JP2002305074A - Induction heating equipment - Google Patents

Induction heating equipment

Info

Publication number
JP2002305074A
JP2002305074A JP2001104812A JP2001104812A JP2002305074A JP 2002305074 A JP2002305074 A JP 2002305074A JP 2001104812 A JP2001104812 A JP 2001104812A JP 2001104812 A JP2001104812 A JP 2001104812A JP 2002305074 A JP2002305074 A JP 2002305074A
Authority
JP
Japan
Prior art keywords
heating
passage
heating element
fluid
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001104812A
Other languages
Japanese (ja)
Inventor
Susumu Nishikawa
進 西川
Yoshihiro Ishida
良廣 石田
Shigeki Yamamoto
重樹 山本
Kazuhiko Yazaki
和彦 矢崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kogi Corp
Original Assignee
Kogi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kogi Corp filed Critical Kogi Corp
Priority to JP2001104812A priority Critical patent/JP2002305074A/en
Publication of JP2002305074A publication Critical patent/JP2002305074A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the manufacturing cost of a heating element even if it is difficult to drill a long hole, and enable to heat fluid efficiently. SOLUTION: In an induction heating equipment constituted with a pipe-shape passage 12 formed with a non-inductive heater substance so that fluid may pass through it, heating elements 13, 14, and 15 installed inside the passage, and a high frequency heating coil 16, which is wound around the outside of the passage and makes induction heating the heating element, the heater elements have two or more penetrating holes 13a, 13b, and so on, and 14a, 14b, and so on, and the like, prepared so that the fluid may pass in them, moreover two or more of them are installed with predetermined interval separated in the direction of the passage, and the coil is wound so that continuous magnetic flux may be obtained in the heating element and the interval part 18. The predetermined interval is 10% or less of full length in the passage direction of the heating elements installed of two or more. Two or more heating elements have the predetermined intervals by the spacer 21 projected from the above heating element with size corresponding to the predetermined intervals. The positions of the penetrating holes are deviated in the direction crossing with right angle to the passage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、誘導加熱により発
熱させた発熱体に、流体を接触させて高温流体とする誘
導加熱装置である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an induction heating apparatus in which a fluid is brought into contact with a heating element heated by induction heating to produce a high-temperature fluid.

【0002】[0002]

【従来の技術】流体を昇温する一つの技術として、誘導
加熱装置が知られている。この誘導加熱装置は、流体が
通る通路部材の中に発熱体を設置し、通路部材の外周に
巻かれたコイルに電流を通して発熱体を発熱させること
で流体を昇温する装置である。この誘導加熱装置は、燃
料の燃焼エネルギーを直接利用する物と比べて流体の温
度制御が容易であり、急速加熱が可能であり、電力使用
であるからクリーンである点で好ましい。
2. Description of the Related Art As one technique for raising the temperature of a fluid, an induction heating device is known. This induction heating device is a device in which a heating element is installed in a passage member through which a fluid passes, and a current is passed through a coil wound around the outer periphery of the passage member to cause the heating element to generate heat, thereby raising the temperature of the fluid. This induction heating device is preferable in that it is easier to control the temperature of the fluid, can perform rapid heating, and is cleaner because it uses electric power, as compared with a device that directly uses the combustion energy of fuel.

【0003】図4に示すように、誘導加熱装置1は、コ
イル2に高周波電源3から電力が供給されると、電磁誘
導により発熱体4に渦電流が発生し、発熱体4が発熱す
る。ボビン5内に一端から加熱する流体を適当な流速で
供給すると、流体は、発熱体4の孔4a、4b、4c、
…を通り抜ける間に加熱され、他端より昇温されて出て
いく。
As shown in FIG. 4, when electric power is supplied from a high-frequency power supply 3 to a coil 2, an induction heating device 1 generates an eddy current in a heating element 4 by electromagnetic induction, and the heating element 4 generates heat. When a fluid to be heated is supplied from one end into the bobbin 5 at an appropriate flow rate, the fluid flows through the holes 4a, 4b, 4c,
Are heated while passing through… and the temperature rises from the other end and exits.

【0004】[0004]

【発明が解決しようとする課題】このような誘導加熱装
置1は、大きな熱量が必要とされる場合、従来は発熱体
4を長くしていたが、キュリー点が高く高温耐熱性に優
れた材質の発熱体は製造費が高くなる問題がある。特
に、長い孔の加工は困難で加工費が高くなるだけでな
く、加工不可能な場合もある問題があった。本発明は、
長い孔の加工が困難な材料であっても、発熱体の製造費
を低減でき、流体を効率よく加熱できる誘導加熱装置を
提供しようとするものである。
When such a large amount of heat is required, such an induction heating device 1 conventionally has a long heating element 4, but has a high Curie point and excellent heat resistance at high temperatures. However, there is a problem that the heating cost of the heating element increases. In particular, there is a problem that machining of a long hole is difficult and not only increases the machining cost but also may not be possible. The present invention
An object of the present invention is to provide an induction heating device that can reduce the manufacturing cost of a heating element and efficiently heat a fluid even if a material having a long hole is difficult to process.

【0005】[0005]

【課題を解決するための手段】本発明の手段は、流体が
通るように非誘導加熱体で形成された筒状の通路と、前
記通路中に設置された発熱体と、前記通路の外側に巻か
れ前記発熱体を誘導加熱する高周波加熱コイルとを備え
てなる誘導加熱装置において、前記発熱体は、流体が通
過するように複数の貫通孔を設けてあると共に前記通路
の方向に所定の間隔を隔てて2以上が設置されており、
前記コイルは、前記発熱体及び前記間隔に連続した磁束
が生じるように巻かれていることを特徴とする(請求項
1)。
Means of the present invention include a cylindrical passage formed by a non-induction heater so that a fluid passes therethrough, a heating element installed in the passage, and A high-frequency heating coil wound around the heating element for induction heating the heating element, wherein the heating element is provided with a plurality of through holes so that a fluid passes therethrough, and has a predetermined interval in a direction of the passage. Two or more are installed,
The coil is wound so that a continuous magnetic flux is generated in the heating element and the interval (claim 1).

【0006】この手段では、コイルに電力を供給して発
熱体に発熱させ、通路の一端から流体を供給すると、通
路の他端から流体が加熱されて出てくる。発熱体を2以
上に設けたことは、流体の所望の加熱に必要な熱量を与
えるために、加工困難な材質でも必要な比較的長い発熱
体長さとするためであり、そして発熱体を所定の間隔を
隔てて設置したことは、流体の加熱効率を向上させるた
めである。すなわち、全く間隔を有しない比較的長い発
熱体を製造する場合、例えば、材質が発熱体に適した耐
熱磁性セラミック・金属複合材の場合、全長が50mm,1
00mmぐらいならば流体の通る貫通孔の径が5mm位ま
でのものは加工可能である。しかし、全長がそれ以上長
くなれば、貫通孔の加工が困難となり、加工費が高騰す
る上に、加工不可能の場合もあり得る。発熱体の製造費
用から考えた場合、分割する方が、当然優位である。一
般的には発熱体を複数個並べた方が熱効率は悪いと考え
られるが、実際には逆に複数個並べた方が、熱効率は一
体の発熱体よりも僅か良いということが下記の実験から
得られた。その結果を表1に示す。
In this means, when power is supplied to the coil to cause the heat generating element to generate heat and fluid is supplied from one end of the passage, the fluid is heated from the other end of the passage and comes out. The provision of two or more heating elements is intended to provide a necessary amount of heat for the desired heating of the fluid and to make the length of the heating element required to be relatively long even for a material which is difficult to process, and to arrange the heating elements at a predetermined interval. The reason for this is to improve the heating efficiency of the fluid. That is, when manufacturing a relatively long heating element having no space at all, for example, when the material is a heat-resistant magnetic ceramic / metal composite material suitable for the heating element, the total length is 50 mm, 1
If the diameter is about 00 mm, the diameter of the through hole through which the fluid passes can be processed up to about 5 mm. However, if the total length is longer than that, it becomes difficult to process the through-hole, so that the processing cost increases and the processing may not be possible. In view of the manufacturing cost of the heating element, the division is naturally superior. In general, it is considered that the heat efficiency is worse when a plurality of heating elements are arranged. Obtained. Table 1 shows the results.

【0007】[0007]

【表1】 [Table 1]

【0008】実験は、発熱体の一体型、分割型の2種類
とし、コイルを発熱体の全長に跨る同じ物とし、流体を
蒸気とし、同じ温度の蒸気を供給し、出口温度を同一と
し、通過蒸気量を比較した。表1から分かるように、分
割型の方が一体型のものよりも通過蒸気量が多く、熱効
率がよいことが分かる。つまり、所定の間隔を設け、そ
の間隔にも連続した磁束を発生させることにより、熱効
率を上げることが出来、発熱体の製造費用も一体型にく
らべて安価になる利点を有していることが判明した。こ
の熱効率がよくなる理由としては、流体が発熱体の貫通
孔を層流の状態で通過した後、発熱体の間隔部分を通過
する際に乱流となて、その部分で流体温度が均一化され
る過程が入るために、効率よく昇温することになると考
えられる。つまり、流体が層流の状態で貫通孔を通過し
てしまう場合には中心部が加熱されにくいが、途中で乱
流状態になることで攪拌されると中心部の低温も均等化
されてより適切に加熱されることになるからである。
[0008] In the experiment, two types of heating elements, an integral type and a split type, were used, the coil was the same over the entire length of the heating element, the fluid was steam, steam of the same temperature was supplied, and the outlet temperature was the same. The amount of passing steam was compared. As can be seen from Table 1, it can be seen that the split type has a larger amount of passing steam and has better thermal efficiency than the integrated type. In other words, by providing a predetermined interval and generating a continuous magnetic flux also at the interval, it is possible to increase the thermal efficiency and to have an advantage that the manufacturing cost of the heating element is lower than that of the integrated type. found. The reason why the thermal efficiency is improved is that, after the fluid passes through the through-holes of the heating element in a laminar flow state, the fluid becomes turbulent when passing through the space between the heating elements, and the fluid temperature is uniformed in that part. It is thought that the temperature rises efficiently due to the process of entering. In other words, when the fluid passes through the through-hole in a laminar flow state, the central portion is hardly heated, but when the fluid is stirred by being turbulent on the way, the low temperature of the central portion is also equalized. This is because it will be appropriately heated.

【0009】前記手段において、前記所定の間隔は、前
記2以上設置された発熱体の前記通路方向全長の10%
以下である構成とするのがよい(請求項2)。この構成
では、所定の間隔を10%以下にすことにより効率良く
昇温できる。少なすぎると、乱流が起こりにくく、効率
が悪くなる。
In the above means, the predetermined interval is 10% of a total length of the two or more heating elements in the passage direction.
The following configuration is preferable (claim 2). In this configuration, the temperature can be increased efficiently by setting the predetermined interval to 10% or less. If the amount is too small, turbulence does not easily occur, and the efficiency becomes poor.

【0010】前記手段において、前記2以上の発熱体
が、前記所定の間隔に対応する寸法で前記発熱体に突設
されたスペーサにより前記所定の間隔となるように位置
決めされている構成とするのがよい(請求項3)。この
構成では、スペーサを発熱体に設けることにより、所定
の間隔を維持でき、流体の乱流による攪拌状態を得るこ
とができる。好ましくは、スペーサの位置は、流体通路
断面の中心に位置するように設けるのが良く、これによ
り、渦電流は発熱体の表皮部分に集中することがしられ
ていることから、発熱効率の低下が殆どないのである。
さらに、スペーサと発熱体を一体的に設けるのが良く、
これにより、流体通路を横向きに設置する場合に、スペ
ーサの位置ずれがなくなる。そして、発熱体とスペーサ
の製作も別々よりは容易になる。
[0010] In the above means, the two or more heating elements may be positioned so as to be at the predetermined interval by a spacer protruding from the heating element with a dimension corresponding to the predetermined interval. (Claim 3). In this configuration, by providing the heating element with the spacer, a predetermined interval can be maintained, and a stirring state due to the turbulent flow of the fluid can be obtained. Preferably, the position of the spacer is provided so as to be located at the center of the cross section of the fluid passage, whereby the eddy current is concentrated on the skin portion of the heating element. There is almost no.
Furthermore, it is better to provide the spacer and the heating element integrally,
This eliminates the displacement of the spacer when the fluid passage is installed horizontally. In addition, the manufacture of the heating element and the spacer is easier than in the case of separate heating elements.

【0011】前記手段において、前記間隔を隔てて隣合
う発熱体が、前記貫通孔の位置を前記通路に直角な方向
に異ならせて設置されている構成とするのがよい(請求
項4)。この構成では、隣合う発熱体間で貫通孔が同軸
上に一致しない構成であり、流体の前記乱流状態を確保
できる。
In the above-mentioned means, it is preferable that the heat generating elements adjacent to each other at intervals are installed so that the positions of the through holes are different from each other in a direction perpendicular to the passage. In this configuration, the through holes are not coaxially aligned between the adjacent heating elements, and the turbulent state of the fluid can be secured.

【0012】[0012]

【発明の実施の形態】本発明の実施の形態を図1(a)及
び図2(b)に基づいて説明する。この誘導加熱装置11
は、通路12、発熱体13、14、15、コイル16等
で構成されている。通路12は、加熱する流体が通る流
体通路であり、非磁性体で耐熱性に優れたセラミックス
製のパイプ17で形成され、そのパイプ17の内孔であ
る。この通路12は、例えば、窒化珪素で形成されてい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. 1 (a) and 2 (b). This induction heating device 11
Is composed of a passage 12, heating elements 13, 14, 15, coils 16, and the like. The passage 12 is a fluid passage through which a fluid to be heated passes, and is formed by a ceramic pipe 17 made of a nonmagnetic material and having excellent heat resistance, and is an inner hole of the pipe 17. This passage 12 is formed of, for example, silicon nitride.

【0013】発熱体13、14、15は、所定の長さL
に形成された円柱状のもので、通路12の軸方向に所定
の間隔寸法hの間隔部18を形成するようにそれぞれ挿
入されている。図示のものは3個の発熱体を示してある
が、少なくとも2個以上を、夫々の間に間隔を隔てて設
けるものとする。各発熱体13、14、15は軸方向に
沿った多数の貫通孔13a、13b、13c、…、14
a、14b、14c、…、15a、15b、15c…を
穿設してあり、流体が発熱体13,14,15を通過す
る流路としてある。前記間隔寸法hは、貫通孔13a、
13b、13c、…、14a、14b、14c、…、1
5a、15b、15c…等(以下貫通孔13a等と記
す)を通過した流体を間隔部18で乱流を起こさせるよ
うになっているもので、発熱体13、14、15の、軸
方向の全長Lの10%以下であることが適切な乱流を起
こさせるために望ましい。また、前記各発熱体13、1
4、15の貫通孔13a等は、前後に隣合う発熱体間で
通路12に直角な方向の位置が異なるように、例えば、
同じ形状寸法の発熱体を3個用い順次軸線回りに回転変
位させて貫通孔13a等の位置が前後で一致しないよう
に各発熱体13、14、15を設置してある。つまり、
各貫通孔の位相がずれるように各発熱体が通路12内に
設置されている。これにより、より一層乱流が生じやす
くなる。発熱体13、14、15は、電磁誘導加熱によ
り発熱して高温になる物質、例えば、耐熱磁性合金、又
は耐熱磁性セラミックス・金属複合材料で形成されてい
る。
The heating elements 13, 14, 15 have a predetermined length L.
And is inserted so as to form a space 18 having a predetermined space h in the axial direction of the passage 12. Although three heating elements are shown in the drawing, at least two or more heating elements are provided with an interval therebetween. Each of the heating elements 13, 14, 15 has a large number of through holes 13a, 13b, 13c,.
a, 14b, 14c,..., 15a, 15b, 15c,... are provided as flow paths through which the fluid passes through the heating elements 13, 14, 15. The interval dimension h is the through hole 13a,
13b, 13c,..., 14a, 14b, 14c,.
(Hereinafter referred to as through-holes 13a, etc.) cause turbulent flow of the fluid in the gaps 18, and the heating elements 13, 14, 15 in the axial direction It is desirable that the total length L is 10% or less in order to cause appropriate turbulence. Further, each of the heating elements 13, 1
For example, the through holes 13a and the like 4 and 15 are arranged such that the positions in the direction perpendicular to the passage 12 are different between the heating elements adjacent to each other before and after, for example,
Using three heating elements having the same shape and dimensions, the heating elements 13, 14, and 15 are installed so that the positions of the through holes 13a and the like do not coincide with each other by being rotationally displaced around the axis in order. That is,
Each heating element is installed in the passage 12 so that the phase of each through hole is shifted. Thereby, turbulence is more likely to occur. The heating elements 13, 14, and 15 are formed of a substance that is heated to a high temperature by electromagnetic induction heating, for example, a heat-resistant magnetic alloy or a heat-resistant magnetic ceramic / metal composite material.

【0014】コイル16は、発熱体13、14、15を
誘導加熱する高周波加熱コイルであり、発熱体13、1
4、15及び所定の間隔hに連続した磁束が生じるよう
に、通路12を形成しているパイプ17の外側に設けら
れた断熱材19の上から巻かれている。コイル16は高
周波電源20、すなわち、高周波インバーターから電力
の供給を受けるようになっている。
The coil 16 is a high-frequency heating coil for inductively heating the heating elements 13, 14, 15;
It is wound over a heat insulating material 19 provided outside the pipe 17 forming the passage 12 so that a continuous magnetic flux is generated at 4, 15 and a predetermined interval h. The coil 16 receives power from a high-frequency power supply 20, that is, a high-frequency inverter.

【0015】この誘導加熱装置11は、コイル16に高
周波電源20から電力が供給されると、電磁誘導により
発熱体13、14、15に渦電流が発生し、発熱体1
3、14、15が発熱する。例えば、この発熱体13、
14、15は、比抵抗が大きいため発熱して1200°
C程度にまで昇温可能である。通路の一端から流体を適
当な流速で供給すると、流体は、発熱体13、14、1
5の貫通孔13a等を通り抜ける間に加熱される。ま
た、流体は、発熱体13の貫通孔を通り抜けると、所定
の間隔寸法hの間隔部18で乱流を生じ、そして次の発
熱体14の貫通孔に入り、更に次の間隔部18で乱流を
生じ、更に次の発熱体15の貫通孔に入り、出口側の通
路12に出る。この乱流が生じることにより攪拌されて
流体は均一に昇温され、発熱体5を通過した流体は、1
000°Cまで昇温される。
In the induction heating device 11, when power is supplied to the coil 16 from the high frequency power supply 20, eddy currents are generated in the heating elements 13, 14, 15 by electromagnetic induction, and the heating element 1
3, 14, and 15 generate heat. For example, this heating element 13,
14 and 15 generate 1200 ° of heat due to large specific resistance.
The temperature can be raised to about C. When the fluid is supplied at an appropriate flow rate from one end of the passage, the fluid is generated by the heating elements 13, 14, 1
5 while passing through the through holes 13a and the like. Further, when the fluid passes through the through hole of the heating element 13, a turbulent flow is generated in the gap 18 of the predetermined spacing dimension h, and then enters the through hole of the next heating element 14, and is further turbulent in the next gap 18. A flow is generated, and further enters the next through hole of the heating element 15 and exits the passage 12 on the outlet side. The turbulence causes the fluid to be stirred and the fluid to be heated uniformly, and the fluid that has passed through the heating element 5
The temperature is raised to 000 ° C.

【0016】第2の実施の形態を、図2を用いて説明す
る。この実施形態は、第1の実施形態における間隔部1
8の間隔寸法hを決定するようにスペーサ21、22を
設けてあり、発熱体14とスペーサ21、発熱体15と
スペーサ22が一体的に形成されている。このスペーサ
21、22は、流体の乱流が起こることを妨げないよう
に、発熱体5の中心に設けられ、突起状に形成されてい
る。この他の構成は、第1の実施形態におけるものと同
様であり、同一図面符号で示して説明を省略する。
A second embodiment will be described with reference to FIG. This embodiment is different from the first embodiment in that the gap 1
Spacers 21 and 22 are provided so as to determine an interval dimension h of 8, and the heating element 14 and the spacer 21 and the heating element 15 and the spacer 22 are integrally formed. The spacers 21 and 22 are provided at the center of the heating element 5 and formed in a projecting shape so as not to prevent turbulent flow of the fluid. Other configurations are the same as those in the first embodiment, and are denoted by the same reference numerals and description thereof is omitted.

【0017】[0017]

【発明の効果】請求項1記載の発明は、発熱体の製作費
用を低減出来る。また、流体が発熱体の貫通孔を通過し
た後、発熱体の所定の間隔を通過する際に乱流が起こる
ことにより、流体を均一に熱効率よく昇温出来る効果を
有する。請求項2記載の発明は、請求項1記載の発明の
効果に加えて、所定の間隔を2以上設置された発熱体の
軸方向全長の10%以下にすることにより、より効果的
に昇温出来る効果を有する。請求項3記載の発明は、請
求項1又は請求項2記載の発明の効果に加えて、流体の
乱流が起こることを妨げることなく、また発熱体の製作
が容易になるという効果を併せ有する。請求項4記載の
発明は、請求項1,請求項2及び請求項3のいずれかに
記載の効果に加えて、流体に一層乱流を生じさせること
が出来るため、流体をより均一に昇温させることが出来
る効果を有する。
According to the first aspect of the invention, the manufacturing cost of the heating element can be reduced. In addition, since the turbulent flow occurs when the fluid passes through the predetermined interval between the heating elements after passing through the through-hole of the heating element, the fluid can be heated uniformly and efficiently. According to the second aspect of the present invention, in addition to the effect of the first aspect of the present invention, the temperature can be more effectively increased by setting the predetermined interval to 10% or less of the total length in the axial direction of the two or more heating elements. Has the effect that can be. The invention according to claim 3 has, in addition to the effects of the invention according to claim 1 or claim 2, an effect that the turbulence of the fluid does not occur and the heating element is easily manufactured. . According to the fourth aspect of the invention, in addition to the effects of any one of the first, second, and third aspects, the turbulence of the fluid can be further increased, so that the temperature of the fluid is more uniformly increased. It has the effect that it can be done.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態を説明するための部分
縦断概略斜視図である。
FIG. 1 is a partial longitudinal sectional schematic perspective view for explaining a first embodiment of the present invention.

【図2】本発明の第2の実施形態を説明するための部分
縦断斜視図である。
FIG. 2 is a partial vertical cross-sectional perspective view for explaining a second embodiment of the present invention.

【図3】第2の実施形態の、発熱体の形態を示す斜視図
である。
FIG. 3 is a perspective view illustrating a form of a heating element according to a second embodiment.

【図4】従来の誘導加熱装置の部分縦断概略斜視図であ
る。
FIG. 4 is a partial longitudinal sectional schematic perspective view of a conventional induction heating device.

【符号の説明】[Explanation of symbols]

11 誘導加熱装置 12 通路 13、14、15 発熱体 16 コイル 17 パイプ 18 間隔部 19 断熱材 20 高周波電源 21 スペーサ DESCRIPTION OF SYMBOLS 11 Induction heating apparatus 12 Passage 13, 14, 15 Heating body 16 Coil 17 Pipe 18 Space part 19 Insulation material 20 High frequency power supply 21 Spacer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 重樹 兵庫県姫路市大津区勘兵衛町3丁目12番地 虹技株式会社姫路東工場内 (72)発明者 矢崎 和彦 兵庫県姫路市大津区勘兵衛町3丁目12番地 虹技株式会社姫路東工場内 Fターム(参考) 3K059 AA08 AB04 AD03 AD40 CD79 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Shigeki Yamamoto 3-12 Kanbei-cho, Himeji-shi, Hyogo Pref. Inside the Himeji Higashi Plant of Rainbow Technology Co., Ltd. No.12 F-term in Himeji East factory of Nijigi Co., Ltd. (reference) 3K059 AA08 AB04 AD03 AD40 CD79

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 流体が通るように非誘導加熱体で形成さ
れた筒状の通路と、前記通路中に設置された発熱体と、
前記通路の外側に巻かれ前記発熱体を誘導加熱する高周
波加熱コイルとを備えてなる誘導加熱装置において、前
記発熱体は、流体が通過するように複数の貫通孔を設け
てあると共に、前記通路の方向に所定の間隔を隔てて2
以上が設置されており、前記コイルは、前記発熱体及び
前記間隔に連続した磁束が生じるように巻かれているこ
とを特徴とする誘導加熱装置。
1. A tubular passage formed by a non-induction heating element so that a fluid passes therethrough, a heating element installed in the passage,
A high-frequency heating coil wound around the outside of the passage for induction heating the heating element, wherein the heating element is provided with a plurality of through-holes so that a fluid passes therethrough; At predetermined intervals in the direction of
The above is installed, and the coil is wound so that a continuous magnetic flux is generated in the heating element and the interval.
【請求項2】 前記所定の間隔は、前記2以上設置され
た発熱体の前記通路方向全長の10%以下であることを
特徴とする請求項1記載の誘導加熱装置。
2. The induction heating apparatus according to claim 1, wherein the predetermined interval is equal to or less than 10% of a total length of the two or more heating elements in the passage direction.
【請求項3】 前記2以上の発熱体が、前記所定の間隔
に対応する寸法で前記発熱体に突設されたスペーサによ
り前記所定の間隔となるように位置決めされていること
を特徴とする請求項1又は請求項2記載の誘導加熱装
置。
3. The heating device according to claim 2, wherein the two or more heating elements are positioned so as to be at the predetermined intervals by spacers projecting from the heating elements with dimensions corresponding to the predetermined intervals. The induction heating device according to claim 1 or 2.
【請求項4】 前記間隔を隔てて隣合う発熱体が、前記
貫通孔の位置を前記通路に直角な方向に異ならせて設置
されていることを特徴とする請求項1,請求項2および
請求項3のいずれかに記載の誘導加熱装置。
4. The heating element according to claim 1, wherein said heat generating elements adjacent to each other at intervals are provided so that positions of said through holes are different from each other in a direction perpendicular to said passage. Item 4. The induction heating device according to any one of Items 3 to 7.
JP2001104812A 2001-04-03 2001-04-03 Induction heating equipment Pending JP2002305074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001104812A JP2002305074A (en) 2001-04-03 2001-04-03 Induction heating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001104812A JP2002305074A (en) 2001-04-03 2001-04-03 Induction heating equipment

Publications (1)

Publication Number Publication Date
JP2002305074A true JP2002305074A (en) 2002-10-18

Family

ID=18957614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001104812A Pending JP2002305074A (en) 2001-04-03 2001-04-03 Induction heating equipment

Country Status (1)

Country Link
JP (1) JP2002305074A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003326132A (en) * 2002-05-10 2003-11-18 Takeshi Kamisa Thermal decomposition processing device for organohalogen compound
KR100762734B1 (en) 2006-02-10 2007-10-02 김성일 Induction heating element for heater and heater thereof
US7374717B2 (en) 2004-03-22 2008-05-20 Osamu Yamada Method for producing intermetallic compound porous material
KR100869660B1 (en) * 2004-02-13 2008-11-21 파이 코포레이션 Superheated vapor generator
WO2012034450A1 (en) * 2010-09-16 2012-03-22 江门市银河科技发展有限公司 Plate-type electromagnetic heating device
KR101663924B1 (en) * 2015-06-08 2016-10-14 이은봉 High-frequency induction heating boiler
KR101824073B1 (en) * 2017-03-28 2018-01-31 스피드테크(주) Induction double heating and heat transfer system
KR101824071B1 (en) * 2017-03-28 2018-03-14 스피드테크(주) Induction heating and heat transfer system
WO2021020527A1 (en) * 2019-07-30 2021-02-04 幸春 宮村 Method for manufacturing heat-generating element, heat-generating element, and heating unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02192687A (en) * 1988-10-03 1990-07-30 Imperial Chem Ind Plc <Ici> Reactor being used for fluid phase and capable of conducting inductive heating and reactor element capable of permeating fluid and capable of conducting inductive heating
JPH11233245A (en) * 1998-02-10 1999-08-27 Kogi Corp Gaseous mass body heating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02192687A (en) * 1988-10-03 1990-07-30 Imperial Chem Ind Plc <Ici> Reactor being used for fluid phase and capable of conducting inductive heating and reactor element capable of permeating fluid and capable of conducting inductive heating
JPH11233245A (en) * 1998-02-10 1999-08-27 Kogi Corp Gaseous mass body heating device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003326132A (en) * 2002-05-10 2003-11-18 Takeshi Kamisa Thermal decomposition processing device for organohalogen compound
KR100869660B1 (en) * 2004-02-13 2008-11-21 파이 코포레이션 Superheated vapor generator
US7374717B2 (en) 2004-03-22 2008-05-20 Osamu Yamada Method for producing intermetallic compound porous material
KR100762734B1 (en) 2006-02-10 2007-10-02 김성일 Induction heating element for heater and heater thereof
WO2012034450A1 (en) * 2010-09-16 2012-03-22 江门市银河科技发展有限公司 Plate-type electromagnetic heating device
KR101663924B1 (en) * 2015-06-08 2016-10-14 이은봉 High-frequency induction heating boiler
KR101824073B1 (en) * 2017-03-28 2018-01-31 스피드테크(주) Induction double heating and heat transfer system
KR101824071B1 (en) * 2017-03-28 2018-03-14 스피드테크(주) Induction heating and heat transfer system
WO2021020527A1 (en) * 2019-07-30 2021-02-04 幸春 宮村 Method for manufacturing heat-generating element, heat-generating element, and heating unit
JPWO2021020527A1 (en) * 2019-07-30 2021-11-18 幸春 宮村 Heating element manufacturing method, heating element and heating unit

Similar Documents

Publication Publication Date Title
RU2357383C1 (en) Inductive heating device for metal plate
EP2213140B1 (en) Flow-through induction heater
JP2010071624A (en) Fluid heating device
CN111412650B (en) Large-flow pure air heater
JP2002305074A (en) Induction heating equipment
JP4275070B2 (en) Magnetic heating device
JP3893919B2 (en) Induction heating unit for fluid heating
JPH09178103A (en) Induction type super heated steam generator
JP5492337B1 (en) High frequency induction melting furnace
CN104734525B (en) Power supply device and its application method, overheated steam generation device
JP2001203069A (en) Electromagnetic induction heating device
RU2200228C2 (en) Down-hole induction heater
JP2002313546A (en) Heating cell for electromagnetic induction type fluid heating device
KR20180029134A (en) high efficient and continuous electric generation cycle device employing ferrofluid with Tandem configuration of permanent magnet and generating coil of generator
JP2002323260A (en) Instantaneous water-heating equipment
JP2009079821A (en) Fluid heating device
JP2021025079A (en) Electromagnetic induction heating device
JP2021034294A (en) Superheated steam producing device
JPH0355790A (en) High-frequency heating method and its device
JP2007294207A (en) High-frequency induction heating apparatus and its heating method
JPH0992449A (en) Induction heater
JP4182541B2 (en) Power generator
JP3743064B2 (en) Heating device
JP7268494B2 (en) induction heating device
JPH0714557B2 (en) Impeder for ERW pipe manufacturing

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601