JP4182541B2 - Power generator - Google Patents

Power generator Download PDF

Info

Publication number
JP4182541B2
JP4182541B2 JP2003320908A JP2003320908A JP4182541B2 JP 4182541 B2 JP4182541 B2 JP 4182541B2 JP 2003320908 A JP2003320908 A JP 2003320908A JP 2003320908 A JP2003320908 A JP 2003320908A JP 4182541 B2 JP4182541 B2 JP 4182541B2
Authority
JP
Japan
Prior art keywords
conductive member
power generation
coil
conductive
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003320908A
Other languages
Japanese (ja)
Other versions
JP2005094828A (en
Inventor
実 鈴木
修巳 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2003320908A priority Critical patent/JP4182541B2/en
Publication of JP2005094828A publication Critical patent/JP2005094828A/en
Application granted granted Critical
Publication of JP4182541B2 publication Critical patent/JP4182541B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、導電性流体の流動のための発電流路に磁界を形成するとともに、該発電流路に第一の導電部材と第二の導電部材とを互いに間隔をもって配し、上記磁界が形成された上記発電流路へ導電性流体を流して、上記第一の導電部材と上記第二の導電部材との間を該導電性流体で短絡させて上記第一の導電部材及び上記第二の導電部材から誘導電流を取り出す発電装置に関するものである。   The present invention forms a magnetic field in a power generation channel for the flow of a conductive fluid, and a first conductive member and a second conductive member are arranged at intervals in the power generation channel to form the magnetic field. The conductive fluid is caused to flow through the generated power generation flow path, and the first conductive member and the second conductive member are short-circuited with the conductive fluid to short-circuit the first conductive member and the second conductive member. The present invention relates to a power generator that extracts an induced current from a conductive member.

この種の装置では、例えば、導電性流体の流動のための発電流路に、該導電性流体の流動方向に対して直交方向で互いに対向せる一対の磁極と、該流動方向と該一対の磁極の対向方向との直交方向で互いに対向せる一対の電極とが配されている。このような発電流路へ導電性流体を上記一対の磁極の間に生じる磁力線に直交させて流動せしめることにより、上記一対の電極で電流が取り出される。   In this type of apparatus, for example, a pair of magnetic poles opposed to each other in a direction orthogonal to the flow direction of the conductive fluid, and the flow direction and the pair of magnetic poles in a power generation flow path for the flow of the conductive fluid A pair of electrodes that are opposed to each other in a direction orthogonal to the opposite direction is arranged. A current is taken out by the pair of electrodes by causing the conductive fluid to flow in such a power generation channel in a direction perpendicular to the magnetic field lines generated between the pair of magnetic poles.

例えば、特許文献1においては、導電性流体を循環せる流動経路の一部に上記発電流路が形成されている。この流動経路には、導電性流体として、熱により容易に電離して高導電性となるNaやK等のシード材を添加した希ガスが封入されている。該希ガスに添加された上記シード材は、上記流動経路に配された熱源によって該希ガスが加熱される高温状態で電離して高導電性となる。このような高導電性のシード材を添加した高温状態の希ガスが導電性流体として上記循環により上記発電流路へ連続して流動されて、発電が行なわれる。
特公平6−11183号公報(図1〜図3)
For example, in patent document 1, the said power generation flow path is formed in a part of flow path which circulates a conductive fluid. In this flow path, a rare gas to which a seed material such as Na or K that is easily ionized by heat and becomes highly conductive is added as a conductive fluid. The seed material added to the rare gas is ionized in a high temperature state where the rare gas is heated by a heat source arranged in the flow path, and becomes highly conductive. A noble gas in a high temperature state to which such a highly conductive seed material is added is continuously flowed to the power generation flow path by the circulation as a conductive fluid to generate power.
Japanese Examined Patent Publication No. 6-11183 (FIGS. 1 to 3)

しかしながら、特許文献1の装置では、上述のように装置が長時間にわたり高温状態に維持される環境下では、一般に、電離しやすい流体は、反応性が高いので、導電性流体の流動経路内で装置を損傷させるような本来望ましくない化学反応が生じやすいため導電性流体として用いることができない。したがって、上述の特許文献1の装置では、上記流動経路内に希ガスを流動させることとしている。その結果、希ガスは電離しにくいので、シード材が必要となり、コストが高くなる。   However, in the device of Patent Document 1, in the environment where the device is maintained at a high temperature for a long time as described above, generally, a fluid that is easily ionized has high reactivity, and therefore, in the flow path of the conductive fluid. It cannot be used as a conductive fluid because an inherently undesirable chemical reaction that easily damages the device is likely to occur. Therefore, in the apparatus of the above-mentioned Patent Document 1, a rare gas is caused to flow in the flow path. As a result, the rare gas is difficult to ionize, so a seed material is required and the cost is increased.

また、発電流路の全域で電流を取り出して最大限の発電を行なうためには、該発電流路での導電性流体の流動方向で該発電流路の全域にわたって磁極や電極を配しなければならないのでコストが高くなる。また、上記磁極として永久磁石を用いると、磁界が装置外に漏れてその周辺の電気機器に悪影響をもたらしてしまう。したがって、特許文献1の装置では、大規模な電磁石が必要となり、その結果、建設費が高くなる。   Also, in order to obtain the maximum amount of power by taking out the current in the entire area of the power generation flow path, magnetic poles and electrodes must be arranged over the entire area of the power generation flow path in the flow direction of the conductive fluid in the power generation flow path. The cost is high because it is not necessary. Further, when a permanent magnet is used as the magnetic pole, the magnetic field leaks out of the apparatus and adversely affects the surrounding electrical equipment. Therefore, the apparatus of Patent Document 1 requires a large-scale electromagnet, resulting in a high construction cost.

そこで、本発明は、大規模な電極や磁石を設けずに、そしてシード材を必要としない低コストな発電を安価な建設費で実現できる発電方法及び発電装置の提供を目的とする。   Therefore, an object of the present invention is to provide a power generation method and a power generation apparatus that can realize low-cost power generation that does not require a large-scale electrode or magnet and that does not require a seed material with low construction costs.

<第一の発明>
本発明の発電装置は、導電性流体の流動のための発電流路と、該発電流路に磁界を形成する磁界形成手段と、互いに間隔をもって該発電流路に配された第一の導電部材及び第二の導電部材とを有し、上記磁界形成手段によって磁界が形成された上記発電流路へ電離・解離状態の導電性流体を流して、上記第一の導電部材と上記第二の導電部材との間を該導
電性流体で短絡させて上記第一の導電部材及び上記第二の導電部材で電流を取り出すようになっている。
<First invention>
The power generation device of the present invention includes a power generation channel for the flow of a conductive fluid, magnetic field forming means for forming a magnetic field in the power generation channel, and a first conductive member disposed in the power generation channel with a space therebetween. And a second conductive member, and an ionized / dissociated conductive fluid is caused to flow through the power generation flow path in which the magnetic field is formed by the magnetic field forming means, and the first conductive member and the second conductive member are flown. A current is taken out by the first conductive member and the second conductive member by short-circuiting the member with the conductive fluid.

かかる発電装置において、この第一の発明の構成の特徴として、第一の導電部材と第二の導電部材は発電流路での導電性流体の流動方向で互いに重複範囲をもって配され、上記第一の導電部材は上記発電流路に配されたコイルとして形成され、該コイルの軸線が該発電流路の導電性流体の流動方向に延びるように該コイルが配され、上記第二の導電部材は上記コイルに対して間隔をもって上記流動方向に延び上記発電流路に配される導電材で形成されている。上記第一の導電部材と上記第二の導電部材は、それぞれの下流側端部が互いに導通され上流側端部が開放された開回路として構成されている。磁界形成手段は、上記第一の導電部材としてのコイルの外周に、軸線方向で該第一の導電部材とほぼ同一範囲で設けられた外コイルに直流電源を接続して開閉自在な閉回路として形成されている。この上記直流電源によって磁界形成手段の閉回路に電流を生じさせて該閉回路が上記発電流路に磁界を形成させ、導電性流体が上記発電流路へ送られた際に、上記第一の導電部材と上記第二の導電部材のそれぞれの上流側端部が互いに導電性流体によって短絡されて第一の導電部材と第二の導電部材による開回路を閉回路とならしめ、第一の導電部材のコイルに誘導電流を発生させ、上記下流側端部で該誘導電流を取り出すようになる。   In such a power generation device, as a feature of the configuration of the first invention, the first conductive member and the second conductive member are arranged to overlap each other in the flow direction of the conductive fluid in the power generation flow path. The conductive member is formed as a coil disposed in the power generation flow path, the coil is disposed so that the axis of the coil extends in the flow direction of the conductive fluid in the power generation flow path, and the second conductive member is The coil is formed of a conductive material that extends in the flow direction with a distance from the coil and is disposed in the power generation flow path. The first conductive member and the second conductive member are configured as an open circuit in which the downstream end portions thereof are electrically connected to each other and the upstream end portion is opened. The magnetic field forming means is a closed circuit that can be opened and closed by connecting a direct current power source to an outer coil provided in the axial direction on the outer periphery of the coil as the first conductive member in substantially the same range as the first conductive member. Is formed. When the DC power source generates a current in the closed circuit of the magnetic field forming means, the closed circuit forms a magnetic field in the power generation channel, and when the conductive fluid is sent to the power generation channel, the first The upstream end portions of the conductive member and the second conductive member are short-circuited with each other by the conductive fluid so that the open circuit by the first conductive member and the second conductive member becomes a closed circuit. An induced current is generated in the coil of the member, and the induced current is extracted at the downstream end.

この第一の発明では、磁界形成手段としての外コイルは、第一の導電部材としてのコイルの外周にあり、導電性流体に接触しないように配することができ、プラズマ電流によるコイルの焼損もなく安定した磁界を形成する。   In this first invention, the outer coil as the magnetic field forming means is located on the outer periphery of the coil as the first conductive member and can be arranged so as not to contact the conductive fluid, and the coil can be burned out by the plasma current. A stable magnetic field is formed.

このような第一の発明では、導電性流体を爆轟等により得られる衝撃波を伴った間欠流として流動させてパルス発電を行うことが可能である。   In the first invention as described above, it is possible to perform pulsed power generation by causing the conductive fluid to flow as an intermittent flow accompanied by a shock wave obtained by detonation or the like.

本発明では、第一の導電部材としてのコイルは、同一径で多重巻として形成され、この多重の数だけの開回路を第二の導電部材との間で構成しているようにすることができる。その場合、多重巻は、例えば、複数の線部材を絶縁材を介して並べた帯状に形成し、これをコイル状に巻回して多重巻とすることが可能である。   In the present invention, the coil as the first conductive member is formed as a multiple winding with the same diameter, and the number of multiple open circuits may be configured between the second conductive member. it can. In that case, for example, the multiple winding can be formed into a strip shape in which a plurality of wire members are arranged with an insulating material interposed therebetween, and this is wound into a coil shape to form a multiple winding.

<第二の発明>
第二の発明は、爆轟等により導電性流体を間欠流として流動させるパルス発電に好適である。この第二の発明では、磁界形成手段としては、第一の発明の外コイルを用いることなく、第一の導電部材としてのコイルと第二の導電部材の上流側端部に直流電源を接続する構成としている。すなわち、磁界形成手段は、上記コイル及び上記第二の導電部材のそれぞれの上流側端部が直流電源を介して互いに接続されるとともに、それぞれの下流側端部が互いに導通されて形成される閉回路として構成されていて、上記直流電源によって該閉回路に初期電流を予め生じさせて該閉回路が上記発電流路に磁界を形成させている。
<Second invention>
The second invention is suitable for pulsed power generation in which a conductive fluid flows as an intermittent flow by detonation or the like. In this second invention, as the magnetic field forming means, a DC power supply is connected to the coil as the first conductive member and the upstream end of the second conductive member without using the outer coil of the first invention. It is configured. That is, the magnetic field forming means is a closed circuit in which the upstream ends of the coil and the second conductive member are connected to each other via a DC power source and the downstream ends are connected to each other. The circuit is configured so that an initial current is previously generated in the closed circuit by the DC power source, and the closed circuit forms a magnetic field in the power generation flow path.

また、この第二の発明では、第一の導電部材としてのコイルは、同一径で多重巻として形成され、この多重の数だけの開回路を第二の導電部材との間で構成している。   In the second invention, the coil as the first conductive member is formed as multiple turns with the same diameter, and the number of multiple open circuits are formed with the second conductive member. .

このような、第二の発明では、導電性流体が間欠的に上記発電流路へ送られると、上記第一の導電部材と上記第二の導電部材のそれぞれの上流側端部が互いに導電性流体によって短絡され、この短絡範囲を上記上流側端部から上記下流側端部へ向け拡大させて、上記短絡範囲より下流側で上記コイルと上記第二の導電部材のインダクタンスを減少させつつ、上記コイルに誘導電流を発生させ、上記下流側端部で該誘導電流を取り出す。   In such a second invention, when the conductive fluid is intermittently sent to the power generation flow path, the upstream ends of the first conductive member and the second conductive member are electrically conductive with each other. Short-circuited by a fluid, expanding the short-circuit range from the upstream end to the downstream end, and reducing the inductance of the coil and the second conductive member downstream from the short-circuit range, An induced current is generated in the coil, and the induced current is taken out at the downstream end.

導電性流体の伝播面は流動方向に直角であってこの伝播面が上記第一の導電部材たるコイルと第二の導電部材を短絡させるが、仮にコイルが一つのコイルであるときには、コイ
ルは螺旋をなしているので瞬時の短絡は周方向の一箇所ということとなる。これは、発電が均一化できないと共に、発電量も低くなる傾向をもたらす。そこで、第二の発明では第一の導電部材としてのコイルを多重巻として、瞬時において、すべてのコイルが、互いに周方向にずれた位置で短絡されて、これらのコイルから同時に電流を得る。したがって、周方向に均一な発電となるのみならず、導電性流体の流量が同一でも、その発電量が増大する。前述の短絡位置は、周方向で等間隔となるようにコイル間隔を定めて多重巻とすることが望ましい。
The propagation surface of the conductive fluid is perpendicular to the flow direction, and this propagation surface short-circuits the coil as the first conductive member and the second conductive member, but if the coil is a single coil, the coil Therefore, an instantaneous short circuit is one place in the circumferential direction. This brings about a tendency that the power generation cannot be made uniform and the power generation amount also decreases. Therefore, in the second invention, the coils as the first conductive member are multi-turned, and all the coils are instantaneously short-circuited at positions shifted in the circumferential direction, and current is simultaneously obtained from these coils. Therefore, not only power generation is uniform in the circumferential direction, but the power generation amount increases even if the flow rate of the conductive fluid is the same. It is desirable that the above-mentioned short-circuiting positions are multi-winding by determining the coil interval so as to be equally spaced in the circumferential direction.

第一の導電部材としてのコイル多重巻は、例えば、第一の発明の場合と同様に、複数の線部材を絶縁材を介して並べた帯状に形成し、これをコイル状に巻回して得ることができる。   The coil multiple winding as the first conductive member is obtained by, for example, forming a plurality of wire members in a strip shape arranged with an insulating material in the same manner as in the first invention, and winding this in a coil shape. be able to.

以上のごとく、第一の発明においては、磁界内に配されたコイル状の第一の導電部材と該第一の導電部材内の空間に設けられた第二の導電部材とを、上記磁界内を流通する導電性流体により短絡して誘導電流を取り出す際に、磁界を発生する手段としてのコイルを第一の導電部材の外側に設けることとしたので、磁界形成手段は導電性流体(プラズマ)と接触することがなく、該磁界形成手段自体にはその電流が発生しないので、磁界が乱されることなく安定し、したがって発電量も安定して信頼性が向上する。また、磁界形成手段は導電性流体との接触による磁界形成手段の劣化という問題も生じなく耐久性が向上し、劣化しにくい高品質材を用いなくともすむので設備費そして保守費が安価となる。さらには、磁界形成手段は、第一の導電部材とは別に外部空間に設けることができるので、その設置上の制約がなく、大型な外コイルを用いることにより強磁場として発電量を増大し、発電量当りの装置のサイズをコンパクト化できる。   As described above, in the first invention, the coil-shaped first conductive member disposed in the magnetic field and the second conductive member provided in the space in the first conductive member are arranged in the magnetic field. Since the coil as a means for generating a magnetic field is provided outside the first conductive member when the induced current is taken out by short-circuiting with the conductive fluid that circulates, the magnetic field forming means is a conductive fluid (plasma). Since no current is generated in the magnetic field forming means itself, the magnetic field is stabilized without being disturbed, and thus the amount of power generation is stabilized and the reliability is improved. In addition, the magnetic field forming means improves the durability without causing the problem of deterioration of the magnetic field forming means due to contact with the conductive fluid, and it is not necessary to use high quality materials that are difficult to deteriorate, so that the equipment cost and the maintenance cost are reduced. . Furthermore, since the magnetic field forming means can be provided in the external space separately from the first conductive member, there is no restriction on its installation, and the power generation amount is increased as a strong magnetic field by using a large outer coil, The size of the device per power generation can be reduced.

第二の発明にあっては、外コイルを用いることなく、コイル状の第一の導電部材、第二の導電部材、そして直流電源を含んでなる閉回路に初期電流を流すことによって該発電流路に磁界を形成し、導電性流体を間欠的に上記発電流路に送って、互いに間隔をもって配されたコイルと第二の導電部材との間の短絡範囲を燃焼ガスの流動方向で上流から下流に向け拡大させて、上記短絡範囲より下流側で上記コイルと上記第二の導電部材のインダクタンスを減少させることにより、上記コイルに誘導電流を発生させ、該誘導電流を取り出す際に、導電性流体が高温であっても、装置は間欠的に短時間ずつ熱を受けるだけであるため、耐火物を多用する必要がなく、設備費及び補修費が安価となる。また、コイルに誘導電流を発生させて、大電流を得ることができるので、磁極や電極を上記発電流路の上記流動方向全域にわたって設ける必要がなく、また大規模な電磁石や、第一の発明のような磁界発生のための専用の外コイルが不要であるので、建設費も安価にできる。第二の発明では、特に、第一の導電部材たるコイルを多重巻とし、この多重の数だけの開回路を第二の導電部材との間で構成することとし、導電性流体による短絡時に同時に上記数の閉回路を形成するようにしたので、短絡部位が周方向で複数形成され誘導電流の発生が周方向で均一に行われると共に、単一コイルに比し上記数だけの電流を得ることができて発電量が向上し、発電量当りの装置のサイズがコンパクト化される。   In the second invention, the current is generated by flowing an initial current through a closed circuit including a coil-shaped first conductive member, a second conductive member, and a DC power source without using an outer coil. A magnetic field is formed in the path, the conductive fluid is intermittently sent to the power generation flow path, and the short-circuit range between the coil and the second conductive member that are spaced apart from each other is upstream in the flow direction of the combustion gas. By expanding toward the downstream and reducing the inductance of the coil and the second conductive member on the downstream side of the short-circuit range, an inductive current is generated in the coil, and when the induced current is taken out, the conductivity is reduced. Even if the fluid is hot, the device only receives heat intermittently for a short period of time, so there is no need to use a large amount of refractory, and equipment and repair costs are reduced. Further, since a large current can be obtained by generating an induced current in the coil, it is not necessary to provide magnetic poles and electrodes over the entire flow direction of the power generation flow path, and a large-scale electromagnet or the first invention Since a dedicated outer coil for generating a magnetic field is not necessary, construction costs can be reduced. In the second invention, in particular, the coil as the first conductive member is multi-turned, and as many open circuits as the number of multiples are configured with the second conductive member, and at the same time when a short circuit is caused by the conductive fluid. Since the above number of closed circuits are formed, a plurality of short-circuited portions are formed in the circumferential direction, the induction current is generated uniformly in the circumferential direction, and the number of currents is obtained as compared with a single coil. As a result, the power generation amount is improved and the size of the device per power generation amount is reduced.

以下、添付図面にもとづき、本発明の実施の形態を説明する。図1に示す第一実施形態の発電装置10は、導電性流体の流動のための管体11Aの内部空間に発電流路11が形成されている。該発電装置10は、その発電流路11に導電性流体を供給するための供給路20が連通して形成され、図示しない供給装置から上記供給路20を経て導電性流体が流通する。この発電流路11には、該発電流路11の軸線12の延びる方向(導電性流体の流動方向)で、第一の導電部材としてのコイル13と第二の導電部材14とが互いに重複範囲をもって配されている。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the power generation apparatus 10 according to the first embodiment shown in FIG. 1, a power generation flow path 11 is formed in the internal space of a tubular body 11A for the flow of a conductive fluid. In the power generation apparatus 10, a supply path 20 for supplying a conductive fluid to the power generation flow path 11 is formed in communication, and the conductive fluid flows from the supply apparatus (not shown) through the supply path 20. In the power generation channel 11, the coil 13 as the first conductive member and the second conductive member 14 overlap each other in the direction in which the axis 12 of the power generation channel 11 extends (the flow direction of the conductive fluid). It is arranged with.

上記第一の導電部材としてのコイル13は、該コイル13の軸線が上記発電流路11の軸線12と一致して延び、絶縁材15を介して発電流路11の管体11Aの内周壁に取付けられている。   The coil 13 as the first conductive member extends so that the axis of the coil 13 coincides with the axis 12 of the power generation flow path 11 and is connected to the inner peripheral wall of the tube 11A of the power generation flow path 11 through the insulating material 15. Installed.

上記第二の導電部材14は、上記軸線12上に配された棒状の導電材で形成され、上記コイル13に対して半径方向に間隔をもって上記発電流路11内に配されている。この第二の導電部材14は、該第二の導電部材14の下流側端部に取付けられた取付部材14Aを介して絶縁材15により支持されている。該取付部材14Aは上記絶縁材15を貫通して外部へ延出している。   The second conductive member 14 is formed of a rod-shaped conductive material disposed on the axis 12, and is disposed in the power generation flow path 11 with a radial distance from the coil 13. The second conductive member 14 is supported by an insulating material 15 via an attachment member 14A attached to the downstream end of the second conductive member 14. The attachment member 14A extends through the insulating material 15 to the outside.

本実施形態では、第二の導電部材14は、上記軸線12に直角な断面での面積が上記発電流路11での導電性流体の流動方向Aで上流(以下、単に「上流」という)から下流(以下、単に「下流」という)に向けて徐々に増加している。したがって、第二の導電部材14は、供給路20から該第二の導電部材14の上流側端部に向けて送られる導電性流体との流動抵抗の軽減が図られている。また、本実施形態で導電性流体が高温で流動するときには、上述の第一の導電部材としてのコイル13と第二の導電部材14は、それぞれ中空となっていてその中空部に水等の冷却液が流され、高温の導電性流体からの熱を受けての過昇温の防止が図られていることが好ましい。   In the present embodiment, the second conductive member 14 has an area in a cross section perpendicular to the axis 12 from the upstream in the flow direction A of the conductive fluid in the power generation flow path 11 (hereinafter simply referred to as “upstream”). It gradually increases toward the downstream (hereinafter simply referred to as “downstream”). Therefore, the flow resistance of the second conductive member 14 with the conductive fluid sent from the supply path 20 toward the upstream end of the second conductive member 14 is reduced. In addition, when the conductive fluid flows at a high temperature in the present embodiment, the coil 13 and the second conductive member 14 as the first conductive member described above are hollow, and cooling such as water is provided in the hollow portion. It is preferable that the liquid is flowed to prevent overheating due to heat from the high-temperature conductive fluid.

上記コイル13と上記第二の導電部材14のそれぞれの下流側端部(取付部材14A)(図1にて右側端部)は、コンデンサ16、インバータ17が接続されていて、ここに負荷(図示せず)を接続することが可能となっている。   A capacitor 16 and an inverter 17 are connected to downstream ends (attachment members 14A) (right end in FIG. 1) of the coil 13 and the second conductive member 14, and a load (see FIG. (Not shown) can be connected.

上記発電流路11を形成する管体11Aの外周には、軸線12の方向で上記第一の導電部材としてのコイル13とほぼ同じ範囲で、磁界形成手段としての外コイル18が設けられている。該外コイル18は、図示しない絶縁部材によって、上記管体11Aに支えられている。該外コイル18はその上流側端部と下流側端部とが直流電源19を介して接続されている。かくして、外コイル18は直流電源19を経て閉回路を形成して、発電流路11に磁界を生ずる。一方、第一の導電部材としてのコイル13と第二の導電部材14は、上流側端部が開いている開回路を形成する。   An outer coil 18 as magnetic field forming means is provided on the outer periphery of the tubular body 11A forming the power generation flow path 11 in substantially the same range as the coil 13 as the first conductive member in the direction of the axis 12. . The outer coil 18 is supported on the tubular body 11A by an insulating member (not shown). The outer coil 18 has an upstream end and a downstream end connected to each other via a DC power source 19. Thus, the outer coil 18 forms a closed circuit via the DC power source 19 and generates a magnetic field in the power generation flow path 11. On the other hand, the coil 13 as the first conductive member and the second conductive member 14 form an open circuit whose upstream end is open.

かかる本実施形態では、上記磁界形成手段により発電流路11に磁界が生じている状態で、導電性流体を供給路20を経て上記発電流路11へ流動させる。該導電性流体により、上記第一の導電部材としてのコイル13と第二の導電部材14とは短絡されて閉回路を形成するようになり誘導電流が流れ、インバータ17から電力を取り出される。   In this embodiment, the conductive fluid is caused to flow to the power generation flow path 11 through the supply path 20 in a state where a magnetic field is generated in the power generation flow path 11 by the magnetic field forming means. By the conductive fluid, the coil 13 as the first conductive member and the second conductive member 14 are short-circuited to form a closed circuit, an induced current flows, and electric power is taken out from the inverter 17.

本実施形態での導電性流体は、定常流れをなしていても、間欠流であってもよい。後者の場合、爆轟波による電離・解離流体として得ることができる。   The conductive fluid in the present embodiment may be a steady flow or an intermittent flow. In the latter case, it can be obtained as an ionization / dissociation fluid by detonation waves.

導電性流体の発生のために爆轟発生装置(図示せず)を用いる場合、該爆轟発生装置から上記発電流路11へ爆轟燃焼ガスが流動する時には、上記発電流路11を上流から下流へ向け進行する該燃焼ガスによってコイル13と第二の導電部材14との間が短絡され、その短絡範囲は、導電性流体としての該燃焼ガスの下流端が上流から下流へ進行するので、上記コイル13と上記第二の導電部材14のそれぞれの上流側端部から下流側端部へ向け拡大される。このように上記短絡範囲が下流に向けて拡大されるので、上記短絡範囲より下流側で上記コイル13と上記第二の導電部材14のインダクタンスが減少する。上記磁界を形成するように上記コイル13には誘導電流が発生するが、上記コイル13のインダクタンスが減少するので、上記誘導電流が次第に増大する。   When a detonation generator (not shown) is used to generate a conductive fluid, when detonation combustion gas flows from the detonator to the power generation channel 11, the power generation channel 11 is introduced from the upstream side. The combustion gas traveling toward the downstream causes a short circuit between the coil 13 and the second conductive member 14, and the short circuit range is because the downstream end of the combustion gas as the conductive fluid proceeds from upstream to downstream. The coil 13 and the second conductive member 14 are enlarged from the upstream end to the downstream end. As described above, since the short circuit range is expanded toward the downstream side, the inductance of the coil 13 and the second conductive member 14 is decreased on the downstream side of the short circuit range. Although an induced current is generated in the coil 13 so as to form the magnetic field, the inductance of the coil 13 is reduced, so that the induced current gradually increases.

上記コンデンサ16とインバータ17はパルス電流を交流電流に変換して上記負荷(図示せず)に供給できる。   The capacitor 16 and the inverter 17 can convert a pulse current into an alternating current and supply it to the load (not shown).

また、X線、電子ビーム、慣性核融合の発生装置を負荷とする場合には、上記コンデンサ16及び上記インバータ17を設けずにパルス電流をそのまま取り出し、上記発生装置にパルス電流を直接供給するようにしてもよい。   In addition, when the X-ray, electron beam, and inertial fusion generator is used as a load, the pulse current is directly extracted without providing the capacitor 16 and the inverter 17, and the pulse current is directly supplied to the generator. It may be.

図1に示した第一実施形態は、図2(A)のごとく変形が可能である。なお、図2(A)において、図1装置と共通な部位には同一符号を付し、その説明を省略する。また図2(B)は図2(A)における第一の導電部材の断面を拡大して示すものである。   The first embodiment shown in FIG. 1 can be modified as shown in FIG. In FIG. 2A, parts common to those in FIG. 1 are given the same reference numerals, and descriptions thereof are omitted. FIG. 2B shows an enlarged cross section of the first conductive member in FIG.

図2(A)の形態は、第一の導電部材としてのコイル13が、三つのコイル13A,13B,13Cを一群として同一径で三重にして巻回されている点で特徴を有している。この三つのコイル13A,13B,13Cは、図2(B)に見られるごとく、絶縁材21を介して三つの線群を帯状とした後にこれをコイル状に巻回して得られたものとなっている。その際、この三つのコイル13A,13B,13Cをそれぞれ分離している絶縁材の幅X1は、次のコイル群の巻回との間隔X2とほぼ同じとなっていることが好ましい。かかる三つのコイル13A,13B,13Cのそれぞれは、それらの下流側端部と第二の導電部材14との間にコンデンサ16A,16B,16C、そしてインバータ17A,17B,17Cが接続されており、これらの三つのインバータ17A,17B,17Cから同時に電力を得ることができるようになっている。   The form of FIG. 2 (A) has a feature in that the coil 13 as the first conductive member is wound with the three coils 13A, 13B, 13C as a group and tripled with the same diameter. . These three coils 13A, 13B, and 13C are obtained by winding the three wire groups into a strip shape through the insulating material 21 and then winding them in a coil shape as seen in FIG. ing. At this time, it is preferable that the width X1 of the insulating material separating the three coils 13A, 13B, and 13C is substantially the same as the interval X2 with the winding of the next coil group. Each of the three coils 13A, 13B, and 13C has capacitors 16A, 16B, and 16C and inverters 17A, 17B, and 17C connected between the downstream end portion thereof and the second conductive member 14, respectively. Electric power can be obtained simultaneously from these three inverters 17A, 17B, and 17C.

図2装置で、爆轟流等により導電性流体が間欠的に流動するとき、その前面の衝撃波(伝播波)は、軸線12に直角な面で進行する。したがってこの面は、瞬時には、螺旋をなす図1のごとくの一つのコイル13に対しては周方向の一箇所でしか第二の導電部材14と短絡させることができない。これは、周方向で不均一な短絡状態となり、また、瞬時に通過してしまう衝撃波による短絡にもとづく電流は小さな値となる。本実施形態では、三つのコイル13A,13B,13Cが存在するので、上記瞬時にこれらが周方向に分布された三箇所で同時に短絡されるので、導電性流体の先端部での短絡が均一化そして取得電流が三倍となる。   2, when the conductive fluid intermittently flows due to detonation flow or the like, the shock wave (propagation wave) in front of the conductive fluid travels in a plane perpendicular to the axis 12. Therefore, this surface can instantaneously be short-circuited with the second conductive member 14 only at one place in the circumferential direction with respect to one coil 13 as shown in FIG. This is a non-uniform short circuit state in the circumferential direction, and the current based on the short circuit caused by the shock wave that passes instantaneously becomes a small value. In the present embodiment, since there are three coils 13A, 13B, and 13C, they are short-circuited simultaneously at the three locations distributed in the circumferential direction at the same time, so the short-circuit at the tip of the conductive fluid is made uniform. The acquired current is tripled.

次に、本発明の第二実施形態を図3にもとづき説明する。   Next, a second embodiment of the present invention will be described with reference to FIG.

この図3の形態は、図2装置に対して磁界形成手段として外コイルを用いない点に特徴がある。   3 is characterized in that an outer coil is not used as the magnetic field forming means in the apparatus of FIG.

本実施形態では、磁界形成手段は、上記第一の導電部材としてのコイル13(13A,13B,13C)と上記第二の導電部材14のぞれぞれの上流側端部(図3にて左側端部)が、直流電源19(19A,19B,19C)を介して互いに接続されることにより構成される。   In the present embodiment, the magnetic field forming means is the upstream end of each of the coil 13 (13A, 13B, 13C) as the first conductive member and the second conductive member 14 (in FIG. 3). The left end) is connected to each other via a DC power source 19 (19A, 19B, 19C).

すなわち、第一の導電部材としてのコイル13(13A,13B,13C)、第二の導電部材14、直流電源19(19A,19B,19C)、上記コンデンサ16(16A,16B,16C)、インバータ17(17A,17B,17C)は並列な三つの閉回路を形成し、それぞれの閉回路内を流れる電流によって、発電流路11に磁界を形成する磁界形成手段を構成している。すなわち、この閉回路では、上述の爆轟発生装置から上記発電流路11へ導電性流体としての燃焼ガスが流動しない時には、上記直流電源19が該閉回路に初期電流を生じさせて、上記コイル13から上記発電流路11に磁界が形成される。上記爆轟発生装置から上記発電流路11へ燃焼ガスが流動する時には、図2装置の場合と同様に、上記発電流路11を上流から下流へ向け進行する該燃焼ガスによってコイル13
と第二の導電部材14との間が短絡され、その短絡範囲は、導電性流体としての該燃焼ガスの下流端が上流から下流へ進行するので、上記コイル13と上記第二の導電部材14のそれぞれの上流側端部から下流側端部へ向け拡大される。このように上記短絡範囲が下流に向けて拡大されるので、上記短絡範囲より下流側で上記コイル13と上記第二の導電部材14のインダクタンスが減少する。上記磁界を形成するように上記コイル13には誘導電流が発生するが、上記コイル13のインダクタンスが減少するので、上記誘導電流が初期電流以上に増大する。この誘導電流の増大によりコイル13の磁界が増大するため、誘導電流がさらに増大する。このような誘導電流はパルス電流として上記下流側端部で得られる。
That is, the coil 13 (13A, 13B, 13C) as the first conductive member, the second conductive member 14, the DC power source 19 (19A, 19B, 19C), the capacitor 16 (16A, 16B, 16C), the inverter 17 (17A, 17B, 17C) form three parallel closed circuits, and constitute magnetic field forming means for forming a magnetic field in the power generation flow path 11 by the current flowing in each closed circuit. That is, in this closed circuit, when the combustion gas as the conductive fluid does not flow from the detonator generating device to the power generation passage 11, the DC power source 19 generates an initial current in the closed circuit, and the coil A magnetic field is formed from 13 to the power generation flow path 11. When the combustion gas flows from the detonator to the power generation channel 11, the coil 13 is moved by the combustion gas traveling from the upstream to the downstream in the power generation channel 11 as in the case of the device in FIG.
Between the coil 13 and the second conductive member 14, since the downstream end of the combustion gas as the conductive fluid proceeds from upstream to downstream in the short circuit range. Each is expanded from the upstream end to the downstream end. As described above, since the short circuit range is expanded toward the downstream side, the inductance of the coil 13 and the second conductive member 14 is decreased on the downstream side of the short circuit range. An induced current is generated in the coil 13 so as to form the magnetic field. However, since the inductance of the coil 13 is reduced, the induced current is increased beyond the initial current. Since the magnetic field of the coil 13 is increased due to the increase of the induced current, the induced current is further increased. Such an induced current is obtained at the downstream end as a pulse current.

また導電性流体の発生のために燃料と酸化剤とで燃焼させる爆轟発生装置を用いる場合、発電流路に爆轟燃焼ガスを導電性流体として流動させた後、燃焼排ガスを発電流路へ導入することにより発電流路内壁を冷却することができるので、耐火物を多用する必要がなく、設備費及び補修費が安価となる。   When using a detonator that burns with fuel and oxidant to generate a conductive fluid, detonation combustion gas is made to flow as a conductive fluid in the power generation channel, and then the combustion exhaust gas is sent to the power generation channel. Since the power generation flow passage inner wall can be cooled by introducing the refractory, it is not necessary to use a large amount of refractory, and the equipment cost and the repair cost are reduced.

本発明の第一実施形態装置を示す断面図である。It is sectional drawing which shows 1st embodiment apparatus of this invention. 図1装置の変形例を示し、(A)はその断面図、(B)は第一の導電部材の拡大断面図である。1 shows a modified example of the apparatus, (A) is a sectional view thereof, (B) is an enlarged sectional view of a first conductive member. 第二実施形態装置を示す断面図である。It is sectional drawing which shows 2nd embodiment apparatus.

符号の説明Explanation of symbols

10 発電装置
11 発電流路
13(13A,13B,13C) 第一の導電部材
14 第二の導電部材
15 絶縁材
18 外コイル
19(19A,19B,19C) 直流電源
DESCRIPTION OF SYMBOLS 10 Power generation apparatus 11 Power generation flow path 13 (13A, 13B, 13C) 1st electroconductive member 14 2nd electroconductive member 15 Insulation material 18 Outer coil 19 (19A, 19B, 19C) DC power supply

Claims (5)

導電性流体の流動のための発電流路と、該発電流路に磁界を形成する磁界形成手段と、互いに間隔をもって該発電流路に配された第一の導電部材及び第二の導電部材とを有し、上記磁界形成手段によって磁界が形成された上記発電流路へ導電性流体を流して、上記第一の導電部材と上記第二の導電部材との間を該導電性流体で短絡させて上記第一の導電部材及び上記第二の導電部材で電流を取り出す発電装置において、第一の導電部材と第二の導電部材は発電流路での導電性流体の流動方向で互いに重複範囲をもって配され、上記第一の導電部材は上記発電流路に配されたコイルとして形成され、該コイルの軸線が該発電流路の導電性流体の流動方向に延びるように該コイルが配され、上記第二の導電部材は上記コイルに対して間隔をもって上記流動方向に延び上記発電流路に配される導電材で形成され、上記第一の導電部材と上記第二の導電部材のそれぞれの下流側端部が互いに導通され上流側端部が開放された開回路として構成され、磁界形成手段は、上記第一の導電部材としてのコイルの外周に、軸線方向で該第一の導電部材とほぼ同一範囲で設けられた外コイルに直流電源を接続して開閉自在な閉回路として形成され、上記直流電源によって磁界形成手段の閉回路に電流を生じさせて該閉回路が上記発電流路に磁界を形成させ、導電性流体が上記発電流路へ送られた際に、上記第一の導電部材と上記第二の導電部材のそれぞれの上流側端部が互いに導電性流体によって短絡されて第一の導電部材と第二の導電部材による開回路を閉回路とならしめ、第一の導電部材のコイルに誘導電流を発生させ、上記下流側端部で該誘導電流を取り出すようになっていることを特徴とする発電装置。   A power generation flow path for the flow of the conductive fluid; a magnetic field forming means for forming a magnetic field in the power generation flow path; and a first conductive member and a second conductive member disposed in the power generation flow path with an interval therebetween. A conductive fluid is caused to flow through the power generation flow path in which the magnetic field is formed by the magnetic field forming means, and the first conductive member and the second conductive member are short-circuited by the conductive fluid. In the power generation device for taking out current with the first conductive member and the second conductive member, the first conductive member and the second conductive member overlap each other in the flow direction of the conductive fluid in the power generation flow path. And the first conductive member is formed as a coil disposed in the power generation flow path, and the coil is disposed such that an axis of the coil extends in a flow direction of the conductive fluid in the power generation flow path. The second conductive member is spaced from the coil It is formed of a conductive material that extends in the flow direction and is disposed in the power generation flow path. The downstream end portions of the first conductive member and the second conductive member are electrically connected to each other, and the upstream end portion is opened. The magnetic field forming means is configured to connect a DC power source to an outer coil provided in the axial direction on the outer periphery of the coil as the first conductive member in the same range as the first conductive member. A closed circuit that can be opened and closed, and a current is generated in the closed circuit of the magnetic field forming means by the DC power source, the closed circuit forms a magnetic field in the power generation channel, and a conductive fluid is sent to the power generation channel. When the first conductive member and the second conductive member are connected, the upstream ends of the first conductive member and the second conductive member are short-circuited with each other by the conductive fluid to close the open circuit of the first conductive member and the second conductive member. Coiled with circuit, first conductive member coil Induction current is generated, the power generation apparatus characterized by being adapted to retrieve the induced current in the downstream end. 第一の導電部材としてのコイルは、同一径で多重巻として形成され、この多重の数だけの開回路を第二の導電部材との間で構成していることとする請求項1に記載の発電装置。   The coil as the first conductive member is formed as a multiple winding with the same diameter, and the number of multiple open circuits are configured between the second conductive member and the second conductive member. Power generation device. 第一の導電部材としてのコイルは、複数の線部材を絶縁材を介して並べた帯状に形成し、これをコイル状に巻回して多重巻とされていることとする請求項2に記載の発電装置。   The coil as the first conductive member is formed in a strip shape in which a plurality of wire members are arranged with an insulating material interposed therebetween, and is wound into a coil shape to form a multiple winding. Power generation device. 導電性流体の流動のための発電流路と、該発電流路に磁界を形成する磁界形成手段と、互いに間隔をもって該発電流路に配された第一の導電部材及び第二の導電部材とを有し、上記磁界形成手段によって磁界が形成された上記発電流路へ導電性流体を流して、上記第一の導電部材と上記第二の導電部材との間を該導電性流体で短絡させて上記第一の導電部材及び上記第二の導電部材で電流を取り出す発電装置であって、第一の導電部材と第二の導電部材は発電流路での導電性流体の流動方向で互いに重複範囲をもって配され、上記第一の導電部材は上記発電流路に配されたコイルとして形成され、該コイルの軸線が該発電流路の導電性流体の流動方向に延びるように該コイルが配され、上記第二の導電部材は上記コイルに対して間隔をもって上記流動方向に延び上記発電流路に配される導電材で形成され、磁界形成手段は、上記コイル及び上記第二の導電部材のそれぞれの上流側端部が直流電源を介して互いに接続されるとともに、それぞれの下流側端部が互いに導通されて形成される閉回路として構成されていて、上記直流電源によって該閉回路に初期電流を予め生じさせて該閉回路が上記発電流路に磁界を形成させ、導電性流体が上記発電流路へ送られた際に、上記第一の導電部材と上記第二の導電部材のそれぞれの上流側端部を互いに導電性流体によって短絡させ、この短絡範囲を上記上流側端部から上記下流側端部へ向け拡大させて、上記短絡範囲より下流側で上記コイルと上記第二の導電部材のインダクタンスを減少させつつ、上記コイルに誘導電流を発生させ、上記下流側端部で該誘導電流を取り出すようになっている発電装置において、第一の導電部材としてのコイルは、同一径で多重巻として形成され、この多重の数だけの開回路を第二の導電部材との間で構成していることを特徴とする発電装置。   A power generation flow path for the flow of the conductive fluid; a magnetic field forming means for forming a magnetic field in the power generation flow path; and a first conductive member and a second conductive member disposed in the power generation flow path with an interval therebetween. A conductive fluid is caused to flow through the power generation flow path in which the magnetic field is formed by the magnetic field forming means, and the first conductive member and the second conductive member are short-circuited by the conductive fluid. The first and second conductive members extract current from the first conductive member and the second conductive member, wherein the first conductive member and the second conductive member overlap each other in the flow direction of the conductive fluid in the power generation flow path. The first conductive member is formed as a coil disposed in the power generation flow path, and the coil is disposed such that the axis of the coil extends in the flow direction of the conductive fluid in the power generation flow path. The second conductive member is spaced from the coil. The magnetic field forming means is connected to the upstream ends of the coil and the second conductive member through a DC power source. In addition, each downstream side end portion is configured as a closed circuit, and an initial current is generated in advance in the closed circuit by the DC power source so that the closed circuit generates a magnetic field in the power generation flow path. When the conductive fluid is sent to the power generation flow path, the upstream ends of the first conductive member and the second conductive member are short-circuited with each other by the conductive fluid, and this short circuit range Is expanded from the upstream end to the downstream end to reduce the inductance of the coil and the second conductive member on the downstream side of the short-circuit range, while generating an induced current in the coil, Above In the power generation device that is adapted to extract the induced current at the side end, the coil as the first conductive member is formed as a multiple winding with the same diameter, and the number of multiple open circuits are connected to the second conductive member. A power generation device comprising a member. 第一の導電部材としてのコイルは、複数の線部材を絶縁材を介して並べた帯状に形成し、これをコイル状に巻回して多重巻とされていることとする請求項4に記載の発電装置。   The coil as the first conductive member is formed in a strip shape in which a plurality of wire members are arranged with an insulating material interposed therebetween, and is wound into a coil shape to form a multiple winding. Power generation device.
JP2003320908A 2003-09-12 2003-09-12 Power generator Expired - Fee Related JP4182541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003320908A JP4182541B2 (en) 2003-09-12 2003-09-12 Power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003320908A JP4182541B2 (en) 2003-09-12 2003-09-12 Power generator

Publications (2)

Publication Number Publication Date
JP2005094828A JP2005094828A (en) 2005-04-07
JP4182541B2 true JP4182541B2 (en) 2008-11-19

Family

ID=34452740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003320908A Expired - Fee Related JP4182541B2 (en) 2003-09-12 2003-09-12 Power generator

Country Status (1)

Country Link
JP (1) JP4182541B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103607094B (en) * 2013-12-11 2015-10-14 魏伯卿 Magnetohydrodynamic(MHD) generator positive and negative charge shunting catches tunnel
KR101860898B1 (en) * 2017-02-03 2018-05-24 울산과학기술원 Apparatus for transferring conductive meterials

Also Published As

Publication number Publication date
JP2005094828A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
JP7271489B2 (en) Energy efficient, high output plasma torch
CN210921360U (en) Superheated steam generator
JP5649231B2 (en) High frequency reactor
JP2003257611A (en) Inside diameter face induction heating coil
JP4182541B2 (en) Power generator
JP2001046050A (en) Apparatus and method for treating cell by using electromagnetic radiation
US3543084A (en) Plasma arc gas heater
WO2019039960A1 (en) Electric steam generator
JP2018527703A (en) Inductors and inductor assemblies
JP6224971B2 (en) Fluid heating device
JP2002305074A (en) Induction heating equipment
JP2008126107A (en) Purifier
KR101743629B1 (en) Transformer using fluid tube
JP2016152064A (en) Superheated steam generation device
JP2018107102A (en) Plasma generation device
US3280350A (en) Magnetohydrodynamic generator
JP7256539B2 (en) Superheated steam generator
US3385983A (en) Magnetohydrodynamic energy converter
JP2007080715A (en) Electromagnetic induction fluid heating device
RU204397U1 (en) Device for excitation of a discharge in an RFI plasmatron
JP2002323260A (en) Instantaneous water-heating equipment
JP2019129192A (en) Output transformer for induction heating
JP5981323B2 (en) Ozone generator
US3452239A (en) Multi-electrode arc heaters
RU2758500C1 (en) Electric heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees