JP2003157892A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JP2003157892A
JP2003157892A JP2001355855A JP2001355855A JP2003157892A JP 2003157892 A JP2003157892 A JP 2003157892A JP 2001355855 A JP2001355855 A JP 2001355855A JP 2001355855 A JP2001355855 A JP 2001355855A JP 2003157892 A JP2003157892 A JP 2003157892A
Authority
JP
Japan
Prior art keywords
battery
mass
phosphate
positive electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001355855A
Other languages
Japanese (ja)
Other versions
JP4183412B2 (en
Inventor
Hideo Sakata
英郎 坂田
Haruki Kamisori
春樹 上剃
Fusaji Kita
房次 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2001355855A priority Critical patent/JP4183412B2/en
Publication of JP2003157892A publication Critical patent/JP2003157892A/en
Application granted granted Critical
Publication of JP4183412B2 publication Critical patent/JP4183412B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery having high safety upon overcharge, and superior in high temperature storage characteristic. SOLUTION: This nonaqueous secondary battery has metallic oxide as a positive electrode active material, a carbon material or an Li insertable material as a negative electrode active material, and a nonaqueous electrolyte, and includes a compound A of bonding an alkyl group to benzene ring and a phosphate B in the nonaqueous electrolyte, and is constituted by setting the content of a triester phosphate B to 0.1 mass % to 10 mass % to the compound A. Cyclohexyl benzene is desirable as the compound A. The triester phosphate such as a trioctyl phosphate, a diester phosphate such as a dioctyl phosphate, and a monoester phosphate such as an octyl phosphate are desirable as the phosphate B. This invention is desirably applied to the nonaqueous secondary battery having a battery form of a square battery and a laminate battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水二次電池に関
し、さらに詳しくは過充電時の安全性が高く、かつ高温
貯蔵特性が優れた非水二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous secondary battery, and more particularly to a non-aqueous secondary battery having high safety during overcharge and excellent high temperature storage characteristics.

【0002】[0002]

【従来の技術】正極活物質として金属酸化物を用い、負
極活物質として炭素材料を用いたリチウムイオン電池に
代表される非水二次電池は、高電圧、高エネルギー密度
であることから、その需要がますます増えている。しか
し、高エネルギー密度になるにつれて安全性が低下して
いくため、安全性の向上も高エネルギー密度の電池では
より重要になる。また、通常の安全対策ではエネルギー
密度が低下する傾向にあるため、エネルギー密度を維持
した状態で安全性を改善することが要望されている。
2. Description of the Related Art A non-aqueous secondary battery represented by a lithium ion battery using a metal oxide as a positive electrode active material and a carbon material as a negative electrode active material has high voltage and high energy density. The demand is increasing. However, since safety decreases as the energy density increases, improving safety becomes more important in a high energy density battery. Moreover, since the energy density tends to decrease in the usual safety measures, it is desired to improve the safety while maintaining the energy density.

【0003】上記のような要望に応えるべく、これまで
にも、高電圧で重合し過充電時の安全性を向上させる化
合物としてビフェニル(特開平9−171840号公
報)やシクロヘキシルベンゼン(特開2001−015
155号公報)などが提案されている。これらの添加剤
は過充電時にガスが発生して電流遮断弁を作動させやす
くし、電流遮断弁との併用によって安全性を確保するも
のである。
In order to meet the above demands, biphenyl (Japanese Patent Laid-Open No. 9-171840) and cyclohexylbenzene (Japanese Patent Laid-Open No. 2001) have been used as compounds for polymerizing at a high voltage to improve safety during overcharge. -015
No. 155) has been proposed. These additives facilitate the operation of the current cutoff valve due to the generation of gas at the time of overcharge, and the safety is ensured by the combined use with the current cutoff valve.

【0004】しかしながら、角形電池では、通常、電流
遮断弁が設置されていないため、それらの添加剤による
安全性向上効果は、電流遮断弁が設置されている円筒形
電池に比べて充分とはいえなかった。例えば、本発明者
らが検討したところでは、少量、つまり2質量%程度の
添加では過充電時の安全性を向上させる効果が少なく、
また、充電状態では添加剤そのものの安定性が充分でな
いため、電池を高温で長時間放置しておくと、正極と電
解液とが反応して電解液の分解などが起こり、その電解
液の分解によって発生するガスにより電池に膨れが生じ
たり、内部抵抗が上昇するという問題があった。
However, in the prismatic battery, since the current cutoff valve is not normally installed, the safety improving effect of these additives is sufficient compared with the cylindrical battery in which the current cutoff valve is installed. There wasn't. For example, the inventors of the present invention have studied that adding a small amount, that is, about 2% by mass has little effect of improving safety during overcharge,
In addition, the stability of the additive itself is not sufficient in the charged state, so if the battery is left at high temperature for a long time, the positive electrode reacts with the electrolytic solution to cause decomposition of the electrolytic solution and the decomposition of the electrolytic solution. There is a problem that the gas generated by this causes the battery to swell and the internal resistance to increase.

【0005】上記のように電解液の分解が生じ、電池内
部にガスが発生した場合、円筒形電池では、外装材とし
ての電池ケースの耐圧性が優れているので、電池内圧で
の上昇でとどまるものの、角形電池やラミネート電池
(アルミニウム箔などの金属箔を芯材とするラミネート
フィルムを外装した電池)では、外装材の耐圧性が充分
でないため、電池にふくれ(膨れ)が生じて、電池の外
形寸法が変化し、そのため電池が所定のスペース内に収
まり切らなくなったり、外観を損なうことになる。した
がって、貯蔵時のガス発生が少なく、かつ過充電時の安
全性を向上できる手段の確立が望まれる。
When the electrolytic solution is decomposed and gas is generated inside the battery as described above, the cylindrical battery has a high pressure resistance of the battery case as an outer packaging material, and therefore, the increase in the internal pressure of the battery is sufficient. However, in a prismatic battery or a laminated battery (a battery in which a laminated film having a metal foil such as an aluminum foil as a core material is packaged) is not sufficiently resistant to pressure, the battery swells (swells), and The external dimensions change, so that the battery does not fit in the predetermined space and cannot be completely filled, or the appearance is deteriorated. Therefore, it is desired to establish a means for generating less gas during storage and improving safety during overcharge.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記のよう
な非水二次電池における問題点を解決し、過充電時の安
全性が高く、かつ高温貯蔵時のガス発生が少なく、高温
貯蔵特性が優れた非水二次電池を提供することを目的と
する。
DISCLOSURE OF THE INVENTION The present invention solves the problems in the non-aqueous secondary battery as described above, has high safety during overcharge, has less gas generation during high temperature storage, and has high temperature storage. An object is to provide a non-aqueous secondary battery having excellent characteristics.

【0007】[0007]

【課題を解決するための手段】本発明は、金属酸化物を
正極活物質とし、炭素材料またはLi挿入可能な材料を
負極活物質とし、非水電解液(以下、簡略化して「電解
液」という)を有する非水二次電池において、電解液中
にベンゼン環にアルキル基が結合した化合物(A)とリ
ン酸エステル(B)とを含有させ、前記リン酸エステル
(B)の含有量を前記化合物(A)に対して0.1質量
%以上10質量%以下にすることによって、上記課題を
解決したものである。
According to the present invention, a metal oxide is used as a positive electrode active material, a carbon material or a material into which Li can be inserted is used as a negative electrode active material, and a non-aqueous electrolytic solution (hereinafter simply referred to as "electrolytic solution") is used. In the non-aqueous secondary battery having a), a compound (A) having an alkyl group bonded to a benzene ring and a phosphoric acid ester (B) are contained in an electrolytic solution, and the content of the phosphoric acid ester (B) is The above problem is solved by adjusting the content of the compound (A) to 0.1% by mass or more and 10% by mass or less.

【0008】また、本発明においては、リン酸エステル
(B)が一般式(R1 O)3 P=O(R1 :炭素数1以
上のアルキル基)で表されるリン酸トリエステル、一般
式(R2 O)2 P(OH)=O(R2 :炭素数1以上の
アルキル基)で表されるリン酸ジエステルおよび一般式
(R3 O)P(OH)2 =O(R3 :炭素数1以上のア
ルキル基)で表されるリン酸モノエステルよりなる群か
ら選ばれる少なくとも1種であること、ベンゼン環にア
ルキル基が結合した化合物(A)が電解液中に3質量%
以上7質量%以下含有され、リン酸エステル(B)が上
記化合物(A)に対して0.1質量%以上5質量%以下
含有されていること、非水二次電池の形態が角形電池ま
たはラミネート電池であることなどを好ましい態様とし
ている。
In the present invention, the phosphoric acid ester (B) is represented by the general formula (R 1 O) 3 P═O (R 1 is an alkyl group having 1 or more carbon atoms), and is generally a phosphoric acid triester. The phosphoric acid diester represented by the formula (R 2 O) 2 P (OH) = O (R 2 : an alkyl group having 1 or more carbon atoms) and the general formula (R 3 O) P (OH) 2 = O (R 3 : Alkyl group having 1 or more carbon atoms), at least one selected from the group consisting of phosphoric acid monoesters represented by formula (3), wherein the compound (A) having an alkyl group bonded to the benzene ring is 3% by mass in the electrolytic solution.
The content of the phosphoric acid ester (B) is 0.1 mass% or more and 5 mass% or less with respect to the compound (A), and the form of the non-aqueous secondary battery is a prismatic battery or A preferred embodiment is a laminated battery.

【0009】[0009]

【発明の実施の形態】本発明においては、電解液中にベ
ンゼン環にアルキル基が結合した化合物(A)とリン酸
エステル(B)とが含まれていることが必要であるが、
上記化合物(A)としては、例えば、シクロヘキシルベ
ンゼン、イソプロピルベンゼン、n−ブチルベンゼン、
オクチルベンゼン、トルエン、キシレン、それらの誘導
体などが挙げられるが、特にベンゼン環と結合した炭素
が水素を有するシクロヘキシルベンゼンやその誘導体な
どが過充電時の安全性を向上させることから好ましい。
また、アルキル基はある程度長く(炭素数4以上)、分
岐構造などで立体的にかさばる構造であることが好まし
く、そのような化合物(A)の中では、特にシクロヘキ
シルベンゼンやその誘導体などが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, it is necessary that the electrolytic solution contains a compound (A) having an alkyl group bonded to a benzene ring and a phosphoric acid ester (B).
Examples of the compound (A) include cyclohexylbenzene, isopropylbenzene, n-butylbenzene,
Examples thereof include octylbenzene, toluene, xylene, and derivatives thereof. Particularly, cyclohexylbenzene having a carbon bonded to a benzene ring having hydrogen or a derivative thereof is preferable because it improves safety during overcharge.
In addition, the alkyl group is preferably long to some extent (having 4 or more carbon atoms) and has a sterically bulky structure such as a branched structure. Among such compounds (A), cyclohexylbenzene and derivatives thereof are particularly preferable.

【0010】上記ベンゼン環にアルキル基が結合した化
合物(A)の電解液中の含有量としては、1質量%以上
が好ましく、3質量%以上がより好ましく、4質量%以
上がさらに好ましく、また、10質量%以下が好まし
く、7質量%以下がより好ましく、6質量%以下がさら
に好ましい。すなわち、上記化合物(A)の電解液中の
含有量を上記のように1〜10質量%の範囲にすること
によって、高温貯蔵による電池の膨れを抑制しながら過
充電時の安全性を向上させることができる。
The content of the compound (A) having an alkyl group bonded to the benzene ring in the electrolytic solution is preferably 1% by mass or more, more preferably 3% by mass or more, further preferably 4% by mass or more, and 10 mass% or less is preferable, 7 mass% or less is more preferable, and 6 mass% or less is further preferable. That is, by setting the content of the compound (A) in the electrolytic solution in the range of 1 to 10 mass% as described above, the swelling of the battery due to high temperature storage is suppressed and the safety during overcharge is improved. be able to.

【0011】リン酸エステル(B)としては、特に限定
されることはないが、例えば、リン酸トリメチル、リン
酸トリエチル、リン酸トリプロピル、リン酸トリブチ
ル、リン酸トリヘキシル、リン酸トリオクチルなどの一
般式(R1 O)3 P=O(R1:炭素数1以上のアルキ
ル基)などで表されるリン酸トリエステル、リン酸ジメ
チル、リン酸ジエチル、リン酸ジプロピル、リン酸ジブ
チル、リン酸ジヘキシル、リン酸ジオクチルなどの一般
式(R2 O)2 P(O)(OH)(R2 :炭素数1以上
のアルキル基)などで表されるリン酸ジエステル、リン
酸メチル、リン酸エチル、リン酸プロピル、リン酸ブチ
ル、リン酸ヘキシル、リン酸オクチルなどの一般式(R
3 O)P(O)(OH)2 (R3 :炭素数1以上のアル
キル基)などで表されるリン酸モノエステルなどが好ま
しい。そして、R1 、R2 、R3 などの炭素数は、大き
くなってもさしつかえないが、いずれも10程度のもの
までが実用的である。
The phosphoric acid ester (B) is not particularly limited, but for example, trimethyl phosphate, triethyl phosphate, tripropyl phosphate, tributyl phosphate, trihexyl phosphate, trioctyl phosphate and the like are commonly used. Phosphoric acid triester represented by the formula (R 1 O) 3 P═O (R 1 : an alkyl group having 1 or more carbon atoms), dimethyl phosphate, diethyl phosphate, dipropyl phosphate, dibutyl phosphate, phosphoric acid Dihexyl, dioctyl phosphate, and other general formulas (R 2 O) 2 P (O) (OH) (R 2 : alkyl group having 1 or more carbon atoms) and the like, diester phosphate, methyl phosphate, ethyl phosphate , Propyl phosphate, butyl phosphate, hexyl phosphate, octyl phosphate, etc.
A phosphoric acid monoester represented by ( 3 O) P (O) (OH) 2 (R 3 : an alkyl group having 1 or more carbon atoms) or the like is preferable. The carbon numbers of R 1 , R 2 and R 3 may be large even if they are large, but it is practical that all of them are about 10.

【0012】上記リン酸エステル(B)の化合物(A)
に対する割合は10質量%以下であることが必要であ
り、5質量%以下が好ましく、2.5質量%以下がより
好ましく、また、0.1質量%以上であることが必要で
あり、1質量%以上が好ましく、2質量%以上がより好
ましい。このリン酸エステル(B)の作用については、
現在のところ必ずしも明確ではないが、以下のように推
定される。すなわち、リン酸エステル(B)を化合物
(A)に対して少量混合することで充電時に化合物
(A)より先にリン酸エステル(B)が正極の活性部位
と反応して、正極の活性部位を一部放電させるととも
に、正極の表面に薄い皮膜を形成することによって、化
合物(A)の正極上での反応を調整するので、電池が膨
れるのを抑制できるものと考えられる。しかし、リン酸
エステル(B)が化合物(A)に対して多くなると、リ
ン酸エステル(B)も電池の膨れに影響を及ぼしたりイ
ンピーダンスを上昇させるので、前記のように化合物
(A)に対して10質量%以下であることが必要であ
る。リン酸エステル(B)が少なすぎると、正極の活性
部位の放電が不充分になったり充分な膜の形成ができな
くなるため、ある程度の量で混合されていることが必要
であり、そのため、前記のように化合物(A)に対して
0.1質量%以上であることが必要である。
Compound (A) of the above phosphoric acid ester (B)
To 10% by mass or less, preferably 5% by mass or less, more preferably 2.5% by mass or less, and 0.1% by mass or more, and 1% by mass. % Or more is preferable, and 2% by mass or more is more preferable. Regarding the action of this phosphoric acid ester (B),
At present, it is not always clear, but it is estimated as follows. That is, by mixing a small amount of the phosphoric acid ester (B) with the compound (A), the phosphoric acid ester (B) reacts with the active site of the positive electrode before charging the active site of the positive electrode during charging. It is considered that since the reaction of the compound (A) on the positive electrode is adjusted by partially discharging the compound and forming a thin film on the surface of the positive electrode, swelling of the battery can be suppressed. However, when the amount of the phosphoric acid ester (B) is larger than that of the compound (A), the phosphoric acid ester (B) also affects the swelling of the battery and increases the impedance. 10 mass% or less. If the amount of the phosphoric acid ester (B) is too small, the discharge at the active site of the positive electrode will be insufficient or a sufficient film cannot be formed. Therefore, it is necessary to mix it in a certain amount. It is necessary that the content is 0.1% by mass or more based on the compound (A).

【0013】本発明において、電解液は、通常、液状の
まま用いるが、それをゲル化剤でゲル状にして用いるこ
ともできる。
In the present invention, the electrolytic solution is usually used in a liquid state, but it may be used in the form of gel with a gelling agent.

【0014】電解液としては、有機溶媒などの非水溶媒
にリチウム塩などの電解質塩を溶解させることによって
調製した非水系の電解液が用いられるが、その非水溶媒
としては、例えば、エチレンカーボネート、プロピレン
カーボネート、ブチレンカーボネート、ジメチルカーボ
ネート、メチルエチルカーボネート、ジエチルカーボネ
ートなどの炭酸エステルや、γ−ブチロラクトン、酢酸
メチルなどのエステル類などを用いることができる。ま
た、それ以外に、1,3−ジオキソラン、1,2−ジメ
トキシエタンなどのエーテル類、スルホランなどの硫黄
化合物、含窒素化合物、含珪素化合物、含フッ素化合
物、含リン化合物などの非水溶媒を単独でまたは2種以
上混合して用いることができる。
As the electrolytic solution, a nonaqueous electrolytic solution prepared by dissolving an electrolyte salt such as a lithium salt in a nonaqueous solvent such as an organic solvent is used, and the nonaqueous solvent is, for example, ethylene carbonate. Carbonates such as propylene carbonate, butylene carbonate, dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate, and esters such as γ-butyrolactone and methyl acetate can be used. In addition to the above, non-aqueous solvents such as ethers such as 1,3-dioxolane and 1,2-dimethoxyethane, sulfur compounds such as sulfolane, nitrogen-containing compounds, silicon-containing compounds, fluorine-containing compounds, phosphorus-containing compounds, etc. They can be used alone or in combination of two or more.

【0015】電解液の調製にあたって、非水溶媒に溶解
させる電解質塩としては、例えば、LiPF6 、LiC
3 SO3 などのLiCn 2n+1SO3 (n>1)、L
iClO4 、LiBF4 、LiAsF6 、(Cn 2n+1
SO2 )(Cm 2m+1SO2)NLi(m、n≧1)、
(RfOSO2)2 NLi〔Rfは炭素数が2以上のハロ
ゲンを含むアルキル基であって、Rfは同一であっても
よいし、異なるものであってもよいし、Rf同士が互い
に結合していてもよく、例えばポリマー状に結合してい
てもよい。このRfがポリマー状に結合したものとして
は、例えば、(CH2 (CF2 4 CH2 OSO2
(Li)SO2 O)n (nは整数)がある〕などをそれ
ぞれ単独で用いることができるし、また、2種以上を併
用することができるが、特にLiPF6 や炭素数2以上
の含フッ素有機リチウム塩などが好ましい。そして、そ
れらの電解質塩は前記非水溶媒に通常0.1〜2mol
/l程度溶解させることが好ましい。
In preparing the electrolytic solution, examples of the electrolyte salt to be dissolved in the non-aqueous solvent include LiPF 6 and LiC.
F 3 SO 3 LiC n F 2n + 1 SO 3 , such as (n> 1), L
iClO 4 , LiBF 4 , LiAsF 6 , (C n F 2n + 1
SO 2 ) (C m F 2m + 1 SO 2 ) NLi (m, n ≧ 1),
(RfOSO 2 ) 2 NLi [Rf is an alkyl group containing a halogen having 2 or more carbon atoms, Rf may be the same or different, and Rf's are bonded to each other. It may be bonded, for example, in a polymer form. Examples of Rf bound to a polymer include, for example, (CH 2 (CF 2 ) 4 CH 2 OSO 2 N
(Li) SO 2 O) n (where n is an integer), or the like, and two or more of them may be used in combination. In particular, LiPF 6 and C 2 or more may be used. Fluoroorganic lithium salts and the like are preferable. The electrolyte salt is usually added to the non-aqueous solvent in an amount of 0.1 to 2 mol.
It is preferable to dissolve about 1 / l.

【0016】上記電解液をゲル化してゲル状にするに
は、例えば、ポリフッ化ビニリデン、ポリエチレンオキ
サイド、ポリアクリルニトリル、フッ化ビニリデン−六
フッ化プロピレン共重合体などの直鎖状のポリマーを用
い、その直鎖状のポリマーを加熱することにより電解液
に溶解させた後、冷却することによって電解液をゲル化
する方法や、紫外線などの活性光線で重合可能なモノマ
ーやプレポリマーなどを電解液に溶解させ、そのモノマ
ーやプレポリマーなどを溶解させた電解液に活性光線を
照射することによりモノマーやプレポリマーなどをポリ
マー化し、そのポリマーによって電解液をゲル化する方
法などが採用される。
In order to gelate the above-mentioned electrolytic solution into a gel, for example, a linear polymer such as polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, or vinylidene fluoride-hexafluoropropylene copolymer is used. , A method in which the linear polymer is dissolved in an electrolytic solution by heating, and then the electrolytic solution is gelated by cooling, or a monomer or prepolymer that can be polymerized by active rays such as ultraviolet rays is used in the electrolytic solution. A method is employed in which the monomer, prepolymer, etc. are polymerized by irradiating the electrolytic solution in which the monomer, prepolymer, etc. are dissolved, with active light, and the polymer is gelled with the polymer.

【0017】また、電解液中にイオウ化合物を含有させ
ておくと、電池の膨れをより少なくすることができるこ
とから好ましい。上記イオウ化合物としては、特に−O
SO 2 −結合を有するものが好ましく、そのようなイオ
ウ化合物の具体例としては、例えば、1,3−プロパン
スルトン、メチルエチルスルフォネート、ジエチルサル
フェートなどが挙げられ、特に1,3−プロパンスルト
ンが好ましい。そして、このイオウ化合物の電解液中の
含有量としては、0.5質量%以上が好ましく、1質量
%以上がより好ましく、また10質量%以下が好まし
く、5質量%以下がより好ましい。
Also, the sulfur compound may be contained in the electrolytic solution.
This helps to reduce the swelling of the battery.
It is preferable because As the sulfur compound, especially -O
SO 2Those having a bond are preferred, such io
Specific examples of the compound include, for example, 1,3-propane
Sultone, methyl ethyl sulfonate, diethyl monkey
And the like, particularly 1,3-propane salt
Is preferred. And in the electrolyte of this sulfur compound
The content is preferably 0.5% by mass or more, and 1% by mass
% Or more is more preferable, and 10% by mass or less is preferable.
5 mass% or less is more preferable.

【0018】本発明において、正極活物質としては、金
属酸化物を用いるが、そのような金属酸化物としては、
例えば、LiCoO2 などのリチウムコバルト酸化物、
LiMn2 4 などのリチウムマンガン酸化物、LiN
iO2 などのリチウムニッケル酸化物、LiNiO2
Niの一部をCoで置換したLiCox Ni1-x
2(0<x<1)、酸化マンガン、五酸化ハナジウム、
クロム酸化物などが挙げられるが、特にLiNiO2
LiCoO2 、LiMn2 4 、LiCox Ni1- x
2 などのように充電されたときに正極の開路電圧がLi
基準で4.2V以上を示すリチウム複合酸化物が好まし
く、特にLi基準で4.3V以上を示すリチウム複合酸
化物が好ましい。
In the present invention, a metal oxide is used as the positive electrode active material, and as such a metal oxide,
For example, lithium cobalt oxide such as LiCoO 2 ,
LiMn 2 O 4 and other lithium manganese oxides, LiN
LiNiO 2 and other lithium nickel oxide, LiNiO 2 LiCo x Ni 1-x O in which a part of Ni is replaced with Co
2 (0 <x <1), manganese oxide, vanadium pentoxide,
Examples include chromium oxide, but especially LiNiO 2 ,
LiCoO 2 , LiMn 2 O 4 , LiCo x Ni 1- x O
Positive open circuit voltage when charged, such as 2 Li
A lithium composite oxide showing 4.2 V or more as a standard is preferable, and a lithium composite oxide showing 4.3 V or more as a Li standard is particularly preferable.

【0019】正極の作製にあたって、上記正極活物質以
外にも、通常、導電助剤とバインダーが用いられるが、
その導電助剤としては、種々のものを用い得るが、特に
炭素材料を用い、その正極合剤(つまり、正極活物質と
導電助剤とバインダーとの混合物)中の量を5質量%以
下にすることが好ましい。これは正極合剤中における導
電助剤としての炭素材料の量が5質量%より多くなる
と、充電状態で電解液溶媒との反応によりガスが発生す
るおそれがあるからであり、そのため、導電助剤として
の炭素材料の量は、正極合剤中で3質量%以下にするこ
とがより好ましく、2.5質量%以下にすることがさら
に好ましく、また、少なすぎると正極の導電性が低下し
て電池特性を低下させる傾向があるので、1質量%以上
が好ましく、1.5質量%以上がより好ましく、2質量
%以上がさらに好ましい。
In preparing the positive electrode, a conductive auxiliary agent and a binder are usually used in addition to the above positive electrode active material.
Various materials can be used as the conductive additive, but especially a carbon material is used, and the amount in the positive electrode mixture (that is, the mixture of the positive electrode active material, the conductive additive and the binder) is 5% by mass or less. Preferably. This is because when the amount of the carbon material as the conductive additive in the positive electrode mixture is more than 5% by mass, gas may be generated due to the reaction with the electrolytic solution solvent in the charged state. The amount of the carbon material is preferably 3% by mass or less in the positive electrode mixture, more preferably 2.5% by mass or less, and if too small, the conductivity of the positive electrode is lowered. Since it tends to deteriorate the battery characteristics, it is preferably 1% by mass or more, more preferably 1.5% by mass or more, and further preferably 2% by mass or more.

【0020】そして、この正極における導電助剤の炭素
材料としては、特に限定されることはないものの、結晶
性の低いカーボンブラックを用いると高温貯蔵時の電池
の膨れを抑制できることから好ましく、また、この結晶
性の低いカーボンブラックに結晶性の高い黒鉛を一部併
用すると導電性が向上し、導電助剤の使用量を低減でき
ることから好ましい。このように、導電助剤として結晶
性の低いカーボンブラックと結晶性の高い黒鉛とを併用
する場合、結晶性の低いカーボンブラックの量を全導電
助剤中の50質量%以上にすることが好ましく、70質
量%以上にすることがより好ましく、また、95質量%
以下にすることが好ましく、80質量%以下にすること
がより好ましい。
The carbon material of the conductive additive in the positive electrode is not particularly limited, but it is preferable to use carbon black having low crystallinity because the swelling of the battery during high temperature storage can be suppressed. It is preferable to partially use graphite having high crystallinity in combination with this carbon black having low crystallinity because the conductivity is improved and the amount of the conductive additive used can be reduced. As described above, when carbon black having low crystallinity and graphite having high crystallinity are used together as the conductive additive, the amount of carbon black having low crystallinity is preferably 50% by mass or more based on the total conductive additive. More preferably 70% by mass or more, and 95% by mass
It is preferably not more than 80% by mass, more preferably not more than 80% by mass.

【0021】また、正極を作製するに当たり、バインダ
ーとしては、例えば、ポリフッ化ビニリデン、ポリテト
ラフルオロエチレン、ポリアクリル酸、スチレンブタジ
エンゴム、フッ素ゴムなどを用いることができる。
In producing the positive electrode, as the binder, for example, polyvinylidene fluoride, polytetrafluoroethylene, polyacrylic acid, styrene butadiene rubber, fluororubber, etc. can be used.

【0022】正極は、上記正極活物質に導電助剤やバイ
ンダーなどとを加えて混合して正極合剤を調製し、その
正極合剤を溶剤に分散させて正極合剤含有ペーストを調
製し(バインダーはあらかじめ溶剤に溶解または分散さ
せておいてから、正極活物質や導電助剤などと混合して
もよい)、その正極合剤含有ペーストをアルミニウム箔
などからなる正極集電体に塗布し、乾燥して正極合剤層
を形成し、必要に応じて加圧成形する工程を経ることに
よって作製される。ただし、正極の作製方法は、上記例
示のものに限られることなく、他の方法によってもよ
い。
For the positive electrode, a positive electrode mixture is prepared by adding a conductive additive and a binder to the positive electrode active material and mixing them, and the positive electrode mixture is dispersed in a solvent to prepare a positive electrode mixture-containing paste ( The binder may be dissolved or dispersed in a solvent in advance and then mixed with a positive electrode active material, a conductive auxiliary agent, or the like), and the positive electrode mixture-containing paste is applied to a positive electrode current collector such as an aluminum foil, It is prepared by drying to form a positive electrode material mixture layer and, if necessary, undergoing pressure molding. However, the method for producing the positive electrode is not limited to the above-exemplified method, and another method may be used.

【0023】負極には、その活物質として、炭素材料ま
たはLi挿入可能な材料などが用いられるが、その炭素
材料としては、例えば、黒鉛、熱分解炭素類、コークス
類、ガラス状炭素類、有機高分子化合物の焼成体、メソ
カーボンマイクロビーズ、炭素繊維、活性炭、グラファ
イト、炭素コロイドなどが好適に用いられ、また、Li
挿入可能な材料としては、Liが挿入可能な金属酸化物
や金属窒化物などが挙げられ、そのLiが挿入可能な金
属酸化物としては、例えば、スズやシリコンを含む金属
酸化物(例えば、Sn x 、SiOx など)などが好適
に用いられる。
A carbon material or a material into which Li can be inserted is used as the active material of the negative electrode. Examples of the carbon material include graphite, pyrolytic carbons, cokes, glassy carbons, and organic materials. A high-molecular compound fired body, mesocarbon microbeads, carbon fiber, activated carbon, graphite, carbon colloid, and the like are preferably used.
Examples of insertable materials include metal oxides and metal nitrides into which Li can be inserted, and examples of the metal oxide into which Li can be inserted include metal oxides containing tin and silicon (for example, S n O x , SiO x, etc.) are preferably used.

【0024】負極は、上記負極活物質に前記正極の場合
と同様のバインダーや必要に応じて導電助剤などを加え
て混合して負極合剤を調製し、その負極合剤を溶剤に分
散させて負極合剤含有ペーストを調製し(バインダーは
あらかじめ溶剤に溶解または分散させておいてから負極
活物質などと混合してもよい)、その負極合剤含有ペー
ストを負極集電体に塗布し、乾燥して負極合剤層を形成
し、必要に応じて加圧成形する工程を経ることによって
作製される。ただし、負極の作製方法は、上記例示のも
のに限られることなく、他の方法によってもよい。
For the negative electrode, a binder similar to that used in the case of the positive electrode and a conductive auxiliary agent, if necessary, are added to the negative electrode active material and mixed to prepare a negative electrode mixture, and the negative electrode mixture is dispersed in a solvent. To prepare a negative electrode mixture-containing paste (the binder may be dissolved or dispersed in a solvent in advance and then mixed with a negative electrode active material, etc.), and the negative electrode mixture-containing paste is applied to a negative electrode current collector, It is prepared by drying to form a negative electrode mixture layer and, if necessary, a step of pressure molding. However, the method for producing the negative electrode is not limited to the above-described example, and other methods may be used.

【0025】正極や負極の作製にあたって用いる集電体
としては、アルミニウム、銅、ニッケル、ステンレウ鋼
などの箔、パンチングメタル、網、エキスパンドメタル
などを挙げられるが、正極集電体としてはアルミニウム
箔が特に好適に用いられ、負極集電体としては銅箔が特
に好適に用いられる。
Examples of the current collector used for producing the positive electrode and the negative electrode include foils of aluminum, copper, nickel, stainless steel, punching metal, net, expanded metal, etc., but the positive electrode current collector is aluminum foil. It is particularly preferably used, and a copper foil is particularly preferably used as the negative electrode current collector.

【0026】前記正極と負極は、通常、その間にセパレ
ータを介在させて巻回して巻回構造の積層体にしたり、
折り曲げや複数層の積層などによって積層体にされる
が、高容量化を図るためには、前記電極積層体の単位体
積当りの放電容量は130mAh/cm3 以上であるこ
とが好ましい。本発明において、電極積層体の体積と
は、正極、負極およびセパレータを折り曲げもしくは積
層したもの、または正極、負極およびセパレータを巻回
したものの嵩体積(それらにタブなどが付いているとき
は、そのタブなどの嵩体積も含む)であって、後者のよ
うに巻回したものにあっては、巻回に際して使用した軸
に基づく巻回体中心部の透孔などは体積としては含まな
い。要は正極、負極およびセパレータなどが占める体積
であって、これら3つの体積は電池の容量を決定する重
要な要因であり、電池の大きさにかかわらず、電極積層
体の単位体積当りの放電容量(放電容量/電極積層体の
体積)を計算することによって、電池の容量密度を比較
することができる。また、ここでいう放電容量とは、そ
の電池の標準使用条件で充放電させた場合の放電容量で
ある。なお、標準使用条件とは、25℃において1C
(その電池を1時間で放電できる電流)の定電流で4.
2Vまで充電し、4.2Vに達した後は、4.2Vの定
電圧で2.5時間充電し、その充電後に、0.2Cで
2.75Vまで放電を行うことを意味し、そのときの放
電容量を測定し、電極積層体の単位体積当りの放電容量
を求める。そして、より高容量化を図るという観点から
は、電極積層体の単位体積当りの放電容量は140mA
h/cm3 以上がより好ましく、150mAh/cm3
以上がさらに好ましい。
The positive electrode and the negative electrode are usually wound with a separator interposed therebetween to form a wound structure laminate,
Although it is formed into a laminated body by bending or laminating a plurality of layers, the discharge capacity per unit volume of the electrode laminated body is preferably 130 mAh / cm 3 or more in order to increase the capacity. In the present invention, the volume of the electrode laminate means a bulk volume of a positive electrode, a negative electrode and a separator folded or laminated, or a positive electrode, a negative electrode and a separator wound (when they have tabs or the like, In the case of the latter wound, the through hole in the center of the wound body based on the shaft used for winding is not included in the volume. The point is the volume occupied by the positive electrode, negative electrode, separator, etc. These three volumes are important factors that determine the capacity of the battery, and regardless of the size of the battery, the discharge capacity per unit volume of the electrode stack. By calculating (discharge capacity / volume of electrode stack), the capacity densities of the batteries can be compared. In addition, the discharge capacity referred to here is the discharge capacity when the battery is charged and discharged under standard use conditions. The standard operating conditions are 1C at 25 ° C.
3. With constant current of (current that can discharge the battery in 1 hour).
After charging up to 2V and reaching 4.2V, it means charging at a constant voltage of 4.2V for 2.5 hours, and then discharging at 0.2C to 2.75V at that time. The discharge capacity of the electrode laminate is measured to obtain the discharge capacity per unit volume of the electrode laminate. From the viewpoint of achieving higher capacity, the discharge capacity per unit volume of the electrode laminate is 140 mA.
h / cm 3 or more is more preferable, and 150 mAh / cm 3
The above is more preferable.

【0027】本発明の非水二次電池の形態は、特定のも
のに限られることないが、本発明は、従来技術では電池
膨れを生じやすい角形電池やラミネート電池において
も、その高温貯蔵による電池膨れを抑制することができ
るので、特に角形電池やラミネート電池に適用する場合
に、その効果を顕著に発現する。
The form of the non-aqueous secondary battery of the present invention is not limited to a particular one. However, the present invention is not limited to a prismatic battery or a laminated battery which is prone to battery swelling in the prior art, and can be stored at high temperature. Since the swelling can be suppressed, the effect is remarkably exhibited particularly when applied to a prismatic battery or a laminated battery.

【0028】[0028]

【実施例】つぎに、実施例を挙げて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例のみに限
定されるものではない。
EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only those examples.

【0029】実施例1 まず、LiPF6 をエチレンカーボネートに溶解させた
のち、メチルエチルカーボネートを加えて混合し、エチ
レンカーボネートとメチルエチルカーボネートとの体積
比が1:2の混合溶媒にLiPF6 を1.2mol/l
相当溶解させ、さらに添加剤としてシクロヘキシルベン
ゼンを4質量%とリン酸トリオクチルを0.1質量%溶
解させ、さらに1,3−プロパンスルトンを2質量%溶
解させ、電解液を調製した。
Example 1 First, after dissolving LiPF 6 in ethylene carbonate, methyl ethyl carbonate was added and mixed, and 1 volume of LiPF 6 was added to a mixed solvent of ethylene carbonate and methyl ethyl carbonate in a volume ratio of 1: 2. .2 mol / l
Correspondingly, 4% by mass of cyclohexylbenzene and 0.1% by mass of trioctyl phosphate were dissolved as additives, and further 2% by mass of 1,3-propane sultone was dissolved to prepare an electrolytic solution.

【0030】正極は、LiCoO2 93.5質量部にカ
ーボンブラック2.0質量部と黒鉛〔ロンザ社製KS−
6(商品名)〕0.5質量部を加えて混合し、得られた
混合物をあらかじめポリフッ化ビニリデン4質量部をN
−メチルピロリドンに溶解させておいた溶液に加えて混
合して正極合剤含有ペーストを調製した。得られた正極
合剤含有ペーストを厚さ15μmのアルミニウム箔から
なる正極集電体の両面に均一に塗布し(ただし、作製後
の正極をセパレータと介して負極と巻回した巻回構造の
電極積層体において、負極と対向しない最内周部の内面
側となる部分には正極合剤含有ぺーストを塗布しなかっ
た)、乾燥して正極合剤層を形成し、その後、ローラプ
レス機により加圧成形した後、所定の大きさに切断し、
リード体を溶接して、帯状の正極を作製した。なお、上
記正極合剤中における導電助剤(カーボンブラックと黒
鉛)の量は2.5質量%であった。
The positive electrode was composed of LiCoO 2 93.5 parts by mass, carbon black 2.0 parts by mass and graphite [Lonza KS-.
6 (trade name)] 0.5 part by mass was added and mixed, and the resulting mixture was mixed with 4 parts by mass of polyvinylidene fluoride in advance.
-A positive electrode mixture-containing paste was prepared by adding and mixing the solution dissolved in methylpyrrolidone. The obtained positive electrode mixture-containing paste was uniformly applied to both surfaces of a positive electrode current collector made of an aluminum foil having a thickness of 15 μm (however, an electrode having a winding structure in which the produced positive electrode was wound with a negative electrode via a separator). In the laminated body, the positive electrode mixture-containing paste was not applied to the inner surface side portion of the innermost peripheral portion that did not face the negative electrode), and the positive electrode mixture layer was dried to form a positive electrode mixture layer. After pressure molding, cut into a predetermined size,
The lead body was welded to produce a strip-shaped positive electrode. The amount of the conductive additive (carbon black and graphite) in the positive electrode mixture was 2.5% by mass.

【0031】これとは別に、メソカーボンマイクロビー
ズ95質量部を、あらかじめポリフッ化ビニリデン5質
量部をN−メチルピロリドンに溶解させておいた溶液に
加えて混合して負極合剤含有ペーストを調製した。得ら
れた負極合剤含有ペーストを厚さ10μmの銅箔からな
る負極集電体の両面に塗布し(ただし、作製後の負極を
セパレータと介して正極と巻回した巻回構造の電極積層
体において、正極と対向しない最外周部の外面側には負
極合剤含有ペーストを塗布しなかった)、乾燥して負極
合剤層を形成し、その後、ローラープレス機により加圧
成形し、所定の大きさに切断後、リード体を溶接して、
帯状の負極を作製した。
Separately from this, 95 parts by mass of mesocarbon microbeads were added to and mixed with a solution prepared by dissolving 5 parts by mass of polyvinylidene fluoride in N-methylpyrrolidone in advance to prepare a paste containing a negative electrode mixture. . The obtained negative electrode mixture-containing paste was applied to both surfaces of a negative electrode current collector made of a copper foil having a thickness of 10 μm (however, the prepared negative electrode was wound with a positive electrode through a separator to form an electrode laminate having a winding structure). In, the outer surface side of the outermost peripheral portion that does not face the positive electrode was not coated with the negative electrode mixture-containing paste), dried to form the negative electrode mixture layer, and then pressure-molded by a roller press machine, After cutting to size, weld the lead body,
A strip-shaped negative electrode was produced.

【0032】つぎに、前記の正極と負極のそれぞれに集
電タブを取り付け、それらの正極と負極を厚さ25μm
の微孔性ポリエチレンフィルムからなるセパレータを介
して重ね、渦巻状に巻回した後、扁平状になるように加
圧して扁平状巻回構造の積層電極体としたのち、絶縁テ
ープを取り付け、外寸が5mm×30mm×48mmの
角形の電池ケース〔厚み(奥行き)5mm、幅30m
m、高さ48mmの角形の電池ケース〕内に挿入し、リ
ード体の溶接と封口用蓋板の電池ケースの開口端部への
レーザー溶接を行い、封口用蓋板に設けた電解液注入口
から前記の電解液を電池ケース内に注入し、電解液がセ
パレータなどに充分に浸透した後、電解液注入口を封止
して密閉状態にした後、予備充電、エイジングを行い、
図1に示すような構造で図2に示すような外観を有する
角形の非水二次電池を作製した。
Next, a current collecting tab is attached to each of the positive electrode and the negative electrode, and the positive electrode and the negative electrode have a thickness of 25 μm.
After being laminated via a separator made of the microporous polyethylene film, wound in a spiral shape, and pressed into a flat shape to form a laminated electrode body having a flat winding structure, an insulating tape is attached, and Square battery case with dimensions of 5 mm x 30 mm x 48 mm [thickness (depth) 5 mm, width 30 m
m, 48 mm high prismatic battery case], the lead body is welded and the lid plate for sealing is laser-welded to the opening end of the battery case, and the electrolyte injection port is provided on the lid plate for sealing. From the above electrolyte solution is injected into the battery case, after the electrolyte solution has sufficiently penetrated into the separator, etc., the electrolyte solution injection port is sealed and sealed, and then precharged and aged.
A prismatic non-aqueous secondary battery having a structure as shown in FIG. 1 and having an appearance as shown in FIG. 2 was produced.

【0033】ここで図1〜2に示す電池について説明す
ると、正極1と負極2は前記のようにセパレータ3を介
して渦巻状に巻回した後、扁平状になるように加圧して
扁平状巻回構造の電極積層体6として、角形の電池ケー
ス4に上記電解液とともに収容されている。ただし、図
1では、煩雑化を避けるため、正極1や負極2の作製に
あたって使用した集電体としての金属箔や電解液などは
図示していない。
The battery shown in FIGS. 1 and 2 will now be described. The positive electrode 1 and the negative electrode 2 are spirally wound through the separator 3 as described above, and then pressed into a flat shape to be flattened. The electrode laminate 6 having a wound structure is housed in the prismatic battery case 4 together with the electrolytic solution. However, in FIG. 1, in order to avoid complication, a metal foil, an electrolytic solution or the like as a current collector used in the production of the positive electrode 1 and the negative electrode 2 is not shown.

【0034】電池ケース4はアルミニウム合金製で電池
の外装材となるものであり、この電池ケース4は正極端
子を兼ねている。そして、電池ケース4の底部にはポリ
テトラフルオロエチレンシートからなる絶縁体5が配置
され、前記正極1、負極2およびセパレータ3からなる
扁平状巻回構造の電極積層体6からは正極1および負極
2のそれぞれ一端に接続された正極リード体7と負極リ
ード体8が引き出されている。また、電池ケース4の開
口部を封口するアルミニウム合金製の蓋板9にはポリプ
ロピレン製の絶縁パッキング10を介してステンレス鋼
製の端子11が取り付けられ、この端子11には絶縁体
12を介してステンレス鋼製のリード板13が取り付け
られている。
The battery case 4 is made of aluminum alloy and serves as a battery exterior material, and the battery case 4 also serves as a positive electrode terminal. An insulator 5 made of a polytetrafluoroethylene sheet is arranged at the bottom of the battery case 4, and the positive electrode 1 and the negative electrode are formed from the electrode laminate 6 having a flat winding structure composed of the positive electrode 1, the negative electrode 2 and the separator 3. The positive electrode lead body 7 and the negative electrode lead body 8 connected to one end of each of the two are drawn out. Further, a stainless steel terminal 11 is attached to an aluminum alloy cover plate 9 for sealing the opening of the battery case 4 via a polypropylene insulating packing 10, and the terminal 11 is connected via an insulator 12. A lead plate 13 made of stainless steel is attached.

【0035】そして、この蓋板9は上記電池ケース4の
開口部に挿入され、両者の接合部を溶接することによっ
て、電池ケース4の開口部が封口され、電池内部が密閉
されている。
The cover plate 9 is inserted into the opening of the battery case 4 and the joint between the two is welded to seal the opening of the battery case 4 and seal the inside of the battery.

【0036】この実施例1の電池では、正極リード体7
を蓋板9に直接溶接することによって電池ケース4と蓋
板9とが正極端子として機能し、負極リード体8をリー
ド板13に溶接し、そのリード板13を介して負極リー
ド体8と端子11とを導通させることによって端子11
が負極端子として機能するようになっているが、電池ケ
ース4の材質などによっては、その正負が逆になる場合
もある。
In the battery of Example 1, the positive electrode lead body 7
The battery case 4 and the lid plate 9 function as a positive electrode terminal by directly welding the negative electrode lead body 8 to the lead plate 13, and the negative electrode lead body 8 and the terminal via the lead plate 13. 11 is electrically connected to the terminal 11
Function as a negative electrode terminal, but depending on the material of the battery case 4 and the like, the positive and negative may be reversed.

【0037】図2は上記図1に示す電池の外観を模式的
に示す斜視図であり、この図2は上記電池が角形電池で
あることを示すことを目的として図示されたものであっ
て、この図2では電池を概略的に示しており、電池の構
成部材のうち特定のものしか図示していない。また、図
1においても、電極積層体の内周側の部分は断面にして
いない。
FIG. 2 is a perspective view schematically showing the appearance of the battery shown in FIG. 1, and this FIG. 2 is shown for the purpose of showing that the battery is a prismatic battery. In FIG. 2, the battery is schematically shown, and only specific components of the battery are shown. Also, in FIG. 1, the inner peripheral portion of the electrode laminate is not shown in cross section.

【0038】実施例2 実施例1と同様にLiPF6 をエチレンカーボネートに
溶解させたのち、メチルエチルカーボネートを加えて混
合し、エチレンカーボネートとメチルエチルカーボネー
トの体積比が1:2の混合溶媒にLiPF6 を1.2m
ol/l相当溶解させ、さらに、添加剤としてシクロヘ
キシルベンゼンを4質量%溶解させ、かつ実施例1で用
いたリン酸トリオクチルに代えてリン酸ジオクチルを
0.1質量%溶解させ、さらに1,3−プロパンスルト
ンを2質量%溶解させて、電解液を調製し、その電解液
を用いた以外は、実施例1と同様に角形の非水二次電池
を作製した。
Example 2 As in Example 1, LiPF 6 was dissolved in ethylene carbonate, methyl ethyl carbonate was added and mixed, and LiPF 6 was added to a mixed solvent of ethylene carbonate and methyl ethyl carbonate in a volume ratio of 1: 2. 6 to 1.2 m
equivalent to ol / l, 4% by mass of cyclohexylbenzene was dissolved as an additive, and 0.1% by mass of dioctyl phosphate was dissolved in place of the trioctyl phosphate used in Example 1, and further 1,3 A prismatic nonaqueous secondary battery was produced in the same manner as in Example 1 except that 2% by mass of propane sultone was dissolved to prepare an electrolytic solution, and the electrolytic solution was used.

【0039】比較例1 リン酸トリオクチルを含有させなかった以外は、実施例
1と同様に電解液を調製し、その電解液を用いた以外は
実施例1と同様に角形の非水二次電池を作製した。
Comparative Example 1 A prismatic nonaqueous secondary battery was prepared in the same manner as in Example 1 except that an electrolytic solution was prepared in the same manner as in Example 1 except that trioctyl phosphate was not contained. Was produced.

【0040】比較例2 シクロヘキシルベンゼンを含有させなかった以外は、実
施例1と同様に電解液を調製し、その電解液を用いた以
外は、実施例1と同様に角形の非水二次電池を作製し
た。
Comparative Example 2 A prismatic non-aqueous secondary battery was prepared in the same manner as in Example 1 except that an electrolytic solution was prepared in the same manner as in Example 1 except that cyclohexylbenzene was not contained. Was produced.

【0041】上記実施例1〜2および比較例1〜2の電
池を、室温で1CmAで3.0Vまで放電させ、1Cの
定電流で電池電圧が4.2Vに達するまで充電し、さら
に4.2Vの定電圧で2.5時間充電した後、0.2m
Aで3.0Vまで放電させて、放電容量を測定した。そ
の放電容量を電極積層体のかさ体積(電極、セパレー
タ、タブの体積の総和)で割って電極積層体の単位体積
当たりの放電容量(mAh/cm3 )を求めた。その結
果を表1に示す。なお、上記のように4.2Vまで充電
したときの正極電位はLi基準で4.3Vであった。
The batteries of Examples 1 and 2 and Comparative Examples 1 and 2 were discharged to 3.0 V at 1 CmA at room temperature and charged at a constant current of 1 C until the battery voltage reached 4.2 V. 0.2m after charging at a constant voltage of 2V for 2.5 hours
A was discharged to 3.0 V and the discharge capacity was measured. The discharge capacity was divided by the bulk volume of the electrode laminate (sum of the volumes of the electrode, the separator, and the tab) to obtain the discharge capacitance per unit volume of the electrode laminate (mAh / cm 3 ). The results are shown in Table 1. The positive electrode potential when charged to 4.2 V as described above was 4.3 V based on Li.

【0042】また、電池の過充電時の安全性を調べるた
めに、以下に示すように過充電安全試験を行った。すな
わち、上記実施例1〜2および比較例1〜2の電池を1
CmAで4.2Vまで充電し、4.2Vに達した後は
4.2Vの定電圧で2.5時間充電して満充電状態に
し、その充電後、6Vを上限電圧として0.5A、1
A、2A、5Aの電流値で過充電した。その過充電時
に、電池の表面温度が135℃以下であった最大電流を
過充電安全電流値とした。その結果を表1に示す。
Further, in order to investigate the safety of the battery during overcharge, an overcharge safety test was conducted as shown below. That is, the batteries of Examples 1 and 2 and Comparative Examples 1 and 2 were
After charging to 4.2V with CmA and after reaching 4.2V, it is charged to a full charge state by a constant voltage of 4.2V for 2.5 hours, and after charging, 0.5V, 1A with 6V as the upper limit voltage.
The battery was overcharged with current values of A, 2A and 5A. At the time of the overcharge, the maximum current at which the battery surface temperature was 135 ° C. or lower was defined as the overcharge safe current value. The results are shown in Table 1.

【0043】また、電池の高温貯蔵特性を調べるため
に、以下に示すように貯蔵試験を行った。上記実施例1
〜2および比較例1〜2の電池を1CmAの定電流で電
池電圧が4.2Vに達するまで充電し、さらに4.2V
の定電圧で2.5時間充電を行い、1CmAで3.0V
まで放電させて放電容量を測定した。このときの放電容
量を貯蔵前の放電容量とした。その後、1CmAで4.
2Vまで充電し、さらに4.2Vの定電圧で2.5時間
充電を行った。その充電後、電池を60℃の恒温槽に2
0日貯蔵した後、1CmAで3.0Vで放電させて放電
容量を測定した。このときの放電容量を貯蔵後の放電容
量とし、次の式により、貯蔵による自己放電率を求め
た。その結果を表1に示す。
Further, in order to investigate the high temperature storage characteristics of the battery, a storage test was conducted as shown below. Example 1 above
-2 and the batteries of Comparative Examples 1-2 were charged with a constant current of 1 CmA until the battery voltage reached 4.2V, and further charged to 4.2V.
Charged for 2.5 hours at a constant voltage of 3.0V at 1CmA
Was discharged until the discharge capacity was measured. The discharge capacity at this time was defined as the discharge capacity before storage. Then, at 1 CmA, 4.
The battery was charged to 2V and further charged at a constant voltage of 4.2V for 2.5 hours. After charging, place the battery in a 60 ° C constant temperature bath.
After storage for 0 days, the battery was discharged at 3.0 V with 1 CmA and the discharge capacity was measured. The discharge capacity at this time was taken as the discharge capacity after storage, and the self-discharge rate due to storage was determined by the following formula. The results are shown in Table 1.

【0044】[0044]

【表1】 [Table 1]

【0045】表1に示す結果から明らかなように、実施
例1〜2の電池は、電解液中にベンゼン環にアルキル基
が結合した化合物(A)に属するシクロヘキシルベンゼ
ンを含有させなかった比較例2の電池に比べて、過充電
安全電流が10倍以上大きく、過充電時の安全性を10
倍以上高めることができた。また、実施例1〜2の電池
は、電解液中にリン酸エステル(B)に属するリン酸ト
リオクチルを含有させなかった比較例1の電池に比べ
て、高温貯蔵による自己放電が少なく、高温貯蔵特性も
優れていた。
As is clear from the results shown in Table 1, the batteries of Examples 1 and 2 were Comparative Examples in which the cyclohexylbenzene belonging to the compound (A) having an alkyl group bonded to the benzene ring was not contained in the electrolytic solution. Compared with the battery No. 2, the overcharge safety current is more than 10 times larger, and the safety at overcharge is 10 times.
I was able to increase it more than twice. In addition, the batteries of Examples 1 and 2 have less self-discharge due to high temperature storage and higher temperature storage than the batteries of Comparative Example 1 in which the electrolyte solution did not contain trioctyl phosphate belonging to the phosphoric acid ester (B). The characteristics were also excellent.

【0046】これに対して、シクロヘキシルベンゼンを
含有させたが、リン酸トリオクチルを含有させなかった
比較例1の電池は、過充電時の安全性は高かったもの
の、高温貯蔵での自己放電が多く、高温貯蔵特性が悪か
った。また、リン酸トリオクチルが含有させたものの、
シクロヘキシルベンゼンを含有させなかった比較例2の
電池は、高温貯蔵による自己放電は少なかったものの、
過充電時の安全性に欠けていた。
On the other hand, the battery of Comparative Example 1, which contained cyclohexylbenzene but did not contain trioctyl phosphate, had a high level of safety during overcharging, but a large amount of self-discharge during high temperature storage. , The high temperature storage characteristics were poor. Also, although trioctyl phosphate was included,
The battery of Comparative Example 2 containing no cyclohexylbenzene showed less self-discharge due to high temperature storage,
It lacked safety when overcharged.

【0047】[0047]

【発明の効果】以上説明したように、本発明では、過充
電時の安全性が高く、かつ高温貯蔵特性が優れた非水二
次電池を提供することができた。
As described above, according to the present invention, it is possible to provide a non-aqueous secondary battery having high safety during overcharge and excellent high temperature storage characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る非水二次電池の一例を模式的に示
す図で、(a)はその平面図、(b)はその部分縦断面
図である。
FIG. 1 is a diagram schematically showing an example of a non-aqueous secondary battery according to the present invention, in which (a) is a plan view thereof and (b) is a partial vertical sectional view thereof.

【図2】図1に示す非水二次電池の斜視図である。FIG. 2 is a perspective view of the non-aqueous secondary battery shown in FIG.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 電池ケース 5 絶縁体 6 電極積層体 7 正極リード体 8 負極リード体 9 蓋板 11 端子 12 絶縁体 13 リード板 1 positive electrode 2 Negative electrode 3 separator 4 battery case 5 insulator 6 electrode stack 7 Positive electrode lead body 8 Negative electrode lead body 9 Lid plate 11 terminals 12 insulator 13 Lead plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 喜多 房次 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 Fターム(参考) 5H029 AJ02 AJ04 AJ12 AK02 AK03 AL02 AL06 AL07 AL08 AM00 AM02 AM03 AM04 AM05 AM07 AM16 BJ02 BJ14 DJ02 DJ08 DJ16 EJ01 EJ11 EJ12 HJ01 HJ02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Fusashi Kita             Hitachima, 1-88, Torora, Ibaraki City, Osaka Prefecture             Within Kucsel Co., Ltd. F term (reference) 5H029 AJ02 AJ04 AJ12 AK02 AK03                       AL02 AL06 AL07 AL08 AM00                       AM02 AM03 AM04 AM05 AM07                       AM16 BJ02 BJ14 DJ02 DJ08                       DJ16 EJ01 EJ11 EJ12 HJ01                       HJ02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属酸化物を正極活物質とし、炭素材料
またはLi挿入可能な材料を負極活物質とし、非水電解
液を用いた非水二次電池であって、前記非水電解液中に
ベンゼン環にアルキル基が結合した化合物(A)とリン
酸エステル(B)とを含み、前記リン酸トリエステル
(B)が前記化合物(A)に対して0.1質量%以上1
0質量%以下含有されていることを特徴とする非水二次
電池。
1. A non-aqueous secondary battery using a non-aqueous electrolytic solution in which a metal oxide is used as a positive electrode active material and a carbon material or a material into which Li can be inserted is used as a negative electrode active material. Containing a compound (A) having an alkyl group bonded to a benzene ring and a phosphoric acid ester (B), wherein the phosphoric acid triester (B) is 0.1% by mass or more with respect to the compound (A).
A non-aqueous secondary battery containing 0 mass% or less.
【請求項2】 リン酸エステル(B)が、一般式(R1
O)3 P=O(R1:炭素数1以上のアルキル基)で表
されるリン酸トリエステル、一般式(R2 O)2 P(O
H)=O(R2 :炭素数1以上のアルキル基)で表され
るリン酸ジエステルおよび一般式(R3 O)P(OH)
2 =O(R3 :炭素数1以上のアルキル基)で表される
リン酸モノエステルよりなる群から選ばれる少なくとも
1種である請求項1記載の非水二次電池。
2. The phosphoric acid ester (B) has the general formula (R 1
O) 3 P = O (R 1 : an alkyl group having 1 or more carbon atoms), a phosphoric acid triester represented by the general formula (R 2 O) 2 P (O
H) = O (R 2 : an alkyl group having 1 or more carbon atoms) and a phosphoric acid diester represented by the general formula (R 3 O) P (OH)
The non-aqueous secondary battery according to claim 1, wherein the non-aqueous secondary battery is at least one selected from the group consisting of phosphoric acid monoesters represented by 2 = O (R 3 : an alkyl group having 1 or more carbon atoms).
【請求項3】 非水電解液中にベンゼン環にアルキル基
が結合した化合物(A)が3質量%以上7質量%以下含
有され、リン酸エステル(B)が前記化合物(A)に対
して0.1質量%以上5%質量以下含有されている非水
二次電池。
3. The non-aqueous electrolyte contains 3% by mass or more and 7% by mass or less of a compound (A) having an alkyl group bonded to a benzene ring, and a phosphoric acid ester (B) with respect to the compound (A). A non-aqueous secondary battery containing 0.1% by mass or more and 5% by mass or less.
【請求項4】 電池の形態が、角形電池またはラミネー
ト電池である請求項1〜3のいずれかに記載の非水二次
電池。
4. The non-aqueous secondary battery according to claim 1, wherein the form of the battery is a prismatic battery or a laminated battery.
JP2001355855A 2001-11-21 2001-11-21 Non-aqueous secondary battery Expired - Lifetime JP4183412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001355855A JP4183412B2 (en) 2001-11-21 2001-11-21 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001355855A JP4183412B2 (en) 2001-11-21 2001-11-21 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2003157892A true JP2003157892A (en) 2003-05-30
JP4183412B2 JP4183412B2 (en) 2008-11-19

Family

ID=19167481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001355855A Expired - Lifetime JP4183412B2 (en) 2001-11-21 2001-11-21 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP4183412B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060045257A (en) * 2004-11-12 2006-05-17 주식회사 나래나노텍 Gel polymer electrolyte for lithium polymer battery, which contains alkylphosphate compound
JP2007172969A (en) * 2005-12-21 2007-07-05 Sony Corp Battery
JP2007259509A (en) * 2006-03-20 2007-10-04 Hitachi Maxell Ltd Power supply system and sensor system equipped with the same
KR100786942B1 (en) 2004-06-23 2007-12-17 주식회사 엘지화학 Lithium secondarty battery additives
JP2008027837A (en) * 2006-07-25 2008-02-07 Sony Corp Electrolyte and battery
JP2008041635A (en) * 2006-07-13 2008-02-21 Sony Corp Nonaqueous electrolyte composition, and nonaqueous electrolyte secondary battery
JP2009163937A (en) * 2007-12-28 2009-07-23 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
CN105428656A (en) * 2014-09-16 2016-03-23 丰田自动车株式会社 Non-aqueous electrolyte secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000076016A1 (en) * 1999-06-04 2000-12-14 Matsushita Electric Industrial Co., Ltd. Non-aqueous liquid electrolyte secondary cell and method for manufacturing the same
JP2001015155A (en) * 1999-06-30 2001-01-19 Sanyo Electric Co Ltd Lithium secondary battery
JP2001015158A (en) * 1999-06-30 2001-01-19 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, charge control system for nonaqueous electrolyte secondary battery, and apparatus using the charge control system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000076016A1 (en) * 1999-06-04 2000-12-14 Matsushita Electric Industrial Co., Ltd. Non-aqueous liquid electrolyte secondary cell and method for manufacturing the same
JP2001015155A (en) * 1999-06-30 2001-01-19 Sanyo Electric Co Ltd Lithium secondary battery
JP2001015158A (en) * 1999-06-30 2001-01-19 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, charge control system for nonaqueous electrolyte secondary battery, and apparatus using the charge control system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100786942B1 (en) 2004-06-23 2007-12-17 주식회사 엘지화학 Lithium secondarty battery additives
KR20060045257A (en) * 2004-11-12 2006-05-17 주식회사 나래나노텍 Gel polymer electrolyte for lithium polymer battery, which contains alkylphosphate compound
JP2007172969A (en) * 2005-12-21 2007-07-05 Sony Corp Battery
JP2007259509A (en) * 2006-03-20 2007-10-04 Hitachi Maxell Ltd Power supply system and sensor system equipped with the same
JP2008041635A (en) * 2006-07-13 2008-02-21 Sony Corp Nonaqueous electrolyte composition, and nonaqueous electrolyte secondary battery
JP2008027837A (en) * 2006-07-25 2008-02-07 Sony Corp Electrolyte and battery
JP2009163937A (en) * 2007-12-28 2009-07-23 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
CN105428656A (en) * 2014-09-16 2016-03-23 丰田自动车株式会社 Non-aqueous electrolyte secondary battery
JP2016062698A (en) * 2014-09-16 2016-04-25 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
US9786918B2 (en) 2014-09-16 2017-10-10 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP4183412B2 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
JP5666287B2 (en) Nonaqueous electrolyte secondary battery
WO2009157507A1 (en) Lithium ion secondary cell
KR101749508B1 (en) Electrode active material for lithium secondary battery, electrode for lithium secondary battery including the same, and lithium secondary battery comprising the same
JP6287187B2 (en) Nonaqueous electrolyte secondary battery
JP5412843B2 (en) battery
JP2008097879A (en) Lithium ion secondary battery
JPH09147913A (en) Nonaqueous electrolyte battery
JP6165425B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP4715848B2 (en) battery
JP2008103311A (en) Battery
JP4183412B2 (en) Non-aqueous secondary battery
JP2003123764A (en) Nonaqueous secondary battery
KR20190131721A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP5614431B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP2006318839A (en) Nonaqueous secondary battery
JP6287186B2 (en) Nonaqueous electrolyte secondary battery
JP2006120460A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP5614433B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP2017016905A (en) Charging/discharging method for lithium secondary battery
JPWO2019098056A1 (en) Lithium ion secondary battery
JP2003045433A (en) Nonaqueous secondary battery
JP6567442B2 (en) Lithium secondary battery charge / discharge method
JP4161396B2 (en) Non-aqueous electrolyte secondary battery
JP4974316B2 (en) Non-aqueous secondary battery
JP5708598B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4183412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

EXPY Cancellation because of completion of term
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350