solution was used.
[0039]
Comparative Example 1
An electrolytic solution was prepared in the same manner as in Example 1 except that trioctyl phosphate was not included, and a rectangular nonaqueous secondary battery was prepared in the same manner as in Example 1 except that the electrolytic solution was used.
[0040]
Comparative Example 2
An electrolytic solution was prepared in the same manner as in Example 1 except that cyclohexylbenzene was not contained, and a rectangular non-aqueous secondary battery was prepared in the same manner as in Example 1 except that the electrolytic solution was used.
[0041]
The batteries of Examples 1 and 2 and Comparative Examples 1 and 2 were discharged to 3.0 V at 1 CmA at room temperature, charged at a constant current of 1 C until the battery voltage reached 4.2 V, and further fixed to 4.2 V. After charging with voltage for 2.5 hours, the battery was discharged at 0.2 mA to 3.0 V, and the discharge capacity was measured. Discharge capacity per unit volume of the electrode laminate (mAh / cm) by dividing the discharge capacity by the bulk volume of the electrode laminate (total volume of electrode, separator, and tab) Three ) The results are shown in Table 1. Note that the positive electrode potential when charged to 4.2 V as described above was 4.3 V on the basis of Li.
[0042]
Moreover, in order to investigate the safety | security at the time of the overcharge of a battery, the overcharge safety test was done as shown below. That is, the batteries of Examples 1 and 2 and Comparative Examples 1 and 2 were charged to 4.2 V at 1 CmA, and after reaching 4.2 V, they were charged at a constant voltage of 4.2 V for 2.5 hours to be fully charged. After charging, the battery was overcharged at a current value of 0.5A, 1A, 2A, and 5A with 6V as the upper limit voltage. At the time of overcharge, the maximum current at which the surface temperature of the battery was 135 ° C. or less was defined as an overcharge safety current value. The results are shown in Table 1.
[0043]
Moreover, in order to investigate the high temperature storage characteristic of a battery, the storage test was done as shown below. The batteries of Examples 1 and 2 and Comparative Examples 1 and 2 were charged at a constant current of 1 CmA until the battery voltage reached 4.2 V, and further charged at a constant voltage of 4.2 V for 2.5 hours, at 1 CmA. The discharge capacity was measured by discharging to 3.0V. The discharge capacity at this time was defined as the discharge capacity before storage. Then, it charged to 4.2V with 1 CmA, and also charged with the constant voltage of 4.2V for 2.5 hours. After the charge, the battery was stored in a constant temperature bath at 60 ° C. for 20 days, and then discharged at 3.0 V at 1 CmA, and the discharge capacity was measured. The discharge capacity at this time was defined as the discharge capacity after storage, and the self-discharge rate due to storage was determined by the following formula. The results are shown in Table 1.
Figure 0004183412
[0044]
[Table 1]
Figure 0004183412
[0045]
As is clear from the results shown in Table 1, the batteries of Examples 1 and 2 were batteries of Comparative Example 2 in which cyclohexylbenzene belonging to the compound (A) in which an alkyl group was bonded to the benzene ring was not contained in the electrolyte. Compared to the above, the overcharge safety current is more than 10 times larger, and the safety during overcharge can be increased more than 10 times. In addition, the batteries of Examples 1 and 2 have less self-discharge due to high temperature storage and high temperature storage compared to the battery of Comparative Example 1 in which the electrolyte solution does not contain trioctyl phosphate belonging to the phosphate ester (B). The characteristics were also excellent.
[0046]
In contrast, the battery of Comparative Example 1, which contained cyclohexylbenzene but did not contain trioctyl phosphate, had high safety during overcharge, but had a lot of self-discharge during high-temperature storage, and high-temperature storage. The characteristics were bad. In addition, the battery of Comparative Example 2 that contained trioctyl phosphate but did not contain cyclohexylbenzene lacked safety at the time of overcharge, although there was little self-discharge due to high-temperature storage.
[0047]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a non-aqueous secondary battery having high safety during overcharge and excellent high-temperature storage characteristics.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing an example of a non-aqueous secondary battery according to the present invention, where (a) is a plan view thereof and (b) is a partial longitudinal sectional view thereof.
FIG. 2 is a perspective view of the non-aqueous secondary battery shown in FIG.
[Explanation of symbols]
1 Positive electrode
2 Negative electrode
3 Separator
4 Battery case
5 Insulator
6 Electrode laminate
7 Positive lead body
8 Negative lead body
9 Lid plate
11 terminals
12 Insulator
13 Lead plate

Claims (6)

金属酸化物を正極活物質とし、導電助剤を含む正極合剤を有する正極、炭素材料またはLi挿入可能な材料を負極活物質とした負極、セパレータおよび非水電解液を用いた非水二次電池であって、前記非水電解液中にベンゼン環にアルキル基が結合した化合物(A)とリン酸エステル(B)とを含み、前記リン酸エステル(B)が前記化合物(A)に対して0.1質量%以上10質量%以下含有されており、
前記正極の導電助剤にカーボンブラックと黒鉛とを併用し、正極合剤中における導電助剤の量が1質量%以上2.5質量%以下であり、
前記正極、前記負極、および前記セパレータにより構成された扁平状巻回構造の積層電極体を有しており、
電池の形態が角形電池またはラミネート電池であることを特徴とする非水二次電池。
Non-aqueous secondary using a metal oxide as a positive electrode active material, a positive electrode having a positive electrode mixture containing a conductive additive, a negative electrode using a carbon material or Li-insertable material as a negative electrode active material, a separator, and a non-aqueous electrolyte A battery comprising a compound (A) having an alkyl group bonded to a benzene ring and a phosphate ester (B) in the non-aqueous electrolyte, wherein the phosphate ester (B) is based on the compound (A). 0.1% by mass or more and 10% by mass or less,
Carbon black and graphite are used in combination for the positive electrode conductive additive, and the amount of the conductive auxiliary in the positive electrode mixture is 1% by mass or more and 2.5% by mass or less,
It has a laminated electrode body of a flat winding structure constituted by the positive electrode, the negative electrode, and the separator,
A nonaqueous secondary battery, wherein the battery is a prismatic battery or a laminated battery.
リン酸エステル(B)が、一般式(RO)P=O(R:炭素数1以上のアルキル基)で表されるリン酸トリエステル、一般式(RO)P(OH)=O(R:炭素数1以上のアルキル基)で表されるリン酸ジエステルおよび一般式(RO)P(OH)=O(R:炭素数1以上のアルキル基)で表されるリン酸モノエステルよりなる群から選ばれる少なくとも1種である請求項1記載の非水二次電池。The phosphate ester (B) is a phosphoric acid triester represented by the general formula (R 1 O) 3 P═O (R 1 : an alkyl group having 1 or more carbon atoms), a general formula (R 2 O) 2 P ( OH) = O (R 2 : an alkyl group having 1 or more carbon atoms) and a general formula (R 3 O) P (OH) 2 ═O (R 3 : an alkyl group having 1 or more carbon atoms) The nonaqueous secondary battery according to claim 1, which is at least one selected from the group consisting of phosphoric acid monoesters represented by the formula: 非水電解液中にベンゼン環にアルキル基が結合した化合物(A)が3質量%以上7質量%以下含有され、リン酸エステル(B)が前記化合物(A)に対して0.1質量%以上5%質量以下含有されている請求項1または2記載の非水二次電池。The non-aqueous electrolyte contains 3% by mass to 7% by mass of the compound (A) in which an alkyl group is bonded to the benzene ring, and the phosphate ester (B) is 0.1% by mass with respect to the compound (A). The non-aqueous secondary battery according to claim 1 or 2, which is contained in an amount of 5% by mass or less. 扁平状巻回構造の積層電極体の単位体積当たりの放電容量が150mAh/cm以上である請求項1〜3のいずれかに記載の非水二次電池。The nonaqueous secondary battery according to any one of claims 1 to 3, wherein a discharge capacity per unit volume of the laminated electrode body having a flat wound structure is 150 mAh / cm 3 or more. 非水電解液中に−OSO−結合を有するイオウ化合物を含有する請求項1〜4のいずれかに記載の非水二次電池。-OSO 2 in the nonaqueous electrolyte solution - a non-aqueous secondary battery according to any one of claims 1 to 4 containing a sulfur compound having a bond. 電池の外装材がアルミニウム合金製である請求項1〜5のいずれかに記載の非水二次電池。  The nonaqueous secondary battery according to any one of claims 1 to 5, wherein the battery packaging material is made of an aluminum alloy.
JP2001355855A 2001-11-21 2001-11-21 Non-aqueous secondary battery Expired - Lifetime JP4183412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001355855A JP4183412B2 (en) 2001-11-21 2001-11-21 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001355855A JP4183412B2 (en) 2001-11-21 2001-11-21 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2003157892A JP2003157892A (en) 2003-05-30
JP4183412B2 true JP4183412B2 (en) 2008-11-19

Family

ID=19167481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001355855A Expired - Lifetime JP4183412B2 (en) 2001-11-21 2001-11-21 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP4183412B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100786942B1 (en) 2004-06-23 2007-12-17 주식회사 엘지화학 Lithium secondarty battery additives
KR20060045257A (en) * 2004-11-12 2006-05-17 주식회사 나래나노텍 Gel polymer electrolyte for lithium polymer battery, which contains alkylphosphate compound
JP2007172969A (en) * 2005-12-21 2007-07-05 Sony Corp Battery
JP2007259509A (en) * 2006-03-20 2007-10-04 Hitachi Maxell Ltd Power supply system and sensor system equipped with the same
JP5098280B2 (en) * 2006-07-13 2012-12-12 ソニー株式会社 Non-aqueous electrolyte composition and non-aqueous electrolyte secondary battery
JP5045882B2 (en) * 2006-07-25 2012-10-10 ソニー株式会社 Electrolyte and battery
JP5235405B2 (en) * 2007-12-28 2013-07-10 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP6090272B2 (en) 2014-09-16 2017-03-08 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4804686B2 (en) * 1999-06-04 2011-11-02 パナソニック株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP3113652B1 (en) * 1999-06-30 2000-12-04 三洋電機株式会社 Lithium secondary battery
JP4411691B2 (en) * 1999-06-30 2010-02-10 パナソニック株式会社 Non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery charge control system, and equipment using the same

Also Published As

Publication number Publication date
JP2003157892A (en) 2003-05-30

Similar Documents

Publication Publication Date Title
KR101678798B1 (en) Method for producing nonaqueous electrolyte secondary battery
KR101749508B1 (en) Electrode active material for lithium secondary battery, electrode for lithium secondary battery including the same, and lithium secondary battery comprising the same
JP6287187B2 (en) Nonaqueous electrolyte secondary battery
JP6165425B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP7169772B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
JPH09147913A (en) Nonaqueous electrolyte battery
JP4489207B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP2007207723A (en) Nonaqueous electrolyte secondary battery
JP2014035922A (en) Nonaqueous electrolyte secondary battery
JP7276957B2 (en) lithium ion secondary battery
US20240186490A1 (en) Battery positive electrode material, preparation method therefor, and application thereof
JP2008103311A (en) Battery
JP4183412B2 (en) Non-aqueous secondary battery
JP6287186B2 (en) Nonaqueous electrolyte secondary battery
KR20190131721A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP2003123764A (en) Nonaqueous secondary battery
JP6567442B2 (en) Lithium secondary battery charge / discharge method
JP6646370B2 (en) Charge / discharge method of lithium secondary battery
JP2006318839A (en) Nonaqueous secondary battery
JP5614433B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP7514150B2 (en) Nonaqueous electrolyte and nonaqueous secondary battery
JP4161396B2 (en) Non-aqueous electrolyte secondary battery
JP4974316B2 (en) Non-aqueous secondary battery
JP2014049298A (en) Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
WO2020137818A1 (en) Non-aqueous electrolyte secondary battery and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4183412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

EXPY Cancellation because of completion of term
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350