JP4182460B2 - Inflow sewage prediction device - Google Patents
Inflow sewage prediction device Download PDFInfo
- Publication number
- JP4182460B2 JP4182460B2 JP16173499A JP16173499A JP4182460B2 JP 4182460 B2 JP4182460 B2 JP 4182460B2 JP 16173499 A JP16173499 A JP 16173499A JP 16173499 A JP16173499 A JP 16173499A JP 4182460 B2 JP4182460 B2 JP 4182460B2
- Authority
- JP
- Japan
- Prior art keywords
- inflow
- rainy day
- sewage
- amount
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Sewage (AREA)
- Feedback Control In General (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、下水処理場の流入下水量予測を、精度良く行うことが出来る流入下水量予測装置に関するものである。
【0002】
【従来の技術】
従来、浸水防除のためには雨水排水施設の拡大、既存施設を生かした施設運用が必要である。特に、既存施設の運用では、降雨量からポンプ井への流入量を予測し、その値に見合ったポンプ制御を行う方法が種々提案されている。
たとえば、降雨をもとに雨水排水路の設計に必要な雨水流出ハイドログラフを算出する修正RRL(Load Research Laboratory) 法を使用したものがある(特開8-123538)。図2はその一部を示す流入下水量予測装置のブロック図である。1は雨量計で、雨の降雨強度を測定する。3は、ポンプ場13に設置された雨水・汚水を排水する排水ポンプで、ポンプ井14に貯留した雨水・汚水を貯留量に応じて汲み上げ吐出する。4は計測値蓄積装置で、雨量計で計測された降雨強度等の計測データを蓄積する装置である。12は修正RRL 法を用いた流入下水量予測装置、11はポンプ運転指令装置である。
流入下水量予測装置12は、浸透域面積、流下時間、貯留量・流出量曲線を求め、有効降雨量、雨水流入水、流入下水量の演算を行う。浸透域面積は、排水面積に対する不浸透域面積の割合を示すものである。不浸透域面積、浸透域面積の計算方法は、対象とする排水区域の航空写真に二つの乱数の組み合わせを適当な場所を原点としてプロットし、全プロット数に対する不浸透域プロット数、浸透域プロット数の割合をもって不浸透域面積、浸透域面積を算出する方法である。有効降雨量の演算は、有効面積演算装置で演算された浸透域と不浸透域から管きょに流入する流入降雨量を演算する。流下時間は、排水区域の管きょの位置、形状、管径、こう配などからから、満流流速を使って各マンホール間の時間から求める。貯留量・流出量曲線は、管きょに流入した雨水の管内貯留を考慮に入れた貯留量・流出量の関係を求める。雨水流入水は、有効降雨強度と流下時間とを用いて、単位図の手法により算出する。流入下水量は、貯留量・流出量曲線で求められた関数から連続式を解いて求める。
ポンプ運転指令装置11は、流入下水量予測装置12により演算された流入下水量から最適なポンプ運転指令を出力する。
【0003】
【発明が解決しようとする課題】
ところが、このような修正RRL 法による流入下水量予測では、有効降雨量、流下時間、貯留量・流出曲線などを求めるために、浸透域、不浸透域、流下時間、貯留量・流入量の関係など膨大なデータの算出が必要となり、着工前に膨大な時間がかかりコストもかかる。また、浸透域、不浸透域などは、住宅状況の変化、道路状況の変化によって、その値を随時修正しなければならない。しかし、これらの値を変更するには時間と人の大きな労力を必要とし、常に更新することは困難なため予測精度も悪くなる。
そこで、本発明は、降雨強度や流入下水量などのオンラインデータのみにより、高精度で安価な流入下水量予測装置を提供することを目的としている。
【0004】
【課題を解決するための手段】
上記問題を解決するため、本発明は対象流域での降雨により下水処理場へ流入する下水流入量を予測する流入下水量予測装置において、前記対象流域での降雨量の計測値およびポンプ井に流入する流入下水量の計測値を基に、非降雨日の流入下水量の1日の平均変動パターンを予め作成し記憶する流入量平均変動パターン作成手段と、降雨日の流入下水量から前記予め記憶した非降雨日の流入下水量の平均変動パターンを差し引いた残差部分のデータを作成する残差データ作成手段と、前記残差部分のデータを降雨日と非降雨日に層別する降雨日流入下水量データ演算手段と、前記降雨日流入量データと降雨量の計測値に基づく降雨強度との関係を統計モデルのシステム変数として作成するシステム変数作成手段と、前記システム変数から降雨日流入量の予測値を演算する残差予測値演算手段と、前記平均変動パターンと前記降雨日流入量の予測値との和を演算し流入下水量を予測する予測値演算手段とからなる構成にしている。
また、前記システム変数作成手段を自己回帰モデルとしてもよいし、前記1日の変動パターンを、曜日毎に層別してもよい。
上記手段により、過去数十日の最新の計測値を使用しているため、稼働後約1ヶ月の短期間でその下水処理場に適した予測を行うことができ、予測精度も高い。また、平均変動パターンや自己回帰モデルを毎日更新するため、季節変動に自動的に対応した予測を行うこともできる。
【0005】
【発明の実施の形態】
以下、本発明の実施例を図に基づいて詳細に説明する。
図1は、本発明の一実施例を示す流入下水量予測装置のブロック図である。本実施例では、システム変数の作成手段として自己回帰モデルを用いた。図1において、2はポンプ井に流入する流量を測定する流量計、5は流入量平均変動パターン作成装置、6は残差データ作成装置、7は降雨日流入量データ演算装置、8は自己回帰モデル作成装置、9は降雨日流入量予測値演算装置、10は予測値演算装置である。なお、他の符号は、従来技術で述べたものと同一である。
本発明の流入下水量予測装置用いた予測方法をついて説明する。
まず、流入量平均変動パターン作成装置5は、計測値蓄積装置4で蓄積された計測値を、降雨のある降雨日と降雨のない非降雨日に層別して流入量の平均変動パターンを作成する。つまり、1日の平均変動パターンは、非降雨日の各時刻毎の流入下水量の直近数日間の平均値から算出する。そしてこの算出された平均変動パターンの更新は、予測日により近い計測値を使用するために毎日行う。
残差データ作成装置6は、計測値蓄積装置4に記憶している計測値および流入量平均変動パターン作成装置5で作成した流入下水量の平均変動パターンから、降雨日のデータを作成する。すなわち、流入下水量から平均変動パターンを引いた部分( 以下、これを残差部分と呼ぶ) を対象とするデータを作成する。残差部分のデータは、つぎの(1) 式で求められる。
【0006】
【数1】
【0007】
ただし、Qdi(i) は時刻i における残差部分の計測値、Q(i) は時刻i における流入下水量、Qave (j) は時刻j における平均変動パターン、i は計測時刻、j は時刻(j=1,2,3,....,24) である。
降雨日流入量データ演算装置7は残差データ作成装置6で作成されたデータが非降雨日の時は、データ列への追加は行わず、降雨日の時は降雨強度と残差とをデータ列へ追加する。
本実施例では、システム変数作成手段として自己回帰モデルを用いた。
自己回帰モデル作成装置8は、降雨日流入量データ演算装置7で作成した降雨日流入量データと降雨強度とを入力して自己回帰モデルを作成する。いま、時刻n におけるプロセスの状態をk 次元の全変数ベクトルX(n)、時刻n よりm 時点前の全変数ベクトルをX(n-m)、白色ノイズベクトルをU(n)、自己回帰モデルの回帰係数をA(m)、自己回帰モデルの最適次数をM で表すと、その自己回帰表現は、(2) 式で表される。
【0008】
【数2】
【0009】
従って自己回帰モデルの作成とは、自己回帰係数、白色ノイズベクトルの分散および自己回帰モデルの最適次数の決定に帰結される。
自己回帰係数A(m)は、要素を Aij(m) とし、連立方程式をi=1,2,3,・・・・,kについて解くことにより求められる。すなわち、 Xi 、Xjの相互分散を Rij(l) 、自己回帰係数の要素を Aij(m) とすると、(3) 式の連立一次方程式をi=1,2,...,k について解けば Aij(m) が求められる。
【0010】
【数3】
【0011】
白色ノイズベクトルU(n)の要素をεi(n)とすると、その残差分散値σi 2 は(4) 式のようになる。
【0012】
【数4】
【0013】
なお、モデルの最適次数Mは予測誤差を表す(5) 式のMFPE(M) を最小にする値である。
【0014】
【数5】
【0015】
ただし、N はデータ数、‖dM‖はU(n)の分散共分散行列推定値である。またMFPEはMultiple Final Prediction Error の頭文字である。このようにして自己回帰係数、白色ノイズの分散および最適モデル次数が求められ、自己回帰モデルが作成される。従って、降雨日流入量の予測を行うために必要な、降雨日流入量と降雨強度との関係式を自己回帰モデルから求めることができる。自己回帰モデルの更新は、直近の計測値を使用することを目的に直近数十日の計測値を使用して1日1回行う。
降雨日流入量予測値演算装置9は、自己回帰モデル作成装置8で作成した自己回帰モデルによる予測値から統計的に類推可能な降雨日流入量の数10分先の予測値を演算する。自己回帰モデルを用いた時の数10分先の予測は(6) 式のように表される。
【0016】
【数6】
【0017】
ただし、Qdi(i) p は時刻i における降雨日流入量の予測値、Qdi(i) は時刻i における降雨日流入量の計測値、Rrain(i) は時刻i におけるの降雨強度、A11(m)は降雨日流入量の予測値に対する降雨日流入量の自己回帰係数、A12(m)は降雨日流入量の予測値に対する降雨強度の自己回帰係数である。
しかし、1点先以上の予測が必要なため、1点先以上の予測には、降雨日流入量は予測値を使用し、降雨強度は前回の降雨強度を使用する。このようにして得られた降雨日流入量の予測値Qdi(0) p , Qdi(1) p ・・・を予測値演算装置9に出力する。
予測値演算装置10は、流入量平均変動パターン作成装置5の平均変動パターンと降雨日流入量残差予測値演算装置9の降雨日流入量残差予測値との和を流入下水量予測値とする。流入下水量予測式は、(7) 式のように決定される。
【0018】
【数7】
【0019】
ただし、Q(i) p は予測流入下水量である。
以上述べた流入下水量予測装置による流入下水量の予測方法をまとめるとつぎのようになる。
▲1▼雨量計1、流量計2からオンラインで計測された値を計測値蓄積装置4に蓄積する。
▲2▼流入量平均変動パターン作成装置5により、非降雨日の流入量の平均変動パターンを作成する。
▲3▼残差データ作成装置6により、降雨日の流入下水量データから平均変動パターンを差し引いた残差部分すなわち、降雨のみの流入下水量データを作成する。
▲4▼降雨日流入量データ演算装置7により降雨日のみのデータから残差データと降雨強度とのデータ列を作成する。
▲5▼自己回帰モデル作成装置8により、自己回帰係数、白色ノイズの分散および最適モデル次数を求め、降雨日流入量と降雨強度との関係式を求める。
▲6▼降雨日流入量予測値演算装置9により統計的に類推可能な降雨日流入量の数10分先の予測値を演算する。
▲7▼予測値演算装置10により平均変動パターンと降雨日流入量予測値との和を流入下水量予測値として演算する。
▲8▼ポンプ運転指令装置11により、流入下水量の予測値データを基にした最適なポンプ運転指令データとして排水ポンプ3に出力する。
つぎに、この流入下水量予測方法を実際に適用して、シミュレーションを行った結果を、図3および図4のグラフに示す。図3は流入下水量の実測値( 実線) とシミュレーションによる予測値( 点線) を示している。図4は降雨量の時間変化を示す。図3から、流入下水量の実測値と予測値がよく一致していることが分かる。また、図4に示す降雨と図3の流入下水量との対応もよくとれている。シミュレーションの実施に際しては、直近数日のデータを使用しただけであるが、予測精度は極めて高いことが分かった。すなわち、稼働開始までの期間が極めて短くできる上、予測のための種々のデータ蓄積も少なくてむので、コストも安価にできる。
【0020】
【発明の効果】
以上述べたように本発明によれば、流入下水量予測装置を、ポンプ井への流入下水量を基に、非降雨日の平均変動パターンを作成し記憶する流入量平均変動パターン作成手段と、降雨日の降雨量のみによる流入下水量、すなわち、残差部分のデータを作成する残差データ作成手段と、降雨時のみデータ列を作成する降雨日流入量データ演算手段と、降雨日流入量のデータと降雨強度との関係を統計モデルのシステム変数として作成するシステム変数作成手段(自己回帰モデル)と、降雨日流入量の予測値を演算する降雨日流入量予測値演算手段と、平均変動パターンと降雨日流入量の予測値との和を演算し流入下水量を予測する予測値演算手段とからなる構成にしたので、流入下水量の予測精度が高く分流式、合流式の設備にも適用でき安価な流入下水量予測装置を得る効果がある。
。また、平均変動パターンや自己回帰モデルを毎日更新するため、季節変動に自動的に対応した予測を行うこともできる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す流入下水量予測装置のブロック図である。
【図2】従来の流入下水量予測装置を示すブロック図である。
【図3】本発明の流入下水量の実測値と予測値を示すグラフである。
【図4】降雨量の時間変化を示すグラフである。
【符号の説明】
1 雨量計
2 流量計
3 排水ポンプ
4 計測値蓄積装置
5 流入量平均変動パターン作成装置
6 残差データ作成装置
7 降雨日流入量データ演算装置
8 自己回帰モデル作成装置
9 降雨日流入量予測値演算装置
10予測値演算装置
11 ポンプ運転指令装置
12 修正RRL 法流入量予測装置
13 ポンプ場
14 ポンプ井[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an inflow sewage amount prediction device capable of accurately performing inflow sewage amount prediction in a sewage treatment plant.
[0002]
[Prior art]
Conventionally, in order to prevent inundation, it is necessary to expand rainwater drainage facilities and operate facilities utilizing existing facilities. In particular, in the operation of existing facilities, various methods for predicting the amount of inflow into the pump well from rainfall and performing pump control corresponding to the value have been proposed.
For example, there is a method using a modified RRL (Load Research Laboratory) method for calculating a stormwater runoff hydrograph necessary for designing a stormwater drainage based on rainfall (Japanese Patent Laid-Open No. 81-253838). FIG. 2 is a block diagram of an inflow sewage amount prediction apparatus showing a part thereof. 1 is a rain gauge and measures the rain intensity of rain. Reference numeral 3 denotes a drainage pump for draining rainwater / sewage installed in the
The inflow sewage amount prediction device 12 calculates an effective rainfall amount, rainwater inflow water, and inflow sewage amount by obtaining an infiltration area, a flow time, and a storage / outflow curve. The infiltration area is the ratio of the impervious area to the drainage area. The impervious area and permeate area are calculated by plotting a combination of two random numbers in the aerial photograph of the target drainage area with the appropriate location as the origin, and the number of impervious area plots and infiltration area plots for the total number of plots. This is a method for calculating the impervious area and the infiltrated area with a ratio of numbers. The calculation of the effective rainfall calculates the inflow rainfall flowing into the pipe from the infiltration area and the non-infiltration area calculated by the effective area calculation device. The flow-down time is determined from the time between each manhole using the full flow velocity from the position, shape, diameter, gradient, etc. of the pipe in the drainage area. The storage volume / runoff curve calculates the relationship between the storage volume and runoff volume taking into account the in-pipe storage of rainwater flowing into the pipe. The rainwater inflow water is calculated by the unit diagram method using the effective rainfall intensity and the flow time. The inflow sewage amount is obtained by solving a continuous equation from the function obtained from the storage amount / outflow curve.
The pump operation command device 11 outputs an optimum pump operation command from the inflow sewage amount calculated by the inflow sewage amount prediction device 12.
[0003]
[Problems to be solved by the invention]
However, in such inflow sewage prediction using the modified RRL method, in order to determine the effective rainfall, flow time, storage volume / runoff curve, etc., the relationship between infiltration area, non-permeation area, flow time, storage volume / inflow volume, etc. It is necessary to calculate a huge amount of data, and it takes a lot of time and costs before the start of construction. In addition, the values of infiltration and non-permeation areas must be corrected as needed due to changes in housing conditions and road conditions. However, changing these values requires a great deal of time and human effort, and it is difficult to constantly update them, so the prediction accuracy also deteriorates.
Therefore, an object of the present invention is to provide a highly accurate and inexpensive inflow sewage prediction device based only on online data such as rainfall intensity and inflow sewage.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the present invention relates to an inflow sewage amount prediction device for predicting an inflow amount of sewage flowing into a sewage treatment plant due to rainfall in the target basin, and a measured value of rainfall in the target basin and an inflow to a pump well. Inflow average fluctuation pattern creating means for creating and storing a daily average fluctuation pattern of the inflow sewage on a non-rainy day based on the measured value of the inflow sewage to be stored, and storing in advance from the inflow sewage on a rainy day A residual data creating means for creating a residual data obtained by subtracting the average fluctuation pattern of the inflow sewage amount on the non-rainy day, and a rainy day inflow for stratifying the residual data into a rainy day and a non-rainy day Sewage amount data calculating means, system variable creating means for creating a relationship between the rainfall day inflow data and the rainfall intensity based on the measured rainfall value as a system variable of a statistical model; A residual prediction value calculating means for calculating a predicted value of the daily inflow, and a predicted value calculating means for calculating the sum of the average fluctuation pattern and the predicted value of the rainy day inflow to predict the inflow sewage I have to.
Further, the system variable creating means may be an autoregressive model, and the daily fluctuation pattern may be stratified for each day of the week.
Since the latest measured values of the past several tens of days are used by the above means, prediction suitable for the sewage treatment plant can be performed in a short period of about one month after operation, and the prediction accuracy is high. In addition, since the average variation pattern and the autoregressive model are updated every day, it is possible to make a prediction automatically corresponding to seasonal variation.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram of an inflowing sewage amount prediction apparatus showing an embodiment of the present invention. In this embodiment, an autoregressive model is used as means for creating system variables. In FIG. 1, 2 is a flow meter for measuring the flow rate flowing into a pump well, 5 is an inflow average fluctuation pattern creation device, 6 is a residual data creation device, 7 is a rainy day inflow data calculation device, and 8 is an autoregressive device. A model creation device, 9 is a rainy day inflow predicted value calculation device, and 10 is a predicted value calculation device. The other symbols are the same as those described in the prior art.
A prediction method using the inflow sewage amount prediction apparatus of the present invention will be described.
First, the inflow average variation pattern creating device 5 creates an average inflow variation pattern by stratifying the measurement values accumulated by the measurement value accumulation device 4 on rainy days with rain and non-rainy days without rain. That is, the daily average fluctuation pattern is calculated from the average value of the inflow sewage amount at each time on the non-rainy day over the last few days. The calculated average fluctuation pattern is updated every day in order to use a measurement value closer to the predicted date.
The residual data creation device 6 creates rainy day data from the measurement values stored in the measurement value storage device 4 and the average fluctuation pattern of the inflow sewage amount created by the inflow average fluctuation pattern creation device 5. In other words, data is created for a portion obtained by subtracting the average fluctuation pattern from the inflow sewage amount (hereinafter referred to as the residual portion). The data of the residual part is obtained by the following equation (1).
[0006]
[Expression 1]
[0007]
However, Q di (i) is the measured value of the residual part at time i, Q (i) is the inflow sewage amount at time i, Q ave (j) is the average fluctuation pattern at time j, i is the measurement time, j is Time (j = 1,2,3, ...., 24).
The rainy day inflow data calculation device 7 does not add to the data string when the data created by the residual data creation device 6 is a non-rainy day. Append to column.
In this embodiment, an autoregressive model is used as a system variable creation means.
The autoregressive model creation device 8 inputs the rainy day inflow data and the rainfall intensity created by the rainy day inflow data calculation device 7 and creates an autoregressive model. Now, the state of the process at time n is the k-dimensional all variable vector X (n), all variable vectors m times before time n are X (nm), the white noise vector is U (n), and the regression of the autoregressive model When the coefficient is represented by A (m) and the optimal order of the autoregressive model is represented by M, the autoregressive expression is expressed by equation (2).
[0008]
[Expression 2]
[0009]
Therefore, the creation of the autoregressive model results in the determination of the autoregressive coefficient, the variance of the white noise vector, and the optimal order of the autoregressive model.
The autoregressive coefficient A (m) is obtained by solving the simultaneous equations for i = 1, 2, 3,..., K with the element A ij (m). In other words, if the mutual variance of Xi and Xj is R ij (l) and the element of the autoregressive coefficient is A ij (m), the simultaneous linear equations in Eq. (3) are for i = 1,2, ..., k Solving it gives A ij (m).
[0010]
[Equation 3]
[0011]
When the element of the white noise vector U (n) is εi (n), the residual variance value σ i 2 is as shown in the equation (4).
[0012]
[Expression 4]
[0013]
Note that the optimum order M of the model is a value that minimizes MFPE (M) in the equation (5) representing the prediction error.
[0014]
[Equation 5]
[0015]
Where N is the number of data and ‖dM‖ is the estimated covariance matrix of U (n). MFPE is an acronym for Multiple Final Prediction Error. In this way, the autoregressive coefficient, the variance of white noise, and the optimal model order are obtained, and an autoregressive model is created. Therefore, a relational expression between the rainy day inflow amount and the rainfall intensity necessary for predicting the rainy day inflow amount can be obtained from the autoregressive model. The autoregressive model is updated once a day using the measured values of the last several tens of days for the purpose of using the latest measured values.
The rainy day inflow predicted value calculation device 9 calculates a predicted value of several tens of minutes ahead of the rainy day inflow amount that can be statistically estimated from the predicted value by the autoregressive model created by the autoregressive model creation device 8. Prediction several tens of minutes ahead using the autoregressive model is expressed as equation (6).
[0016]
[Formula 6]
[0017]
Where Q di (i) p is the predicted value of the inflow amount on rainy day at time i, Q di (i) is the measured value of the inflow amount on rainy day at time i, R rain (i) is the rainfall intensity at time i, A 11 (m) is the autoregressive coefficient of the rainy day inflow with respect to the predicted value of the rainy day inflow, and A12 (m) is the autoregressive coefficient of the rainfall intensity with respect to the predicted value of the rainy day inflow.
However, since prediction of one point or more is necessary, for the prediction of one point or more, the rainy day inflow amount uses a predicted value, and the rainfall intensity uses the previous rainfall intensity. The predicted values Q di (0) p , Q di (1) p ... Of the rainy day inflow obtained in this way are output to the predicted value calculation unit 9.
The predicted
[0018]
[Expression 7]
[0019]
However, Q (i) p is the predicted inflow sewage amount.
The method for predicting the inflow sewage amount by the inflow sewage amount prediction apparatus described above is summarized as follows.
(1) The values measured online from the rain gauge 1 and the flow meter 2 are stored in the measured value storage device 4.
(2) The average variation pattern of the inflow on the non-rainy day is created by the inflow average variation pattern creation device 5.
(3) The residual data creation device 6 creates a residual portion obtained by subtracting the average fluctuation pattern from the inflow sewage data on a rainy day, that is, inflow sewage data only for rain.
(4) A rainy day inflow data calculation device 7 creates a data string of residual data and rainfall intensity from data on only rainy days.
(5) The autoregressive model creation device 8 obtains the autoregressive coefficient, the variance of the white noise, and the optimum model order, and obtains a relational expression between the rainy day inflow and the rainfall intensity.
(6) The rainy day inflow predicted value calculation unit 9 calculates a predicted value of several tens of minutes ahead of the rainy day inflow that can be statistically estimated.
(7) The predicted
(8) The pump operation command device 11 outputs to the drainage pump 3 as optimum pump operation command data based on the predicted value data of the inflow sewage amount.
Next, the simulation results obtained by actually applying this inflow sewage amount prediction method are shown in the graphs of FIGS. Fig. 3 shows the measured value (solid line) of the inflow sewage and the predicted value (dotted line) by simulation. FIG. 4 shows the temporal change in rainfall. It can be seen from FIG. 3 that the measured value and the predicted value of the inflow sewage amount are in good agreement. Also, the correspondence between the rainfall shown in FIG. 4 and the inflow sewage amount in FIG. 3 is well taken. In conducting the simulation, only the data from the last few days was used, but the prediction accuracy was found to be extremely high. In other words, the period until the start of operation can be made extremely short, and the accumulation of various data for prediction can be reduced, thereby reducing the cost.
[0020]
【The invention's effect】
As described above, according to the present invention, the inflow sewage amount predicting device is based on the inflow sewage amount to the pump well, and the inflow amount average fluctuation pattern creating means for creating and storing an average fluctuation pattern on a non-rainy day, Inflow sewage amount based only on rainfall on a rainy day, that is, residual data creation means for creating residual data, rainy day inflow data calculation means for creating a data column only during rain, System variable creation means (autoregressive model) that creates the relationship between data and rainfall intensity as a system variable of the statistical model, rainy day inflow predicted value calculation means for calculating the predicted value of rainy day inflow, and average fluctuation pattern And the prediction value calculation means for calculating the sum of the inflow amount and the estimated value of the inflow amount on rainy days, and the prediction value calculation means for predicting the inflow sewage amount. Cheap It is effective to obtain a flowing sewage quantity prediction apparatus.
. In addition, since the average variation pattern and the autoregressive model are updated every day, it is possible to make a prediction automatically corresponding to seasonal variation.
[Brief description of the drawings]
FIG. 1 is a block diagram of an inflowing sewage amount prediction apparatus showing an embodiment of the present invention.
FIG. 2 is a block diagram showing a conventional inflow sewage amount prediction device.
FIG. 3 is a graph showing measured values and predicted values of the inflow sewage amount of the present invention.
FIG. 4 is a graph showing temporal changes in rainfall.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rain gauge 2 Flow meter 3 Drain pump 4 Measured value storage device 5 Inflow average fluctuation pattern creation device 6 Residual data creation device 7 Rainy day inflow data calculation device 8 Autoregressive model creation device 9 Rainy day inflow prediction
Claims (3)
前記対象流域での降雨量の計測値およびポンプ井に流入する流入下水量の計測値を基に、非降雨日の流入下水量の1日の平均変動パターンを予め作成し記憶する流入量平均変動パターン作成手段と、
降雨日の流入下水量から前記予め記憶した非降雨日の流入下水量の平均変動パターンを差し引いた残差部分のデータを作成する残差データ作成手段と、
前記残差部分のデータを降雨日と非降雨日に層別する降雨日流入下水量データ演算手段と、
前記降雨日流入量データと降雨量の計測値に基づく降雨強度との関係を統計モデルのシステム変数として作成するシステム変数作成手段と、
前記システム変数から降雨日流入量の予測値を演算する残差予測値演算手段と、
前記平均変動パターンと前記降雨日流入量の予測値との和を演算し流入下水量を予測する予測値演算手段とからなることを特徴とする流入下水量予測装置。In the inflow sewage amount prediction device that predicts the sewage inflow amount flowing into the sewage treatment plant due to rainfall in the target basin,
Based on the measured value of the rainfall in the target basin and the measured value of the inflow sewage flowing into the pump well, an average inflow average fluctuation is created and stored in advance for the daily average fluctuation pattern of the inflow sewage on the non-rainy day. Pattern creation means;
A residual data creating means for creating data of a residual portion obtained by subtracting an average fluctuation pattern of the inflow sewage on the non-rainy day stored in advance from the inflow sewage on a rainy day;
Rainy day inflow sewage data calculation means for stratifying the residual part data on rainy days and non-rainy days;
A system variable creating means for creating a relationship between the rainy day inflow data and the rainfall intensity based on the measured rainfall value as a system variable of a statistical model;
A residual prediction value calculating means for calculating a predicted value of the inflow amount on a rainy day from the system variable;
An inflow sewage amount prediction device comprising: a predicted value calculation means for calculating the sum of the average fluctuation pattern and the predicted value of the inflow amount on a rainy day to predict the inflow sewage amount.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16173499A JP4182460B2 (en) | 1999-06-08 | 1999-06-08 | Inflow sewage prediction device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16173499A JP4182460B2 (en) | 1999-06-08 | 1999-06-08 | Inflow sewage prediction device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000345604A JP2000345604A (en) | 2000-12-12 |
JP4182460B2 true JP4182460B2 (en) | 2008-11-19 |
Family
ID=15740881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16173499A Expired - Fee Related JP4182460B2 (en) | 1999-06-08 | 1999-06-08 | Inflow sewage prediction device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4182460B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101387128B (en) * | 2004-12-14 | 2010-11-03 | 株式会社东芝 | Rainwater drain support system and method |
JP5279765B2 (en) * | 2010-06-04 | 2013-09-04 | 中国電力株式会社 | Temperature prediction system, temperature prediction method and program |
JP6222689B2 (en) * | 2013-06-04 | 2017-11-01 | 株式会社東芝 | Flow prediction device, flow prediction method, flow prediction program, and flow prediction system |
JP6874770B2 (en) * | 2016-08-31 | 2021-05-19 | 日本電気株式会社 | Rainfall Predictor, Rainfall Prediction Method, and Recording Media |
JP6749254B2 (en) * | 2017-01-11 | 2020-09-02 | 株式会社日立製作所 | Sewer system monitoring control device and sewer pump station operation control method |
JP7021976B2 (en) * | 2018-02-27 | 2022-02-17 | 株式会社日立製作所 | Water environment sensing device |
-
1999
- 1999-06-08 JP JP16173499A patent/JP4182460B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000345604A (en) | 2000-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900000751A (en) | Operation Control System and Method of Rainwater Pump | |
Guo | Rational hydrograph method for small urban watersheds | |
JP4182460B2 (en) | Inflow sewage prediction device | |
JP3839361B2 (en) | Rainwater runoff coefficient prediction method, rainwater inflow prediction method, rainwater runoff coefficient prediction program, and rainwater inflow forecast program | |
JP2955413B2 (en) | Rainwater inflow prediction device using neural network | |
Leonhardt et al. | A software-based sensor for combined sewer overflows | |
JP3906096B2 (en) | Drain pump operation support device and drain pump control device | |
JP3279703B2 (en) | Inflow water prediction method and inflow water prediction device | |
JPH06102911A (en) | Method and device for predicting inflow water rate in drainage pump place | |
KR20240000915A (en) | Water supply and demand analysis method based on historical data by using downscaling watershed and recording medium storing program for executing the method | |
JP3870407B2 (en) | Inflow prediction device | |
JP2000276235A (en) | Wide area rainwater drainage system supporting device | |
JP3294074B2 (en) | Rainwater pump control device and control method | |
JP3437700B2 (en) | Pump station inflow prediction support device | |
JP2000240576A (en) | Rainwater drainage controller for sewerage | |
JP2002322727A (en) | Operation support system | |
Hellmers | Computation of backwater effects in surface waters of tidal lowland catchments including control structures–An efficient and re-usable method implemented in the hydrological open source model Kalypso-NA (4.0) | |
JP2000056835A (en) | Device and method for predicting rate of inflow of rainwater | |
JPH09204218A (en) | Plant monitoring device | |
JP2004234422A (en) | Rainwater inflow prediction device | |
JP3667944B2 (en) | Rainwater inflow prediction support device | |
JP4035763B2 (en) | Driving support device | |
JPS63313088A (en) | Forecasting device for amount of rainfall | |
JP3176174B2 (en) | Pump station rainwater inflow prediction device | |
JPH09198145A (en) | Pump site inflow estimation support device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060515 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080401 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080808 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080821 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110912 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110912 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120912 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120912 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130912 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140912 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |